
GRAPHS WITH GIVEN GROUP AND GIVEN 
GRAPH-THEORETICAL PROPERTIES 

G E R T SABIDUSSI 

1. Introduction. In 1938 Frucht (2) proved the following theorem: 

(1.1). THEOREM. Given any finite group G there exist infinitely many non-
isomorphic connected graphs X whose automorphism group is < isomorphic to 
G. 

Later, the same author showed (3) that this theorem still holds, if the words 
"connected graphs X " are replaced by "connected regular graphs X of degree 
3 ." There is, of course, no reason to assume that such graphs play any dis­
tinguished rôle, and that similar theorems do not hold for degrees > 3. In­
deed it can be shown that (1.1) holds with "connected graphs X" replaced 
by "connected regular graphs X of degree n, where n is any integer > 3." 

It is only natural, then, to investigate whether the property that a graph X 
be regular of degree n is the only graph-theoretical property of X which can 
t e prescribed together with the automorphism group. Consider the following 
properties Pj(J = 1,2,3,4) of X: 

P±: The connectivity (6) of X is n, where n is an integer > 1. 
P2: The chromatic number (1) of X is n, where n is an integer > 2. 
Pz\ X is regular of degree n, where n is an integer > 3. 
P 4 : X is spanned by a graph Y homeomorphic to a given connected graph 

F. 

Call a graph X fixed-point-free if there is no vertex x of X which is invariant 
lunder all automorphisms of X. 

The following theorem contains the main results of this paper: 

(1.2) THEOREM. Given a finite group G of order > 1 and an integer j , 1 < j < 4, 
there exist infinitely many non-homeomorphic connected fixed-point-free graphs 
X such that (i) the automorphism group of X is isomorphic to G, and (ii) X has 
property Pj. 

The principal tool in deriving these results is the graph multiplication 
" X " defined in (5). A typical proof of the statements of (1.2) runs as follows: 

(a) Construct a connected fixed-point-free prime graph X' (for a definition 
of "prime" (5, (1.3))) whose automorphism group is isomorphic to G. 

(b) Construct a connected prime graph X" =|= X' with trivial automorphism 
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group and certain graph theoretical properties P/ which are such that the 
product X' X X" has property P i% 

(c) Apply (5, Theorem (3.2)), with the result that 

The automorphism group of X' X X" is isomorphic to the automorphism 
group of X', that is, isomorphic to G. 

By a graph X we mean an ordered triple X = (V, E, f), where V and E 
are two disjoint sets (the sets of vertices and edges of X), and / is a function 
of E into the set F* of unordered pairs of distinct elements of V such that if 
e* Ç F* there is at most one e £ E with fe = e*. To indicate that V and E 
are the sets of vertices and edges of a graph X = ( V, E, f) we shall write 
V = V(X), E = E(X). Edges will be written as unordered pairs of vertices 
(indicated by brackets). To describe a graph X it clearly suffices to give the 
set V(X) and a certain set E(X) of unordered pairs of elements of V(X)» 
All graphs considered in this paper are finite. 

Let X be a graph. By G(X) we denote the automorphism group of X. We can 
consider G(X) as a group of one-one mappings of V(X) onto itself. 

2. Definition and properties of the graph product. 

(2.1) DEFINITION: Let X, F be graphs. By the product XX Y of X and F 
is meant the following graph Z: 

V(Z) = V(X) X 7 ( F ) ; 

[(x>y)i (#'»y)L where x, x' Ç 7(X), 3>, 3>' G 7 ( F ) , is an edge of Z if x = x' 
and b y ] € £ ( F ) , or y = / and [x,xr] Ç £ ( X ) . 

If we identify isomorphic graphs the multiplication thus defined is clearly 
associative and commutative. It has a ^ni/, viz. the graph consisting of a single 
vertex and no edge. 

(2.2) LEMMA. The product of connected graphs is connected. The product of 
any graph by a disconnected graph is disconnected. 

(2.3) LEMMA. If X is m-ply connected, and Y is n-ply connected, then X X Y 
is (m + n)-ply connected. 

Proof. We shall use a theorem of Whitney (6, Theorem 7). X is m-ply 
connected implies: Given any pair of distinct vertices x, x' of X there exist 
m paths Xj of X such that 

v(Xj)n v(xk) = {*,*'}, j^k. 
Y is fz-ply connected means: Given any pair of distinct vertices y, y' of F 
there exist n paths Yj of F such that 

7 ( F , ) H V(Yk) = {y,y'}, j * k. 
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To show: Given any pair of distinct vertices (x,y), (x'\y') of Z = X X F 
there exist m + n paths Zy of Z such that 

nz,)nnz*) = {(*,?), (*',/)}, jv*. 
We have to consider two cases. 

Case (1). Given (x,y), (x',y') G V(Z), where x ^ x', j ^ 3/'. At most one of 
the paths Xj (Y3) consists of a single edge. In that case let the notation be 
so chosen that Xm ( Yn) is that path. Let 

V(Xj) = {x, x[j\ x[j\ ...,x'}, j < m\ 

V(Yj) = { y , ^ y ( 8 ^ . . . , y } , j<n. 

Define paths Zjy Zm+k of Z as follows: 

7(Z,) = {(x,y), (*(,'\y), (x(/V2
n)), (^V."*) 

(4V) , (4V) (xV)l, j<m-\; 
V(Zm) = {(x,y), (x[m\y), . . . , (x',y), (x',y[n)), . . . , (x',y')} ; 

V{Zm+k) = {(x,y), (x,y?}), (x[m\y[k)), (xlm\ylk)), . . . , 
(x',y^),{x'yz

w),...,W,y')}, k<n-l; 
V(Zn+n) = {(x,y), {x,y(f) (* , / ) , (x (

2"V), . . . , {x',y')\. 

Case (2). Given (x,y), (x',y) G V(Z), where x ^ xr. Let yf be any vertex 
of Y distinct from y. Using the same notation as in case (1), define Z;-, Zm+Jc 

as follows: 

V(Zj) = {(x,y), (x(
2

j\y), . . . , (x',y)}, j < m; 
V(Zm+k) = {(x,y), (x,y?), (x(?\yik)), (xlm\y(

2
k)), . . . , 

(x',y?),(x',y)}, k<n. 

In both cases the m + n paths Zh Zm+k of Z have the required properties. 

(2.4) LEMMA. Let X, Y be graphs of connectivity m and n respectively. If there 
is an x G V(X) of degree m, and ay G V{Y) of degree n, then the connectivity 
of X X Y is m + n. 

Proof. Let Vx, Vyy V(XtV) be the sets of those vertices of X, Y and X X Y 
which are joined with x G V(X), y G V(Y), and (x,y) G V(X X Y) res­
pectively. Then the definition of the graph product implies that 

V(x,y) = (Vx X {y}) U ({*} X Vy). 

Hence the degree of (x,y) in X X Y is m -\- n. It follows that every sub­
graph 7 of X X F with V(I) = V(XtV) is an isthmoid1 of order w + w o f l X Y 
(with one component of (X X F) — I consisting of the vertex (x,y) alone). 
Hence the connectivity of X X F is < m + n. By (2.3) the connectivity of 
X X F is > m + n, and this proves Lemma (2.4). 

xAn isthmoid of a graph X is a subgraph / of X such that X — I is disconnected. X — I 
is the maximal subgraph X ' of X with F(X') = V{X) - V(I). 
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(2.5) LEMMA. If X and Y are regular of degree m and n respectively, then 
XX Y is regular of degree m + n. 

The proof of this Lemma is contained in the proof of (2.4). 

(2.6) LEMMA. Let xQQ, x(Y), x(X X Y) be the chromatic numbers of Xy 

Yand XX Y respectively. Then X(X X Y) = max (X(X), x(Y)). 

Proof. The maximal subgraphs Xy, Yx of X X Y with 

V(Xy) = V(X) X{y},y G V(Y), 
V{YX) = {x} X 7 ( F ) , * e V(X), 

are isomorphic to X and Y respectively. Hence x(X X Y) > m, where 
m = max (x(X)y x(F)) . Let cx, cY be ra-colorings of X and Y respectively 
(an m-coloring of X is a function cx of V(X) into Jmj the group of integers 
(mod m), such that [x,xf] £ E{X) implies cx(x) 9e cx{x')\ likewise for F) . 
Define a function c of V(X X Y) into Jm by 

c(x,y) = cx(x) + cY(y),x <E V(X),y G V(Y). 

c is an ra-coloring of X X Y. To show: 

[(x,y), (x'y)] e E(X X Y)-+c(x,y) * * ( * ' , / ) ; 

l(x,y),(x',y')] e E(X X Y)-*x = x', [y,y'] e E(Y), or y = y', [x,x'] 6 E{X). 

It suffices to consider the first case: x = x' —> cx(x) = cx(x
f); [y,y'] £ E(Y) 

—> cY(y) î6 cY{y'). Hence 

c(x,y) = cx{x) + cY(y) j± cx{x') + cY{y') = c(x',y'). 

Since c is an m-coloring of X X Y, it follows that x(X X Y) < m. 

(2.7) LEMMA. Let X, F, Z be connected graphs such that (i) a0 (Z) > 2 a0(X) 
— 2(c*o = number of vertices)] (ii) Z contains a Hamiltonian circuit H; (iii) 
Z w spanned by a graph Y homeomorphic to Y with E(Y) C\ E(H) ^ • 
( = the empty set). Then X X Z is spanned by a graph Y homeomorphic to 
F. 

Proof. Let X' be a (connected) spanning tree of X, and let E(Xf) = 
{eu ... y em-i], m = a0(X). For each xt £ V(X') define Et = {&|xi is incident 
with ek, ek £ £(X' )} . Since X ' is a tree, we can assume that x\ £ F(X') is of 
degree 1 in X'. Let 

V(Z) = V(Y) = [zi, . . . ,zn},n>2m-2, 

and let the notation be so chosen that 

(1) E(H) = {[zi,z2], [Z2,Z3], • • • , [zn-i,Zn], [zn,zi]}, and 
(2) [z!,s2] e E(Y) r\E(H). Let # „ F , be given by 

F(iï<) = V(Yt) = {xt} X 7 (F ) , 
E{H%) = {[(*„*,), (*,,**)]![****] e E(H)}, 
E(Yt) = {[(*„*,), {xuzk)]\[ZjM e E(Y)}. 
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Notice that 
m 

U V(Ht) = V(X X Z). 

Consider the following subgraph P of X X Z: 
m 

V(P) = U V(Ht) U {(*i,si), (*i,ss)}. 

£ ( P ) = U (E(Hi) - \l(xuzu-i), (*«,*M)]|*É £,}) U 
i = 2 

ra—1 

U {[(xW,zU-i), ( y ^ a - i ) ] , [(*(*U*), (yW.«a)]}. 
where [x(k\y(k)] = ek(k = 1, . . . , m — 1). It can be easily checked that 
(1) P is connected, (2) the degree of (xi,Zi) and (xi,z2) in P is 1, (3) the degree 
in P of any other vertex of P is 2. Hence P is a path joining (xi,Zi) and (xi,z2), 
and containing all vertices of (X X Z) — YV Now let F be given by 

F(F) = V(XXZ), 
E(Y) = (£(Fx) - {[(*i,*i), (*!,s2)]}) U E ( P ) . 

Then clearly F spans I X Z , and is homeomorphic to Y. 

(2.8) LEMMA. Every connected graph X containing a vertex or an edge which 
is not contained in a ^-circuit of X is prime. 

Proof. Suppose X = Y X Z, where a 0(F) , a0(Z) > 2. Let 

(y,*) € F ( Z ) , y e F ( F ) , z G 7(Z). 

Since X is connected, both Y and Z are connected; hence by (2.5) the degree 
of y in Y and the degree of z in Z must be > 1. Let y', zf be vertices joined 
with y and z in Y and Z respectively. Then the subgraph C of X given by 

F ( 0 = {(y,8), {y,z'),{y',z'), ( / ,*)}, 
£ ( Q = {[(y,s), (y,*')], [(y,*7), (yV)L [ (yV) . (/ ,*)], [(y',*), (y,*)]} 

is a 4-circuit of X containing (y,z). The same proof applies to edges. 

(2.9) LEMMA. The product of a fixed-point-free graph X by any graph Y is 
fixed-point-free. 

Proof. Let x £ V(X). Since X is fixed-point-free, there is a </> Ç G(X) 
such that 0x ^ x. Then the function </>* given by </>*(x,;y) = (</>x,y) is an 
automorphism of X X F, and 0*(x,3O F^ (x,y) for all y £ F(F) . Hence 
X X F is fixed-point-free. 

(2.10) LEMMA. (5, (3.2)). If X and Y are relatively prime, then G(X X Y) 
^G(X) XG(Y). 

For a definition of ''relatively prime" cf. (5, (1.3)). 
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3. Existence of graphs with given group and given graph theoretical 
properties. We shall now prove the four theorems stated as Theorem 
(1.2). It should be emphasized that the constructions given in this paragraph 
are by no means the only possible ones. They have been chosen mainly to 
demonstrate the usefulness of graph multiplication. 

(3.1) Definition: Let X be a graph without isolated vertices. By X we mean 
the graph defined by 

(1) V(X) = {(x,e) G V(X) X E(X)\x is incident with e) ;_ 
(2) given (x,e), (x',ef) G V{X), then [(x,e), (xr ,e')] G E(X) if and only if 

x = x', e 9e ef, or x J6- x', e = ef. 

The following properties of X are obvious from the definition. 

(3.2) LEMMA. Let X be as in (3.1). (i) If X is connected or cyclically connected, 
then so also is X. (ii) If X is regular of degree n > 1, then X is likewise of degree 
n. (iii) If no component of X is a circuit, then X and X are not homeomorphic. 
If X is an n-circuit, then X is a 2n-circuit. (iv) If X is connected, then X is 
prime. 

(3.3) LEMMA. Let X be as in (3.1). If X is fixed-point-free and without fixed 
edge2, then so also is X. If no component of X is a circuit, then G(X) ~ G(X). 

Proof. Given <j> G G{X) define 4>\ V(X) -+ V(X) by 4>{x,e) = (<t>x,<j>e). 
Then clearly $ G G{X), and <£ —» $ is an isomorphism of G(X) into G{X). 

Define an equivalence relation ~ on V(X) by (x,e) ^^ (xf,ef) if and only 
if x = xf. Let X be the graph given by 

(i) V(X) = F ( X ) / ~ ; 
(ii) [x,x'] G E(X), where x, x' G V(X), if and only if there exist (x, e) G x 

and (x',ef) G x' such that [(x,e), {%',e')} G E(X). 
Then clearly X == X. By p denote the natural projection of V(X) onto VÇK). 

G(X) preserves the relation ~. Let (xi,ei) ^ (x2,e2), so that x\ = x2l and 
let $ G G{X). Put $(xi,ei) = (x/,e/) (i = 1,2). To show that x\ = x2'. 
(xuei) ~ (x2,e2) —> (xuei) = (x2je2) or e = [(xuei), (x2,e2)] G J E ( X ) . Hence 
ixi ,ei) = (x2,e2), and hence x± = x2, or e' = [(xi,ei), (x2,e2)] G £ (X) . 
In the latter case either 

(1) xi = x2', e / 9^ e2 , or 
(2) x / ^ X27, e / = e2

r. 
We have to show that (2) leads to a contradiction. Assume (2). It is easily 
seen that then there is no 3-circuit of X containing e . Hence there is no 3-
circuit of X containing e. Therefore x\ — x2 is of degree 2 in X, which in turn 
implies that (xuei) (i = 1,2) are of degree 2 in X. Since no component of X 
is a circuit, no component of J? is a circuit (cf. (3.2) (ii), (iii)). Hence X 
contains a vertex 

2An edge e of X is fixed, if <f>e = e for all <f> G G(X). 
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and a pa th P with 

V(P) = {(yi ,e ( 1) , . . . , (yn,ej}, E{P) = {e l f . . . , e ^ j , 

such t h a t 

(«) ( y n - i ^ - i ) = (*i,*i), ( y n , 0 = (^2,e2); 

(0) Cyi,«a) 

is of degree ^ 2 in X ; 

(7) (y*»«i*) 

is of degree 2 in J? for all k 9e 1. 
We show t h a t 

w = 2w + 1, «<2*-i = *<2*» ?2* = y2t+it k < m. 

For the proof notice t h a t (y,e) € F ( X ) and 3/ 6 F ( X ) are always of the 
same degree. e± Ç E(X) implies 

(a) yi = y2, etl 9* ei2, 

or 

(b) yi 9* y2, etl = ei2. 

(a) is impossible because 
(yi,etl) and (y2,ei2), 

and hence yi and 3/2, have different degrees. Hence (b) mus t hold. e2 € £ ( X ) 
implies 

(c) y2 = y*, ei2 9* eu, 

or 

(d) y2 9* y*, ei2 = eu. 

Suppose (d) holds. Then (b) and (d) imply 
€ ii = 6i2

 = 6i3J 

which is incident with yly y2, yz. Two of these vertices mus t be equal : (b) and 
(d) imply 3/1 = 3/3. Bu t then 

so t h a t 

(y2,ei2) 

is of degree 1, a contradict ion. Hence (c) mus t hold. T h e rest of the assertion 
follows in a similar way by induction. We shall express the fact t h a t n — 2m 
+ 1 by saying t h a t the "d i s tance" of e from 

(yi,ea) 

is odd. Since e and e are similar under $, there is a vertex 

and a pa th Q, similar under \p to 
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(yi,ea) 

and P respectively, and such that (a), (/3), (7) are satisfied with respect to 
e . By the same argument as above it then follows that the distance of e from 

( 2 1 , ^ 1 ) 

is even. But this contradicts the similarity of e and e . 
Given \p G G(X) define 

t: 7(X) -> F(X) by fx = ^ ( x , e ) , 

where (x,e) Ç £ - 1x, x G VÇK). Since $ preserves equivalence, ^ is in G(X), 
and h: G(X) —> G(K) given by h\p = ^ is a homomorphism. Consider 

Ker A = {$|$(x,e) ^ (#>g)}-

Let e = [x,y] G £ ( X ) . Then [(*,<?), (3^)] G £ ( X ) . For # G Ker A put 

\j/(x,e) = (xi,ei), ^(y,e) = (^1,^2). 

Then x = xh y = yh and [(xi,ei), (yi,e2)] G E(X). Hence 

(1) xi = yi, ei 7* e2, or 
(2) xi 7± ylt ei = e2 = [xhyi]. 

(1) is impossible since it implies x = y; (2) implies e\ = e2 = e, so that 
$(x,e) = (x,e). Hence Ker h = 1, and A is an isomorphism. 

The assertion about fixed vertices and edges follows from the fact that 
4> given by $(x,e) = (</>x,<£e) is in G(X). 

All constructions in this paragraph are based on the following theorem: 

(3.4) THEOREM. Given a finite group G of order > 1, there exist infinitely many 
non-homeomorphic cyclically connected fixed-point-free prime graphs Xi con­
taining no fixed edge, and such that G(Xt) ~ G. 

Proof. By (3, Theorem 4.1) there exists at least one such graph, X±. By 
induction, let Xi+i = Xu i > 1. Then by (3.2) and (3.3) all Xi have the 
required properties. Since X\ is regular of degree 3, no Xj is a circuit. 

(3.5) THEOREM. Given a finite group G of order > 1 and a positive integer n, 
there exist infinitely many non-homeomorphic fixed-point-free graphs X of 
connectivity n whose automorphism group is isomorphic to G. 

Proof. Given any graph X denote the connectivity of X by c(X). For 
n = 1, (3.5) has been proved in (2, §2). We can therefore assume that n > 2. 

Case (1). n = 2. Let X' be a graph with the properties stated in (3.4). 
In particular, c{X') > 2. By subdividing each edge e of X' by a vertex xe 

we obtain a graph X with c(X) = 2. X is prime, since no circuit of X is of 
order < 6 (cf. (2.8)). Since X' is not a circuit, G(X) ^G(X') ^ G. X is 
fixed-point-free because Xr is fixed-point-free and contains no fixed edge. 
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Case (2): n > 3. Let Yk, k > 1, be the graph given by 

V(Yk) = { 0 , 1 , . . . , £ + 5}, 
E(Yk) = {[0,1], [0,2], [2,3], [0,4], [4,5], . . . , [k + 4, k + 5]}. 

Then (i) 1 is a vertex of degree 1 of Yk; (ii) c(Yk) = 1; (iii) G(Yk) = 1; 
(iv) ^ and F*/ are relatively prime if k j£ k\ It follows from (2.4) that 

Y{m) = Fi X . . . X Ym 

is a graph of connectivity m, and from (2.10) that G(F (m)) = 1. By (2.5), 
(1, . . . , 1) is a vertex of degree m of F ( w ) . 

Let X be as in case (1). Then X and F(w_2), w > 3, are relatively prime, 
and satisfy the hypotheses of (2,4). Hence c(X X F(w~2)) = n, and by (2.10), 

G(X X F(w~2)) ^ G(X) X G(F(w_2)) ^ G. 

By (2.9), X X F<n-2) is fixed-point-free. 

(3.6) THEOREM. Given a finite group G of order > 1 and an integer n > 2, 
/&ere exw£ infinitely many non-homeomorphic connected fixed-point-free graphs 
X of chromatic number n whose automorphism group is isomorphic to G. 

Proof. Case (1): n = 2. Let X be as in (3.5), case (1). Every circuit of X 
is of even order; hence by a well-known theorem (4, p. 170), xPO = 2. 

Case (2). w > 3. Let Pu i = 1, . . . , w, be the graph with 

F(P,) = { £ 1 , . . . , ^ } , £(P*) = {[pj,pj+i],j = 1 , . . . , ; - 1}. 

Consider the complete ?z-graph C(w). Denote its vertices by xi, . . . , xn. Identify 
the vertex xt of C(n) with the vertex pt of Pu i = 1, . . . , n. The graph Cn 

so obtained is prime (since it is connected, and contains vertices which do 
not belong to any 4-circuit of Cn), has chromatic number x(Cn) = n, and 
G(Cn) = 1. 

Let X be as in case (1). Then by (2.10), G(X X Cn) ^ G, by (2.9), X X Cn 

is fixed-point-free; and by (2.6), x(X X Cn) = w. 

(3.7) THEOREM. Given a finite group G of order > 1 and an integer n > 3, 
^ere exist infinitely many non-homeomorphic connected fixed-point-free graphs X 
which are regular of degree n, and whose automorphism group is isomorphic to 
G. 

Proof. For n = 3 part of (3.7) has been proved in (3). The proof given here 
for n > 4 is patterned after that of (3, Theorem 4.1). 

We first show that there exists an infinite sequence of cyclically connected 
non-isomorphic prime graphs Fx, F2, . . . , which are regular of degree 3, 
and for which G(Yi) = l(i = 1,2, . . .). By (3, Theorem 2.3) there exists at 
least one such graph Fi. By induction, let Yi+i = Yu i > 1. Then by (3.2), 
(3.3) the F / s have the required properties. 
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Let X be a fixed-point-free graph of degree n which is relatively prime to 
Fi, . . . , Yk, and such that G{X) = G, where G is a given finite group of 
order > 1. By (2.9), 

Wk = X X YiX...XYk 

is fixed-point-free, and by (2.10), G(Wk)^G. By (2.5), Wk is regular of 
degree n + 3k. Hence (3.7) is proved if we show the following: There exist 
infinitely many non-isomorphic connected fixed-point-free graphs X/ r a> 

(J = 1,2, . . .), which are regular of degree n = 3,4,5, relatively prime to all! 
Yit and such that G(X+n)) ^ G for all j . 

Let G = {T}, and let X^ be the graph given in (3, Theorem 4.1). V(X^) 
= {*/, j <m, r e G], where w = 2A + 4, £(Xi<3)) as given in (3, p. 374), 
by quadratic forms. Define Xi (4 ) , Xi (5) as follows: 

V{X^) = V(X^) U {y/,j < m, r Ç G}, 

E(Xx(4)) = E(X/ 3 ) ) U {[*/, y / ] (i < tn), b / , yï+J, 0" < m - 1), 
b /» ^ - ; + l ] (J < h + 1) biT 3£+2], [yj+3f yTO

T], 

r G G } ; 

F(X!(5)) = F(X!(4)) U {*/ (j <m),re G}, 

E{X^) = E(XX
(4)) U {[*/, * / ] , £y/, z/] (j < m), [*/, zT

j+1] 

(j <m - 1), [z/, 2^-^+i] (J < h + 1), [zi, 4+s], [4+2, 2mT], TÇ G}. 

It is easily checked that Xi(n) (n = 4,5) is of degree n, and that if <j> Ç 
G(XiW),and 

for some r0 G G, then <£#/ = x/, 4>y/ = 3//, <£z/ = 3 / , for j < w and T £ G. 
An argument similar to that in (3) then shows that G(Xx{n)) ~ G(n = 3,4,5). 

By induction, let XJ+1™ = X /*> {j > 1, n = 3,4,5). Then by (3.2), (3.3), 
Xj+i{n) is prime, regular of degree n, fixed-point-free, and 

G(X, + 1
( W ) ) ^G(X, ( W ) ) ^G , j > l . 

Clearly X/n) and F* are non-isomorphic for i,j = 1,2, . . . , and n = 3,4,5; 
hence the X/n) are relatively prime to the Yif and this is what we set out to 
prove. 

(3.8) THEOREM. Let Y be a connected graph, and let G be a finite group of 
order > 1. Then there exist infinitely many non-homeomorphic fixed-point-free 
graphs X such that (i) G{X) ~ G, and (ii) X is spanned by a graph Y homeo-
morphic to Y. 

Proof. Let V(Y) = {yi, . . . , yr}. Take a spanning tree T of Y. Let ei be 
an edge of T incident with 3/1. Subdivide e\ by a new vertex z\. Let 7\, Y\ be 
the graphs obtained by this subdivision from T and Y respectively. Let 
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£2 be an edge of T\ incident with y2. Subdivide e2 by a new vertex s2, obtaining 
graphs r2 , F2. Continuing this process we finally obtain a graph Yr with 

V(Yr) = {yi,zuy2,Z2, . . . , yT,zr}, \yu*i] G E(YT), i < r. 

Define H, Y, Z by 

V(H) = F(F) = F(Z) = 7(F r ) U Û {ytl, . . . , ?« . ,} , 

£ ( £ 0 = £ U {bl,2l] , [21,^2], b2,22], • . . , [Zr-l,yr], bnZr]} [Zrjl]} , 

£(? ) = £ U £(F r) , £(Z) = E(H) U -E(Fr), 

where 
r 

E = U {b^*i]» b a j z 2 ] , . . . , b i „ - i j i , J , Ly<«,*<]}» 

5i, . . . , sr being positive integers to be chosen as specified below. Clearly Y 
spans Z and is homeomorphic to Y. H is a Hamiltonian circuit of Z, and 
E(H) H £ ( ? ) ^ D. I n Z each zt is of degree 3. Let Pt be that path of H 
which joins Zi and zi+i, and contains yi+i (subscripts to be taken modulo r). 
All vertices of Pt except zi} zi+i, and possibly yi+i are of degree 2 in Z. Let the 
st be so chosen that (1) st > a, where a is a given positive integer, and (2) 
ao(Pi+i) > a0(Pi) > ao(-P), for i = 1, . . . , r — 1, and all paths P of Z not 
containing a vertex yijm It follows from (2) that Z is prime (since no ytJ belongs 
to a 4-circuit of Z), and that G(Z) = 1. 

Given a finite group G of order > 1, let X be a graph with the properties 
stated in (3.4), and let Z be the graph constructed above with a = 2a0(X) — 2. 
Then X, F, Z satisfy the hypotheses of (2.7), and it follows that X X Z 
is spanned by a graph F homeomorphic to F. By (2.9), X X Z is fixed-point-
free. X and Z are non-isomorphic, and since both graphs are prime, G(X X Z) 
^ G(Z) ^ G. 
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