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1. Introduction

For self-adjoint operators A � 0 in a Hilbert space H, the spectral theorem establishes a
functional calculus for bounded Borel-measurable functions F : [0,∞) → C. This prop-
erty is crucial in countless applications in mathematical physics. In particular, in the
context of nonlinear phenomena one studies differential operators and associated semi-
group or resolvent operators also in spaces Lp for p �= 2. In this context, the holomorphic
H∞-functional calculus, i.e. a functional calculus for bounded holomorphic functions on
a complex sector symmetric to the real half-line, has turned out to be a very useful tool.
But, if the operator is self-adjoint in L2, it might have a better functional calculus in Lp

for p �= 2 for appropriate functions F : [0,∞) → C.
The classical result in this field is Hörmander’s spectral multiplier theorem for A = −Δ

on R
D from 1960 (see Theorem 2.1). Various generalizations of this result have been given

since then, in several directions. Quite recently, considerable progress has been made
(see [7,15,17,22,24]) concerning operators for which the associated semigroups satisfy
generalized Gaussian bounds or Davies–Gaffney estimates (see § 2 for more details). In
this paper we show that these results can be applied to several elliptic systems, namely,
the Stokes operator with Hodge boundary conditions, the Lamé system and the Maxwell
operator.

The Maxwell operator is of great importance in the study of electrodynamics. Following
the outline in [10, Chapter 6], we briefly explain how an interest in its spectral properties
arises. The Maxwell equations

rot E + ∂tH = 0, rotH − ε(·)∂tE = 0, div H = 0 in Ω
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govern the propagation of electromagnetic waves in a region Ω ⊂ R
3. Here, E : Ω×R → R

3

and H : Ω × R → R
3 denote the electric and magnetic field, respectively, whereas the

matrix-valued function ε(·) : Ω → R
3×3 describes the electric permittivity. The magnetic

permeability is taken to be the identity matrix, and the electric conductivity to be 0. We
assume perfect conductor boundary conditions:

ν × E = 0, ν · H = 0 on ∂Ω.

If the waves behave time periodically with respect to the same frequency ω > 0, the
ansatz E(x, t) = e−iωtE(x) and H(x, t) = e−iωtH(x) leads to the time-harmonic Maxwell
equations rotE − iωH = 0 and rotH + iωε(·)E = 0. Elimination of E finally yields that

rot ε(·)−1 rotH − ω2H = 0 in Ω,

div H = 0 in Ω,

ν · H = 0 on ∂Ω,

ν × ε(·)−1 rotH = 0 on ∂Ω.

We call the operator rot ε(·)−1 rot the Maxwell operator, and we study it in the following
setting. Let Ω be a bounded Lipschitz domain in R

3 and let ε(·) ∈ L∞(Ω, C3×3) be a
matrix-valued function such that ε(·)−1 ∈ L∞(Ω, C3×3) and ε(x) ∈ C

3×3 is a positive def-
inite Hermitian matrix for almost all x ∈ Ω. We emphasize that no additional regularity
assumptions on ε(·) are made. This is of interest in solid state physics, e.g. for photonic
crystals. Inspired by the approach in [29], we consider in L2(Ω, C3) the operator A2,
which is associated with the densely defined sesquilinear form

a(u, v) :=
∫

Ω

ε(·)−1 rotu · rot v dx +
∫

Ω

div u div v dx (u, v ∈ D(a)),

where D(a) := {u ∈ L2(Ω, C3) : div u ∈ L2(Ω, C), rotu ∈ L2(Ω, C3), ν · u|∂Ω = 0}. Here
and in the following, ν(x) denotes the outer normal at a point x of the boundary ∂Ω, and
the operators div and rot are defined in the distributional sense (see, for example, [2]).

In order to apply the recent results on spectral multipliers mentioned above, it is neces-
sary to establish generalized Gaussian estimates for the semigroup (e−tA2)t>0 associated
with the operator A2 (see Theorem 5.1). We do this via Davies’s perturbation method,
and we thus obtain that a spectral multiplier theorem holds for A2 (see Theorem 5.6). We
define the Maxwell operator M2 as the restriction of A2 to the space of divergence-free
vector fields. Since the Helmholtz projection and A2 are commuting (see Lemma 5.4),
many properties of A2 can be transferred to the Maxwell operator M2. This includes, in
particular, the validity of the spectral multiplier theorem (see Theorem 5.7).

Besides the Maxwell operator, we study the Stokes operator with Hodge boundary
conditions in bounded Lipschitz domains using results from [29]. Actually, this operator
corresponds to the special case of ε(x) being the identity matrix for every x ∈ Ω. The
operator A2 then equals the Hodge Laplacian (observe that [29] also studied a Maxwell
operator, but a different one to ours). Mitrea and Monniaux [29] proved that A2 is then
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given by

D(A2) = {u ∈ V (Ω) : rot rotu ∈ L2(Ω, C3), div u ∈ H1(Ω, C), ν × rotu|∂Ω = 0},

A2u = rot rotu − ∇ div u = −Δu for u ∈ D(A2),

and that −A2 generates an analytic semigroup on Lp(Ω, C3) for all p ∈ (pΩ , p′
Ω), where

p′
Ω > 3 and 1/pΩ + 1/p′

Ω = 1. As a consequence, they obtained that (minus) the Stokes
operator with Hodge boundary conditions, which is defined as the restriction of the
Hodge Laplacian on the space of divergence-free vector fields, also generates an analytic
semigroup on Lp(Ω, C3) for all p ∈ (pΩ , p′

Ω). We show that even a spectral multiplier the-
orem holds for the Stokes operator with Hodge boundary conditions (see Theorem 3.4).
Our arguments rely on the proof of Mitrea and Monniaux, in which certain two-ball
estimates for the resolvents of the Hodge Laplacian were verified. We prove that these
kinds of bounds entail generalized Gaussian estimates for the corresponding semigroup
operators (see Lemma 2.5) and, thus, the same reasoning as for the Maxwell operator
can be used to obtain Theorem 3.4.

By using a similar approach based on [30], we verify generalized Gaussian estimates
for the time-dependent Lamé system equipped with homogeneous Dirichlet boundary
conditions. Thus, we obtain a spectral multiplier theorem for the Lamé system (see
Theorem 4.1).

We mention that the generalized Gaussian estimates we establish for the elliptic sys-
tems in this paper have other consequences that have not been mentioned in the literature
so far. Application of a result from [5] yields boundedness of H∞-functional calculus in
the stated range of Lp-spaces. Of course, this weaker assertion also follows from the results
on spectral multipliers of the present paper. Due to [6, Corollary 1.5] (one could also use
results of Arendt or Davies), the spectrum of these operators in Lp does not depend on p

for the stated range of Lp-spaces. Finally, we note that, in general, pointwise Gaussian
kernel estimates for all the above operators fail.

This paper has the following structure. In § 2 we present the spectral multiplier result
we will use (see Theorem 2.3) and a lemma that allows us to obtain generalized Gaussian
estimates from estimates on resolvent operators (see Lemma 2.5). We postpone its proof
till § 6. Via this lemma and estimates from [29,30] we obtain our results on the Stokes
operator with Hodge boundary conditions and the Lamé system, which are presented
in §§ 3 and 4, respectively. Section 5 is devoted to generalized Gaussian estimates for A2

with ε(·) as above, and to spectral multiplier results for the Maxwell operator M2.
Throughout this paper, we make use of the following notation. For p ∈ [1,∞], the

conjugate exponent p′ is defined by 1/p + 1/p′ = 1 with the usual convention 1/∞ := 0.
In the proofs, the letters b, C denote generic positive constants that are independent
of the relevant parameters involved in the estimates and may take different values at
different occurrences. We often use the notation a � b if there exists a constant C > 0
such that a � Cb for two non-negative expressions a, b; a ∼= b stands for the validity of
a � b and b � a. Moreover, the notation |E| for a Lebesgue measurable subset E of R

D

stands for the D-dimensional Lebesgue measure of E.
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2. Spectral multiplier theorems

In this section we quote and discuss results on spectral multipliers. Let (X, d, μ) be a
space of homogeneous type in the sense of Coifman and Weiss, i.e. (X, d) is a non-empty
metric space endowed with a σ-finite regular Borel measure μ with μ(X) > 0 that satisfies
the so-called doubling condition, that is, there exists a constant C > 0 such that, for all
x ∈ X and all r > 0,

μ(B(x, 2r)) � Cμ(B(x, r)), (2.1)

where B(x, r) := {y ∈ X : d(y, x) < r}. It is easy to see that the doubling condition (2.1)
entails the strong homogeneity property, i.e. the existence of constants C, D > 0 such
that, for all x ∈ X, all r > 0 and all λ � 1,

μ(B(x, λr)) � CλDμ(B(x, r)). (2.2)

In the following, the value D always refers to the constant in (2.2), which is also called
the dimension of (X, d, μ). Of course, D is not uniquely determined.

There is a multitude of examples of spaces of homogeneous type. The simplest is the
Euclidean space R

D, D ∈ N, equipped with the Euclidean metric and Lebesgue measure.
Bounded open subsets of R

D with Lipschitz boundary endowed with the Euclidean metric
and Lebesgue measure also form spaces of homogeneous type (with μ(B(x, r)) ∼= rD).
More general definitions of spaces of homogeneous type can be found in [9, Chapitre III.1]
or in [33, § I.1.2].

Let A be a non-negative self-adjoint operator on the Hilbert space L2(X). If EA denotes
the resolution of the identity associated with A, the spectral theorem asserts that the
operator

F (A) :=
∫ ∞

0
F (λ) dEA(λ)

is well defined and acts as a bounded linear operator on L2(X) whenever F : [0,∞) → C

is a bounded Borel function. Spectral multiplier theorems provide regularity assumptions
on F that ensure that the operator F (A) extends from Lp(X) ∩ L2(X) to a bounded
linear operator on Lp(X) for all p ranging in some interval I ⊂ (1,∞) containing 2.

In 1960, Hörmander addressed this question for the Laplacian A = −Δ on R
D during

his studies of the boundedness of Fourier multipliers on R
D. In order to formulate his

famous result, we fix once and for all a non-negative cut-off function ω ∈ C∞
c (0,∞) such

that

suppω ⊂ ( 1
4 , 1) and

∑
n∈Z

ω(2−nλ) = 1 for all λ > 0.

Theorem 2.1 (Hörmander [20, Theorem 2.5]). If F : [0,∞) → C is a bounded
Borel function such that

sup
n∈Z

‖ωF (2n·)‖Hs
2

< ∞
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for some s > D/2, then F (−Δ) is a bounded linear operator on Lp(RD) for all p ∈ (1,∞),
and one has that

‖F (−Δ)‖Lp→Lp � Cp

(
sup
n∈Z

‖ωF (2n·)‖Hs
2

+ |F (0)|
)
,

where Cp is a constant not depending on F .

Hörmander’s multiplier theorem was generalized, on the one hand, to other spaces
beyond R

D and, on the other hand, to more general operators than the Laplacian.
Mauceri and Meda [27] and Christ [8] extended the result to homogeneous Laplacians on
stratified nilpotent Lie groups. Further generalizations were obtained by Alexopoulos [1],
who showed a corresponding statement for the left invariant sub-Laplacian in the setting
of connected Lie groups of polynomial volume growth. This, in turn, was extended by
Hebisch [19] to integral operators with kernels decaying polynomially away from the diag-
onal. The results in [16] due to Duong et al . marked an important step toward the study
of more general operators. In the abstract framework of spaces of homogeneous type
they investigated non-negative self-adjoint operators A on L2(X) that satisfy pointwise
Gaussian estimates, i.e. the semigroup (e−tA)t>0 generated by −A can be represented as
integral operators,

e−tAf(x) =
∫

X

pt(x, y)f(y) dμ(y)

for all f ∈ L2(X), t > 0, μ-almost everywhere (a.e.) x ∈ X, and the kernels pt :
X × X → C have the pointwise upper bound

|pt(x, y)| � Cμ(B(x, t1/2))−1 exp
(

−b
d(x, y)2

t

)
(2.3)

for all t > 0 and all x, y ∈ X, where b, C > 0 are constants independent of t, x, y. Under
these hypotheses, the operator F (A) is of weak type (1, 1) whenever F : [0,∞) → C

is a bounded Borel function such that supn∈Z ‖ωF (2n·)‖Cs < ∞ for some s > D/2
(see [16, Theorem 3.1]). Consequently, F (A) is bounded on Lp(X) for all p ∈ (1,∞).

Sometimes it is not clear whether (or even not true that) a non-negative self-adjoint
operator on L2(X) admits such Gaussian bounds and, thus, whether the above result
is applicable. This occurs, for example, for Schrödinger operators with bad potentials
(see [32]) or elliptic operators of higher order with bounded measurable coefficients
(see [14]). Nevertheless, it is often possible to establish a weakened version of point-
wise Gaussian estimates, so-called generalized Gaussian estimates.

Definition 2.2. Let 1 � p � 2 � q � ∞. A non-negative self-adjoint operator A

on L2(X) satisfies generalized Gaussian (p, q)-estimates if there exist constants b, C > 0
such that

‖1B(x,t1/2)e
−tA1B(y,t1/2)‖Lp→Lq � Cμ(B(x, t1/2))−(1/p−1/q) exp

(
−b

d(x, y)2

t

)
(2.4)

for all t > 0 and all x, y ∈ X. In this case, we use the shorthand notation GGE(p, q). If
A satisfies GGE(2, 2), then we also say that A has Davies–Gaffney estimates.
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Here, 1E1 denotes the characteristic function of the set E1 and ‖1E1e
−tA1E2‖Lp→Lq

is defined via sup‖f‖Lp �1 ‖1E1 · e−tA(1E2f)‖Lq for all Borel sets E1, E2 ⊂ X.

In the case (p, q) = (1,∞), this definition covers Gaussian estimates (see [4, Proposi-
tion 2.9]). It is known that, for the class of operators A satisfying GGE(p0, p

′
0), where

p0 ∈ [1, 2), the interval [p0, p
′
0] is, in general, optimal for the existence of the semigroup

(e−tA)t>0 on Lp(X) for each p ∈ [p0, p
′
0] (see, for example, [14, Theorem 10]).

In [24] we show a spectral multiplier result that also covers operators that have gen-
eralized Gaussian estimates.

Theorem 2.3 (Kunstmann and Uhl [24, Theorem 5.4]). Assume that A is
a non-negative self-adjoint operator on L2(X) satisfying generalized Gaussian (p0, p

′
0)-

estimates for some p0 ∈ [1, 2). Let p ∈ (p0, p
′
0) and let s > D|1/p − 1/2|. Then, for any

bounded Borel function F : [0,∞) → C with supn∈Z ‖ωF (2n·)‖Cs < ∞, the operator
F (A) is bounded on Lp(X). More precisely, there exists a constant Cp > 0 such that

‖F (A)‖Lp→Lp � Cp

(
sup
n∈Z

‖ωF (2n·)‖Cs + |F (0)|
)
.

Remark 2.4.

(1) The spectral multiplier result in [16] corresponds to the case p0 = 1, i.e. to the case
of Gaussian-type kernel bounds (2.3).

(2) There is an earlier version of the result due to Blunck (see [3, Theorem 1.1]) under
stronger assumptions on the differentiability order s in the Hörmander condition.

(3) The assertion of Theorem 2.3 remains valid for vector-valued operators on
Lp(X, Cn).

(4) There are spectral multiplier results for Hardy spaces H1
A associated with elliptic

second-order operators A (see [15, 17]). Via an interpolation argument already
used in [21], this also yields the assertion of Theorem 2.3. In fact, this is the idea
behind the approach we use in [24]. However, the result in [24] applies to operators
satisfying generalized Gaussian estimates of any order, which means that essential
technical tools such as the finite propagation speed of the wave equation for A,
which one has for second-order operators, cannot be used.

(5) Theorem 2.3 is formulated with Hölder spaces Cs in place of Bessel potential
spaces Hs

2 . We refer the reader to the discussion in [16], where it is pointed out
that, in general, one cannot replace Cs by Hs

2 without additional assumptions.

(6) Very recently, a spectral multiplier theorem under the assumption of general Gaus-
sian estimates of second order has been shown in [7]. The proof does not rely on a
result in Hardy spaces. It relies on results from [3] and makes even heavier use of
finite propagation speed, which only holds for second-order estimates.
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For the rest of this paper we work in the Euclidean setting, and present operators A

having generalized Gaussian estimates so that Theorem 2.3 can be applied. Since an
analytic semigroup (e−tA)t>0 and resolvents of its generator −A are intimately related
via integral representations, we obtain a nearly equivalent formulation of generalized
Gaussian estimates if we replace in the two-ball estimate (2.4) the semigroup operators
with resolvent operators of the form λ(λ+A)−1 for λ ∈ ρ(−A). To be precise, the transfer
from resolvent operators to semigroup operators and vice versa reads as follows.

Lemma 2.5. Let Ω ⊂ R
D be a Borel set, n ∈ N, and let A be a non-negative self-

adjoint operator on L2(Ω, Cn). Assume that 1 � p � 2 � q � ∞ and m � 2 such that
(D/m)(1/p − 1/q) < 1.

(a) Fix θ ∈ (0, π/2) and suppose that there exist constants b, C > 0 such that, for all
x, y ∈ Ω and all λ ∈ C \ {0} with |arg λ| < π − θ,

‖1B(x,|λ|−1/m)λ(λ + A)−11B(y,|λ|−1/m)‖Lp(Ω,Cn)→Lq(Ω,Cn)

� C|λ|(D/m)(1/p−1/q)e−b|λ|1/m|x−y|. (2.5)

There then exist constants b′, C ′ > 0 such that the semigroup operators satisfy

‖1B(x,t1/m)e
−tA1B(y,t1/m)‖Lp(Ω,Cn)→Lq(Ω,Cn)

� C ′t−(D/m)(1/p−1/q) exp
(

−b′
(

|x − y|
t1/m

)m/(m−1))
(2.6)

for any t > 0 and any x, y ∈ Ω.

(b) Suppose that there exist constants b, C > 0 such that, for all t > 0 and all x, y ∈ Ω,

‖1B(x,t1/m)e
−tA1B(y,t1/m)‖Lp(Ω,Cn)→Lq(Ω,Cn)

� Ct−(D/m)(1/p−1/q) exp
(

−b

(
|x − y|
t1/m

)m/(m−1))
.

Then, for any θ ∈ (0, π/2), there exist constants b′, C ′ > 0 such that, for all x, y ∈ Ω

and all λ ∈ C \ {0} with |arg λ| < θ,

‖1B(x,|λ|−1/m)λ(λ + A)−11B(y,|λ|−1/m)‖Lp(Ω,Cn)→Lq(Ω,Cn)

� C ′|λ|(D/m)(1/p−1/q)e−b′|λ|1/m|x−y|.

As applications of this result, whose proof is postponed to § 6, we obtain (based on
results from [29] and [30]) generalized Gaussian estimates for the Hodge Laplacian and
for the Lamé system with Dirichlet boundary conditions, so that these operators fall
under the scope of Theorem 2.3. This is done in the next two sections. In § 5 we verify
generalized Gaussian estimates directly and obtain our spectral multiplier result for the
Maxwell operator.
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3. The Stokes operator with Hodge boundary conditions

We show that the spectral multiplier result, presented in Theorem 2.3, holds for the Stokes
operator A with Hodge boundary conditions. Our argument is based on off-diagonal norm
estimates for the resolvents of the Hodge Laplacian, which were recently established by
Mitrea and Monniaux [29]. According to Lemma 2.5, bounds of this type entail the valid-
ity of generalized Gaussian estimates for the Hodge Laplacian, so that Theorem 2.3 can
be applied. Since A is the restriction of the Hodge Laplacian to the space of divergence-
free vector fields, and the Hodge Laplacian and the Helmholtz projection are commuting,
we obtain a spectral multiplier theorem for the Stokes operator with Hodge boundary
conditions.

First, we provide a short overview of the definitions and some basic properties of
the natural function spaces needed to define the Stokes operator. We start with the
specification of the underlying domain. Throughout the section, let Ω be a bounded
Lipschitz domain in R

3, i.e. a bounded connected open subset of R
3 with a Lipschitz

continuous boundary ∂Ω. This definition allows domains with corners, but cuts or cusps
are excluded. Furthermore, we remark that the unit exterior normal field ν : ∂Ω → R

3

can then be defined almost everywhere on the boundary ∂Ω of Ω.
We consider the differential operators divergence (div) and rotation (rot) on L2(Ω, C3)

in the distributional sense, and introduce the function space

V (Ω) := {u ∈ L2(Ω, C3) : div u ∈ L2(Ω, C), rotu ∈ L2(Ω, C3), ν · u|∂Ω = 0} (3.1)

equipped with the inner product

(u, v)V (Ω) := (u, v)L2(Ω,C3) + (div u, div v)L2(Ω,C) + (rotu, rot v)L2(Ω,C3).

Then, V (Ω) becomes a Hilbert space that is dense in L2(Ω, C3). Note that the bound-
ary condition of V (Ω) means that the normal component vanishes. In general, V (Ω)
is not contained in H1(Ω, C3) (see, for example, [2, p. 832]). However, under additional
assumptions on the domain Ω, the space V (Ω) is continuously embedded into H1(Ω, C3).
For example, this is the case if Ω has a C1,1-boundary or if Ω is convex (see, for exam-
ple, [2, Theorems 2.9 and 2.17]). Nevertheless, the following statement due to Mitrea et
al . (see [31, p. 87]) holds for arbitrary bounded Lipschitz domains Ω in R

3.

Fact 3.1. The space V (Ω) is continuously embedded into H1/2(Ω, C3). More precisely,
there exists a constant C > 0 depending only on the boundary ∂Ω and on the diameter
diam(Ω) of Ω such that, for every u ∈ V (Ω),

‖u‖H1/2(Ω,C3) � C(‖u‖L2(Ω,C3) + ‖div u‖L2(Ω,C) + ‖rotu‖L2(Ω,C3)).

Recall the definition of the Hodge Laplacian B, which is the operator associated with
the densely defined sesquilinear symmetric form

b(u, v) :=
∫

Ω

rotu · rot v dx +
∫

Ω

div u div v dx (u, v ∈ V (Ω)).
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Then, B is self-adjoint invertible, and −B generates an analytic semigroup on L2(Ω, C3).
According to [29, (3.17) and (3.18)], the Hodge Laplacian B can be characterized by

D(B) = {u ∈ V (Ω) : rot rotu ∈ L2(Ω, C3), div u ∈ H1(Ω, C), ν × rotu|∂Ω = 0},

Bu = −Δu for u ∈ D(B).

In order to introduce the Stokes operator, we first recall some basic facts concerning the
Helmholtz decomposition in Lp(Ω, C3). For p ∈ (1,∞) define the space of divergence-free
vector fields

Lp
σ(Ω) := {v ∈ Lp(Ω, C3) : div v = 0, ν · v|∂Ω = 0}

and the space of gradients

Gp(Ω) := {∇g : g ∈ W 1
p (Ω, C)}.

Both are then closed subspaces of Lp(Ω, C3). In the case p = 2, the corresponding
orthogonal projection P2 from L2(Ω, C3) onto L2

σ(Ω) is called the Helmholtz projection.
Fabes et al . established a Helmholtz decomposition in Lp(Ω, C3), which reads as follows.

Fact 3.2 (Fabes et al . [18, Theorems 11.1 and 12.2]). For every bounded Lip-
schitz domain Ω in R

3 there exists ε > 0 such that P2 extends to a bounded linear
operator Pp from Lp(Ω, C3) onto Lp

σ(Ω) for all p ∈ (3/2 − ε, 3 + ε). In this range, one
has an Lp-Helmholtz decomposition

Lp(Ω, C3) = Lp
σ(Ω) ⊕ Gp(Ω) (3.2)

as a topological direct sum. The operator Pp is then called the Lp-Helmholtz projection.
In the class of bounded Lipschitz domains, this result is sharp in the sense that, for any

p /∈ [3/2, 3], there exists a bounded Lipschitz domain Ω ⊂ R
3 for which the Lp-Helmholtz

decomposition (3.2) fails.
If, however, Ω has a regular boundary ∂Ω ∈ C1, then the result is even true for all

p ∈ (1,∞).

Definition 3.3. The Stokes operator A with Hodge boundary conditions on L2
σ(Ω) is

defined via A := P2B with the domain D(A) := P2D(B).

Starting from norm estimates of annular type on Lp(Ω, C3) with p = 2 for resolvents of
the Hodge Laplacian B, Mitrea and Monniaux developed an iterative bootstrap argument
(see [29, Lemma 5.1]) that allows us to incrementally increase the value of p to p∗ := 3

2p

(due to Sobolev embeddings), as long as p < qΩ , where qΩ denotes the critical index for
the well-posedness of the Poisson-type problem for the Hodge Laplacian (see [29, (1.9)]).
In the present situation of a bounded Lipschitz domain Ω in R

3, it is known that qΩ > 3
(see [28]). Mitrea and Monniaux (see [29, § 6]) showed that for any θ ∈ (0, π) there exist
q ∈ (3,∞] and constants b, C > 0 such that, for all j ∈ N, x ∈ Ω, and λ ∈ C \ {0} with
|arg λ| < π − θ,

‖1B(x,|λ|−1/2)λ(λ + B)−11B(x,2j+1|λ|−1/2)\B(x,2j−1|λ|−1/2)‖L2(Ω,C3)→Lq(Ω,C3)

� C|λ|(3/2)(1/2−1/q)e−b2j

.

(3.3)
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Due to Lemma 2.5 together with [6, Proposition 2.1], the validity of those estimates for
resolvent operators ensures generalized Gaussian (2, q)-estimates for the Hodge Lapla-
cian B. Similarly to in § 5, Theorem 2.3 entails the boundedness of spectral multipliers,
at first for the Hodge Laplacian B and then, by restriction, for the Stokes operator A

with Hodge boundary conditions because the Hodge Laplacian and the Helmholtz pro-
jection are commuting (see Lemma 5.4 or [29, Lemma 3.7]). This leads to the following
statement.

Theorem 3.4. Assume that (3.3) holds for some q ∈ (3,∞] and that there is an
Lq-Helmholtz decomposition. Fix p ∈ (q′, q) and take s > 3|1/p − 1/2|. Then, for every
bounded Borel function F : [0,∞) → C with supn∈Z‖ωF (2n·)‖Cs < ∞, the operator
F (A) is bounded on Lp

σ(Ω) and there exists a constant C > 0 such that

‖F (A)‖Lp
σ(Ω)→Lp

σ(Ω) � C
(

sup
n∈Z

‖ωF (2n·)‖Cs + |F (0)|
)
.

4. The Lamé system

Recently, Mitrea and Monniaux [30] studied properties of the Lamé system that appears
in the linearization of the compressible Navier–Stokes equations. They showed analyt-
icity of the semigroup generated by the Lamé operator and maximal regularity for the
time-dependent Lamé system equipped with homogeneous Dirichlet boundary condi-
tions. Their approach is essentially based on off-diagonal estimates for the resolvents
of the Lamé operator. But, according to Lemma 2.5, the latter are basically equivalent
to generalized Gaussian estimates, and this leads to further consequences for the Lamé
system.

We first describe the setting of [30]. Although our results apply in the general frame-
work of [30] as well, we restrict ourselves to the three-dimensional case. This restriction
serves only to introduce less notation. Furthermore, we consider complex-valued func-
tions. Let Ω be a bounded open subset of R

3 such that the interior ball condition holds,
i.e. there exists a positive constant c such that, for all x ∈ Ω and all r ∈ (0, 1

2 diam(Ω)),

|B(x, r)| � cr3.

This condition ensures that Ω becomes a space of homogeneous type when Ω is equipped
with the three-dimensional Lebesgue measure and the Euclidean distance. For example,
any bounded Lipschitz domain in R

3, or domains satisfying an interior corkscrew condi-
tion, satisfy the interior ball condition.

Fix μ, μ′ ∈ R with μ > 0 and μ + μ′ > 0. We consider the sesquilinear form l defined
by

l(u, v) := μ

∫
Ω

rotu · rot v dx + (μ + μ′)
∫

Ω

div u div v dx

for u, v ∈ H1
0 (Ω, C3), where H1

0 (Ω, C3) denotes the closure of the test function space
C∞

c (Ω, C3) with respect to the norm of the Sobolev space H1(Ω, C3). It is then easy
to see that the form l is closed, continuous, symmetric and coercive. Therefore, the
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operator L associated with the form l is self-adjoint on L2(Ω, C3), and −L generates a
bounded analytic semigroup on L2(Ω, C3). In [30, § 1.1] it was checked that L is given
by

D(L) = {u ∈ H1
0 (Ω, C3) : μΔu + μ′∇ div u ∈ L2(Ω, C3)},

Lu = −μΔu − μ′∇ div u for u ∈ D(L).

The operator L is called the Lamé operator with Dirichlet boundary conditions. In [30,
§ 2], Mitrea and Monniaux adapt their approach of [29] to the Lamé operator L, and
establish the following statement. For any fixed angle θ ∈ (0, π) there exist q ∈ (2,∞] and
constants b, C > 0 such that, for all j ∈ N, x ∈ Ω and λ ∈ C \ {0} with |arg λ| < π − θ,

‖1B(x,|λ|−1/2)λ(λ + L)−11B(x,2j+1|λ|−1/2)\B(x,2j−1|λ|−1/2)‖L2(Ω,C3)→Lq(Ω,C3)

� C|λ|(3/2)(1/2−1/q)e−b2j

.

(4.1)

Since this guarantees the validity of (2.5), Lemma 2.5 yields generalized Gaussian
(2, q)-estimates for the Lamé operator L.

As remarked in [30, Remark 1.5], the estimate (4.1) is always valid for q = 6 due to
the Sobolev embedding H1(Ω, C3) ↪→ L6(Ω, C3). If the Poisson problem for the Lamé
operator (see [30, (1.15)]) is well posed in L6(Ω, C3), then, according to [30, Lemma 2.2],
(4.1) also holds for q∗ = ∞. It turns out that the largest value q0 ∈ (2,∞], for which the
iterative method of Mitrea and Monniaux delivers (4.1) and, thus, generalized Gaussian
(2, q0)-estimates for L, depends on the well-posedness of the Poisson problem for the Lamé
operator, and this is deeply connected to the regularity properties of the boundary ∂Ω.
Only for certain domains Ω is the exact characterization of q0 known. We refer the
reader to [30, Theorem 4.1] for a discussion of this topic, and only mention that if
Ω is a bounded Lipschitz domain in R

3, then one can even prove (4.1) for q = ∞
(see [30, Remark 1.6]), i.e. L actually satisfies pointwise Gaussian estimates. However, in
general, (4.1) with q = ∞ does not hold. All in all, the Lamé operator L fulfils generalized
Gaussian (q′

0, q0)-estimates for some q0 ∈ [6,∞]. Therefore, Theorem 2.3 applies for L

and gives the following result.

Theorem 4.1. Fix p ∈ (q′
0, q0). Suppose that s > 3|1/p − 1/2|. Then, for every

bounded Borel function F : [0,∞) → C with supn∈Z‖ωF (2n·)‖Cs < ∞, the operator
F (L) is bounded on Lp(Ω, C3), and there exists a constant C > 0 such that

‖F (L)‖Lp(Ω,C3)→Lp(Ω,C3) � C
(

sup
n∈Z

‖ωF (2n·)‖Cs + |F (0)|
)
.

5. The Maxwell operator

Let Ω ⊂ R
3 be a bounded Lipschitz domain and let V (Ω) denote the function space

introduced in (3.1). The definition of the Maxwell operator on L2(Ω, C3) is given in a
quite general framework without any regularity assumptions on the coefficient matrix. As
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a first step, we introduce a form a with the form domain V (Ω), and establish generalized
Gaussian estimates for the corresponding semigroup (e−tA2)t>0 on L2(Ω, C3) by using
Davies’s perturbation method (see Theorem 5.1). To the best of our knowledge, this
procedure has never before been elaborated in this context. The Maxwell operator is
then defined as the restriction of A2 on the subspace of divergence-free vector fields.

Fix, once and for all, a matrix-valued function ε(·) ∈ L∞(Ω, C3×3) taking values
in the set of positive definite Hermitian matrices. Assume additionally that ε(·)−1 ∈
L∞(Ω, C3×3). As an immediate consequence, we deduce that, for almost every x ∈ Ω,
the matrix ε(x)−1 is also Hermitian, and that ε(·)−1 fulfils the following uniform ellipticity
condition:

ε(x)−1ξ · ξ � ε0|ξ|2 (5.1)

for all ξ ∈ C
3 and almost all x ∈ Ω, where the constant ε0 > 0 is independent of ξ and x.

We consider the densely defined sesquilinear form

a(u, v) :=
∫

Ω

ε(·)−1 rotu · rot v dx +
∫

Ω

div u div v dx (u, v ∈ D(a))

with the form domain D(a) := V (Ω). Due to the properties of the coefficient matrix
ε(·)−1, the form a is continuous and coercive in the sense that there exist constants
C1 � 0, C2 > 0 such that, for all u ∈ V (Ω),

Re a(u, u) + C1‖u‖2
L2(Ω,C3) � C2‖u‖2

V (Ω) (5.2)

(in fact one can take C1 = C2 = min{ε0, 1}). Moreover, the form is symmetric and
satisfies Re a(u, u) � 0 for all u ∈ V (Ω). The operator A2 associated with the form a is
defined via u ∈ D(A2), A2u = f if and only if u ∈ V (Ω) and a(u, v) = (f, v)L2(Ω,C3) for
all v ∈ V (Ω). Then, A2 is self-adjoint and −A2 generates a bounded analytic semigroup
(e−tA2)t>0 acting on L2(Ω, C3) (see, for example, [12, p. 450]).

Theorem 5.1. The operator A2 associated with the form a has generalized Gaussian
(3/2, 3)-estimates.

Proof. We have only to show that A2 fulfils generalized Gaussian (2, 3)-estimates.
Due to the self-adjointness of A2, generalized Gaussian (3/2, 2)-estimates follow by dual-
ization, and the claimed generalized Gaussian (3/2, 3)-estimates follow by composition
and the semigroup law. We divide the proof into several steps. The first three steps are
devoted to the proof of Davies–Gaffney estimates for the operator families (e−tA2)t>0,
{t1/2 div e−tA2 : t > 0} and {t1/2 rot e−tA2 : t > 0}. In order to derive these bounds, we
use Davies’s perturbation method. It consists in studying the ‘twisted’ forms

a�φ(u, v) := a(e�φu, e−�φv) (u, v ∈ V (Ω)),

where � ∈ R and φ ∈ E := {φ ∈ C∞
c (Ω̄, R) : ‖∂jφ‖∞ � 1 for all j ∈ {1, 2, 3}}. Observe

that multiplication with a function of the form e�φ leaves the space V (Ω) invariant, and
hence the form a�φ is well defined. In the remaining two steps we deduce generalized
Gaussian (2, 3)-estimates for A2 by combining the Davies–Gaffney estimates and the
Sobolev embedding theorem. In the following, we use the shorthand notation ‖ · ‖p→q for
the norm ‖ · ‖Lp(Ω,C3)→Lq(Ω,C3).
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Step 1. We claim that for each γ ∈ (0, 1) there exists a constant ω0 � 0 such that,
for all u ∈ V (Ω), � ∈ R and φ ∈ E ,

|a�φ(u, u) − a(u, u)| � γa(u, u) + ω0�
2‖u‖2

2. (5.3)

After expanding a�φ(u, u) with the help of the product rules for div and rot, we get,
for any u ∈ V (Ω), � ∈ R and φ ∈ E , that

|a�φ(u, u) − a(u, u)| � |�|
∫

Ω

|ε(·)−1(∇φ × u) · rotu| dx + |�|
∫

Ω

|(∇φ · u) div u| dx

+ |�|
∫

Ω

|ε(·)−1 rotu · (∇φ × ū)| dx + |�|
∫

Ω

|div u(∇φ · ū)| dx

+ �2
∫

Ω

|ε(·)−1(∇φ × u) · (∇φ × ū)| dx + �2
∫

Ω

|∇φ · u|2 dx.

We analyse each of the summands on the right-hand side separately. Let δ > 0, to
be chosen later. By applying the Cauchy–Schwarz inequality, by using the elementary
inequality ab � δa2 + b2/4δ, which is valid for any real numbers a, b, and by recalling
the properties of φ, we can estimate the first term in the following way:

|�|
∫

Ω

|ε(·)−1(∇φ × u) · rotu| dx � |�|
∫

Ω

‖ε(·)−1‖∞|∇φ| |u| |rotu| dx

� ‖ε(·)−1‖∞
√

3‖∇φ‖∞

∫
Ω

|rotu| |�| |u| dx

�
√

3‖ε(·)−1‖∞

(
δ‖rotu‖2

2 +
1
4δ

�2‖u‖2
2

)
.

The second term is bounded by

|�|
∫

Ω

|(∇φ · u) div u| dx � |�|
∫

Ω

|∇φ| |u| |div u| dx

�
√

3
∫

Ω

|�| |u| |div u| dx

�
√

3
(

δ‖div u‖2
2 +

1
4δ

�2‖u‖2
2

)
.

The third term can be treated analogously to the first term, yielding

|�|
∫

Ω

|ε(·)−1 rotu · (∇φ × ū)| dx �
√

3‖ε(·)−1‖∞

(
δ‖rotu‖2

2 +
1
4δ

�2‖u‖2
2

)
.

The estimate for the fourth term follows in a similar manner as that for the second term,
yielding

|�|
∫

Ω

|div u(∇φ · ū)| dx �
√

3
(

δ‖div u‖2
2 +

1
4δ

�2‖u‖2
2

)
.
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Treating the fifth term gives that

�2
∫

Ω

|ε(·)−1(∇φ × u) · (∇φ × ū)| dx � �2
∫

Ω

|ε(·)−1(∇φ × u)| |∇φ × ū| dx

� �2
∫

Ω

√
3‖ε(·)−1‖∞|u|

√
3|u| dx

= 3‖ε(·)−1‖∞�2‖u‖2
2,

whereas the sixth term is bounded by

�2
∫

Ω

|∇φ · u|2 dx � �2
∫

Ω

|∇φ|2|u|2 dx � 3�2‖u‖2
2.

Putting all these estimates together, we finally end up with

|a�φ(u, u) − a(u, u)| � (2
√

3‖ε(·)−1‖∞ + 2
√

3)δ(‖rotu‖2
2 + ‖div u‖2

2)

+
(

(2
√

3‖ε(·)−1‖∞ + 2
√

3)
1
4δ

+ 3‖ε(·)−1‖∞ + 3
)

�2‖u‖2
2.

The ellipticity property (5.1) of the coefficient matrix ε(·)−1 yields, for each u ∈ V (Ω),
that

a(u, u) � min{ε0, 1}(‖rotu‖2
2 + ‖div u‖2

2). (5.4)

Now let γ ∈ (0, 1) be arbitrary. Take δ > 0 such that

γ = (2
√

3‖ε(·)−1‖∞ + 2
√

3)δ/min{ε0, 1}.

We then deduce, for each u ∈ V (Ω), � ∈ R and φ ∈ E , that

|a�φ(u, u) − a(u, u)| � γa(u, u) + ω0�
2‖u‖2

2,

with some constant ω0 � 0 depending exclusively on γ, ε0, ‖ε(·)−1‖∞. This leads to (5.3).

Step 2. Due to (5.3), if ω > ω0, we can write, for any u ∈ V (Ω), � ∈ R and φ ∈ E ,

Re a�φ(u, u) � a(u, u) − |a(u, u) − a�φ(u, u)| � (1 − γ)a(u, u) − ω�2‖u‖2
2.

By recalling (5.4), we have thus shown that the form a�φω := a�φ +ω�2 is coercive in the
sense of (5.2) with C1 = C2 = (1 − γ) min{ε0, 1}. This entails that the operator A�φω

associated with the form a�φω is sectorial of some angle θ0 ∈ (0, π/2). Therefore, −A�φω

generates a bounded analytic semigroup (e−tA�φω )t>0 on L2(Ω, C3), and, additionally,

‖e−zA�φω‖2→2 � 1 (5.5)

for all z ∈ C \ {0} with |arg z| � θ0. In view of [26, Lemma 3.2], this yields, for any
� ∈ R, φ ∈ E and z ∈ C \ {0} with |arg z| � θ0, that

‖e−�φe−zA2e�φ‖2→2 � eω�2 Re z (5.6)
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and, thus, by a similar reasoning as in the proof of [25, Proposition 8.22], the operator A2

satisfies Davies–Gaffney estimates. Additionally, we have, for each � ∈ R, φ ∈ E and t > 0,
that

‖A�φωe−tA�φω‖2→2 � 1
t sin θ0

.

Indeed, this estimate follows easily from Cauchy’s formula and (5.5):

‖A�φωe−tA�φω‖2→2 =
∥∥∥∥ 1

2πi

∫
|z−t|=t sin θ0

1
(z − t)2

e−zA�φω dz

∥∥∥∥
2→2

� 1
2π

2πt sin θ0
1

(t sin θ0)2

=
1

t sin θ0
.

Step 3. Our next task consists in verifying Davies–Gaffney estimates for the operator
families {t1/2 div e−tA2 : t > 0} and {t1/2 rot e−tA2 : t > 0}.

For arbitrary f ∈ C∞
c (Ω, C3), � ∈ R, φ ∈ E , ω > ω0 and t > 0, define v(t) := e−tA�φωf .

Then, v(t) belongs to D(A�φω) and, due to (5.4) and the estimates in Step 2, we obtain
that

‖rot v(t)‖2
2 + ‖div v(t)‖2

2 � 1
min{ε0, 1}a(v(t), v(t))

� 1
(1 − γ) min{ε0, 1} Re a�φω(v(t), v(t))

� 1
(1 − γ) min{ε0, 1} |(A�φωv(t), v(t))L2(Ω,C3)|

� 1
(1 − γ) min{ε0, 1}‖A�φωv(t)‖2‖v(t)‖2

� 1
(1 − γ) min{ε0, 1} sin θ0

t−1‖f‖2
2.

As the space of test functions C∞
c (Ω, C3) is dense in L2(Ω, C3), we conclude that

‖div e−tA�φ‖2→2 � 1√
(1 − γ) min{ε0, 1} sin θ0

t−1/2eω�2t

and

‖rot e−tA�φ‖2→2 � 1√
(1 − γ) min{ε0, 1} sin θ0

t−1/2eω�2t (5.7)

for all � ∈ R, φ ∈ E , ω > ω0 and t > 0.
In order to obtain weighted norm estimates for t1/2 rot e−tA2 , we have to interchange

rot and multiplication by e−�φ. To this end, we represent e−�φ roth in terms of rot(e−�φh)
and apply this representation to h := e−tA2e�φf . By using the product rule for rot we
obtain that

e−�φ roth = rot(e−�φh) + �∇φ × (e−�φh).
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The L2-norm of the first term on the right-hand side can be estimated using (5.7), whereas
for the second term we use ‖∇φ‖∞ �

√
3, the elementary fact that |�| � Cδt

−1/2eδ�2t,
for arbitrary δ > 0 and some constant Cδ > 0 depending only on δ, and (5.6), to obtain

‖e−�φ rot e−tA2e�φf‖2 = ‖e−�φ roth‖2

� ‖rot(e−�φh)‖2 + |�|‖∇φ‖∞‖e−�φh‖2

� t−1/2e(ω+δ)�2t‖f‖2,

which yields that
‖e−�φt1/2 rot e−tA2e�φ‖2→2 � e(ω+δ)�2t.

By adapting the arguments given in the proof of [25, Proposition 8.22], we see that the
family of operators {t1/2 rot e−tA2 : t > 0} satisfies Davies–Gaffney estimates. Similar
reasoning shows that {t1/2 div e−tA2 : t > 0} has the same property.

Step 4. Let Ω0 be a bounded Lipschitz domain in R
3. In view of Fact 3.1 and the

Sobolev embedding H1/2(Ω0, C
3) ↪→ Lp∗

(Ω0, C
3) for p∗ := 3 · 2/(3 − 1) = 3, we find a

constant C > 0 depending only on ∂Ω0 and diam(Ω0) such that, for every u ∈ V (Ω0),

‖u‖L3(Ω0,C3) � C(‖u‖L2(Ω0,C3) + ‖div u‖L2(Ω0,C) + ‖rotu‖L2(Ω0,C3)). (5.8)

With the help of the rescaling procedure used in [29, p. 3145], we obtain, for all
w ∈ V (Ω0),

‖w‖L3(Ω0,C3) � CR−1/2(‖w‖L2(Ω0,C3) + R‖div w‖L2(Ω0,C) + R‖rotw‖L2(Ω0,C3)), (5.9)

where R := diam(Ω0) and the constant C depends exclusively on the Lipschitz character
of Ω0.

Step 5. The desired generalized Gaussian (2, 3)-estimates for A2 follow by combin-
ing the Davies–Gaffney estimates from Steps 2 and 3 with the inequality (5.9). Similar
reasoning was applied in [29, § 5].

Let t > 0, let x, y ∈ Ω and let f ∈ C∞
c (Ω, C3) with supp f ⊂ B(y, t1/2) be arbitrary.

Set Ω0 := B(x, 2t1/2) ⊂ Ω and choose a cut-off function η ∈ C∞
c (Ω0, R) such that

0 � η � 1, η = 1 on B(x, t1/2) and ‖∇η‖∞ � t−1/2.

First, we remark that

‖div(ηe−tA2f)‖L2(Ω0,C) � ‖η div(e−tA2f)‖L2(Ω0,C) + ‖∇η · e−tA2f‖L2(Ω0,C)

� ‖div(e−tA2f)‖L2(Ω0,C) + t−1/2‖e−tA2f‖L2(Ω0,C3)

and, similarly,

‖rot(ηe−tA2f)‖L2(Ω0,C3) � ‖rot(e−tA2f)‖L2(Ω0,C3) + t−1/2‖e−tA2f‖L2(Ω0,C3).
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Since ν · (ηe−tA2f)|∂Ω0 = 0 and the Lipschitz character of Ω0 is controlled by that of Ω,
we may use (5.9) and arrive at

‖e−tA2f‖L3(B(x,t1/2),C3) � ‖ηe−tA2f‖L3(Ω0,C3)

� t−1/4(‖ηe−tA2f‖L2(Ω0,C3) + t1/2‖div(ηe−tA2f)‖L2(Ω0,C)

+ t1/2‖rot(ηe−tA2f)‖L2(Ω0,C3))

� t−1/4(3‖e−tA2f‖L2(Ω0,C3) + t1/2‖div(e−tA2f)‖L2(Ω0,C)

+ t1/2‖rot(e−tA2f)‖L2(Ω0,C3))

� t−(3/2)(1/2−1/3) exp
(

−b
|x − y|2

t

)
‖f‖L2(B(y,t1/2),C3), (5.10)

where the implicit constants are independent of f , t, x, y, and the last inequality is due to
Davies–Gaffney estimates for (e−tA2)t>0, {t1/2 div e−tA2 : t > 0}, {t1/2 rot e−tA2 : t > 0}.
Finally, by density, we deduce generalized Gaussian (2, 3)-estimates for A2. �

As noted at the beginning of § 3, V (Ω) has better embedding properties if Ω is convex
or if its boundary is of class C1,1. In these cases, the space V (Ω) continuously embeds
into H1(Ω, C3), which in turn continuously embeds into L6(Ω, C3). Hence, in this situ-
ation one can take the L6(Ω, C3)-norm on the left-hand side of (5.8). Observe that this
automatically gives the desired exponent of t in (5.10) (see, for example, [23, proof of
Theorem 3.1]), and thus the rescaling argument in Step 4 is not needed. Summing up,
the following statement holds.

Corollary 5.2. In the situation of Theorem 5.1, suppose additionally that the
domain Ω is convex or has a C1,1-boundary. The operator A2 associated with the form a

then satisfies generalized Gaussian (6/5, 6)-estimates.

Since A2 satisfies generalized Gaussian (p0, p
′
0)-estimates for some p0 ∈ [1, 3/2], the

semigroup generated by −A2 can be extended to a bounded analytic semigroup on
Lp(Ω, C3) for every p ∈ [p0, p

′
0] with p �= ∞. For the rest of this section, we denote

its generator by −Ap.
For convenience, we introduce the following abbreviation.

Notation 5.3. We denote by IΩ the largest subinterval of the real line containing 2
such that for each p ∈ IΩ the semigroup (e−tA2)t>0 extends to a bounded analytic
semigroup on Lp(Ω, C3), and such that there exists an Lp-Helmholtz decomposition.

In view of the foregoing statements, the length of IΩ is intimately related to regularity
properties of the boundary ∂Ω, and the interval [3/2, 3] is always contained in IΩ .

As we immediately see, the operators A2 and P2 are commuting. This relies on the
fact that P2 leaves the domain V (Ω) of the form a invariant, which is essentially due to
the boundary condition of V (Ω). We remark that this property stands in contrast to the
situation of Dirichlet boundary conditions (ν ·v|∂Ω = 0 and ν ×v|∂Ω = 0). This situation
is implicitly mentioned in [11, Chapter 4].
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Lemma 5.4. For any p ∈ IΩ , the operator Ap and the Helmholtz projection Pp are
commuting, i.e. Pp(D(Ap)) is contained in D(Ap) and it holds, for all u ∈ D(Ap), that

PpApu = ApPpu.

Proof. We first treat the case p = 2. The statement for arbitrary p ∈ IΩ then follows
by density and consistency.

We claim that P2 : V (Ω) → V (Ω). Indeed, let u ∈ V (Ω). By the definition of P2, it
is evident that div(P2u) = 0 as well as that ν · (P2u)|∂Ω = 0. In order to check that
rot(P2u) ∈ L2(Ω, C3), we write P2u = u − ∇g for some g ∈ W 1

2 (Ω, C) and note that
it suffices to show that rot(∇g) = 0. This can be easily verified via the distributional
definitions of rot and ∇, which transfer the assertion to the level of test functions, where it
is elementary. In particular, we have just computed rot(P2u) = rotu for every u ∈ V (Ω).

Now consider u ∈ D(A2). We get, for each v ∈ V (Ω), that

(P2A2u, v)L2(Ω,C3) = (A2u, P2v)L2(Ω,C3) = a(u, P2v) = a(P2u, v),

where the last equality is obtained with the help of rot(P2u) = rotu. This means that
P2u ∈ D(A2) and P2A2u = A2P2u.

Let p ∈ IΩ . Observe that Ap and Pp are commuting if and only if resolvents of Ap

commute with Pp on Lp(Ω, C3). In particular, we have seen above that Pp(λ + Ap)−1 =
(λ + Ap)−1

Pp on Lp(Ω, C3) ∩ L2(Ω, C3) for any λ ∈ C with Re λ > 0. Since −A2 and
−Ap are both generators of bounded analytic semigroups, their resolvent sets include
the right-half complex plane, and their resolvents are consistent. Hence, by the density
of Lp(Ω, C3) ∩ L2(Ω, C3) in Lp(Ω, C3) and by the boundedness of resolvent operators,
the equality Pp(λ + Ap)−1 = (λ + Ap)−1

Pp extends to the whole space Lp(Ω, C3). This
yields the lemma. �

We are now ready to introduce the Maxwell operator.

Definition 5.5. For p ∈ IΩ we define the Maxwell operator Mp on Lp
σ(Ω) by setting

D(Mp) := PpD(Ap) = D(Ap) ∩ Lp
σ(Ω),

Mpu := Apu for u ∈ D(Mp).

Since A2 satisfies generalized Gaussian (3/2, 3)-estimates (see Theorem 5.1), Theo-
rem 2.3 yields the following result.

Theorem 5.6. Let p ∈ (3/2, 3). Suppose that s > 3|1/p − 1/2|. Then, for every
bounded Borel function F : [0,∞) → C with supn∈Z‖ωF (2n·)‖Cs < ∞, the operator
F (A2) is bounded on Lp(Ω, C3), and there exists a constant Cp > 0 such that

‖F (A2)‖Lp(Ω,C3)→Lp(Ω,C3) � Cp

(
sup
n∈Z

‖ωF (2n·)‖Cs + |F (0)|
)
.

As Ap and Pp are commuting, the functional calculus for A2 on Lp(Ω, C3) and the
Helmholtz projection Pp are also commuting. Therefore, we deduce a spectral multiplier
theorem for the Maxwell operator by restricting F (A2) to the space of divergence-free
vector fields.
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Theorem 5.7. Let p ∈ (3/2, 3). Suppose that s > 3|1/p − 1/2|. Then, for every
bounded Borel function F : [0,∞) → C with supn∈Z‖ωF (2n·)‖Cs < ∞, the operator
F (M2) is bounded on Lp

σ(Ω), and there exists a constant Cp > 0 such that

‖F (M2)‖Lp
σ(Ω)→Lp

σ(Ω) � Cp

(
sup
n∈Z

‖ωF (2n·)‖Cs + |F (0)|
)
.

Remark 5.8. (1) If Ω is convex or has a C1,1-boundary, the assertion of Theo-
rem 5.6 even holds for any p ∈ (6/5, 6), because A2 then satisfies generalized Gaussian
(6/5, 6)-estimates (see Corollary 5.2). Also, the assertion of Theorem 5.7 then holds for
p ∈ (6/5, 6), for which the Helmholtz projection is bounded in Lp(Ω, C3).

(2) The situation on the whole space Ω = R
3 is more comfortable, because no boundary

terms occur. In particular, the form a is better suited concerning partial integration. Note
that the range of values p0 ∈ [1, 2), for which our method gives generalized Gaussian
(p0, p

′
0)-estimates for A2, then depends only on the regularity of the coefficient matrix ε(·).

In the case of smooth coefficients one can even prove pointwise Gaussian estimates for A2.

(3) Also, for Ω Lipschitz, there is the possibility of obtaining a larger range of p0 ∈ [1, 2)
for generalized Gaussian (p0, p

′
0)-estimates under additional regularity assumptions on

the coefficient matrix ε(·) (in a similar way as in [29] for ε(·) = I). A starting point
for ε(·) ∈ C1+γ [31], for example, would be a description of the domain D(A2) of A2

(similar to the one for D(B) before Definition 3.3) as

{u ∈ V (Ω) : rot ε(·)−1 rotu ∈ L2(Ω, C3), div u ∈ H1(Ω, C), ν × ε(·)−1 rotu|∂Ω = 0},

A2u = rot ε(·)−1 rotu − ∇ div u for u ∈ D(A2).

A modification of Step 2 gives Davies–Gaffney estimates for {tA2e−tA2 : t > 0}. As in [29],
the idea is to use the estimate (5.9) (valid also for w ∈ L2(Ω, C3) with rotw ∈ L2(Ω, C3),
div w ∈ L2(Ω, C) and ν × w|∂Ω = 0; see [31, p. 87]) for w := ε(·)−1 rotu to obtain
estimates on rot e−tA2f in L3(Ω, C3). For div u one can use the usual embedding of
H1(Ω, C) to get estimates on div e−tA2f in L3(Ω, C). Via

‖u‖
B

1/p
pp (Ω,C3) � C(‖u‖Lp(Ω,C3) + ‖div u‖Lp(Ω,C) + ‖rotu‖Lp(Ω,C3))

(see [31, p. 87]) for p = 3 and B
1/3
33 (Ω, C3) ↪→ L9/2(Ω, C3) one finally obtains generalized

Gaussian (9/7, 9/2)-estimates for the semigroup. However, for the above-mentioned appli-
cation of the estimate (5.9) to w := ε(·)−1 rotu one has to check for div w ∈ L2(Ω, C).
This is possible if ε(·) is scalar valued, but it does not seem to be obvious for a matrix-
valued ε(·). Precise descriptions of the domain of Ap for p �= 2 could help to further
extend the scale of p0.

6. Proof of Lemma 2.5

In this section we give a detailed proof of the result stated in Lemma 2.5.
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Proof of Lemma 2.5. As noted in [5, pp. 934–935], one can assume that Ω = R
D.

Otherwise, instead of an operator T : Lp(Ω, Cn) → Lq(Ω, Cn), one considers the extended
operator T̃ : Lp(RD, Cn) → Lq(RD, Cn) defined by

T̃ u(x) :=

{
T (1Ωu)(x) for x ∈ Ω,

0 for x /∈ Ω
(u ∈ Lp(RD, Cn), x ∈ R

D).

It is then straightforward to check that ‖T̃‖Lp(RD,Cn)→Lq(RD,Cn) = ‖T‖Lp(Ω,Cn)→Lq(Ω,Cn).
In the following, for short, we write ‖ · ‖p→q for the norm ‖ · ‖Lp(RD,Cn)→Lq(RD,Cn).

For the proof of (a), fix t > 0 and x, y ∈ R
D. In order to verify (2.6), we use weighted

norm estimates for the resolvent operators similar to those of Davies’s perturbation
method presented in § 5, and an integral representation for the semigroup operators
based on the Cauchy formula.

Set h : R → R, h(τ) := βτ for some positive constant β. One then gets, for the Legendre
transform h# : R → [−h(0),∞] of h,

h#(σ) := sup
τ�0

(στ − h(τ)) = sup
τ�0

(σ − β)τ =

{
0 for σ � β,

∞ for σ > β.
(6.1)

As in the proof of Theorem 5.1, let E denote the space of all functions φ ∈ C∞
c (RD, R)

such that ‖∂jφ‖∞ � 1 for any j ∈ {1, 2, . . . , D}. Then,

dE(x, y) := sup{φ(x) − φ(y) : φ ∈ E}

defines a metric on R
D that is actually equivalent to the Euclidean distance (see, for

example, [13, Lemma 4]). Therefore, [6, Theorem 1.2] is applicable and gives that (2.5)
is equivalent to ∥∥∥e−�φv

1/p−1/q

|λ|−1/m λ(λ + A)−1e�φ
∥∥∥

p→q
� eh#(�|λ|−1/m),

where v|λ|−1/m(x) := |B(x, |λ|−1/m)| ∼= |λ|−D/m, and, consequently,

‖e−�φλ(λ + A)−1e�φ‖p→q � |λ|(D/m)(1/p−1/q)eh#(�|λ|−1/m)

for any λ ∈ C \ {0} with |arg λ| < π − θ, � � 0 and any φ ∈ E . By exploiting (6.1), we
have, for any λ ∈ C \ {0} with |arg λ| < π − θ, 0 � � � β|λ|1/m and φ ∈ E , that

‖e−�φλ(λ + A)−1e�φ‖p→q � |λ|(D/m)(1/p−1/q). (6.2)

Based on the Cauchy integral formula, one can represent the semigroup operator e−tA

in terms of resolvent operators as

e−tA =
1

2πi

∫
Γ

etλ(λ + A)−1 dλ,

where Γ is, as usual, a piecewise smooth curve in Σπ−θ going from ∞e−i(π−θ′) to
∞ei(π−θ′) for some θ′ ∈ (θ, π/2). Define η := 1

2 (π − θ + 1
2π) = 3

4π − 1
2θ and
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ω� := |sin η|−1β−m�m for � � 0, with β the constant in the definition of the function h.
We consider shifted versions of e−tA and establish a bound on ‖e−�φe−ω�te−tAe�φ‖p→q

for any � � 0 and φ ∈ E by using the above integral representation for e−tA with the
anticlockwise-oriented integration path Γ = Γt−1,η + ω�, where

Γt−1,η := −(−∞,−t−1]e−iη ∪ t−1ei[−η,η] ∪ [t−1,∞)eiη.

It holds, for each � � 0 and φ ∈ E , that

‖e−�φe−ω�te−tAe�φ‖p→q �
∫

Γt−1,η+ω�

et(Re λ−ω�)‖e−�φ(λ + A)−1e�φ‖p→q|dλ|

=
∫

Γt−1,η

et Re ζ

|ζ + ω�|
‖e−�φ(ζ + ω�)(ζ + ω� + A)−1e�φ‖p→q|dζ|.

For every ζ ∈ Γt−1,η we can bound the operator norm with the help of (6.2) when the
condition � � β|ζ + ω�|1/m is valid. A simple geometric argument gives that |ζ + ω�| �
|sin η|ω�, and thus (6.2) surely applies for � � β|sin η|1/mω

1/m
� . But, due to the definition

of ω�, this requirement imposes no restrictions on �. Therefore, we can continue our
estimation by applying (6.2) and the elementary fact that |ζ + ω�| ∼= |ζ| + ω�, to further
obtain that

‖e−�φe−ω�te−tAe�φ‖p→q �
∫

Γt−1,η+ω�

et(Re λ−ω�)‖e−�φ(λ + A)−1e�φ‖p→q|dλ|

=
∫

Γt−1,η

et Re ζ

|ζ + ω�|
‖e−�φ(ζ + ω�)(ζ + ω� + A)−1e�φ‖p→q|dζ|

�
∫

Γt−1,η

et Re ζ

|ζ| + ω�
(|ζ| + ω�)(D/m)(1/p−1/q)|dζ|

�
∫

Γt−1,η

et Re ζ |ζ|(D/m)(1/p−1/q)−1|dζ|.

Here, we made use of the condition (D/m)(1/p−1/q) < 1. We next estimate the integral
on each of the three segments of the integration path Γt−1,η separately. We begin with a
bound for the integral on the half-ray [t−1,∞)eiη,∫

[t−1,∞)eiη
et Re ζ |ζ|(D/m)(1/p−1/q)−1|dζ|

=
∫ ∞

t−1
etu cos ηu(D/m)(1/p−1/q)−1 du

= t−(D/m)(1/p−1/q)
∫ ∞

1
ev cos ηv(D/m)(1/p−1/q)−1 dv

� t−(D/m)(1/p−1/q),

where the last step is due to cos η < 0. The integral on the half-ray −(−∞,−t−1]e−iη

can be treated in the same manner. A bound for the remaining integral over the circular

https://doi.org/10.1017/S001309151400008X Published online by Cambridge University Press

https://doi.org/10.1017/S001309151400008X


252 P. C. Kunstmann and M. Uhl

arc t−1ei[−η,η] is obtained by using the canonical parametrization ζ(α) = t−1eiα for
α ∈ [−η, η],∫

t−1ei[−η,η]
et Re ζ |ζ|(D/m)(1/p−1/q)−1|dζ| = t−(D/m)(1/p−1/q)

∫ η

−η

ecos α dα

� t−(D/m)(1/p−1/q).

Putting things together, we have shown that, for all � � 0, φ ∈ E and t > 0,

‖e−�φe−ω�te−tAe�φ‖p→q � t−(D/m)(1/p−1/q)

and, recalling that ω� = |sin η|−1β−m�m,

‖e−�φe−tAe�φ‖p→q � t−(D/m)(1/p−1/q)e|sin η|−1β−m�mt.

By similar arguments as in the proof of [25, Proposition 8.22], this entails the desired
two-ball estimate (2.6).

The proof of (b) is similar to that of (a), and is therefore omitted. �
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