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Abstract
Cartographer is an algorithm that was open sourced by Google in 2016 and adapted to multiple sensors. To address
issues of the original algorithm, such as the negative impact of outlier point cloud on the scan matching, and low
accuracy of position fusion. This paper preprocesses the sensor data and presents HT-Carto, an improved hybrid
point-cloud filtering system, and a tightly coupled LiDAR/IMU framework based on Cartographer’s front-end. The
inertial measurement unit (IMU) provides initial values for the point cloud, and the IMU pre-integration combines
the scan-matched pose to construct the factors, which are added as constraints to the factor graph. The result is used
to update the current pose and work as odometer residuals at the back-end. The optimization of the selected strategy
during point cloud preprocessing, PassThrough, and RadiusOutlierRemoval are combined to ensure quality. An
actual vehicle is used in complex indoor environment to verify the stability and robustness of HT-Carto. Compared
to the Cartographer, Karto, Hector, and GMapping, HT-Carto demonstrates better localization and mapping, it can
obtain a more precise trajectory.

1. Introduction
Safety is a priority owing to the high frequency of laboratory accidents. A low-cost and versatile robot
is required to replace daily manual inspections. Automated guided vehicles (AGV) are widely used in
complex environments, such as large warehouse, disaster area rescue, and mine exploration [1, 2]. High-
precision mapping and localization are important prerequisites for patrols. Simultaneous localization
and mapping (SLAM) is the key technology to this [3].

Scholars often study laser and visual SLAM, visual SLAM contains semantic information but is
susceptible to environmental changes, it is an angle-measurement sensor and cannot obtain distance
information directly. It is necessary to reconstruct the feature distance from multiple views, which is
unsuitable for applications in embedded platforms owing to the large computation [4, 5]. In contrast, light
detection and ranging (LiDAR) is more accurate and resistant to interference, but prones to distortion
when rotating, leading to a map offset [6]. The prices of 3D LiDAR, vision sensors, and 2D LiDAR
show a downward trend. This study focuses on the localization and mapping of 2D LiDAR in indoor
environment.

A complete SLAM application cannot be supported using a single sensor. The use of multi-sensor
fusion can enhance the positioning accuracy of the AGV. By integrating different sensors, the drawbacks
of a single sensor can be compensated. The IMU provides high-frequency accurate position informa-
tion in a short time; however, its cumulative error and acceleration drift are unsuitable for long-term
use. The Global Positioning System offers meter-level positioning; however, the indoor signal is weak.
Wheel odometry (W-Odom) is a cost-effective option that utilizes the difference in wheel speed to obtain
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linear and angular velocities; however, it loses accuracy when the wheels spin or the mechanical struc-
ture wears out. The characteristics of the proposed HT-Carto and our contributions are summarized as
follows:

(1) The preprocessing of IMU and LiDAR data is carried out using the front-end framework of
Cartographer, which addresses the issues of loosely coupled sensors, inadequate utilization of
observation information, and low point cloud quality.

(2) This study proposes a Hybrid Filter that enhances the point selection strategy based on adap-
tive VoxelGrid, integrates Passthrough, and RadiusOutlierRemoval to eliminate outliers and
accelerates the speed of subsequent algorithms.

(3) Devise a “plug-and-play” independent module for seamless integration. Initially, a preinte-
grated model of the IMU is derived, incorporating LiDAR observations into the IMU odometry,
enabling the correction of the IMU bias and enhancing computational efficiency. Subsequently,
the selection approach for the linear and angular velocities in the PoseExtrapolator is refined
by updating the starting point of each frame, thereby improving the overall localization
accuracy.

(4) The application of the pre-integration technique in 3D SLAM to 2D SLAM allowed the
Cartographer to obtain a new attempt and test the HT-Carto algorithm in several environments.

2. Related work
SLAM was introduced at the IEEE Robotics and Automation Conference in San Francisco in 1986.
GMapping was proposed in 2007 and constructed a SLAM system based on Rao-Blackwellized particle
filters (RBPF) [7]. State-space vectors have been applied in analytical methods under certain conditions,
and when the odometer model is propagated, we use optimal particles to reduce the number and prevent
degradation. GMapping is highly dependent on W-Odom, making it unsuitable for constructing large-
scene maps. Hector SLAM solves the least squares problem by the Gauss-Newton method in 2013 [8].
The optimization procedure ensures the solution’s independence from the W-Odom, while Cartographer
incorporates and executes the scan matching methodology.

Researchers have increasingly relied on factor graph to tackle SLAM problems as hardware perfor-
mance has advanced. Cartographer employs a hierarchical optimization approach using the unscented
Kalman filter (UKF) to integrate multi-source data for position estimation and construct a submap in
the front-end. The submap serves as the fundamental unit for constructing the optimization problem, a
branch-and-bound algorithm expedites the establishment of constraints between the submaps. Although
data fusion is loose, it is well suitable for scenarios with less stringent accuracy requirements. Upon
evaluating multiple indoor SLAM, Zou [9] and Herranz [10] determined that Cartographer exhibits
distinct superiority, it was designed as an engineered project with a comprehensive balance of config-
uration parameters. Sobczak identified the optimal configuration for Cartographer in the simulation by
adjusting the parameters [11]. Gao proposed a lightweight and efficient neighborhood encoding-based
[12] to achieve better map. Simanek exploited an extended Kalman filter to reckon mobile robots [13].
Another idea is to use a neural network in 3D LiDAR [14, 15], [16] proposed geometry and intensity
features based on the scan context for loop closure [17].

Currently, 3D LiDAR and visual SLAM offer new approaches. LOAM [18], LIO-SAM [19], Lego-
LOAM [20] apply the pre-integration to tackle the issue of substantial cumulative errors and copious
sensor data. D-LIOM employs the pre-integration and gravity constraints during submap construction
in 3D Cartographer applications [21]. Numerous researchers employ this approach as a foundation for
various enhancements. Tightly coupled sensor data are mainly used in visual SLAM, [22] presented a
probabilistic monocular visual-odometric SLAM and so on.
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Figure 1. Defect maps. (a) denotes 9.0 m×5.3 m rotated small map, the rotation angle is over 180◦(i.e.,
A,B,C,D) while (i.e., E,F) is over 90◦; (b): 21.2 m×8.1 m symmetrical middle map, (i.e., A,B,C,D) share
the same point cloud characteristics; (c): 65 m×42 m big unfeatured map. Images a and b with local
SLAM while c with global SLAM(back-end).

As can be seen, Cartographer employs four primary optimization methods: (1) parameter adjustment;
(2) utilization of loosely coupled sensors based on Kalman and particle filtering; (3) incorporation of
tightly coupled pre-integration and factor graph; and (4) integration of scan context to enhance scan
matching at the front-end. This study cites the third idea for application to 2D Cartographer.

3. Problem formulation
In the front-end (local slam) of the Cartographer, the laser data are filtered by an adaptive VoxelGrid,
and the PoseExtrapolator provides the initial position through the IMU and W-Odom.

3.1. VoxelGrid
LiDAR collects environmental data to create a point cloud and evaluates suitable points by specifying
distance criteria. This process involves multiple iterations of the adaptive VoxelGrid to minimize the
number of point clouds while preserving the features. However, despite these efforts, noise points may
persist owing to factors such as line-of-sight occlusion and the surface materials of obstacles.

3.2. Scan matching
The robot can obtain an accurate position when traveling slowly without violent rotation. However,
laboratory environments are complex and unpredictable. Figure 1 shows the mapping results for common
laboratories with map offsets in red boxes.

Figure 1(a) depicts multiple violent rotations, where the robot is prone to losing its position during
rotation, leading to an offset in the map, which can be corrected through loop closure. In the symmet-
ric structure environment shown in Figure 1(b), if we turn on the back-end, the map shows erroneous

https://doi.org/10.1017/S0263574725000463 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574725000463


4 Chen Da et al.

Figure 2. Framework overview of HT-Carto. In “Sensors,” HT-Carto provides two LiDARs to be
selected, they need to match the IMU to get suitable frequency. In “Data preprocessing,” we use a
new approach to handle the point cloud. No alterations were made to the local or global SLAM com-
ponent. In contrast, we developed IMU pre-integration and LiDAR odometry factors to facilitate IMU
odometry acquisition through a factor graph. This odometry is then fed into the PoseExtrapolator for
the current position updates.

matching. Figure 1(c) illustrates a corridor with a degraded structure. Owing to the lack of features, even
with loop closure, an error of 2 m×2.5 m occurs in the red box. The back-end benefits the accuracy of
Cartographer’s maps, but it has limitations in a symmetric structural environment.

3.3. PoseExtrapolator
Table I illustrates the hierarchical algorithm used to prioritize angular and linear velocity data during
position renewing. W-Odom is not utilized due to its inferior performance, while high-frequency IMU
data will consume substantial computation. The Pose estimation signifies the position data following the
last scan matching, and we can also predict the current position by using the data from the preceding
frame. However, the position accuracy decreases. If none of these is reachable, Cartographer will use a
uniform rectilinear model to estimate.

4. Theory and methodology
4.1. Improved framework
We optimize the front-end to enhance the accuracy of robot localization and mapping in unknown
environment.

The overall framework of HT-Carto is shown in Figure 2 and comprises two main components. The
first component involves a hybrid filter of the point cloud, the second initializes the IMU data statically
and dynamically with reference to D-LIOM [21]. In theory, the IMU has no bias, and the integral of
the angular velocity is ideally equal to the value estimated by the LiDAR odometer. However, in prac-
tical application, the external noise and internal bias of the IMU cannot be ignored. To address this
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Algorithm 1: Hybrid point-cloud filtering for HT-Carto

Data: sensor_msgs::LaserScan old, raw data from LiDAR
sensor::PointCloud& temp, temporary variable
pars, configuration parameters

Result: sensor::PointCloud& new, Cartographer’s data type
1 InitialPar(pars);
2 temp = DataTypeTransform(old);
3 temp = PassThrough(temp, pars);
4 temp = VoxelGrid(temp, pars);

5 if temp.size <= pars.minimum then
6 return temp;
7 end
8 temp = VoxelGrid(temp, pars.max_length);
9 if temp.size > pars.minimum then

10 return temp;
11 end
12 for pars.max_length/2 do
13 temp = VoxelGrid(temp, pars.max_length/2);
14 temp = getTheSuitableLength(temp, pars.max_length/2);
15 return temp;
16 end
17 new = RadiusOutlierRemoval(temp, pars);
18 return new;

// Step 3

// Step 1
// Step 2

// Initial parameters

// Step 4

problem, the system acquires timestamps from two consecutive LiDAR frames and uses scan matching
as observation to constrain the IMU noise and bias.

4.2. Hybrid filter
Preprocessing of the point cloud can reduce the quantity and noise, which improves the quality of the
point cloud and reduces the effect of noise in the subsequent scan matching. In the original algorithm,
Cartographer employs distance judgment, VoxelGrid, and Adaptive VoxelGrid. VoxelGrid can preserve
most environmental characteristics, but its indoor environment is complex. The point cloud emanating
from the interstices between the tables and chairs is not conducive to map construction, and is thus
classified as a noise point. A RadiusOutlierRemoval was used to remove these points. A hybrid filter
was designed, as shown in Figure 2, based on PassThrough to remove a specific range of points. As
shown in Algorithm.1 line 3, VoxelGrid achieves down sampling to preserve the geometric features of
the point cloud, while RadiusOutlierRemoval filters outlier points.

4.3. IMU pre-integration
An IMU typically comprises a gyroscope and accelerometer, each containing a three-axis angular veloc-
ity and three-axis acceleration, respectively. Theoretically, the robot’s position can be determined by
integrating the angular velocity and acceleration; however, bias and noise impair the accuracy. Moreover,
long-term integration not only accumulates errors but also increases computational resources.
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Assuming that the IMU coordinate system is coincident with the robot system Body(b), the world
coordinate system is World(w), and the z-axis is aligned with the direction of gravity in the w. The
physical measurement model of the IMU is as follows [4]:

w̃b(t) = wb(t) + bg(t) + ηg(t)
ãb(t) = (Rw

b )T(t)
[
aw(t) − gw

] + ba(t) + ηa(t)
(1)

In Eq. (1), w̃b(t) and wb(t) denote the measurement and actual values of the angular velocity in the b
system at moment t, ãb(t) is the measured value of acceleration in the b system, while aw(t) is the true
value in the w system. (Rw

b )T refers to the rotational attitude matrix under the b system relative to the
w system. bg(t) and ba(t) are the bias of accelerometer and gyroscope measurements. gw indicates the
gravity of the current area. ηg(t) and ηa(t) are measurement noises at the time t.

•
Rw

b = Rw
b (ωb)∧

•
vw = aw

•
pw = vw

(2)

Combined with the different form of the kinematic equation in Eq. (2) for further derivation. First,
the forward Euler method is applied to obtain the discrete form of kinematics. The discretized integral
recursion is then performed on the attitude (R), velocity (v), and position (p) after the �t transformation.
To simplify the equations, sign substitution like the Eq. (3) was applied to the w system, and Eq. (4) can
be obtained. Where ηad, ηgd denote discrete Gaussian noise. Knowledge of Lie Groups and Lie Algebra
[23] was used to derive the formula.

R(t)
�= Rw

b (t), v(t)
�= vw(t), p(t)

�= pw(t) (3)

Rk+1 = RkExp
[(

ω̃k − bg
k − η

gd
k

)
�t

]
vk+1 = vk + Rk

(
ãk − ba

k − ηad
k

)
�t + g�t

pk+1 = pk + vk�t + 1
2
g�t2 + 1

2
Rk

(
ãk − ba

k − ηad
k

)
�t2

(4)

The IMU operates at a frequency range of 100–400 Hz. If each data need to be integrated during
motion solving, the resulting nodes that are inserted into the factor graph require extensive CPU time.
Additionally, the new data are highly correlated with the historical data, leading to repeated calcula-
tions. The LiDAR data between two frames (moments i and j) are selected as observations, and the
pre-integration model is utilized to determine the zero bias of the IMU. The variation is subsequently
applied to update the IMU data in the next frame, with the aim of reducing the computation. Furthermore,
if the radar data are deemed unreliable, IMU pre-integration will provide the initial position of the
subsequent scan.

Equation (4) determines the changes in R, v, p over two intervals. However, each calculation must
start from its initial value, which requires the construction of the pre-integration term in Eq. (5).

�Rij = Ri
TRj =

j−1∏
k=i

Exp
[(

ω̃k − bg
k − η

gd
k

)
�t

]

�vij = Ri
T
(
vj − vi − g�tij

) =
j−1∑
k=i

�Rik

(
ãk − ba

k − ηad
k

)
�t

�pij = Ri
T
(
pj − pi − vi�tij − 1

2
g�t2

ij

)
=

j−1∑
k=i

[
�vik�t + 1

2
�Rik

(
ãk − ba

k − ηad
k

)
�t2

]
(5)

For b(bias) and η(white noise) in the pre-integration, the value of each individual moment is theoret-
ically unequal. Consequently, the recursion of noise, as described in Eq. (5), is necessary to determine
the residuals of R, v, p.
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Algorithm 2: Tightly coupled LiDAR/IMU framework for HT-Carto
Data: sensor_msgs::Imu imu, raw data from IMU

nav_msgs::Odometry odom, laser odometry from Cartographer
pars, IMU related parameters

Result: nav_msgs::Odometry imuOdom, IMU odometry after immediate pre-integration
velocity, linear_velocity and angular_velocity in the PoseExtrapolator

// Step1: Get the imuOdom
1 InitialSystem(pars, imu, odom, gtsam);
2 imuOdom = gtsam_solve(imu, odom);

// Step2: Update the PoseExtrapolator
3 TrimImuOdomData(30);
4 vnew = imuOdom.linear_velocity_new_;
5 vlast = imuOdom.linear_velocity_last_;
6 imuTracker ->AddImuLinearAccelerationObservation(vnew, vlast);
7 calcCoorTrans(vnew, vlast);
8 wi = ExtrapolateRotation(imuTracker);
9 vi = ExtrapolateTranslation();

4.4. Factor graph
A factor graph is used for model estimation by transforming the problems involved in solving a joint
probability density function and can make full use of the sensor’s information from historical times [24].
Variable nodes represent the quantity to be optimized, such as the robot’s position, whereas factor nodes
represent observation constraints, including IMU pre-integration factors and position factors from scan
matching. The process involves solving for the optimal value of the objective function, as shown in Eq.
(6), which consists of the residuals of each item in the system, and determines the optimal value of the
objective function through nonlinear optimization.

min
X

{∑
||rL

(
Lk+1

k , X
) ||2 +

∑
||rB

(
Bk+1

k , X
) ||2

}
(6)

Where rL denotes the residuals from LiDAR odometry and rB denotes the residuals after IMU pre-
integration.

4.5. Tightly coupled LiDAR/IMU
Both IMU pre-integration and factor graphs are utilized to obtain IMU Odometry. As indicated in
Algorithm 2, the data acquired from GTSAM are employed to update the PoseExtrapolator. Initially,
through trimming to reduce the data in the cache, the first and last data points in the queue are utilized
to calculate the linear and angular velocities. Subsequently, the rotation and translation values in the
PoseExtrapolator are updated.

5. Experimental results
Two economical single-line LiDARs matching frequency-adjustable IMU are assembled on an
Ackermann car to complete tests in diverse intricate settings, as shown in Figure 3.

5.1. Experimental protocols
(1) Implements:

This study adds two external modules to improve the performance of the Cartographer. All modules
in HT-Carto are implemented in C++, which runs in the robot operating system [25] (ROS 1.0) in
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Figure 3. Experimental environment. The left panel shows the Ackermann car with LiDAR(YDLIDAR
X4, RICHBEAM 1). Right is the test environment, which consists a corridor and three symmetry
structure laboratories. (a) With the size of 63.2 m×2.1 m; (b) 15.8 m×7.9 m; (c) 15.7 m×7.9 m;
(d) 15.6 m×7.9 m.

Ubuntu Melodic. The configurations of the two LiDARs are presented in Table II, and the corresponding
experimental scenarios are illustrated in Figure 3 (right). To ensure the replicability of the experiments,
numerous datasets are recorded by the Jeston Nano 4 g vehicle platform. These datasets are subse-
quently transferred to an Intel i7-12 64 g to test HT-Carto, and the experimental results are graphically
represented using Matplotlib.

(2) Datasets:
In the Hybrid Filter of HT-Carto test, as shown in Figure 3(b), two lidars were used to record the

datasets for a few minutes while the robot remained stationary.
For the localization and mapping of HT-Carto, we used the fourth floor of the laboratory building as

the experimental site, as shown in Figure 3(right). To obtain a suitable match between the LiDAR and
IMU frequencies and verify the feasibility in a strongly rotating environment, an additional small map
is added, as shown in Figure 1(a).

As a uniform note, the parameters in HT-Carto were consistently maintained, and the back-end
was disabled. YDLIDAR and RICHBEAM were used as acronyms for their respective radar carts.
“Cartographer,” “Loop Closure” marking the mapping results of the local SLAM and global SLAM.
The result of Loop Closure was used as a reference trajectory if it could be opened. Verification of HT-
Carto’s characteristics was accomplished by examining the similarity and size of trajectories and maps.
First, the similarity between Cartographer, HT-Carto, GMapping, Hector, Karto, and Loop Closure tra-
jectories were assessed using dynamic time warping (DTW) [26]. Subsequently, the EVO trajectory
evaluation tool [27] was employed to conduct a comparative analysis of the absolute trajectory error
(ATE) and relative pose error (RPE) between trajectories. Finally, several distinct points were marked
on each map, the discrepancies between the map and reality were evaluated by comparing the field
measurements and utilizing the measurement tool in the RVIZ [28].

5.2. Hybrid filter of HT-Carto
Figure 4 demonstrates the filtering effects of the two LiDARs in diverse environments. Gray serves as
the initial point cloud, while green and red represent the refined outcomes. A comparison of the colors
demonstrates that the number of individual points is diminished following the Hybrid Filter. As shown
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Figure 4. Hybrid filter results. The horizontal pictures are the same feature environment as shown in
Figure 3(b), while the vertical images are the same LiDAR. The left pictures are RPLIDAR X4 and the
right are RICHBEAM 1.

in Table III, the point cloud was obtained from different areas: one was small, and the other was large.
The filtering results are shown in Figure 4, after several thousand scans of point clouds were tested on
both HT-Carto and Cartographer, the number was reduced by 4%, whereas the time was increased by
only a few hundred microseconds.

5.3. Localization and mapping of HT-Carto
5.3.1. Strongly rotating environment
Table IV lists the experimental findings for the two LiDARs shown in Figure 3(b). The trajectories and
maps from the Loop Closure were utilized as reference values for comparison with HT-Carto and others.
Five different sensor combinations with varying frequencies were selected for the experiment to evaluate
the plane errors and DTW values between trajectories. A smaller DTW value signifies a higher degree
of similarity between the trajectories.

The cross-sectional analysis indicates that the errors between HT-Carto and Loop Closure are smaller
and more similar than those of Cartographer across all levels, as shown in Table IV. However, the mag-
nitude of the error cannot be used as a criterion for directly selecting the frequency. From a longitudinal
comparison of the data, the similarity of the trajectories between HT-Carto and Loop Closure was higher
at frequencies of “8 + 100” and “30 + 100”. These two sets of frequencies are selected for further testing.
Table V lists the root mean square error (RMSE) results of the ATE and RPE from GMapping, Hector,
Cartographer, and HT-Carto which compared to Loop Closure respectively. Except for GMapping, the
remaining algorithms exhibited minimal differences and demonstrated excellent performance in map
construction within small-scale environments.

Our findings indicate that the Cartographer and HT-Carto demonstrated satisfactory performance in
the trajectory comparison. Furthermore, it is imperative to conduct a comparative analysis of their map-
ping efficacy. The beginning of trajectories in Figure 5 are highly overlapped and the errors accumulated
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Table I. Velocity selected rules in poseExtrapolator.

Priority
type Linear velocity Angular velocity

0 W-Odom IMU
1 Pose estimation W-Odom
2 No Pose estimation
3 Uniform rectilinear model Uniform rectilinear model

Figure 5. Trajectories and maps (Figure 3b) of the two LiDARs. The red line represents the trajec-
tory of Cartographer which closes the back-end. The blue line is HT-Carto, whereas the yellow line
is Cartographer with loop closure, which is close to the true path. (a) notes YDLIDAR, (b) notes
RICHBEAM, (c) and (d) represents the Partial Zoom from the left’s dashed circle boxes.

with the robot’s motion. The deviation of trajectories would be larger if there is no back-end, whereas
the high overlap between HT-Carto and Loop Closure indicates that HT-Carto is closer to the real path.

Then, a map size comparison is carried out; six distances are marked in Figure 5, and Table VI shows
the results of the real and test values under the two algorithms. Refs. A and B illustrate the full map’s
size, which is important than the others.

5.3.2. Symmetry environment
The preceding section demonstrated the effectiveness of HT-Carto in optimizing the front-end. As
shown in Figure 3(b), the environment is symmetric; therefore, Loop Closure can not be utilized.
Figure 6 depicts the results of the map construction, and the red arrows indicate the three optional
marker distances. In a comparison of the true values, HT-Carto reduced the map size error by 4.5 cm in
Figure 6(left) and 2.4 cm in Figure 6(right) compared to the Cartographer.
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Table II. Parameters of LiDAR.

Feature name (Unit)
LiDAR YDLIDAR X4 RICHBEAM 1
Scan frequency (Hz) 8 10,20,25,30
Measurement distance (m) <10 <25
Angular resolution (deg) 0.5 0.25
Scan angle (deg) 360 270
Repeatability (cm) <2% 2
Point numbers 720 2880

Table III. Point cloud comparison.

Cartographer Hybrid Filter
LiDAR Area Scans Number Time/ms Number Time/ms
YDLIDAR small 1780 205 1.6 203 1.9

big 1030 207 1.5 198 1.8
RICHBEAM small 6664 204 2.4 202 2.8

big 5199 207 2.9 199 3.1

Table IV. Trajectory comparison.

Cartographer2 HT-Carto2

STD
(cm)

STD
(cm)

LiDAR Freq1 (Hz) x y DTW x y DTW DTW_ratio (%)
YDLIDAR 8 + 100 2.8 2.6 0.07 1.7 2 0.06 16%
RICHBEAM 10 + 100 1.4 1.7 0.06 0.8 0.9 0.04 23%

20 + 100 7.3 5.4 0.13 6.2 3.7 0.11 14%
30 + 100 4.8 5.7 0.1 2.5 2.5 0.07 26%
30 + 200 3.9 3.7 0.09 4.2 3.5 0.09 1%

1Freq represents the combination of the LiDAR + IMU frequency.
2Standard deviation in the difference of x,y directions, compare trajectory differences between Cartographer
(without back-end), HT-Carto and Loop Closure.

Table V. EVO comparison.

8 + 100 RMSE 30 + 100 RMSE
Type ATE RTE DTW ATE RTE DTW
GMapping 0.58 0.047 8 1.51 0.01 7.21
Hector 0.07 0.008 7 0.07 0.01 7.61
Cartographer 0.05 0.003 0.034 0.1 0 0.07
HT-Carto 0.04 0.006 0.03 0.07 0 0.06
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Table VI. Comparation of the map size.

YDLIDAR 8 + 100 RICHBEAM 30 + 100
Ref1 Truth Carto2 HT-Carto Optimal Carto HT-Carto Optimal
A 525.5 520.1 525.6 5.3 530.6 524.1 3.7
B 893.8 885.1 896.8 5.7 901.8 895.4 6.3
C 84.6 70.5 75.3 4.8 85.5 83.2 −0.63

D 274.5 268.9 270.3 1.4 275.8 274.8 1
E 162.3 164.9 165.7 −0.83 160.5 162.7 1.4
F 87.5 74.4 80.3 5.9 75.3 80.5 5.2
1All units in the table are in cm. Ref: A-F note the red marks from Figure 5b. Assume Optimal=(“Cartographer”-
“True”)- (“HT-Carto”- “True”);
2Cartographer, the widths of the table columns are too small.
3The discrepancy was less than 1 cm and can be considered negligible.

Table VII. Trajectory comparison of the dynamic environment.

ATE PRE
RMSE STD RMSE STD DTW

Hector 3.29 1.1 0.016 0.014 6.75
Karto 14.84 7.39 0.036 0.028 27.17
Cartographer 0.93 0.58 0.013 0.011 0.97
HT-Carto 0.19 0.09 0.01 0.007 0.16

Figure 6. Symmetry environment mapping results in HT-Carto.

5.3.3. Dynamic environment
The corridor is illustrated in Figure 3(a). Without sufficient feature points, a robot is susceptible to losing
its current positional attitude. Consequently, a sensor combination of 30 and 100 Hz from Table IV was
selected for testing, which enabled HT-Carto to reduce the error by 10 cm.

To further simulate the authentic laboratory environment, we incorporate a dynamic scenario experi-
ment by placing books on the floor to represent items left behind by students and positioning four persons
to ambulate randomly within the environment. The Cartographer drifts significantly in the red box, as
shown in Figure 7(a), and HT-Carto performs better in Figure 7(b). Figure 7(c) displays a map generated
from the Loop Closure, and HT-Carto clearly performs better on the trajectory. Figure 7(d) and (e) show
the details of the map; Loop Closure leads to map overlaps, whereas HT-Carto is more complete in the
structural symmetry scene. Table VII illustrates the comparative outcomes of trajectory analysis for the
four algorithms. As the environmental area expanded, GMapping became impractical, and the Hector
exhibited excessive reliance on the laser data. Cartographer(without back-end) and Karto demonstrated
loosely coupled sensor data.
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Figure 7. Dynamic mapping results. The left panel includes three images representing the results of
the Cartographer, HT-Carto, and Loop Closure. The red letter A is a corridor and (i.e.,B,C,D) are a
symmetry laboratory. Right is the Partial Zoom like the C. The last line shows the maps for both Hector
and Karto.

6. Conclusion
HT-Carto is proposed as a solution for AGV in situations where the back-end is unavailable in certain
environments when using the Cartographer for localization and mapping. The two low-cost 2D LiDARs
examined in this study provide cost savings while maintaining accuracy compared with 3D LiDAR and
vision cameras. By applying pre-integration to the Cartographer to obtain a new attempt, an indepen-
dent factor graph module was integrated into the front-end of the system to determine its position more
accurately. To guarantee the quality of the point cloud and minimize the impact of noise, a Hybrid Filter
algorithm was proposed. The outcomes of these environments indicate that HT-Carto can achieve sim-
ilar or better accuracy when compared with Cartographer(back-end) and others. HT-Carto can employ
standard CPU and memory resources on an embedded platform; however, this work only set the 100 Hz
of the IMU and 3D SLAM to 500 Hz. In the future, we will increase the frequency and consider the com-
putation. We can also activate the back-end in HT-Carto; however, because of the loss of a more precise
sensor, we cannot obtain a reference trajectory. Perhaps it performs more effectively than Loop Closure.
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