
J. Appl. Probab. 60, 921–944 (2023)
doi:10.1017/jpr.2022.107

ROBUSTNESS OF ITERATED FUNCTION SYSTEMS OF
LIPSCHITZ MAPS

LOÏC HERVÉ,∗ ∗∗ AND

JAMES LEDOUX ,∗ ∗∗∗ Université de Rennes, INSA Rennes, CNRS, IRMAR-UMR 6625

Abstract

Let {Xn}n∈N be an X-valued iterated function system (IFS) of Lipschitz maps defined
as X0 ∈X and for n ≥ 1, Xn := F(Xn−1, ϑn), where {ϑn}n≥1 are independent and iden-
tically distributed random variables with common probability distribution p, F(·, ·) is
Lipschitz continuous in the first variable, and X0 is independent of {ϑn}n≥1. Under
parametric perturbation of both F and p, we are interested in the robustness of the V-
geometrical ergodicity property of {Xn}n∈N, of its invariant probability measure, and
finally of the probability distribution of Xn. Specifically, we propose a pattern of assump-
tions for studying such robustness properties for an IFS. This pattern is implemented for
the autoregressive processes with autoregressive conditional heteroscedastic errors, and
for IFS under roundoff error or under thresholding/truncation. Moreover, we provide a
general set of assumptions covering the classical Feller-type hypotheses for an IFS to be
a V-geometrical ergodic process. An accurate bound for the rate of convergence is also
provided.

Keywords: Markov chain; geometric ergodicity; perturbation; non-linear stochastic
recursion; autoregressive process
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1. Introduction

Let (X, d) be a Polish space equipped with its Borel σ -algebra X . The random variables
are assumed to be defined on a probability space (�,F , P). Throughout the paper we are
concerned with iterated function systems (IFSs) of Lipschitz maps according to the following
definition.

Definition 1.1. (IFS of Lipschitz maps.) Let (V, V) be a measurable space, and let {ϑn}n≥1 be
a sequence of V-valued independent and identically distributed (i.i.d.) random variables with
common distribution denoted by p. Let X0 be an X-valued random variable that is assumed to
be independent of the sequence {ϑn}n≥1. Finally, let F : (X×V,X ⊗ V) → (X,X ) be jointly
measurable and Lipschitz continuous in the first variable. The associated IFS is the sequence
of random variables {Xn}n∈N recursively defined, starting from X0, as follows:

for all n ≥ 1, Xn := F(Xn−1, ϑn). (1.1)
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922 L. HERVÉ AND J. LEDOUX

Let x0 ∈X be fixed. For any a ∈ [0,+∞), we set Va(x) := (1 + d(x, x0))a, and we denote
by (Ba, | · |a) the weighted-supremum Banach space associated with Va(·), i.e.

Ba :=
{

f : X→C measurable such that |f |a := sup
x∈X

|f (x)|
Va(x)

<∞
}

.

Note that (B0, | · |0) is the Banach space of complex-valued bounded measurable functions on
X equipped with the supremum norm. The total variation distance between two probability
distributions μ0 and μ1 on X is defined by ‖μ0 −μ1‖TV := sup|f |0≤1 |μ0(f ) −μ1(f )|, where
μi(f ) := ∫

X
f (x) dμi(x), i = 0, 1.

Let {Xn}n∈N be an IFS of Lipschitz maps. This is a Markov chain on X with transition kernel
P given by:

for all x ∈X and A ∈X , P(x, A) =E[1A(F(x, ϑ1))] =
∫
V

1A(F(x, v)) dp(v). (1.2)

Recall that {Xn}n∈N is Va-geometrically ergodic if P has an invariant probability measure π
such that π (Va)<∞ and if there exists ρa ∈ (0, 1) and Ca ∈ (0,+∞) such that

for all n ≥ 1 and f ∈Ba, |Pnf − π (f )1X|a ≤ Caρ
n
a |f |a. (1.3)

The Va-geometric ergodicity of IFSs has been extensively studied (see, e.g., [2, 12, 18,
36, 47] and references therein). The common starting point in most of these works is that P
satisfies the so-called drift condition under the moment/contractive Condition 1.1 below (see,
e.g., [13]), for which we introduce the following notation. If ψ : (X, d) → (X, d) is a Lipschitz
continuous function, we define

L(ψ) := sup

{
d
(
ψ(x), ψ(y)

)
d(x, y)

, (x, y) ∈X
2, x 
= y

}
.

For all v ∈V, set LF(v) := L
(
F(·, v)

)
to simplify. The Lipschitz continuity in the first variable

in Definition 1.1 reads: for all v ∈V, LF(v)<∞. Then, for every a ∈ [1,+∞), Condition 1.1
is written as follows.

Condition 1.1. The function F(·, ·) and the sequence {ϑn}n≥1 satisfy

E
[
d
(
x0, F(x0, ϑ1)

)a]
<∞, (1.4)

E
[
LF(ϑ1)a]< 1. (1.5)

The condition a ≥ 1 in Condition 1.1 is just a technical assumption for applying the Hölder
inequality, for instance. In fact, Condition 1.1 can be considered with a> 0 by replacing the
initial distance d with dα for some α ∈ (0, 1). Let us specify Condition 1.1 for the so-called
vector autoregressive model.

Example 1.1. (Vector autoregressive model (VAR).) Assume that X := R
q for some q ≥ 1.

Let ‖·‖ be any norm of Rq, and define d(x, y) := ‖x − y‖ as the associated distance. Consider
Va(x) := (1 + ‖x‖)a with a ∈ [1,+∞) (here x0 := 0), and let {Xn}n∈N be the IFS X0 ∈R

q,
for all n ≥ 1, Xn := AXn−1 + ϑn. Here, F(x, v) := Ax + v, where A = (aij) is a fixed real q × q
matrix. This is called a vector or multivariate autoregressive model. We have LF(v) = ‖A‖,
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Robustness of IFS 923

where ‖A‖ denotes the induced norm of A corresponding to ‖·‖, and d(0, F(0, v)) = ‖v‖.
Consequently, Condition 1.1 holds for some a ∈ [1,+∞) provided that E[‖ϑ1‖a]<∞
and ‖A‖< 1. Moreover, if ϑ1 has a probability density function (PDF) on R

q, then P is
Va-geometrically ergodic. More precisely, inequality in (1.3) holds for any ρa ∈ (‖A‖, 1); see
Remark 4.2.

The aim of this work is to use the results of [14, 23, 43] to investigate the robustness first of
the Va-geometrical ergodicity property (1.3), second of the stationary distribution π , and third
of the probability distribution of Xn. This study is made with respect to parametric variations
of both the function F and the probability distribution of the noise random variable ϑn in (1.1).
For this purpose, let us introduce the following definition.

Definition 1.2. (Parametric perturbation of IFS.) Let us introduce the parameter θ := (ξ, γ )
taking values in a subset � of some metric space. Let Fξ : (X×V,X ⊗ V) → (X,X ) and let

{ϑ (γ )
n }n≥1 be a sequence of V-valued random variables, both satisfying the assumptions of

Definition 1.1. The common parametric probability distribution of {ϑ (γ )
n }n≥1 is denoted by pγ .

For any θ ∈�, the process {X(θ)
n }n∈N is the X−valued IFS of Lipschitz maps given by

X(θ)
0 ∈X, for all n ≥ 1, X(θ)

n := Fξ
(
X(θ)

n−1, ϑ
(γ )
n

)
. (1.6)

The transition kernel of the Markov chain {X(θ)
n }n∈N is denoted by Pθ , and μθ is the probability

distribution of X(θ)
0 .

The Markov chain {X(θ)
n }n∈N must be thought of as a perturbed model of some ideal

model {X(θ0)
n }n∈N with θ0 ∈�◦ , where �

◦
denotes the interior of �. Next, pick θ0 ∈�◦ and let

us introduce the following assumptions.

Assumption 1.1. There exists a ≥ 1 such that Pθ0 is Va-geometrically ergodic with stationary
distribution denoted by πθ0 ; i.e. Pθ0 satisfies (1.3) for some ρa ∈ (0, 1) and Ca > 0.

Assumption 1.2. Ma := supθ∈� E
[
d
(
x0, Fξ

(
x0, ϑ

(γ )
1

))a]1/a
<∞.

Assumption 1.3. κa := supθ∈� E
[
LFξ

(
ϑ

(γ )
1

)a]1/a
< 1.

Assumption 1.4. �θ := ‖Pθ − Pθ0‖0,a −−−→
θ→θ0

0, where

‖Pθ − Pθ0‖0,a := sup
f ∈B0, |f |0≤1

|Pθ f − Pθ0 f |a.

Assumption 1.1 is the natural starting point for our perturbation issues. Note that
Assumptions 1.2 and 1.3 are nothing but the uniform version with respect to θ of Condition
1.1. As a by-product, it follows from Assumptions 1.2 and 1.3 that each Pθ satisfies a drift
condition with respect to the function Va. More precisely, let κ ∈ (κa, 1). Then the following
drift condition, uniform in θ ∈�, holds true (see Appendix A):

for all θ ∈�, PθVa ≤ δaVa + Ka, with δa := κa and Ka := (1 + κa + Ma)a(1 + Ma)a

(κ − κa)a
.

(1.7)
This implies that, for every θ ∈�, Pθ admits an invariant probability measure denoted by
πθ . The following natural questions are much more difficult to address: Is the map θ �→ πθ

https://doi.org/10.1017/jpr.2022.107 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2022.107
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continuous with respect to the total variation distance? Do the perturbed transition kernels
Pθ satisfy the Va-geometrical ergodicity when θ is close to θ0? In our context of parametric
perturbation of IFS, these questions are addressed in the following theorem using the results of
[14, 23, 43].

Theorem 1.1. Under Assumptions 1.1–1.4, the following properties hold:

P1: For every ρ ∈ (ρa, 1) there exist an open neighbourhood Vθ0 of θ0 and a positive constant
R such that,

for all θ ∈ Vθ0 , n ≥ 1, and f ∈Ba, |Pn
θ f − πθ (f )1X|a ≤ Rρ n|f |a.

P2: limθ→θ0 ‖πθ − πθ0‖TV = 0. More precisely,

for all θ ∈�, ‖πθ − πθ0‖TV ≤ exp(1)KaD
[ln(�−1

θ )]−1

a

(1 − δa)(1 − ρa)
�θ ln(�−1

θ ), (1.8)

provided that �θ ∈ (0, exp(−1)), where the constants ρa, Ca, δa, and Ka are given in
Assumption 1.1 and (1.7), and Da = 2Ca(Ka + 1).

P3: We have, for every n ≥ 1 and for every θ ∈�,

‖μθPθ
n −μθ0 Pθ0

n‖TV ≤ Caρa
n sup

|f |≤V
|μθ (f ) −μθ0 (f )|

+ exp(1)GaD
[ ln(�−1

θ )]−1

a

1 − ρa
�θ ln(�−1

θ ),

provided that �θ ∈ (0, exp(−1)), with Ga := max{Ka/(1 − δa), μθ0 (Va)}. In particu-

lar, if X(θ)
0 and X(θ0)

0 have the same probability distribution, say μ, then we have
limθ→θ0 ‖μPθ n −μPθ0

n‖TV = 0.

In the general framework of V-geometrically ergodic Markov chains, Property P1 and the
first statement in P2 are proved in [14, Theorem 1] by using the Keller–Liverani perturba-
tion theorem [29]. The real-valued parameter ε in [14] may be replaced with the �-valued
parameter θ . The inequality (1.8) in P2 follows from [23, Proposition 2.1] or [43, (3.19)]. The
formulation of [43, (3.19)] has been preferred to that in [23, Proposition 2.1] in connection
with Property P3. Property P3 is proved in [43, Theorem 3.2] by using the Wasserstein distance
associated with a suitable metric on X defined from the Lyapunov function V , as introduced
in [19].

The goal of this work is to present various applications when both the function F and the
probability distribution p of the noise in Definition 1.1 are perturbed, and to show that the
weak continuity assumption, Assumption 1.4, is well suited to such a study. This last claim is
highlighted by the following first simple application, where only the probability distribution of
the noise is perturbed.

Example 1.2. (IFS with perturbed noise.) Consider the generic IFS introduced in
Definition 1.1 with noise probability distribution p0. Its transition kernel Pp0 is given, for all
f ∈B0, by (Pp0 f )(x) = ∫

f (F(x, y)) dp0(y). Let us consider the specific perturbation scheme

X(θ)
n := F

(
X(θ)

n−1, ϑ
(γ )
n

)
for X(θ)

0 ∈X and all n ≥ 1, where {ϑ (γ )
n }n≥1 is a sequence of V-valued

i.i.d. random variables with a common parametric probability distribution denoted by pγ . That
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is, we consider an IFS with perturbed noise but fixed function F (e.g. the matrix A is fixed in
the VAR model introduced in Example 1.1). For any f ∈B0 such that |f |0 ≤ 1, we have, for all
x ∈X, |(Ppγ f )(x) − (Pp0 f )(x)| ≤ ‖pγ − p0‖TV. It follows that

‖Ppγ − Pp0‖0,a ≤ ‖Ppγ − Pp0‖0,0 := sup
f ∈B0, |f |0≤1

|Ppγ f − Pp0 f |0 ≤ ‖pγ − p0‖TV.

Hence, Assumption 1.4 is satisfied provided that lim ‖pγ − p0‖TV = 0.

In Section 2, a second application of Theorem 1.1, which again illustrates the interest of
Assumption 1.4, is provided for the real-valued Markov chain Xn := αXn−1 + σ (Xn−1)ϑn, for
which all the data α, σ (·) and the probability distribution of the noise ϑ1 are perturbed. This
Markov chain is called an autoregressive process of order one with autoregressive conditional
heteroscedastic errors of order one (AR(1)-ARCH(1)). Such autoregressive models with con-
ditional heteroscedastic errors were introduced to allow the conditional variance of time-series
models to depend on past information. It turns out that such processes fit many types of econo-
metrics and financial data very well where stochastic volatility must be taken into account
(see, e.g., [46]). Note that the perturbation results of Section 2 can be extended to multivari-
ate AR(p)-ARCH(q) processes with any order (p, q) [35] thanks to the material provided in
Section 5.

In Section 3, a third application is presented in the framework of roundoff errors. In applied
mathematics, any analytic material must be run on a computer to get practical answers. This
concerns simulation, approximation, numerical schemes, and so on. Thus, when a Markov
model is implemented on a computer, the original transition kernel P is replaced with a per-
turbed one, say P̃, and their difference may have a great impact on the results. Such changes
in computer simulations induced by floating point roundoff error were discussed in [7, 42].
In this case, the perturbed transition kernel takes the form P̃(x, A) := P(x, h−1(A)), where P
is the transition kernel of a fixed IFS and where h : X→X is close to the identity map. The
weak continuity assumption, Assumption 1.4, is still proved to be well adapted, as illustrated
in Proposition 3.1, for the VAR model defined in Example 1.1. Note that the function Fξ in
(1.6) is fixed in Example 1.2 so that we do not have to divide by V(x) to prove Assumption 1.4.
Indeed, the inequality ‖Ppγ − Pp0‖0,0 ≤ ‖pγ − p0‖TV in Example 1.2 is directly obtained and
it automatically gives Assumption 1.4. When Fξ in (1.6) is not fixed as in Sections 2 and 3, the
division by V(x) in the definition of ‖·‖0,a must be done to investigate Assumption 1.4.

In Section 4 we propose a new approach to prove the Va-geometrical ergodicity of IFSs of
Lipschitz maps under Condition 1.1, together with a bound on the spectral gap of P (i.e. the
infimum bound of the positive real numbers ρa satisfying (1.3)). In Section 5, further appli-
cations of Theorem 1.1 are presented. The goal of Section 5.1 is to show that the arguments
developed in Sections 2 and 3 for specific IFSs of Lipschitz maps naturally extend to more
general IFSs. In Section 5.2 we apply Theorem 1.1 to the case where the function F and the
PDF p of {ϑn}n≥1 in (1.1) are perturbed, by thresholding and by truncation respectively.

Perturbation theory for Markov chains is a natural issue which has been widely developed in
recent decades. As mentioned in [45, p. 1126] (see also [14]), the strong continuity assumption
introduced in [26, 27], which involves the iterates of both perturbed and unperturbed transi-
tion kernels, does not hold in general for V-geometrically ergodic Markov chains, excepted
for particular perturbed transition kernels (e.g. when Pθ = P0 + θD; see [3]) and for uniformly
ergodic Markov chains (i.e. when (1.3) holds with a = 0); see [1, 25, 39, 40]. Similar ques-
tions arise for dynamical systems, and [28, p. 316] seems to be the first work which introduced
a weaker continuity assumption using two norms as in Assumption 1.4 (instead of a single
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one in the standard theory). Then, the Keller–Liverani perturbation theorem [4, 29, 31] has
proved to be very powerful for studying the behaviour of the Sinai–Ruelle–Bowen measures
of certain perturbed dynamical systems (see, e.g., [4, Theorem 2.10] and [16, Theorem 2.8]).
In the context of V-geometrically ergodic Markov chains, Keller’s approach is used in [45]
and the Keller–Liverani theorem is applied in [14, 23]. The recent works of [34, 43] and refer-
ences therein combine Keller’s approach and the elegant idea of [19] using the Wasserstein
distance associated with a suitable metric on X defined from the Lyapunov function V .
Perturbation issues have also been investigated in the framework of roundoff errors [7, 42] (see
Section 3) and in the special case of reversible transition kernels as in Markov chain Monte
Carlo methods; see, e.g., [33, 41] and the references therein. The purpose of this paper is to
show that the material developed in [14, 23, 43] is very well suited to the perturbation of gen-
eral IFSs. In the IFS context, Assumption 1.4 has so far only been investigated in [14, 43]
for the perturbation of univariate AR(1) processes Xn := αXn−1 + ϑn with respect to the con-
tracting coefficient α. Our work shows that Assumption 1.4 allows us to deal with perturbation
schemes of the general IFS (1.1) with respect to both function F and the probability distribution
of ϑ1.

Let us mention that this paper does not address the statistical issues when the model is mis-
specified. Indeed, we do not study the convergence properties of estimators of the parameters
of the Markov model when the data are generated under the ‘wrong’ model and the size n of
the data growths is large (see, e.g., [11, 17] in the Markov context).

2. Robustness of AR(1) with ARCH(1) errors

According to Definition 1.2, we consider the perturbed AR(1)-ARCH(1) real-valued
{X(θ)

n }n∈N defined, for X(θ)
0 a given real-valued random variable, by

for all n ≥ 1, X(θ)
n := Fξ

(
X(θ)

n−1, ϑ
(γ )
n

)
, (2.1)

where Fξ (x, v) = αx + v(β + λx2)1/2 with constants α ∈R, β > 0, λ> 0, and {ϑ (γ )
n }n∈N has

a common PDF pγ and is independent of X(θ)
0 . Therefore, we have θ = (ξ, γ ) with ξ :=

(α, β, λ) ∈R× (0,+∞)2 and γ ∈ �, where � is some metric space (typically � ⊂R). Thus,
� is a subset of R× (0,+∞)2 × �. Here, d(x; x0) = |x − x0| and x0 := 0 so that Va(x) =
(1 + |x|)a. The Markov kernel Pθ of

{
X(θ)

n
}

n∈N is given by Pθ (x, A) := ∫
R

1A(y)pθ (x, y) dy
(A ∈X ), with

pθ (x, y) := (
β + λx2)−1/2

pγ

(
y − αx

(β + λx2)1/2

)
. (2.2)

Next, we report the following observations with respect to basic quantities required in
Assumptions 1.2 and 1.3. First, it can be checked (see Lemma B.1) that

LFξ (ϑ1) = max
(|α − √

λϑ1|, |α+ √
λϑ1|

)
. (2.3)

Hence, the real number κa in Assumption 1.3 is

κa = sup
θ∈�

( ∫
R

max
(|α− √

λv|, |α+ √
λv|)a

pγ (v) dv

)1/a

. (2.4)

Second, the real number Ma in Assumption 1.2 is given by

Ma := sup
θ∈�

√
β E

[∣∣ϑ (γ )
1

∣∣a]1/a = sup
θ∈�

√
β

( ∫
R

|v|apγ (v) dv

)1/a

. (2.5)
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Note that if β lies in a compact set, then Ma <∞ under the following uniform moment
condition for the PDF of ϑ (γ )

1 : supγ∈�
∫
R

|v|apγ (v) dv<∞.
Let us formulate the assumptions under which the conclusions of Theorem 1.1 hold true for{

X(θ)
n

}
n∈N. Let θ0 = (α0, β0, λ0, γ0) ∈�◦ . We denote by L

1(R) the usual Lebesgue space, and
by ‖·‖L1(R) its norm.

Assumption 2.1. There exists a ≥ 1 such that:

(a) For every r> 0, the function

y �→ gθ0,r(y) := inf
x∈[−r,r]

pθ0 (x, y) = inf
x∈[−r,r]

(β0 + λ0x2)−1/2pγ0

(
y − α0x

(β0 + λ0x2)1/2

)
is positive on a subset of [−r, r] that has a positive Lebesgue measure.

(b) Ma <∞, where Ma is given in (2.5).

(c) κa < 1, where κa is given in (2.4).

Assumption 2.2. limγ→γ0 ‖pγ − pγ0‖L1(R) = 0.

Proposition 2.1. Under Assumptions 2.1 and 2.2 for the AR(1)-ARCH(1) process given in
(2.1), the assertions P1–P3 of Theorem 1.1 hold.

Proof. Let θ0 = (α0, β0, λ0, γ0) ∈�◦ , and let a ≥ 1 in Assumption 2.1. As already dis-
cussed, the conditions in Assumptions 2.1(b) and (c) imply that Assumptions 1.2 and 1.3 of
Theorem 1.1 hold. Moreover, we can use (A.1) to state that there exist δa < 1, Ka > 0. and
ra > 0 such that Pθ0 Va ≤ δaVa + Ka1[−ra,ra].

Next, Assumption 2.1(a) ensures that, for all x ∈ [−ra, ra] and A ∈X , Pθ0 (x, A) ≥ ϕra,θ0 (A)
with the positive measure ϕr,θ0 (dy) = gθ,r(y) dy. In others words, S = [−ra, ra] is a small set
for Pθ0 . Moreover, ϕr,θ0 (S)> 0 from Assumption 2.1(a). Then, Assumption 1.1 holds true; see
[5, Theorem 1.1] and [36].

The following lemma asserts that Assumption 1.4 holds true under Assumption 2.2, so the
proof is complete. �

Lemma 2.1. If limγ→γ0 ‖pγ − pγ0‖L1(R) = 0 then limθ→θ0 ‖Pθ − Pθ0‖0,a = 0.

Proof. Let f ∈B0 be such that |f |0 ≤ 1. We have, for all x ∈X,

|(Pθ f )(x) − (Pθ0 f )(x)|
Va(x)

=
∣∣ ∫

R
(pθ (x, y) − pθ0 (x, y))f (y) dy

∣∣
Va(x)

≤
∫
R

∣∣pθ (x, y) − pθ0 (x, y)
∣∣ dy

Va(x)
.

Let ε > 0. Since limx→+∞ Va(x) = +∞ and the last term is bounded from above by 2/Va(x),
there exists B> 0 such that

|x|> B ⇒ for all θ ∈�, |(Pθ f )(x) − (Pθ0 )f (x)|
Va(x)

<
ε

2
. (2.6)

It follows that the conclusion of the lemma holds true provided that, under the condition
limγ→γ0 ‖pγ − pγ0‖L1(R) = 0, we have

for all A> 0, lim
θ→θ0

sup
|x|≤A

∫
R

|pθ (x, y) − pθ0 (x, y)| dy

Va(x)
= 0. (2.7)

Indeed, (2.6) and (2.7) with A = B ensure that ‖Pθ − Pθ0‖0,a < ε when θ is sufficiently close
to θ0.
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Let us prove (2.7). It follows from (2.2) that∫
R

|pθ (x, y) − pθ0 (x, y))| dy

≤
∫
R

(β + λx2)−1/2
∣∣∣∣pγ

(
y − αx

(β + λx2)1/2

)
− pγ0

(
y − α0x

(β0 + λ0x2)1/2

)∣∣∣∣ dy (2.8)

+
∫
R

pγ0

(
y − α0x

(β0 + λ0x2)1/2

)∣∣(β + λx2)−1/2 − (β0 + λ0x2)−1/2
∣∣ dy. (2.9)

First, using the change of variables z = (y − αx)/(β + λx2)1/2 in the integral (2.8) and the
triangle inequality, we obtain

(2.8) = v
∫
R

∣∣∣∣pγ (z) − pγ0

((
β + λx2

β0 + λ0x2

)1/2

z + x
α− α0

(β0 + λ0x2)1/2

)∣∣∣∣ dz

≤
∫
R

|pγ (z) − pγ0 (z)| dz +
∫
R

|pγ0 (z) − pγ0 (bβ,λ(x)z + aα(x))| dz, (2.10)

where

bβ,λ(x) :=
(
β + λx2

β0 + λ0x2

)1/2

, aα(x) := x
α− α0

(β0 + λ0x2)1/2
.

The first integral in (2.10) does not depend on x and is equal to ‖pγ − pγ0‖L1(R), which
converges to 0 when γ → γ0 from the assumption. Now let A> 0 be fixed. It follows from
Lemma B.2 that lim(β,λ)→(β0,λ0) sup|x|≤A |bβ,λ(x) − 1| = 0 and limα→α0 sup|x|≤A aα(x) = 0.
Then, under Assumption 2.2, Lemma B.3 allows us to conclude that the second integral in
(2.10) is such that

lim
(α,β,λ)→(α0,β0,λ0)

sup
|x|≤A

∫
R

|pγ0 (z) − pγ0 (bβ,λ(x)z + aα(x))| dz = 0.

Second, let us consider the integral (2.9). We must show that the supremum of this integral
on x ∈ [−A, A] converges to 0 when (β, λ) → (β0, λ0). We obtain, for any x ∈R such that
|x| ≤ A,

(2.9) = ∣∣(β + λx2)−1/2 − (β0 + λ0x2)−1/2
∣∣ ×

∫
R

pγ0

(
y − α0x

(β0 + λ0x2)1/2

)
dy

= (β0 + λ0x2)−1/2
∣∣∣∣ 1

bβ,λ(x)
− 1

∣∣∣∣ ×
∫
R

pγ0

(
y − α0x

(β0 + λ0x2)1/2

)
dy

=
∣∣∣∣1 − bβ,λ(x)

bβ,λ(x)

∣∣∣∣
∫
R

pγ0 (z) dy (change of variables z = (y − α0x)/(β0 + λ0x2)1/2)

≤ |1 − bβ,λ(x)|
bβ (A)

,

with bβ (A) := (β/(β0 + λ0A2))1/2 ≤ min|x|≤A bβ,λ(x) and
∫
R
pγ0 (z) dz = 1. We know that

lim(β,λ)→(β0,λ0) sup|x|≤A |bβ,λ(x) − 1| = 0 from Lemma B.2, so the expected convergence
holds. �
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Remark 2.1. If the PDF pγ0 for the unperturbed AR(1)-ARCH(1) process is continu-
ous on R, then Assumption 2.1(a) (stated to prove Assumption 1.1) can be omitted in
Proposition 2.1. Actually, under the condition

∫
R

LFξ0
(v)apγ0 (v) dv< 1, which is contained in

Assumption 2.1(c), Assumption 1.1 holds with any real number ρa (and the associated constant
Ca) such that ( ∫

R

LFξ0
(v)apγ0 (v) dv

)1/a

<ρa < 1.

Indeed, the kernel pθ0 (x, y) given by (2.2) is continuous, so Remark 4.3 and Proposition 4.2
ensure that, under the conditions in Assumption 2.1(b) and (c), Pθ0 satisfies (1.3) for any
ρa satisfying the above condition. In other words, if the PDF pγ0 is continuous on R, then
only the conditions in Assumption 2.1(b) and (c) with �= {θ0} are useful in obtaining
Assumption 1.1.

Remark 2.2. It is well known from Scheffé’s lemma [44] that the almost-everywhere point-
wise convergence of the PDF pγ to the PDF pγ0 when γ → γ0 provides the L1(R)-convergence
required in Assumption 2.2.

3. Robustness of IFS under roundoff error

From [7, 42], the effect of roundoff errors using a Markov chain with transition kernel P
means considering a Markov chain with a (perturbed) transition kernel of the form P̃(x, A) :=
P(x, h−1(A)), where h : X→X is such that h(x) is close to x. Let us consider an X-valued IFS
as defined in Definition 1.1. Let (hθ )θ∈� be a family of functions on X such that hθ → id when
θ → θ0 in a sense to be specified later, where id denotes the identity map on X, � is a subset

of a metric space, and θ0 ∈�◦ . Then the associated roundoff IFS
{
X(θ)

n
}

n∈N is defined as

for X(θ)
0 ∈X and all n ≥ 1, X(θ)

n = Fθ
(
X(θ)

n−1, ϑn
)
,

where Fθ (x, v) := hθ (F(x, v)) and Fθ0 (x, v) = id(F(x, v)) = F(x, v). The perturbed/roundoff

transition kernels associated with
{
X(θ)

n
}

n∈N (or (hθ )θ∈�) are given by

for all f ∈B0 and x ∈X, (Pθ f )(x) = P(f ◦ hθ )(x) =
∫
V

f ((hθ ◦ F)(x, v)) dp(v). (3.1)

When the Markov kernel Pθ0 is assumed to be V-geometrically ergodic, the first natural
question is to know whether Pθ remains V-geometrically ergodic for θ close to θ0. The simplest
way used in [42] to study this question is to assume that hθ → id uniformly on R

q when θ → θ0
(i.e., for all x ∈R

q, ‖h(x) − x‖ ≤ ε(θ ) with limθ→θ0 ε(θ ) = 0). However, as mentioned in [7],
this assumption is too restrictive in practice since the roundoff errors for some x ∈R

q are
obviously proportional to x. In [7], the authors introduced the weaker assumption ‖h(x) − x‖ ≤
ε(θ )‖x‖ with limθ→θ0 ε(θ ) = 0, and proved that the V-geometric ergodicity property is stable
for the roundoff Markov kernels under some mild assumptions on the function V . Below, as
a by-product of Theorem 1.1, we again find this result in the specific instance of the roundoff
process associated with a VAR model {Xn}n∈N, but more importantly the sensitivity of the
probability distribution of X(θ)

n and of the stationary distribution of
{
X(θ)

n
}

n∈N when θ → θ0 is
addressed too. These two issues are not investigated in [7].

Let {Xn}n∈N be an R
q-valued VAR model as defined in Example 1.1. To simplify, we assume

that, for some p ≥ 1, � is an open subset of Rp containing θ0 := 0 (the null vector of Rp), and
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we consider a family (hθ )θ∈� of functions on X := R
q such that h0 = id. Thus, the roundoff

process
{
X(θ)

n
}

n∈N associated with Fθ (x, y) := hθ (Ax + v) is the Markov chain with transition
kernel Pθ (see (3.1)),

for all f ∈B0 and x ∈X, (Pθ f )(x) =
∫
Rq

f (hθ (Ax + v)) dp(v). (3.2)

If g : Rq →R
q is differentiable and z ∈R

q, we denote by ∇g(z) the Jacobian matrix of g at z,
and we set ‖∇g‖∞ := supz∈Rq ‖∇g(z)‖, where ‖·‖ here denotes the induced matrix-norm of
Example 1.1. For the sake of simplicity the norms chosen on R

q and R
p are both denoted by

‖·‖. We introduce the following assumptions in order to apply Theorem 1.1 to
{
X(θ)

n
}

n∈N.

Assumption 3.1. ‖A‖< 1 and there exists a ≥ 1 such that E[‖ϑ1‖a]<∞.

Assumption 3.2. supθ∈�
∫
Rq ‖hθ (v)‖ap(v) dv<∞.

Assumption 3.3. For any θ ∈�, hθ is differentiable on R
q and supθ∈� ‖∇hθ‖∞ < ‖A‖−1.

Assumption 3.4.

(a) The probability distribution of ϑ1 admits a bounded continuous PDF p satisfying the
following monotonicity-type condition: there exists M > 0 such that, for every z1, z2 ∈
R

q, M ≤ ‖z1‖ ≤ ‖z2‖ ⇒ p(z2) ≤ p(z1).

(b) For every θ ∈�, the map hθ is a C1-diffeomorphism on R
q with inverse function denoted

by gθ , and the following conditions hold:

(i) There exists c ∈ (0, 1) such that, for all θ ∈� and z ∈R
q, ‖gθ (z) − z‖ ≤ c‖z‖.

(ii) For all z ∈R
q, limθ→0 gθ (z) = z.

(iii) supθ∈� ‖∇gθ‖∞ <∞, and limθ→0 ∇gθ = id uniformly on each ball of Rq centred
at 0, i.e. for all A> 0 and η > 0 there exists α > 0 such that, for all θ ∈� with
‖θ‖<α, sup‖z‖≤A ‖∇gθ (z) − id‖<η.

Proposition 3.1. Under Assumptions 3.1–3.4 for a VAR process as defined in Example 1.1, the
assertions P1–P3 of Theorem 1.1 hold for every real number ρa ∈ (‖A‖, 1) (and associated
constant Ca).

Remark 3.1. The conditions in Assumption 3.4(b) focus on the inverse function gθ of hθ
because gθ naturally occurs in the proof after a change of variable. Note that, as in [7], the
uniform convergence limθ→0 gθ = id (or limθ→0 hθ = id) is not required on the whole space
R

q in the above assumptions. For instance, the roundoff functions hθ (x) = x + θx (simple per-
turbation of id on R) satisfy the above assumptions, but neither the convergence limθ→0 gθ = id
nor the convergence limθ→0 hθ = id are uniform on R.

Proof. Recall that θ0 = 0 here. We know that Assumption 1.1 holds (see Remark 4.2). Next,
for any θ ∈� and z ∈R

q, set �θ (z) = | det ∇gθ (z)|. Then, using (3.2), Pθ has the form

for all f ∈B0 and x ∈R
q, (Pθ f )(x) =

∫
Rq

f (z)p(gθ (z) − Ax)�θ (z) dz
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from the change of variable z = hθ (Ax + v). Recall that Pθ is the transition kernel of the R
q-

valued IFS
{
X(θ)

n
}

n∈N associated with Fθ (x, v) := hθ (Ax + v). Then, Assumption 3.2 is just
Assumption 1.2 (here x0 = 0), while Assumption 1.3 is implied by Assumption 3.3 from
Taylor’s inequality applied to hθ .

Next, we prove Assumption 1.4. For every r> 0, let B(0, r) = {z ∈R
q : ‖z‖ ≤ r}. Let f ∈B0

be such that |f |0 ≤ 1, and let x ∈R
q. Fix ε > 0. First, let K ≡ K(ε)> 0 be such that (1 + K)−a <

ε/2. Then

for all x ∈R
q \ B(0,K),

|(Pθ f )(x) − (P0f )(x)|
V(x)

≤ 2

V(x)
< ε. (3.3)

Now we assume that x ∈ B(0,K). Note that

|(Pθ f )(x) − (P0f )(x)| ≤
∫
Rq

|p(gθ (z) − Ax)�θ (z) − p(z − Ax)| dz (3.4)

since g0 = id. Set d := 2/(1 − c), where c is given in Assumption 3.4(b)(i). Note that ‖Ax‖ ≤ K
and that Assumption 3.4(b)(i) provides, for all z ∈R

q, ‖gθ (z)‖ ≥ (1 − c)‖z‖. Then we have, for
every z ∈R

q such that ‖z‖ ≥ dK,

‖gθ (z) − Ax‖ ≥ ‖gθ (z)‖ − ‖Ax‖ ≥ (1 − c)‖z‖ − K ≥ (1 − c)‖z‖ − 1

d
‖z‖ ≥ 1 − c

2
‖z‖.

It follows from Assumption 3.4(a) that we have, for every θ ∈�,

‖z‖ ≥ B ≡ B(ε) := max(dM, dK) ⇒ p(gθ (z) − Ax) ≤ p(d−1z).

Since the function z �→ p(d−1z) is Lebesgue integrable on R
q, we can choose C ≡ C(ε)> 0

such that
∫
‖z‖≥C p(d−1z) dz ≤ ε/2(γ + 1), where γ := supθ∈� supz∈Rq �θ (z). Note that γ <∞

from the first condition of Assumption 3.4(b)(iii) and from the continuity of the function det(·).
Set D = max(B,C). We deduce from the triangle inequality that, for every θ ∈�,∫

‖z‖≥D
|p(gθ (z) − Ax)�θ (z) − p(z − Ax)| dz ≤ (γ + 1)

∫
‖z‖≥C

p(d−1z) dz ≤ ε

2
. (3.5)

Now we investigate the integrand in (3.4) for z ∈ B(0,D) (recall that x ∈ B(0,K)). First,
setting m := supu∈Rq p(u), we have, for every z ∈ B(0,D) and x ∈ B(0,K),

|p(gθ (z) − Ax)�θ (z) − p(z − Ax)| ≤ γ |p(gθ (z) − Ax) − p(z − Ax)| + m|�θ (z) − 1|. (3.6)

We have, for all z ∈ B(0,D), ‖gθ (z)‖ ≤ (1 + c)D (using Assumption 3.4(b)(i)). From the stan-
dard statement for uniform convergence of differentiable functions, we deduce from the
conditions in Assumption 3.4(b)(ii) and (b)(iii) that limθ→0 gθ = id uniformly on B(0, D). Let
�D denote the volume of B(0, D) with respect to Lebesgue’s measure on R

q. From the previous
uniform convergence and from the uniform continuity of p on B(0, (1 + c)D + K), there exists
an open neighbourhood V0 of θ = 0 in R

p such that

for all θ ∈ V0, z ∈ B(0,D), and x ∈ B(0,K), |p(gθ (z) − Ax) − p(z − Ax)|< ε

4γ �D
.

Moreover, there exists an open neighbourhood V ′
0 ⊂ V0 of θ = 0 in R

p such that

for all θ ∈ V ′
0, and z ∈ B(0,D), |�θ (z) − 1|< ε

4m�D
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from Assumption 3.4(b)(iii) and from the uniform continuity of the function det(·) on every
compact subset of the set Mq(R) of real q × q matrices. It then follows from (3.6) that

for all θ ∈ V ′
0, z ∈ B(0,D), and x ∈ B(0,K), |p(gθ (z) − Ax)�θ (z) − p(z − Ax)| ≤ ε

2�D
.

Integrating this inequality on B(0, D) gives

for all θ ∈ V ′
0 and x ∈ B(0,K),

∫
‖z‖≤D

|p(gθ (z) − Ax)�θ (z) − p(z − Ax)| dz ≤ ε

2
. (3.7)

We deduce from (3.4), (3.5), and (3.7) that

for all θ ∈ V ′
0 and x ∈ B(0,K),

|(Pθ f )(x) − (P0f )(x)|
V(x)

≤ |(Pθ f )(x) − (P0f )(x)| ≤ ε.

This inequality, combined with (3.3), gives Assumption 1.4. �

4. Va-geometric ergodicity of IFS

For a ≥ 1, define for any x ∈X, p(x) := 1 + d(x, x0), so that Va(x) := p(x)a, and let us
introduce the following space La:

La :=
{

f : X→C : ma(f ) := sup
(x,y)∈X2, x 
=y

{ |f (x) − f (y)|
d(x, y) (p(x) + p(y))a−1

}
<∞

}
.

Such Lipschitz-weighted spaces were introduced in [30] to obtain the quasi-compactness
of Lipschitz kernels (see also [6, 13, 20, 21, 38]). Note that, for f ∈La, we have, for all
x ∈X, |f (x)| ≤ |f (x0)| + 2a−1 ma(f ) Va(x), so that |f |a <∞ for any f ∈La. Hence, La ⊂Ba.
Moreover, La is a Banach space when equipped with the norm, for all f ∈La, ‖f ‖a :=
ma(f ) + |f |a.

Let {Xn}n∈N be an IFS of Lipschitz maps as in Definition 1.1. For all x ∈X and v ∈V, we set
Fvx := F(x, v). Recall that we set LF(v) := L(Fv) in Section 1. Since F is fixed in this section,
we simply write L(v) for LF(v). Similarly, for every (v1, . . . , vn) ∈V

n (n ∈N
∗), define

Fvn:v1 := Fvn ◦ · · · ◦ Fv1 , L(vn : v1) := L(Fvn:v1 ). (4.1)

By hypothesis we have L(v)<∞, and thus L(vn : v1)<∞. Note that, for each a ≥ 1,
the limit κ̂a := limn→+∞ E[L(ϑn : ϑ1)a]1/(na) exists in [0,+∞], since the sequence
(E[L(ϑn : ϑ1)a])n∈N∗ is sub-multiplicative. In this section we first present a standard contrac-
tion/moment condition, Condition 4.1 (counterpart of Condition 1.1 in Section 1), for P given
in (1.2) to have a geometric rate of convergence on La (see Proposition 4.1). Then the passage
to Va-geometric ergodicity is addressed in Proposition 4.2.

Condition 4.1. For some a ∈ [1,+∞),

E[d(x0, F(x0, ϑ1)a)]<∞, (4.2)

κ̂a < 1. (4.3)
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Note that (4.3) is equivalent to

there exists N ∈N
∗ such that E[L(ϑN : ϑ1)a]< 1, (4.4)

and Condition 1.1 in Section 1 corresponds to (4.2) and to (4.4) with N = 1.
The properties in the next proposition can be derived from the results of [13, Chapter 6];

see also [6] for the existence and uniqueness of the invariant distribution. For convenience,
in Appendix C the properties (4.5) and (4.6) are proved with explicit constants under the
assumptions (4.2) and (4.4) with N = 1 (i.e. E[L(ϑ1)a]< 1).

Proposition 4.1. ([13, Chapter 6].) Under Condition 4.1, P has a unique invariant distribution
on (X,X ), denoted by π , and we have π (d(x0, ·)a)<∞. Moreover, the Markov kernel P con-
tinuously acts on La, and for any κ ∈ (̂κa, 1), there exist positive constants c ≡ cκ and c′ ≡ c′

κ

such that:

for all f ∈La and n ≥ 1, |Pnf − π (f )1X|a ≤ cκnma(f ); (4.5)

for all f ∈La and n ≥ 1, ‖Pnf − π (f )1X‖a ≤ c′κn‖f ‖a. (4.6)

In particular, if κ1,a := E[L(ϑ1)a]1/a < 1, then

for all f ∈La and n ≥ 1, |Pnf − π (f )1X|a ≤ c1κ1,a
nma(f ), (4.7)

where the constant c1 is defined by c1 := ξ (a−1)/a‖π‖1(1 + ‖π‖a)a−1, with

ξ := sup
n≥1

sup
x∈X

(PnVa)(x)

Va(x)
<∞, ‖π‖b :=

( ∫
X

Vb(y) dπ (y)

)1/b

for b = 1, a.

Under Condition 4.1, Property (4.5) with f := Va and n := 1 gives PVa ≤ ξ1Va for some
ξ1 ∈ (0,+∞), so that P continuously acts on Ba. But it is worth noticing that Property (4.5)
(or (4.7)) does not provide the Va-geometric ergodicity (1.3) since (4.5) (or (4.7)) is only
established for f ∈La. Under Condition 4.1, it was proved in [2, Proposition 5.2] that, if
{Xn}n∈N is Harris recurrent and the support of π has a non-empty interior, then {Xn}n∈N is
Va-geometrically ergodic. Under Condition 4.1, the Markov chain {Xn}n∈N is shown to be Va-
geometrically ergodic in [47, Proposition 7.2] provided that P and PN for some N ≥ 1 are Feller
and strongly Feller, respectively. An alternative approach is proposed in Proposition 4.2 below.
The bound (4.8) is the same as in [47, Proposition 7.2], but the Feller-type assumptions of [47]
are replaced with the following: P� : B0 →Ba for some �≥ 1 is compact (see Remark 4.2 for
comparisons).

Proposition 4.2. Let us assume that Condition 4.1 holds, and that P� : B0 →Ba for some �≥ 1
is compact. Then P is Va-geometrically ergodic, and the spectral gap ρVa (P) of P on Ba (i.e.
the infimum bound of the positive real numbers ρa such that Property (1.3) holds) satisfies the
following bound:

ρVa (P) ≤ κ̂a. (4.8)

Proof. To avoid confusion, we simply denote by P the action of P(x, dy) on Ba, and we
denote by P|La the restriction of P to La. Let δ and κ be such that κ̂a < κ < δ < 1. Then there
exists N ∈N

∗ such that cκNma(Va) ≤ δN , where c ≡ cκ is defined in (4.5). Then, Property (4.5)
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applied to f := Va gives PNVa ≤ δNVa + π (Va). We deduce from [23, Proposition 5.4 and
Remark 5.5] that P is a power-bounded quasi-compact operator on Ba, and that its essential
spectral radius ress(P) satisfies ress(P) ≤ κ̂a since δ is arbitrarily close to κ̂a (see, e.g., [20] for
the definition of the quasi-compactness and of the essential spectral radius of a bounded linear
operator). From these properties it follows that the adjoint operator P∗ of P is quasi-compact
on the dual space B′

a of Ba, and that ress(P∗) ≤ κ̂a.
Next, let us establish that P is Va-geometrically ergodic from [24, Proposition 2.1]. Let

r0 ∈ (̂κa, 1). Prove that λ := 1 is the only eigenvalue of P on Ba such that r0 ≤ |λ| ≤ 1. Let
λ ∈C be such an eigenvalue. Then λ is also an eigenvalue of P∗ since P and P∗ have the same
spectrum and ress(P∗) ≤ κ̂a < |λ|. Thus, there exists f ′ ∈B′

a such that f ′ ◦ P = λf ′. But f ′ is also
in L′

a since we have, for all f ∈La, |〈f ′, f 〉| ≤ ‖f ′‖Ba
′ |f |a ≤ ‖f ′‖Ba

′‖f ‖a. This proves that λ is
an eigenvalue of the adjoint of P|La . Hence λ is a spectral value of P|La . More precisely, λ is an
eigenvalue of P|La since, from (4.6), P|La is quasi-compact on La and ress(P|La ) ≤ κ̂a < r0 ≤
|λ|. Finally, we have λ= 1. Indeed, if λ 
= 1, then any f ∈La satisfying Pf = λf is such that
π (f ) = 0, and thus f = 0 from (4.6) (pick κ ∈ (̂κa, r0)).

Now prove that 1 is a simple eigenvalue of P on Ba. Using the previous property and the fact
that P is power bounded and quasi-compact on Ba, we know that Pn →� with respect to the
operator norm on Ba, where � is the finite-rank eigenprojection on ker(P − I) = ker(P − I)2.
The last equality holds since P is power bounded on Ba. Set m := dim ker(P − I). From [47,
Proposition 4.6] (see also [22, Theorem 1]), there exist m linearly independent non-negative
functions f1, . . . , fm ∈ ker(P − I) and probability measures μ1, . . . , μm ∈ ker(P∗ − I) satisfy-
ing μk(Va)<∞ such that, for all f ∈Ba, �f = ∑m

k=1 μk(f )fk. That 1 is a simple eigenvalue of
P on Ba then follows from the first assertion of Proposition 4.1.

From [24, Proposition 2.1] and the previous results, we have proved that, for any r0 ∈
(̂κa, 1), we have ρVa (P) ≤ r0. Thus, ρVa (P) ≤ κ̂a. �

Remark 4.1. Inequality (4.8) means that, for any real number ρ ∈ (̂κa, 1), there exists a con-
stant C ≡ Cρ such that, for all n ≥ 1 and f ∈Ba, |Pnf − π (f )1X|a ≤ Cρn|f |a. Unfortunately,
neither the proof of Proposition 4.1 nor that of [47, Proposition 7.2] give any information
on the constant C. Computing such an explicit constant C is an intricate issue which is not
addressed in this work (see, e.g., [5, 23, 24, 32, 37] and the references therein). It is worth
mentioning that explicit bounds on ρ and C are also provided in [15] for a parametrized family
of transition kernels.

Remark 4.2. Assume that every closed ball of X is compact. Let {Xn}n∈N be a Markov chain
such that its transition kernel P satisfies the hypothesis that there exist a positive measure η on
(X,X ) and a measurable function K : X2 → [0,+∞) such that

for all x ∈X, P(x, dy) = K(x, y) dη(y). (4.9)

If P� is strongly Feller for some �≥ 1, then P2� is compact from B0 to Ba (see, e.g., [18,
Lemma 3]). Hence, if P admits a kernel as in (4.9), then assuming that PN is strongly Feller
for some N in [47, Proposition 7.2] is more restrictive than the compactness hypothesis of
Proposition 4.2. A detailed comparison with the approach in [47, Proposition 7.2] is provided
in [18] for general Markov kernels. Finally, note that the transition kernel P of a VAR process
(see Example 1.1) is always strongly Feller. Indeed, let f ∈B0 be such that ‖f ‖0 ≤ 1. Then we
have

for all (x, x′) ∈R
q ×R

q, |(Pf )(x′) − (Pf )(x)| ≤
∫
Rq

|p(y − A(x′ − x)) − p(y)| dy.
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Since t �→ p( · −t) is continuous from R
q to the Lebesgue space L

1(Rq), it follows that P is
strongly Feller. Thus the Va-geometric ergodicity of P claimed in Example 1.1 follows from
Proposition 4.2. See also [47, Section 8].

Remark 4.3. If {Xn}n∈N is an IFS of Lipschitz maps as in Definition 1.1 such that its transition
kernel P satisfies the assumption in (4.9) with K continuous in the first variable, then P is
strongly Feller, thus P2 is compact from B0 to Ba, so that the conclusions of Proposition 4.2
hold true under Condition 4.1. Indeed, we have, for all (x, x′) ∈X

2 and for any f ∈B0,

|(Pf )(x′) − (Pf )(x)| ≤
∫
X

|K(x′, y) − K(x, y)| dη(y).

Since K(·, ·) ≥ 0,
∫

K(·, y) dη(y) = 1, and limx′→x K(x′, y) = K(x, y), we deduce from
Scheffé’s theorem that limx′→x

∫
X

|K(x′, y) − K(x, y)| dη(y) = 0. This proves the desired state-
ment. Note that the previous argument even shows that {Pf , |f |0 ≤ 1} is equicontinuous, so
that the compactness of P : B0 →B1 can be directly proved from Ascoli’s theorem.

Remark 4.4. In the proof of Proposition 4.2 the drift inequality PNVa ≤ δNVa + π (Va) was
written with any δ ∈ (̂κa, 1) by using Property (4.5) of Proposition 4.1 in order to deduce the
bound ress(P) ≤ κ̂a on the essential spectral radius of P (acting on Ba). This bound was suf-
ficient since the remainder of the proof of Proposition 4.2 is based on Property (4.6), from
which we deduce the bound ress(P|La ) ≤ κ̂a. Actually, for any δ ∈ (̂κa

a , 1), the drift inequality
PNVa ≤ δNVa + K with some N ≥ 1 and K > 0 can be derived from Condition 4.1 by adapting
the proof in Appendix A (here with Pθ0 = P and �= {θ0}). Then, the more accurate bound
ress(P) ≤ κ̂a

a can be derived from [23, Proposition 5.4 and Remark 5.5] under the compactness
assumption of Proposition 4.2. See also [47, Proposition 7.2], which provides the same bound
under Feller-type assumptions.

5. Further applications

Theorem 1.1 was applied in Section 2 to real-valued AR(1) models with ARCH(1) errors
(see Proposition 2.1), and in Section 3 to the roundoff errors of a VAR model (see Proposition
3.1). Although these applications have been presented for specific IFSs, it is worth notic-
ing that they give a general road map for investigating the issues in P1–P3 of Section 1 for
other instances of Rq-valued IFSs, provided that the probability distribution of the noise pγ
in Definition 1.2 admits a PDF with respect to Lebesgue’s measure on V=R

q, and that
the change of variable v �→ z = Fξ (x, v) is valid for every x ∈R

q, where Fξ (·, ·) is the per-
turbed function involved in Definition 1.2. In Section 5.1 we propose two examples to support
this claim. Finally, in Section 5.2 we discuss the robustness of IFSs of Lipschitz maps under
perturbation caused by some thresholding and truncation.

5.1. A general non-linear time series model

Denoting by GLq(R) the set of invertible real q × q matrices, consider an IFS {Xn}n∈N of
the form

for all n ≥ 1, Xn =ψ(Xn−1) + B(Xn−1)ϑn, (5.1)

where ψ : Rq →R
q, B : Rq → GLq(R), and the random variables {ϑn}n≥1 have common PDF

p. If B(x) = Iq for any x ∈R
q, where Iq is the identity q × q matrix, this Markov chain is called

a functional-coefficient AR model. The Markov model (5.1) encompasses a very large class of

https://doi.org/10.1017/jpr.2022.107 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2022.107


936 L. HERVÉ AND J. LEDOUX

non-linear time series models (see, e.g., [36, Chapter 2], [46, Chapter 4]), and [8, 9, 10, 35,
and references therein].

As a generalization of Section 2, consider the following general parametric perturbation of
the R

q-valued IFS {Xn}n∈N defined in (5.1):

for all n ≥ 1, X(θ)
n =ψξ

(
X(θ)

n−1

) + Bξ
(
X(θ)

n−1

)
ϑ (γ )

n ,

with some parametrized maps ψξ : Rq →R
q and Bξ : Rq → GLq(R), and with an i.i.d.

sequence
{
ϑ

(γ )
n

}
n≥1 of R

q-valued random variables with common parametric PDF denoted
by pγ (hence θ = (ξ, γ )). Then, noticing that for every x ∈R

q the change of variable v �→ z :=
ψξ (x) + Bξ (x)v is valid and leads to Pθ (x, A) := ∫

R
1A(z)pθ (x, z) dz (A ∈X ), with

pθ (x, z) := | det Bξ (x)|−1pγ (Bξ (x)−1(z −ψξ (x))), (5.2)

the following remarks are relevant to investigating Assumptions 1.1–1.4 of Theorem 1.1.

Remark 5.1. If the PDF pγ0 of the unperturbed IFS (corresponding to some θ0 = (ξ0, γ0)),
as well as the functions ψξ0 and Bξ0 , are continuous on R

q, then it follows from Remark
4.3 and Proposition 4.2 that Pθ0 is Va-geometrically ergodic provided that the unperturbed IFS
satisfies Condition 1.1. More precisely, in this case, Assumption 1.1 holds with any real number
ρa (and the associated constant Ca) such that E

[
LFξ0

(
ϑ

(γ0)
1

)a]1/a
<ρa < 1, where Fξ0 (x, v) =

ψξ0 (x) + Bξ0 (x)v.

Remark 5.2. The moment/contractive conditions (1.4) and (1.5) related to θ0 = (ξ0, γ0) in
Remark 5.1 involve expectations which depend on the above function Fξ0 and on the PDF
pγ0 . Hence, the conditions in Assumptions 1.2 and 1.3 consist in assuming that these expec-
tations are respectively bounded and strictly less than 1 in a uniform way on the parameters
θ := (ξ, γ ) near θ0 = (ξ0, γ0) (reducing the set � if necessary).

Remark 5.3. Thanks to (5.2), Assumption 1.4 holds provided that, for every A> 0,

lim
θ→θ0

sup
‖x‖≤A

∫
Rq

∣∣pθ (x, z) − pθ0 (x, z)
∣∣

(1 + ‖x‖)a
dz = 0,

since the previous integral is less than 2/(1 + A)a for ‖x‖> A. Moreover, the above integral
on R

q can be decomposed on some ball of R
q and on its complement in order to use the

uniform continuity and decay properties of the kernel pθ (·, ·) (see the proof of Proposition 5.1
in Appendix D).

Next, as a generalization of Section 3, consider the IFS defined by (5.1) under roundoff
error. If (hθ )θ∈� is the roundoff family with hθ close to h0 = id when θ → 0, then the roundoff
transition kernel Pθ (x, A) = P

(
x, h−1

θ (A)
)

is written as Pθ (x, A) := ∫
R

1A(z)pθ (x, z) dz with

pθ (x, z) := �θ (z)p(B(x)−1(gθ (z) −ψ(x))) (5.3)

from the change of variable v �→ z := hθ (ψ(x) + B(x)v), where gθ denotes the inverse function
of hθ and �θ (z) := | det Bξ (x)|−1| det ∇gθ (z)|. Using the kernels in (5.3), Remarks 5.1–5.3 then
apply.
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5.2. Robustness of IFS under thresholding/truncation

Here we consider X := R
d (d ≥ 1) equipped with the Euclidean norm ‖·‖, and V := R

q

(q ≥ 1) equipped with some norm still denoted by ‖·‖ for the sake of simplicity. Let {Xn}n∈N
be an IFS of Lipschitz maps,

for X0 ∈R
d and all n ≥ 1, Xn := F(Xn−1, ϑn), (5.4)

with F : Rd ×R
q →R

d and {ϑn}n≥1 satisfying the assumptions of Definition 1.1. Suppose that
the probability distribution of ϑ1 is absolutely continuous with respect to Lebesgue’s measure
on R

q, with PDF denoted by p. Assume that {Xn}n∈N is V-geometrically ergodic. Then, a nat-
ural question is: what happens if we consider a perturbation of the IFS (5.4) caused by some
thresholding and/or truncation? Such an issue may arise as soon as a numerical implementa-
tion of the model is considered. Thus, let us investigate the robustness of the IFS (5.4) when
thresholding the function F on the infinite set X and truncating the PDF p on R

q.
More precisely, for any ξ ∈ (0,+∞) let �ξ : Rd →R

d be the following thresholding
function at level ξ :

for all x ∈R
d, �ξ (x) = min

(
ξ

‖x‖ , 1

)
x =

⎧⎨
⎩

x if ‖x‖ ≤ ξ,
ξ

x

‖x‖ if ‖x‖> ξ .

Moreover, for any γ ∈ (0,+∞), define the truncated PDF pγ at level γ , for all v ∈R
q, by

pγ (v) = cγ p(v)1B(0,γ )(v) with cγ :=
(∫

B(0,γ )
p(v) dv

)−1

,

where B(0, γ ) denotes the ball centred at 0 with radius γ in R
q. Then, according to Definition

1.2, we consider the perturbed IFS {X(θ)
n }n∈N defined by X(θ)

0 ∈X and

for all n ≥ 1, X(θ)
n := Fξ

(
X(θ)

n−1, ϑ
(γ )
n

)
, with Fξ (x, v) := �ξ (F(x, v)), (5.5)

where the sequence
{
ϑ

(γ )
n

}
n≥1 of Rq-valued i.i.d. random variables is assumed to admit the

common PDF pγ . Note that the stability of quantitative bounds for Markov chains via trun-
cation rather than thresholding is studied in [34]. However, it is worth mentioning that we
cannot set �ξ (x) = 0 for x ∈R

d such that ‖x‖> ξ , as in [34, Section 3.2, Theorem 9], since
the resulting perturbed process is no longer an IFS of Lipschitz maps. Morevover, note that the
study of {X(θ)

n }n∈N does not fit into the framework of Section 3. Indeed, the family {Fξ , ξ > 0}
does not satisfy the assumptions of Section 3 since �ξ is neither bijective nor differentiable.
By contrast, each function �ξ is 1-Lipschitz (i.e. L(�ξ ) = 1), and this property is well suited
to our perturbation approach. Therefore, Proposition 5.1 is stated in the general framework of
Definition 1.1 up to the condition of absolute continuity of the probability distribution of ϑ1.
The proof of Proposition 5.1 is postponed to Appendix D.

Proposition 5.1. Assume that the unperturbed IFS {Xn}n∈N given in (5.4) satisfies
Definition 1.1, with ϑ1 having a PDF on R

q. Moreover, suppose that Assumption 1.1
holds for some a ≥ 1, and that M̃a := E

[‖F(0, ϑ1)‖a]1/a <∞, κ̃a := E[LF(ϑ1)a]1/a < 1, and
E[‖ϑ1‖a]<∞. Let κa ∈ (̃κa, 1), and let � := (0,+∞) × (γ0,+∞), with γ0 > 0 defined by
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the condition, for all γ > γ0, cγ ≤ (κa/̃κa)a. Then, the perturbed IFS {X(θ)
n }n∈N defined by

(5.5) with θ ∈� satisfies P1–P3 of Theorem 1.1 with �θ → 0 when ξ → +∞ and γ → +∞.
More precisely, for every ε ∈ (0, 2) define Aε = 2aε−a − 1. Then we have�θ ≤ ε, provided that
θ := (ξ, γ ) ∈� is such that

|cγ − 1| +
(

1 +
(
κa

κ̃a

)a)(
E[‖ϑ1‖a]

γ a
+ (2Aεκ̃a)a + (2M̃a)a

ξa

)
≤ ε.

Appendix A. Proof of (1.7)

Suppose that Assumptions 1.2 and 1.3 are fulfilled. Then we prove the drift inequality (1.7)
in Section 1. In fact, for any κ ∈ (κa, 1), we prove that the following strengthened inequality
holds:

for all θ ∈�, PθVa ≤ δaVa + Ka1[−ra,ra], (A.1)

where the constants δa < 1 and Ka > 0 are given in (1.7), and where ra := (1 + Ma + κa −
κ)/(κ − κa). We have, for any θ ∈� and any x ∈X,

(
(PθVa)(x)

Va(x)

)1/a

=
(
E

[(
1 + d(Fξ

(
x, ϑ (γ )

1

)
; x0)

1 + d(x; x0)

)a])1/a

≤
(
E

[(
1 + d

(
Fξ

(
x, ϑ (γ )

1

)
; Fξ

(
x0, ϑ

(γ )
1

)) + d
(
Fξ

(
x0, ϑ

(γ )
1

)
; x0

)
1 + d(x; x0)

)a])1/a

≤
(
E

[(
1

1 + d(x; x0)
+ LFξ

(
ϑ

(γ )
1

) + d
(
Fξ

(
x0, ϑ

(γ )
1

)
; x0

)
1 + d(x; x0)

)a])1/a

≤ 1

1 + d(x; x0)
+E

[
LFξ

(
ϑ

(γ )
1

)a]1/a + E
[
d(Fξ

(
x0, ϑ

(γ )
1

)
; x0)a

]1/a

1 + d(x; x0)

using Holder’s inequality. It follows from Assumptions 1.2 and 1.3 that

for all θ ∈� and x ∈X,

(
(PθVa)(x)

Va(x)

)1/a

≤ 1

1 + d(x; x0)
+ κa + Ma

1 + d(x; x0)
. (A.2)

For any κ ∈ (κa, 1), set ra := (1 + Ma + κa − κ)/(κ − κa)> 0. Then we have, for every x ∈X

such that d(x; x0)> ra,

1 + Ma

1 + d(x; x0)
≤ 1 + Ma

1 + ra
= κ − κa.

It follows that, for every θ ∈� and for every x ∈X such that d(x; x0)> ra,

(PθVa)(x) ≤ κaVa(x). (A.3)

Moreover, for every θ ∈� and for every x ∈X such that d(x; x0) ≤ ra, we deduce from (A.2)
that

(PθVa)(x) ≤ FaVa(x) ≤ Fa(1 + ra)a, (A.4)

where Fa := (1 + κa + Ma)a. Finally, combining (A.3) and (A.4) provides (A.1), and then (1.7)
with δa := κa

a < 1 and Ka := Fa(1 + ra)a > 0.
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Appendix B. Complements to Proposition 2.1

First, we prove (2.3).

Lemma B.1. Let (α, β, λ) ∈R× (0,+∞)2, and, for all (x, v) ∈R
2, F(x, v) := αx +

v
√
β + λx2. Then we have, for every v ∈R,

L(v) := sup
(x,y)∈R2, x 
=y

|F(x, v) − F(y, v)|
|x − y| = max

(|α− √
λv|; |α+ √

λv|). (B.1)

Proof. Let v ∈R be fixed, and define, for all x ∈R, Fv(x) := F(x, v). Then,

for all x ∈R, F′
v(x) = α + λxv

(β + λx2)1/2
, F′

v
′(x) = λβv

(β + λx2)3/2
.

If v = 0, (B.1) is obvious. Assume that v> 0. Then F′
v is strictly increasing, so that

inf
x∈R F′

v(x) = lim
x→−∞ F′

v(x) = α − √
λv ≤ α + √

λv = lim
x→+∞ F′

v(x) = sup
x∈R

F′
v(x).

Then L(v) ≤ max(|α− √
λv|; |α+ √

λv|) follows from Taylor’s inequality. If v< 0, then F′
v is

strictly decreasing, so that

inf
x∈R F′

v(x) = lim
x→+∞ F′

v(x) = α+ √
λv ≤ α − √

λv = lim
x→−∞ F′

v(x) = sup
x∈R

F′
v(x),

and the same conclusion holds. That L(v) ≥ max(|α− √
λv|; |α + √

λv|) follows from the
inequality L(v) ≥ |F′

v(x)| for any x ∈R, which is easily deduced from the definition of L(v)
in (B.1). Hence, we obtain L(v) ≥ limx±∞ |F′

v(x)|. The proof of (B.1) is complete. �

Next, we prove the two following lemmas used in the proof of Proposition 2.1.

Lemma B.2. Let (α0, β0, λ0) ∈R× (0,+∞)2. For any (α, β, λ) ∈R× (0,+∞)2 and for any
x ∈R, define

bβ,λ(x) :=
(
β + λx2

β0 + λ0x2

)1/2

, aα(x) := x
α− α0√
β0 + λ0x2

.

Then, for any A> 0,

lim
(β,λ)→(β0,λ0)

sup
|x|≤A

|bβ,λ(x) − 1| = 0 and lim
α→α0

sup
|x|≤A

aα(x) = 0.

Proof. Let A> 0. We have, for any x ∈R such that |x| ≤ A,

|bβ,λ(x)2 − 1| =
∣∣∣∣β − β0 + (λ− λ0)x2

β0 + λ0x2

∣∣∣∣ ≤ 1

β0
[|β − β0| + |λ− λ0|A2].

Therefore, we have lim(β,λ)→(β0,λ0) sup|x|≤A |bβ,λ(x)2 − 1| = 0. Since 1 + bβ,λ(x) ≥ 1, we have
|bβ,λ(x) − 1| ≤ |bβ,λ(x)2 − 1|, so that the first convergence is proved. The second one holds
since sup|x|≤A

∣∣aα(x)
∣∣ ≤ A|α − α0|/√β0. �
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The following lemma is an easy extension of the classical continuity property of the map
f �→ f ( · + a) from R to L

1(R).

Lemma B.3. For any f ∈L
1(R), lim(a,b)→(0,1)

∫
R

|f (a + bz) − f (z)| dz = 0.

Proof. Let CK(R) be the set of continuous functions on R with compact support. First, if g ∈
CK(R), then the desired convergence follows from Lebesgue’s theorem. Second, if f ∈L

1(R),
then we have, for every g ∈ CK(R) and for every (a, b) ∈R

2 such that b ≥ 1
2 ,∫

R

|f (a + bz) − f (z)| dz

≤
∫
R

|f (a + bz) − g(a + bz)| dz +
∫
R

|g(a + bz) − g(z)| dz +
∫
R

|g(z) − f (z)| dz

= 1

b

∫
R

|f (y) − g(y)| dy +
∫
R

|g(a + bz) − g(z)| dz +
∫
R

|g(z) − f (z)| dz

≤
∫
R

|g(a + bz) − g(z)| dz + 3‖f − g‖L1(R).

We then conclude by using the density of CK(R) in L
1(R). �

Appendix C. Proof of (4.5) and (4.6) under the assumptions (4.2) and (4.4) with N = 1

Thoughout this section, the conditions (4.2) and (4.4) with N = 1 are assumed to hold. Note
that (4.4) with N = 1 is κ1,a =E[L(ϑ1)a]1/a < 1. We prove (4.5) and (4.6) of Proposition 4.1
with explicit constants. Under the general assumption κ̂a < 1 of Assumption 4.1, the proofs of
(4.5) and (4.6) are similar (replace P with PN where N is such that E[L(ϑN : ϑ1)a]< 1).

That the constant ξ in Proposition 4.1 is finite can be easily deduced from the drift inequal-
ity (A.1) which holds here with Pθ0 = P, �= {θ0}, and with κ1,a in place of κa. Now let
us introduce some notation. If μ is a probability measure on X and X0 ∼μ, we make a
slight abuse of notation in writing {Xμn }n∈N for the associated IFS given in Definition 1.1.
We simply write {Xx

n}n∈N when μ := δx is the Dirac mass at some x ∈X. We denote by Ma

the set of all the probability measures μ on X such that ‖μ‖a := (∫
X

Va(y) dμ(y)
)1/a

<∞.
Finally, for n ∈N and for any probability measures μ1 and μ2 on X, define �n(μ1, μ2) :=
d
(
Xμ1

n , Xμ2
n

) (
p(Xμ1

n ) + p(Xμ2
n )

)a−1.

Lemma C.1. We have, for all n ≥ 1 and (μ1, μ2) ∈Ma ×Ma,

E[�n(μ1, μ2)] ≤ ξ (a−1)/aκ n
1,aE

[
d
(
Xμ1

0 , Xμ2
0

)]
(‖μ1‖a + ‖μ2‖a)a−1. (C.1)

Furthermore, we have, for all f ∈La,

E
[|f (Xμ1

n ) − f (Xμ2
n )|] ≤ ξ (a−1)/ama(f )κn

1,aE
[
d
(
Xμ1

0 , Xμ2
0

)]
(‖μ1‖a + ‖μ2‖a)a−1. (C.2)

Proof. Note that Xμn = Fϑn:ϑ1 Xμ0 from Definition 1.1 and the notation introduced in (4.1).
If a := 1, then (C.1) follows from the independence of the ϑn and from the definitions
of L(v) and κ1,a. Now assume that a ∈ (1,+∞). Without loss of generality, we can sup-
pose that the sequence {ϑn}n≥1 is independent of (Xμ1

0 , Xμ2
0 ). Also note that, if μ ∈Ma,

then we have E
[
p(Xμn )a

] = ∫
X

(PnVa)(x) dμ(x) ≤ ξ‖μ‖a
a. From Holder’s inequality (use 1 =
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1/a + (a − 1)/a), we obtain

E[�n(μ1, μ2)] =E[d(Fϑn:ϑ1 Xμ1
0 , Fϑn:ϑ1 Xμ2

0 )(p(Xμ1
n ) + p(Xμ2

n ))a−1]

≤E[d(Xμ1
0 , Xμ2

0 )]E[L(ϑn : ϑ1)(p(Xμ1
n ) + p(Xμ2

n ))a−1]

≤E[d(Xμ1
0 , Xμ2

0 )]E[L(ϑn : ϑ1)a]1/a
E[(p(Xμ1

n ) + p(Xμ2
n ))a](a−1)/a

≤E[d(Xμ1
0 , Xμ2

0 )]E[L(ϑ1)a]n/aξ (a−1)/a(‖μ1‖a + ‖μ2‖a)a−1.

This proves (C.1); (C.2) follows from (C.1) and the definition of ma(f ). �

Now recall that we consider the case N = 1 in (4.4). Let us prove the inequality (4.5) in this
case (that is, (4.7)). Applying (C.2) to μ1 := δx and μ2 := π gives

|Pnf (x) − π (f )| ≤E[ |f (Xx
n) − f (Xπn )| ]

≤ ξ (a−1)/ama(f )κn
1,aE[d(x, Xπ0 )](‖δx‖a + ‖π‖a)a−1.

Next, observe that ‖δx‖a = p(x), and

E[d(x, Xπ0 )] ≤E[d(x, x0) + d(x0, Xπ0 )] ≤ p(x) + π (d(x0, ·)) ≤ p(x)‖π‖1.

Hence, E[d(x, Xπ0 )](‖δx‖a + ‖π‖a)a−1 ≤ p(x)a‖π‖1(1 + ‖π‖a)a−1. This proves the expected
inequality.

Finally, to prove (4.6), it remains to study ma(Pnf ) for f ∈La. Applying (C.2) to μ1 := δx

and μ2 := δy for any (x, y) ∈X
2 gives

for all f ∈La, |Pnf (x) − Pnf (y)| ≤ ξ (a−1)/ama(f )κn
1,ad(x, y)(p(x) + p(y))a−1.

Thus, ma(Pnf ) ≤ ξ (a−1)/ama(f )κn
1,a. Since ma(1X) = 0, this gives

ma(Pnf − π (f )1X) ≤ ξ (a−1)/ama(f )κn
1,a.

Combining the last inequality with (4.7) gives (4.6).

Appendix D. Proof of Proposition 5.1

For every θ := (ξ, γ ) ∈� := (0,+∞) × (γ0,+∞), the expectation

E
[∥∥Fξ

(
0, ϑ (γ )

1

)∥∥a] =
∫
Rd

‖�ξ (F(0, v))‖apγ (v) dv ≤
(
κa

κ̃a

)a ∫
Rq

‖F(0, v)‖ap(v) dv

is finite, so Assumption 1.2 holds with x0 = 0 and Ma := M̃aκa/̃κa. Moreover, note that
L�ξ ≤ 1, so that, for all v ∈V, LFξ (v) ≤ LF(v). Hence, we have, for every θ = (ξ, γ ) ∈�,

E
[
LFξ

(
ϑ

(γ )
1

)a] =
∫
Rd

LFξ (v)apγ (v) dv ≤ cγ

∫
Rd

LF(v)ap(v) dv ≤ cγ κ̃
a
a ≤ κa

a .

Thus, Assumption 1.3 holds. It remains to check Assumption 1.4 and to specify the error
term �θ . Let P (respectively Pθ ) denote the transition kernel of the unperturbed IFS {Xn}n∈N
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(respectively of the perturbed IFS {X(θ)
n }n∈N). Let ε > 0, and let f ∈B0 be such that |f |0 ≤ 1.

First, note that we have, for every x ∈R
d satisfying ‖x‖> Aε,

|(Pθ f )(x) − (Pf )(x)|
Va(x)

≤ 2

Va(x)
≤ ε (D.1)

by the definition of Aε in Proposition 5.1. Next, for every θ := (ξ, γ ) ∈� and for every x ∈R
d,

define the following subsets Eθ,x and Gθ,x of Rq:

Eθ,x := {v ∈R
q : v ∈ B(0, γ ), ‖F(x, v)‖ ≤ ξ},

Gθ,x := {v ∈R
q : v ∈ B(0, γ ), ‖F(x, v)‖> ξ}.

From the definition of the thresholding function �ξ , we have, for every x ∈R
d,

(Pθ f )(x) =
∫
Rq

f (Fξ (x, v))pγ (v) dv

= cγ

∫
Eθ,x

f (F(x, v))p(v) dv + cγ

∫
Gθ,x

f (ηx,v)p(v) dv,

with ηx,v := ξ‖F(x, v)‖−1F(x, v). Hence,

|(Pθ f )(x) − (Pf )(x)| ≤ |cγ − 1|
∫

Eθ,x
p(v) dv + (1 + cγ )

∫
Rq\Eθ,x

p(v) dv

≤ |cγ − 1| +
(

1 +
(
κa

κ̃a

)a)(
P(‖ϑ1‖> γ ) + P(‖F(x, ϑ1)‖> ξ )

)

from the definition of R
q \ Eθ,x and the condition cγ ≤ (κa/̃κa)a. Now let x ∈R

d be such
that ‖x‖ ≤ Aε. Then, for all v ∈R

q, ‖F(x, v)‖ ≤ LF(v)Aε + ‖F(0, v)‖ from F(x, v) = (F(x, v) −
F(0, v)) + F(0, v) and the triangle inequality. Therefore,

[
LF(v)Aε ≤ ξ/2 and ‖F(0, v)‖ ≤

ξ/2
] ⇒ ‖F(x, v)‖ ≤ ξ , from which we deduce that

P(‖F(x, ϑ1)‖> ξ ) ≤ P

(
LF(ϑ1)>

ξ

2Aε

)
+ P

(
‖F(0, ϑ1)‖> ξ

2

)

≤ (2Aε)a

ξa
E

[
LF(ϑ1)a] + 2a

ξa
E

[‖F(0, ϑ1)‖a]

≤ (2Aεκ̃a)a + (2M̃a)a

ξa

from the Markov inequality. Consequently, we obtain that, for every x ∈R
d such that

‖x‖ ≤ Aε,

|(Pθ f )(x) − (Pf )(x)|
Va(x)

≤ |(Pθ f )(x) − (Pf )(x)|

≤ |cγ − 1| +
(

1 +
(
κa

κ̃a

)a)(
E

[‖ϑ1‖a
]

γ a
+ (2Aεκ̃a)a + (2M̃a)a

ξa

)
.

The conclusion of Proposition 5.1 follows from this and (D.1).
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