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Abstract
This paper proposes a fixed-time anti-saturation (FT-AS) control scheme with a simple control loop for the
6-Degree-of-Freedom tracking (6-DOF) control problem of spacecraft with parameter uncertainties, external distur-
bances and input saturation. Considering the external disturbance and parameter uncertainties, the dynamical model
of the tracking error is established. The traditional methods of handling input saturation usually add anti-saturation
subsystems in the control system to suppress the impact of input overshoot. However, this paper directly inputs the
input overshoot into the tracking error model, thus constructing a modified lumped disturbance term that includes
the influence of input overshoot. Then, a novel fixed-time disturbance observer (FT-DO) is designed to estimate
and compensate for this modified lumped disturbance. Therefore, there is no need to add the anti-saturation struc-
tures in the control loop, significantly reducing the complexity of the system. Finally, an observer-based fixed-time
non-singular terminal sliding mode (FT-NTSM) controller is designed to guarantee the fixed-time stability of the
whole system. In this way, the convergence time of the proposed scheme does not depend on the system’s initial
conditions. Simulation results illustrate that the proposed method keeps the control input within the limit while
achieving high-precision tracking control of attitude and position.

Nomenclature
a semi-major axis, km
B − x0y0z0 Radial-Transverse-Normal (RTN) coordinate system
d = [db

T, da
T]T , lumped disturbance

d̂ estimated value of lumped disturbance
ds modified lumped disturbance including input overshoot
d̂s estimated value of ds

df disturbance force, N
dτ disturbance torque, Nm
e = [e1

T , e2
T ]T , state vector of tracking error dynamical system

eo = [eo1
T , eo2

T ]T , estimation error
ē eccentricity
f control force, N
i inclination, deg
J spacecraft’s moment of inertia, kgm2

Jo nominal moment of inertia, kgm2

Mo mean anomaly, deg
m mass of spacecraft, kg
mo nominal mass, kg
p parameter of observer
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O − XYZ Earth Centered Inertial (ECI) coordinate system
pk (k = 1,2), parameter of controller. qk, mk, nk, (k= 1, 2) are also controller parameters
r position vector in ECI frame, m
s sliding mode surface
Sb spacecraft body-fixed frame
Tc bound of convergence time of states of spacecraft error system
To bound of convergence time of observer
Ts sum of the time of the error system state reaching the sliding surface and To

Tε transit time from P2 to P1

u control input
uT control input of traditional method
ui actual controller output without saturation limit
v velocity vector in ECI frame, m/s
w angular velocity, rad/s

Subscripts
t desired value
e error

Greek Symbol
γ switching gain
�J uncertainty of moment of inertia, kgm2

�m uncertainty of mass, kg
�u the auxiliary variable
ϑ = [ϑ1

T
ϑ2

T ]T , state vector of observer
λk (k = 1, 2, 3.) parameters of observer
νk (k = 1, 2), parameter of controller; ηk (k = 1, 2) is also controller parameter
μg gravitational constant of the Earth, m3s−2

σ MRP attitude
τ control torque, Nm
� right ascension of ascending node, deg
ω argument of perigee, deg

1.0 Introduction
In many scenarios, such as rendezvous and docking and satellite formation flying, high-precision inte-
grated attitude and orbit tracking control, also known as 6-Degree-of-Freedom (6-DOF) tracking control,
guarantees the implementation of space missions. Hence, there has been a growing interest in 6-DOF
tracking control [1–5]. However, the strong non-linearity, parameter uncertainties, complex disturbances
from the spatial environment, and limited actuator capabilities have posed significant challenges for
the design of spacecraft controllers [6–8]. In this paper, a more concise control loop will be designed
under these adverse conditions to achieve fixed-time convergence of the 6-DOF tracking errors for
spacecraft.

In the past few decades, sliding mode control has been widely applied to stabilise nonlinear systems
due to its excellent robustness against disturbances and parameter uncertainties [9–13]. In sliding mode
control, researchers have continued to explore the optimisation of system convergence time. The optimi-
sation of convergence time has driven the evolution of sliding mode control from asymptotic stability to
finite-time stability and further to fixed-time stability. For instance, sliding mode controllers for asymp-
totic and finite-time stability are designed to achieve tracking control of spacecraft in the presence of
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external disturbances and parameter uncertainties [14–17]. However, for asymptotic stability, the con-
vergence time is too long, and, for finite-time stability, the upper bound of the convergence time depends
on the system’s initial state, which is difficult to determine for systems with parameter uncertainties [18].
Therefore, the research on control schemes that converge without relying on the initial state is of prac-
tical significance. In 2012, Polyakov et al. proposed the concept of fixed-time stability, which means
that the convergence time of the system has an upper bound independent of the system’s initial state
[18, 19]. The control scheme optimises the system convergence time and has more practical signifi-
cance [20]. In recent years, there has been extensive research on fixed-time control in the aerospace
field. For the attitude control of spacecraft, the fixed-time sliding mode controllers were designed to
reduce the convergence time of the attitude error [21, 22]. For 6-DOF control of spacecraft, the fixed-
time sliding mode controllers were designed [23, 24], which have faster convergence performance than
fast terminal sliding mode. Inspired by the mentioned literature, this paper will further investigate the
application of fixed-time sliding mode control in the spacecraft’s 6-DOF tracking control.

In addition, parameter uncertainty and external disturbances can also significantly impact the con-
vergence accuracy and speed of control systems [25, 26]. A commonly used approach to mitigate these
adverse effects is the implementation of disturbance observers [27, 28]. The finite-time disturbance
observer and controller have been designed for spacecraft subjected to external disturbances, enabling
the spacecraft’s states to converge to equilibrium within a finite time [29]. Since the convergence time
of the observer directly affects the overall system convergence time, if the convergence time of the
error observation subsystem is also designable and independent of the initial state, it will contribute to
controlling the convergence time of the entire system. For example, Wu et al. designed fixed-time distur-
bance observers and controllers, achieving fixed-time convergence of the spacecraft system. However,
this fixed-time control scheme did not consider the impact of input saturation [24]. Actually, there is a
relatively limited amount of research on fixed-time control for spacecraft that simultaneously considers
parameter uncertainty, external disturbances and input saturation.

However, the adverse effect of input saturation will reduce the control accuracy and even lead to sys-
tem instability [30]. To eliminate the adverse impact of input overshoot between the expected and the
actual control inputs, the auxiliary systems are designed to compensate for it [30–32]. An anti-windup
saturation compensator was designed to avoid the adverse effects of actuator saturation for the orbit
control of satellite formation flying [33]. For the proximity operations of the spacecraft, a linear com-
pensator system was designed to deal with control input saturation [28]. Assume the auxiliary variable
�u represents the overshoot between the actual output of the controller ui and the saturation limit. The
above methods introduce an additional anti-saturation structure in the system, as shown in Fig. 1, which
increases the complexity of system dynamics and brings difficulties to the design of the control system.

To simplify the control loop illustrated in Fig. 1, this paper proposes a fixed-time anti-saturation
control (FT-AS) scheme with a more concise structure for the spacecraft’s 6-DOF tracking control, as
shown in Fig. 2. The proposed FT-AS method can effectively handle parameter uncertainties, external
disturbances and input saturation while achieving fixed-time convergence of the entire system. The main
contributions of this paper are as follows:

• A new approach for handling input saturation has been proposed. In the traditional method, the
input overshoot �u is suppressed through an anti-saturation subsystem (as shown in Fig. 1).
However, in this paper, the overshoot �u is input into the tracking error model (as shown in
Fig. 2), and its impact is transformed into a specific disturbance term. This disturbance term is
then combined with parameter uncertainties and external disturbances to form a modified lumped
disturbance ds. A fixed-time disturbance observer (FT-DO) is designed to observe the modified
lumped disturbances.

• The control loop has been simplified. The proposed FT-DO has the capability to handle input
saturation. There is no need to introduce additional anti-saturation structures in the control loop,
thereby greatly simplifying the control system structure.
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Figure 1. Traditional anti-saturation control block diagram.

Figure 2. Control block diagram of the proposed FT-AS control method.

• The entire control system is fixed-time stable, and the convergence time of the tracking error
is independent of the system’s initial state. The FT-DO ensures the fixed-time stability of the
estimation error dynamic subsystem, and a fixed-time nonsingular terminal sliding mode (FT-
NTSM) controller is designed to guarantee the fixed-time stability of the tracking error system.
Compared to traditional approaches, this scheme can achieve comparable or higher control
accuracy while ensuring that the inputs meet the constraints.

This paper is organised as follows. In Section 2, the control objective is introduced, and the tracking
error model is established. In Section 3, the FT-DO is designed for the modified lumped disturbance.
In Section 4, the FT-NTSM controller is designed, and the stability of the whole system is proved.
Numerical simulations are presented in Section 5 to demonstrate the effectiveness of the proposed
control method. Section 6 gives the conclusion.
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Figure 3. Coordinate system (ECI coordinate system O − XYZ, RTN coordinate system B − x0y0z0,
spacecraft body-fixed coordinate system B − xyz).

2.0 Problem statement
2.1 Control objective
The control block diagram of the proposed 6-DOF fixed-time anti-saturation control scheme is illustrated
in Fig. 2. It is necessary to establish an error model between the actual and the desired trajectories to
achieve tracking of the desired trajectory. The desired position and attitude can be expressed as rt ∈R

3

and σ t ∈R
3. The actual states of the spacecraft are r and σ , and the tracking error states are expressed by

el = [(re)T , (σ e)T]T , where re and σ e are the position error and the attitude error, respectively. The control
objective is to converge tracking errors to zero (el → 0) in a fixed time. As illustrated in Fig. 2, ui is the
actual controller output, and d̂s is the estimate of the modified lumped disturbance, which includes the
influence caused by input overshoot.

2.2 Definitions and notations
The coordinate systems of orbital and attitude motion are shown in Fig. 3. {O − XYZ} is the Earth
Centered Inertial (ECI) coordinate system. The origin O is located at the centre of the Earth. The O − XY
plane coincides with the equatorial plane of the Earth. The X-axis points to the vernal equinox, the Z-
axis points to the North Pole, and the Y-axis, X-axis and Z-axis form a right-handed coordinate system.
{B − x0y0z0} is the RTN (Radial-Transverse-Normal) coordinate system, which is used as the reference
coordinate system of attitude. The origin B is located at the centre of mass of the spacecraft. The direction
of B − x0 points from the Earth towards the spacecraft, while the B − y0 direction lies within the orbital
plane, perpendicular to the B − x0 axis, and points towards the direction of spacecraft motion. The B − z0

axis forms a right-handed coordinate system with the B − x0 and B − y0 axes. Sb�= {B − xyz} is the
spacecraft body-fixed frame, whose axes are aligned with the orthogonal inertial principal axes to form
a right-handed coordinate system.

Definition 1. For a vector χ = [χ1 χ2 χ3]T , ψ(χ) ∈R
3×3 is defined as

ψ(χ)=
⎡
⎢⎣

0 −χ3 χ2

χ3 0 −χ1

−χ2 χ1 0

⎤
⎥⎦ (1)

Then, the cross product of χ and any vector ϒ ∈R
3 can be expressed as ψ(χ)ϒ.

Definition 2. [34] Consider a control system χ̇(t)= u(t)+ ζ (t)with χ(t0)= χ0, where χ(t) is the state
variable, u(t) is the control input, and ζ (t) is the bounded disturbance satisfying the Lipschitz condition.
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If the system is fixed-time convergent to the origin, there exists a time moment T (independent of the
initial state χ0) such that for all t> T , the state variable equals zero χ(t) = 0, regardless of the initial
condition χ 0.

Notation 1. ‖ · ‖ is the 2-norm of a vector or matrix. diag(·) represents the diagonal matrix. On and In

represent the zero matrix and the identity matrix of n × n, respectively.

Notation 2. For a vector χ = [χ1 χ2 . . . χn]T , sigz(χ)= [|χ1|zsign(χ1) , |χ2|zsign(χ2) , . . . , |χn|z

sign(χn) ]T , where sign(·) is the Signum function.

Notation 3. The vectors X1 = [1, 0, 0...0︸ ︷︷ ︸
n−1

], X2 = [0, 1, 0...0︸︷︷︸
n−2

], . . . , Xn = [ 0, 0 . . . 0︸ ︷︷ ︸
n−1

, 1] and matrices

E1 =

⎡
⎢⎢⎢⎢⎢⎣

1 0 · · · 0

0 0 · · · 0

0 0
. . .

...

0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎦

n×n

, E2 =

⎡
⎢⎢⎢⎢⎢⎣

0 0 · · · 0

0 1 · · · 0

0 0
. . .

...

0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎦

n×n

, . . ., En =

⎡
⎢⎢⎢⎢⎢⎣

0 0 · · · 0

0 0 · · · 0

0 0
. . .

...

0 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎦

n×n

are defined.

For a vector χ = [χ1 χ2 . . . χn], the diagonal matrix formed by the elements of vector χ can be

expressed as diag(χ)=∑n
m=1

(
χ ∗ XT

m ∗ Em
)=

⎡
⎢⎢⎣
χ1 0 0

0
. . . 0

0 0 χn

⎤
⎥⎥⎦.

2.3 Spacecraft model
2.3.1 Spacecraft dynamics with external disturbance and parameter uncertainties
In this paper, the orbital dynamic equations are expressed in the ECI coordinate system, and the attitude
kinematic and dynamic equations are expressed in the Sb coordinate system. To streamline the control
law derivation and mitigate singularity issues in attitude kinematics, Modified Rodrigues Parameters
(MRPs) are used to represent the attitude. Consequently, the satellite dynamics is formulated as [35]⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ṙ = v

mv̇ + mμr = f + df

σ̇ = G(σ )w

Jẇ +ψ(w) Jw = τ + dτ

(2)

where G(σ ) is defined as G(σ )= [(
1 − σ Tσ

)
I3 + 2ψ(σ )+ 2σσ T

]
/4, and it is nonsingular. r ∈R

3 and
v ∈R

3 are the position and velocity vectors, respectively. m is the mass of the spacecraft. μ=μg/‖r‖3,
where μg is the geocentric gravitational constant. σ = [σ1, σ2, σ3]T is the MRPs. w ∈R

3 is the angular
velocity. f and τ are the control force and torque. df , dτ ∈R

3 are the external disturbance force and
torque. The external disturbances mainly include the forces and moments caused by non-spherical Earth,
atmospheric drag, lunisolar gravitational perturbation and solar radiation pressure. J ∈R

3×3 is the inertia
matrix of the spacecraft.

Remark 1: As per the Euler theorem, the relative attitude between two coordinate systems can be
described by rotating around an axis X = [X1, X2, X3]T by a certain angle �. There exists a relationship
between MRPs and the vector X, given by σ = X tan�

4
. The MRPs become singular when �= ±2π

rad. However, when σ Tσ > 1, the original MRPs σ can be switched to its shadow set σ s = −σ/σ Tσ to
ensure a non-singular global attitude rotation. In this paper, to avoid using shadow sets and simplify the
derivation of attitude, the range of motion for Euler angles � is [−π , π ], which guarantees σ Tσ ≤ 1 at
all times [36].
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During spacecraft operations, the mass and moment of inertia usually have uncertainties. The actual
values are typically composed of the nominal values and uncertainties, expressed as m = mo +�m and
J = Jo + �J, respectively. Here, mo and Jo represent the nominal values of the mass and moment of
inertia matrices.�m represents the mass uncertainty caused by fuel consumption, while �J is the uncer-
tainty of the moment of inertia caused by the displacement of the centre of mass and the expansion and
contraction of solar panels. To simplify equation derivation, when representing the inverse matrix of
mass and moment of inertia, the influence caused by parameter uncertainty makes it expressed as two
parts. Then, we can define m−1 �= mo

−1 +�m−1, J−1 �= Jo
−1 +�J−1 [24]. Combined with Equation (2),

the 6-DOF dynamical system with external disturbance and parameter uncertainties is [24]

r̈ = −μr + m−1
o f +�m−1f + m−1df ,

σ̈ = Ġ(σ )w − G(σ ) Jo
−1ψ(w) Jow + G(σ ) J−1

o τ + G(σ )�J−1τ

− G(σ )�J−1ψ(w) Jw − G(σ ) J−1
o ψ(w)�Jw + G(σ ) J−1dτ (3)

2.3.2 Spacecraft tracking error dynamics
The attitude error and the rotation matrix are [37]⎧⎨

⎩
σ e = σ t (σT σ−1)+σ (1−σT

t σ t )−2ψ(σ t )σ

1+σ tT σ tσT σ+2σ tT σ

T(σ e) = 8

(1+σT
e σ e)

2ψ
2(σ e) − 4(1−σT

e σ e)

(1+σT
e σ e)

2ψ(σ e) + I3

(4)

By the way, there are {
σ̇ e = G(σ e)we

we = w − T(σ e)wt
(5)

and
Ṫ = −ψ(we) T

(6)

Then, the 6-DOF tracking error dynamics with external disturbance and parameter uncertainties can
be expressed as a second-order tracking error dynamic equation

r̈e = −μr − r̈t + m−1
o f +�m−1f + m−1df ,

σ̈ e = Ġ(σ e)we − G(σ e) J−1
o ψ(w) Jow + G(σ e) ψ(we) T(σ e)wt + G(σ e) J−1

o τ

−G(σ e)�J−1ψ(w) Jw − G(σ e) J−1
o ψ(w)�Jw + G(σ e)�J−1τ + G(σ e) J−1dτ

(7)

The first derivative of G(σ e) is

Ġ(σ e)= 1

4

[−2σ T
e σ̇ eI3 + 2ψ(σ̇ e)+ 2σ̇eσe

T + 2σeσ̇e
T] (8)

Thus, the 6-DOF model can be expressed as

r̈e = hb + m−1
o f + db,

σ̈ e = ha + G(σ e) Jo
−1τ + da (9)

where

hb = −μr − r̈t,

db =�m−1f + m−1df ,

ha = Ġ(σ e)we − G(σ e) J−1
o ψ(w) Jow + G(σ e) ψ(we) T(σ e)wt,

da = −G(σ e)�J−1ψ(w) Jw − G(σ e) J−1
o ψ(w)�Jw + G(σ e)�J−1τ + G(σ e) J−1dτ (10)

https://doi.org/10.1017/aer.2024.2 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2024.2


1634 Wei et al.

Let e1 = [re
T , σ e

T]T and e2 = [ve
T , we

T]T . The 6-DOF tracking error dynamics with parameter uncer-
tainties and external disturbance can be formulated as

ė1 = e2,

ė2 = h + MCu + d (11)

where h = [hb
T , ha

T]T is the inherent nonlinearity of the system. u = [f T , τ T]T is the control input and
u = [u1, u2, . . . , u6]T . d = [db

T , da
T]T is the lumped disturbance term, including external disturbance and

parameter uncertainties. MC is

MC =
[

m−1
o I3 O3

O3 G(σ e) J−1
o

]
(12)

The input saturation of the spacecraft system is

uk = sat(uik)=
{

sign(uik) uikmax, |uik| ≥ uikmax

uik, |uik|< uikmax

k = 1, 2, 3 . . . 6. (13)

where ui is the actual controller output, uikmax is the bound of uik and uikmax > 0.
Before designing the observer and controller, there are two points to note.

(1) The modeling and control problems of the spacecraft tracking mission discussed in this paper are
conducted in the continuous-time domain. The position and attitude of a controlled spacecraft can
be accurately measured through onboard sensors. Since the measurement signals from various
onboard sensors are usually filtered, this paper assumes that the state and its uncertainty are
second-order differentiable [5]. Moreover, the characteristics of the spacecraft (such as shape
and mass) change slowly over time due to fuel consumption and vibrations [4]. Therefore, the
derivatives of mass uncertainty and moment of inertia uncertainty are bounded, meaning they
are Lipschitz continuous.

(2) The disturbance forces acting on the spacecraft mainly include Earth oblateness perturbation,
atmospheric drag perturbation, solar radiation pressure perturbation and the perturbation from
the third-body gravitation. The main disturbance torques include gravity gradient torque, aero-
dynamic torque, solar radiation torque and magnetic torque [24]. These disturbances forces and
torques change slowly over time. Thus, they are assumed to be Lipschitz continuous [4]. In other
words, disturbance forces and torques can be differentiated, and their differential values have an
upper bound.

Based on the above two points, the following assumptions can be made.

Assumption 1. The spacecraft’s dynamical system is detectable and can be stabilised [38].

Assumption 2. The parameter uncertainties �m and �J are bounded and satisfy |�m| ≤�m̄ and
‖�J‖ ≤�J̄, where�m̄ and�J̄ are nonnegative constants. The disturbance force and torque df, dτ ∈R

3

are bounded. The lumped disturbance d is bounded, and its derivative satisfies ||ḋ|| ≤ δd, where δd is a
nonnegative constant.

Assumptions 1 and 2 mean that the spacecraft system is controllable and observable. It is reasonable
because spacecraft always install enough sensors and actuators to provide enough measurement of con-
trol force and torque. These two assumptions make it possible to design the corresponding controller
and observer of the spacecraft system.
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3.0 Fixed-time disturbance observer design
3.1 Modified lumped disturbance
Due to the physical limitations, the actuator exhibits a saturation phenomenon. Input saturation non-
linearity will reduce the system performance and even break the stability of the closed-loop system.
Therefore, the influence of input saturation should be considered in the controller design. An auxiliary
variable is introduced in this section to represent the input overshoot. The adverse effects are directly
transformed into a lumped disturbance. The fixed-time disturbance observer is designed to suppress
the lumped disturbance, including parameter uncertainties, external disturbance and input saturation.
Compared with the traditional method of adding an anti-saturation structure, the system structure of this
method will be concise.

In the input saturation formula (13), when uik = uikmax(k = 1, 2 . . . 6), there is a sharp corner, which
makes the output of the actuator have strong nonlinearity. To avoid this strong nonlinearity, a smooth
function is used to approximate the input saturation function [39]

sat(uik)≈ uikmax · tanh
(

uik
uikmax

)
(14)

Furthermore, define an auxiliary variable �u = [�u1,�u2, · · · ,�u6]T , with

�uk = sat(uik)− uik, k = 1, 2, 3 . . . 6 (15)

Equations (14) and (15) yield to sat(ui)= ui + �u. Then replace u in Equation (11) with sat(u), and
the tracking error system can be rewritten as

ė1 = e2,

ė2 = h + Mcsat(ui)+ d̄ = h + Mcu + Mc�u + d̄
(16)

where d̄ = [d̄b
T , d̄a

T]T and

d̄b =�m−1sat(f )+ m−1df ,

d̄a = −G(σ e)�J−1ψ(w) Jw − G(σ e) J−1
o ψ(w)�Jw + G(σ e)�J−1sat(τ )+ G(σ e) J−1dτ

(17)

Define ds = Mc�u + d̄. The modified lumped disturbance ds is bounded. Since sat(ui)= ui + �u,
ds = Mc�u + d̄, ds = Mc[sat(ui)− ui] + d̄ and ḋs = Ṁc[sat(ui)− ui] + Mc[sat(u̇i)− u̇i] + ˙̄d hold. The
system is controllable, so the control input u is bounded. Since a smooth function replaces the traditional
saturation function, sat(ui) and sat(u̇i) are bounded. In addition, since the uncertain parameters�m and
�J and the external disturbance df and dτ are bounded, we can know ds and ḋs are bounded. Therefore,
ds is bounded, and its derivative satisfies ||ḋs|| ≤ δds, where δds is a nonnegative constant.

3.2 FT-DO design
In this section, an FT-DO with fewer parameters is proposed for estimating the modified lumped distur-
bances. The convergence of the estimation error subsystem does not depend on the initial state of the
system. First of all, introduce the following lemma.

Lemma 1. [34] For the following dynamical system (18) with a bounded disturbance ξ (t), both state
vectors x(t) and y(t) converge to the origin uniformly in a fixed time Tf calculated by Equation (19).

ẋ(t)= −λ1

x(t)
‖x(t)‖ 1

2

− λ2x(t) ||x(t)||p−1 + y(t)

ẏ(t)= −� x(t)
‖x(t)‖ + ξ(t) (18)
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Tf ≤
(

1

λ2 (p − 1) � p−1
+ 2

(√
n�

)1/2

λ1

)⎛⎝1 + M

m
(

1 − √
2�/λ1

)
⎞
⎠ (19)

where n is the dimension of the state vector. The parameters satisfy� > 0, λ1, λ2, � > 0, and the bound
of ‖ξ (t)‖ is L. The relationships M = �+ L,m = �− L,� > 4L, and λ1 >

√
2� hold.

The state vector of the observer is defined as ϑ = [ϑ1
T , ϑ2

T]T , where ϑ1, ϑ2 ∈R
6. The fixed-time

disturbance observer can be expressed as

ϑ̇ 1 = −λ1

eo1

‖eo1‖1/2 − λ2(ϑ1 − e2) ||ϑ1 − e2||p−1 + ϑ2 + h + Mcu

ϑ̇ 2 = −λ3

eo1

‖eo1‖ (20)

where eo1 = ϑ1 − e2, eo2 = ϑ2 − ds, and they are estimated errors, p ∈R and p> 1. The parameters
λ1, λ2, λ3 satisfy λ1 >

√
2λ3, λ2 > 0, and λ3 > δds, where δds is the bound of ||ḋs||.

Theorem 1. For the tracking error dynamical system (16), the estimation errors eo1 and eo2 will converge
to the origin within a fixed time by employing the disturbance observer (20), and the modified lumped
disturbance ds can be estimated by ϑ2.

Proof. Since eo1 = ϑ1 − e2 and eo2 = ϑ2 − ds, combining Equations (16) and (20), ėo1 can be derived
as follows

ėo1 = −λ1

eo1

||eo1||1/2
− λ2eo1||eo1||p−1 + eo2 (21)

Taking the derivative of eo2, the estimated error dynamics can be established as

ėo1 = −λ1

eo1

||eo1||1/2
− λ2eo1||eo1||p−1 + eo2

ėo2 = −λ3

eo1

||eo1|| − ḋs (22)

According to Lemma 1, the state vectors eo1 and eo2 of the estimated error dynamical system (22)
with a bounded disturbance ds will uniformly converge to the origin within a fixed time To.

To ≤
(

1

λ2 (p − 1) ς p−1
+ 2(

√
6ς )

1/2

λ1

)(
1 + λ3 + δd

(λ3 − δd)
(
1 − 2

√
λ3/λ1

)
)

(23)

where ς is a small constant. When ς = (61/4λ1/λ2)1/(p+0.5), the upper bound of To is minimised. Therefore,
the lumped disturbance ds can be estimated by ϑ2 within a fixed time.

The designed FT-DO can observe various complex disturbances. Especially in this paper, the mod-
ified lumped disturbance includes the adverse effects caused by input saturation. The FT-DO designed
in this paper can still suppress this lumped disturbance. Compared with the traditional anti-saturation
scheme (Fig. 1), the design of the FT-DO avoids adding additional sub-dynamics to the system, making
the control system structure concise.
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4.0 Fixed-time non-singular terminal sliding mode controller design
In this section, for 6-DOF tracking control of the spacecraft, an FT-NTSM controller is proposed. The
purpose is to make the tracking error system (16) converge to the neighbourhood of zero within a fixed
time. The following lemmas are introduced.

Lemma 2. [22] For any real numbers χ1, χ2, . . . , χn and a constant ι > 0, the following inequalities
hold. ⎧⎪⎪⎨

⎪⎪⎩
|χ1|ι + |χ2|ι + ... + |χn|ι ≥

(
n∑

i=1

|χi|
)ι

, 0< ι≤ 1

|χ1|ι + |χ2|ι + ... + |χn|ι ≥ n1−ι
(

n∑
i=1

|χi|
)ι

, ι≥ 1
(24)

Lemma 3. [21] Consider the nonlinear system

χ̇(t)= g(χ(t)) , χ(0)= 0, g(0)= 0, χ ∈R
n (25)

where g : U0 →R
n is continuous in an open neighbourhood U0 of the origin. The unique solu-

tion of system (25) is supposed to exist for any initial conditions. For the nonlinear system
(25), if there exists a Lyapunov function V(χ) and scalars 0< p< 1, g> 1, β > 0, α > 0, 0<
δ <∞ , such that V̇(χ)≤ −βVp(χ)− αVg(χ)+ δ holds, the trajectory of this system is practi-
cal fixed-time stable. Moreover, the residual set of the solution of system (25) can be given by{

lim
t→T

χ |V(χ) ≤ min
{
β−1/p

(
δ

1−θ
) 1

p , α−1/p
(

δ

1−θ
) 1

g

}}
, where θ is a scalar and satisfies 0< θ ≤ 1. The time to

reach the residual set is bounded by T ≤ (1/βθ(1 − p))+ (1/αθ(g − 1)).

4.1 FT-NTSM controller design
Since the design of the sliding mode surface is based on the phase plane, the position and attitude tracking
error vector e1 = [e11, e12, . . . , e16]T and its first-order derivative e2 = [e21, e22, . . . , e26]T are selected as
state variables to construct the phase plane. The parameters pk,qk,mk and nk,(k = 1, 2) are positive odd
integers and satisfy p1 < q1 < 2p1,p2 < q2, mk > nk and m1

n1
− p1

q1
> 1. In order to avoid singularity, inspired

by [19], the non-singular terminal sliding mode surface s is designed as

s = e1 + [κ(e1) · e2]
q1
p1 (26)

where s = [s1, s2, · · · , s6]T . κ ∈R
6×6 is a diagonal matrix. Its diagonal element κk(κk: R→R

+, k =
1, . . . 6) is a scalar positive function and can be expressed as

κk(e1k)= 1

ν1e1k

m1
n1

− p1
q1 +η1

, k = 1, 2 . . . 6 (27)

where ν1 > 0 and η1 > 0. Combined with the disturbance observer, the first derivative of the sliding
mode surface is

ṡ = q1

p1

[
κ · e2]

q1
p1

−1
[
− ν1

(
m1

n1

− p1

q1

)
diag(e1)

m1
n1

− p1
q1

−1
κ2diag(e2) e2

+ κ(h + MCu + ds) ] + e2 (28)

Considering all the possibilities of the initial state of the spacecraft error system, the fixed-time non-
singular control law base on FT-DO can be expressed as⎧⎪⎪⎪⎨

⎪⎪⎪⎩
u = (MCκ)−1

[
ν1( m1

n1
− p1

q1
)diag(e1)

m1
n1

− p1
q1

−1
κ2diag(e2)e2 − p1

q1
κ

1− q1
p1 e

2− q1
p1

2

]
− MC

−1(h + d̂s + γ sign(s)) − MC
−1 p1

q1
κ

− q1
p1 e

1− q1
p1

2 diag(φτ )(ν2s
m2
n2 + η2s

p2
q2 ), e2(0) �= 0

u = −MC
−1(h + d̂s + γ sign(s)) − MC

−1 p1
q1

κ
− q1

p1 (ν2s
m2
n2 + η2s

p2
q2 ), e2(0) = 0

(29)
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Figure 4. The phase plane diagram of the system.

where γ (γ > ‖eo2‖) is the designed switching gain, and the parameters satisfy ν2 > 0 and
η2 > 0. d̂s (d̂s = ϑ2) denotes the estimated value of ds. Due to 1< q1

p1
< 2, the nonlinear func-

tion φτk(·) : [0, +∞)→[0, 1] is introduced to avoid the singularity of e
1− q1

p1
2 in (29). φτ =

[φτ1, φτ2, · · · φτk]T(k = 1, 2 . . . 6), and φτk is given by

φτk(fk) =
{

sin
(
π fk
2ε

)
, fk � ε

1 , fk > ε
(30)

where fk = |e2k|
q1
p1

−1, and ε is a positive constant.

4.2 System stability analysis

Theorem 2. For the tracking error dynamical system (16), if the FT-DO (20) and the FT-NTSM con-
troller (29) are designed, the state of the tracking error system (16) can converge to the neighbourhood
of zero within a fixed time.

Proof. The candidate Lyapunov function for the entire system is defined as

V = 1
2
eo2

Teo2 + 1
2
sTs (31)

To facilitate subsequent derivations, we denote the term 1
2
eo2

Teo2 as V1 and the term 1
2
sTs as V2. The

derivative of V is

V̇ = V̇1 + V̇2 (32)

For V̇1, the following inequality holds.

V̇1 = eo2
T ˙eo2 ≤ ∥∥eo2

T ˙eo2
∥∥= ∥∥eo2

T
∥∥ ∥∥∥∥λ3

eo1

eo1
+ ḋs

∥∥∥∥≤ λ3 ‖eo2‖ + ∥∥eo2
T
∥∥ ‖δds‖ (33)

Substituting the controller u(e2(0) �= 0) in (29) into ṡ yields

V̇2 = sT ṡ

= −ν2

(
n∑

k=1

(
φτk(|sk|)

m2+n2
n2

))
− η2

(
n∑

k=1

(
φτk(|sk|)

p2+q2
q2

))
− sT

(
q1

p1

κ
q1
p1 e2

q1
p1

−1
(eo2 + γ sign(s))

)
(34)

Since the existence of the sinusoidal function φτk, the phase plane will be divided into two parts:
P1 = { (e1, e2)| fk > ε} and P2 = { (e1, e2)| fk ≤ ε}, as shown in Fig. 4.
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Part 1: In area P1, φτk = 1. Since m2+n2
2n2

> 1, 1
2
< p2+q2

2q2
< 1, based on Lemma 2, the following

inequality can be obtained.

V̇2 �

⎛
⎝ν2

⎛
⎝n

n2−m2
2n2

(
n∑

k=1

|sk|2

) m2+n2
2n2

⎞
⎠+ η2

(
n∑

k=1

(|sk|2
) p2+q2

2q2

)⎞⎠− sT

(
q1

p1

κ
q1
p1 e

q1
p1

−1

2 (eo2 + γ sign(s))
)

�

⎛
⎝ν2

⎛
⎝n

n2−m2
2n2

(
n∑

k=1

|sk|2

) m2+n2
2n2

⎞
⎠+ η2

(
n∑

k=1

|sk|2

) p2+q2
2q2

⎞
⎠− sT

(
q1

p1

κ
q1
p1 e

q1
p1

−1

2 (eo2 + γ sign(s))
)

= −
⎛
⎝ν2

⎛
⎝n

n2−m2
2n2 · 2

m2+n2
2n2

(
1

2

n∑
k=1

|sk|2

) m2+n2
2n2

⎞
⎠+ η2 · 2

p2+q2
2q2

(
1

2

n∑
k=1

|sk|2

) p2+q2
2q2

⎞
⎠

− sT

(
q1

p1

κ
q1
p1 e

q1
p1

−1

2 (eo2 + γ sign (s))
)

= −
(

n
n2−m2

2n2 · 2
m2+n2

2n2 ν2(V2)
m2+n2

2n2 + 2
p2+q2

2q2 η2(V2)
p2+q2

2q2

)
− sT

(
q1

p1

κ
q1
p1 e

q1
p1

−1

2 (eo2 + γ sign (s))
)

(35)

where n = 6. Therefore, V̇ satisfies
V̇ = V̇1 + V̇2

≤ −
(

n
n2−m2

2n2 · 2
m2+n2

2n2 ν2(V2)
m2+n2

2n2 + 2
p2+q2

2q2 η2(V2)
p2+q2

2q2

)
− sT

(
q1

p1

κ
q1
p1 e

q1
p1

−1

2 (eo2 + γ sign (s))
)

+ λ3||eo2|| + ||eo2
T || ||δds||

≤ −n
n2−m2

2n2 · 2
m2+n2

2n2 ν2(V2)
m2+n2

2n2 − 2
p2+q2

2q2 η2(V2)
p2+q2

2q2 − n
n2−m2

2n2 · 2
m2+n2

2n2 ν2(V1)
m2+n2

2n2 − 2
p2+q2

2q2 η2(V1)
p2+q2

2q2

+ n
n2−m2

2n2 · 2
m2+n2

2n2 ν2(V1)
m2+n2

2n2 + 2
p2+q2

2q2 η2(V1)
p2+q2

2q2 + λ3||eo2|| + ||eo2
T || ||δds||

= −n
n2−m2

2n2 · 2
m2+n2

2n2 ν2

(
(V2)

m2+n2
2n2 + (V1)

m2+n2
2n2

)
− 2

p2+q2
2q2 η2

(
(V2)

p2+q2
2q2 + (V1)

p2+q2
2q2

)

+ n
n2−m2

2n2 · 2
m2+n2

2n2 ν2

(
1

2
||eo2||2

) m2+n2
2n2 + 2

p2+q2
2q2 η2

(
1

2
||eo2||2

) p2+q2
2q2 + λ3||eo2|| + ||eo2

T || ||δds||
(36)

Let ϕ = ν3

(
1
2
‖eo2‖2

) m2+n2
2n2 + η3

(
1
2
‖eo2‖2

) p2+q2
2q2 + λ3‖eo2‖ + ‖eo2

T‖‖δds‖, where ν3 = n
n2−m2

2n2 · 2
m2+n2

2n2 ν2,
η3 = 2

p2+q2
2q2 η2, Equation (36) can be rewritten as

V̇ ≤ −ν3

(
(V2)

m2+n2
2n2 + (V1)

m2+n2
2n2

)
− η3

(
(V2)

p2+q2
2q2 + (V1)

p2+q2
2q2

)
+ ϕ (37)

According to Lemma 2, there are (V2)
m2+n2

2n2 + (V1)
m2+n2

2n2 ≥ 2
n2−m2

2n2 V
m2+n2

2n2 and (V2)
p2+q2

2q2 + (V1)
p2+q2

2q2 ≥
V

p2+q2
2q2 . Then

V̇ ≤ −η3

(
V

p2+q2
2q2

)
− 2

n2−m2
2n2 ν3

(
V

m2+n2
2n2

)
+ ϕ (38)

Based on Theorem 1, the estimation error will converge to a small bounded value near zero. Therefore,
ϕ is a small positive number. Let ν4 = 2

n2−m2
2n2 ν3, based on Lemma 3, the whole system is fixed-time stable.

The convergence time is bounded by

Ts ≤
(

1/

(
ν4θs

(
m2

n2

− 1

))
+ 1/

(
η3θs

(
1 − p2

q2

)))
+ To (39)

where θs ∈ (0, 1), and To is the convergence time of the observer.
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Part 2: In area P2, there is 0<φτk < 1. When e2 �= 0, similar to the steps in Part 1, it is not difficult
to prove that s = 0 is still a domain of attraction. In this part, we need to prove that when e2 → 0, only
the origin (e1, e2)= (0, 0) is an attractor.

When e2 → 0, φτke2k
1− q1

p1 → 1 holds. The control law is

u = −MC
−1
(
h + d̂s + γ sign (s)

)
− MC

−1 p1

q1

κ
− q1

p1

(
ν2s

m2
n2 + η2s

p2
q2

)
(40)

Then substitute (40) into ė2, and we can get

ė2 = ds − d̂s − γ sign (s)− p1

q1

κ
− q1

p1

(
ν2s

m2
n2 + η2s

p2
q2

)
= −eo2 − γ sign (s)− p1

q1

κ
− q1

p1

(
ν2s

m2
n2 + η2s

p2
q2

)
(41)

Since γ > ‖eo2‖, then s> 0, ė2 < 0 and s 〈0, ė2〉 0 hold. Therefore, if e2 is in area P2, it will increase
or decrease monotonically until it leaves area P2. That is, all states in area P2 will enter P1, as shown in
Fig. 4. The e1-axis is not an attractor. The crossing time is denoted as Tε (ε), which is very small and
can be ignored.

Therefore, for the tracking error dynamics system (16), if the fixed-time disturbance observer (20)
and the fixed-time terminal sliding mode controller (29) are designed, the states of the tracking error
system can converge to the neighbourhood of zero in a fixed-time bounded by Tc = Ts + Tε.

Remark 2: In the selected Lyapunov function (31), the term 1
2
sTs ensures the reachability of the sliding

surface. The designed control law u guarantees that sT ∗ s< 0 (s �= 0) holds, indicating that the tracking
error states e1 and e2 will reach the sliding surface and converge towards the equilibrium point along the
sliding surface. Furthermore, in addition to the 1

2
sTs term, the term 1

2
eo2

Teo2 (note that this term is not
the Lyapunov function for the observer error subsystem) is introduced. The purpose of introducing this
term is to construct a Lyapunov function in the form of Lemma 3, ensuring fixed-time convergence of
the entire system. A similar construction of the Lyapunov function can also be found in the reference
[24].

Remark 3: The designed disturbance observer provides feedback compensation for the lumped dis-
turbances ds. Thanks to the disturbance observer’s accurate estimation of the lumped disturbance, a
smaller switching gain γ can be selected in the controller. Therefore, a small switching gain can ensure
the existence of the sliding mode surface. Sliding mode control effectively suppresses disturbances by
employing aggressive control gains. The presence of the sign function results in frequent switching of
the control signal. Therefore, the larger the controller gain, the more severe the chattering. Consequently,
using smaller switching gains helps to reduce system chattering [24].

Remark 4: A nonlinear function φτ is introduced to avoid the singularity of the controller. Thus, the
state space is divided into two regions P1 and P2. The transit time Tε from P1 to P2 cannot be estimated
precisely. From Fig. 4, it can be seen that the transit time Tε (ε) from the P2 region to the P1 region
depends on the width of 2εp1/(q1−p1). This implies that it is possible to select a sufficiently small ε to
make Tε (ε) very small. Due to the conservativeness in estimating Ts, it makes sense to ignore the transit
time Tε (ε).

5.0 Simulations
5.1 Simulation parameters
For the orbit control of spacecraft, the scenario is set as manoeuvring a circular low Earth orbit space-
craft to another circular orbit within the same orbital plane. In this scenario, adjusting the spacecraft’s
semi-major axis is sufficient. Therefore, the initial and desired values of the spacecraft’s orbital ele-
ments

[
a (km) , ē, i (deg) ,� (deg) ,ω (deg) , Mo (deg)

]
can be set as [7000, 0, 28.5, 100, 0, 130] and

[7000.5, 0, 28.5, 100, 0, 130], respectively. Simultaneously, it is also desired for the spacecraft’s attitude
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Table 1. The initial tracking errors of orbit and attitude

Orbit re1(m) re2(m) re3(m) ve1(rad/s)(m) ve2(rad/s)(m) ve3(rad/s)(m)
Initial 275.683 374.962 −182.762 0.1858 −0.1769 −0.0827
Desired 0.00 0.00 0.00 0.00 0.00 0.00
Attitude σe1 σe2 σe3 we1(rad/s) we2(rad/s) we3(rad/s)
Initial 0.10 0.05 −0.15 0.01 −0.02 0.015
Desired 0.00 0.00 0.00 0.00 0.00 0.00

0 100 200 300 400 500 600
t (s)

-0.04

-0.02

0

0.02

0.04

0 100 200 300 400 500 600

t (s)

-2

-1

0

1

2

599 599.5 600

-0.05

0

0.05

599.6 599.8 600

-1

0

1

10-4

0 5
-2

0

2

0 5
-0.04

-0.02

0

0.02

0.04

Figure 5. The estimation error convergence curves of the proposed FT-DO.

to effectively track the desired values. The initial tracking errors of orbit and attitude of the spacecraft
are given in Table 1.

Remark 5: For the scenario of orbit control, adjusting the spacecraft’s semi-major axis is sufficient. The
reasons for choosing this scenario are as follows. The orbit control of a single satellite can be decoupled
into in-plane and out-of-plane control. In-plane control is achieved by applying velocity impulses along
the trajectory, resulting in changes in the satellite’s semi-major axis a and eccentricity ē. On the other
hand, out-of-plane control is achieved by applying normal velocity impulses perpendicular to the orbital
plane, leading to changes in inclination i and right ascension of ascending node �. In general, in-plane
and out-of-plane control are performed separately, as the latter often requires determining the timing of
control initiation and the phase of control points within the orbital plane. However, since the timing of
control initiation and the phase of control points are not the focus of this study, we simplify the analysis
process by assuming a circular orbit for low Earth satellites and performing control within the orbital
plane to investigate the effectiveness of the proposed controller. Then, the selection of the phase of
control points can be ignored. The default initiation time in this paper is assumed to be the start of the
simulation, i.e., t = 0. Therefore, this study only considers deviations in the semi-major axis, which can
be seen as maneuvering the satellite from a circular orbit to another coplanar orbit.
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Figure 6. Comparison of sliding mode surface convergence curves for position tracking error in three
methods.
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Figure 7. Comparison of sliding mode surface convergence curves for velocity tracking error in three
methods.
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Figure 8. Comparison of tracking errors convergence curves for position in three methods.

The other parameters involved in the control process are as follows. The geocen-
tric gravitational constant is ug = 3.986 × 1014 m3s−2. The nominal mass and inertial

matrix are mo = 600 kg and Jo =
⎡
⎢⎣

166.5 4.44 3.33

4.44 74 5.18

3.33 5.18 62.9

⎤
⎥⎦ kgm2 respectively. The exter-

nal disturbance force and torque are df = [sin (0.1t) , cos (0.2t) , sin (0.3t) ]T ∗ 10−5 N
and dτ = [2sin (0.1t) , 2cos (0.2t) , 2sin (0.3t) ]T ∗ 10−6 Nm. The uncertainties are: �J =⎡
⎢⎣

0.1 + 0.01 ∗ sin (0.1t) 0 0

0 0.1 + 0.01 ∗ sin (0.2t) 0

0 0 0.1 + 0.01 ∗ sin (0.3t)

⎤
⎥⎦ kgm2 and �m =

1 + 0.1 ∗ sin (0.1t) kg. The initial conditions of the fixed-time disturbance observer are ϑ1 (0)=
[0.00001, 0.00002, 0.00004, 0.00002, 0.00001, 0.00002]T and ϑ 2 (0)= [1, 1, 1, 0.2, −0.4, 0.4]T ∗ 10−6.
The focus of this paper revolves around the scenario of performing orbit and attitude adjustments within
a small range on a small satellite. Therefore, the maximum control force and torque are preset as 2 N
and 1 Nm, respectively.

The designed parameters of the observer are p = 1.2, λ1 = 0.5, λ2 = 0.1 and λ3 = 0.1. The designed
parameters of the controller (29) are ν1 = 0.001, η1 = 0.04, ν2 = 0.01, η2 = 0.001, m1

n1
= 2, p1

q1
= 0.9, m2

n2
=

1.1, p2
q2

= 0.6, ε= 0.01 and γ = 0.05.
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Figure 9. Comparison of tracking errors convergence curves for velocity in three methods.

5.2 Simulation implementation and results
5.2.1 Parameter adjustment criteria
Due to the multitude of parameters in both the controller and observer, their combined influence on the
control system makes it challenging to establish a unified tuning criterion. In this paper, parameter tuning
is conducted based on a trial-and-error approach, continually balancing convergence time and accuracy
to obtain suitable parameters for the controller and observer. Nevertheless, this paper will analyse the
impact of parameters on the system, providing readers with a set of criteria for independent selection.

Remark 6: The selection of parameters for the FT-DO adheres to the following basic criteria. The
parameter p satisfies p> 1. The parameters λ1, λ2, λ3 satisfy λ1 >

√
2λ3, λ2 > 0, and λ3 > δds, where δds

is the bound of ||ḋs||. The effects of each parameter on the system are as follows. (1). λ1 impact distur-
bance observation error, tracking error, control force, and torque. Increasing the value of λ1 appropriately
can reduce the convergence time of the disturbance observation error and improve the convergence accu-
racy. It also reduces the chattering of control force and torque. However, it leads to a decrease in the
convergence accuracy of the tracking error. (2). λ2 primarily affects the convergence time of the distur-
bance observer. A larger value of λ2 results in a shorter convergence time. (3). λ3 and p, while being
adjusted within a small range while adhering to basic rules, have no significant impact on the system.
However, it is important to note that these values should not be too large to prevent system instability. It
is recommended to choose λ3 within the range of [0.05, 0.1] and p within the range of [1, 2].

Remark 7: The selection of parameters for the FT-NTSM controller adheres to the following criteria.
The parameters ν1, ν2, η1, η2 > 0. The parameters pk, qk, mk and nk, (k = 1, 2) are positive odd integers
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Figure 10. Comparison of tracking errors convergence curves for MRPs in three methods.

and satisfy p1 < q1 < 2p1, p2 < q2, mk > nk and m1
n1

− p1
q1
> 1. The effects of each parameter on the system

are as follows. (1). Adjusting ν1 within a reasonable range does not significantly affect the system’s
response. However, the value of ν1 should not be too large to prevent system instability. (2). η1 primarily
affects the convergence time of the tracking error. Increasing η1 within a reasonable range will result
in a shorter convergence time of the tracking error and improve the system’s dynamic response. (3). ν2

primarily affects the convergence time of the tracking error and the sliding mode surface. Increasing ν2

within a reasonable range leads to faster convergence. (4). η2 primarily affects the convergence time and
accuracy of the tracking error. Increasing η2 within a reasonable range will result in a shorter convergence
time and improved convergence accuracy of the tracking error. (5). Both m1/n1 and p1/q1 have similar
effects on the system, and the larger the difference between them and 1, the shorter the convergence time
of the tracking error. However, too large values for m1/n1 and too small values for p1/q1 can result in
system instability. (6). The impact of m2/n2 on the system is not significant, but its value should not be
too large as it can lead to system instability. p2/q2 has an impact on the dynamic response of the tracking
error. If the value of p2/q2 is too small, it can lead to a poorer dynamic response of the tracking error.
Additionally, too small and too large values of p2/q2 can result in longer convergence time and decreased
convergence accuracy. (7). The impact of ε on the system is minimal and can be disregarded. Its value
can be within the range of [0.01, 0.001].

5.2.2 Simulation cases and results
The following two cases have been implemented to verify the effectiveness of the proposed FT-AS
control method.
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Figure 11. Comparison of tracking errors convergence curves for angular velocity in three methods.

Case 1: Compare the proposed FT-AS controller (29) with the traditional controller to verify its
effectiveness in handling input saturation. The traditional controller is [24]

uT = (MCκ)−1

[
ν1

(
m1

n1

− p1

q1

)
diag(e1)

m1
n1

− p1
q1

−1
κ2diag (e2) e2 − p1

q1

κ
1− q1

p1 e
2− q1

p1
2

]

−MC
−1
(
h + d̂ + γ sign (s)

)
− MC

−1 p1

q1

κ
− q1

p1 e
1− q1

p1
2 diag

(
φτ

) (
ν2s

m2
n2 + η2s

p2
q2

)
(42)

where d̂ in (42) is the disturbance estimate that does not consider the adverse effects of input saturation.

Case 2: To demonstrate the effectiveness of the proposed FT-AS control system in reducing tracking
error convergence time, it is compared with traditional sliding mode AS control systems with additional
anti-saturation structure. The controller still uses (42).

The simulation results are shown in Figs. 5–13.
Figure 5 shows the estimation error convergence curve of the proposed FT-DO. The convergence time

is within 5 s, which is very short. Thus, the influence of the convergence time of the proposed FT-DO on
the overall system convergence time can be negligible. The estimation errors converge to 0.05 m/s2 and
2 ∗ 10−4, respectively, indicating that the proposed FT-DO can effectively estimate lumped disturbance.
The observations of the disturbances will be fed back into the controller and suppressed using controller
gains.

The comparisons between the proposed scheme and the above two cases are shown in Figs. 6–13.
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Figure 12. Comparisons of input force.

Figures 6 and 7 compare the convergence of the sliding surfaces for the three mentioned control
methods. s1, s2 and s3 represent the sliding surfaces for position tracking errors, while s4, s5 and s6

represent the sliding surfaces for attitude tracking errors. As can be seen from Fig. 6, the proposed
FT-AS method and the method used in Case 1 exhibit almost no difference in the convergence time
of sliding surfaces s1, s2 and s3. Therefore, the position tracking errors of these two methods reach the
sliding surfaces almost simultaneously. However, in Case 2, which involves an additional saturation
structure, the time it takes for the position tracking errors to reach the sliding surfaces is the longest,
indicating that its performance is significantly inferior to the previous two methods. The sliding surfaces
s4, s5, and s6 are shown in Fig. 7. The method in Case 1 exhibits the shortest convergence time, followed
by the proposed FT-AS method. The worst performance is still Case 2. This indicates that the additional
anti-saturation structure significantly affects the convergence time of the sliding surface. Therefore, it is
meaningful to design a more concise control loop without the additional anti-saturation subsystem.

Figures 8 and 9 demonstrate the convergence of position and velocity tracking errors for the three
methods. For the position tracking errors re shown in Fig. 8, Case 2 exhibits the poorest convergence time
and accuracy. The method in Case 1 and the proposed FT-AS method have similar convergence times
for position tracking errors, but the FT-AS method outperforms in terms of convergence accuracy. The
convergence accuracy by the proposed FT-AS method is within 2 ∗ 10−4 m, Case 1 is within 5 ∗ 10−4 m,
and Case 2 is within 0.5 m. For velocity tracking errors ve shown in Fig. 9, although the three methods
have similar convergence accuracy, both Case 1 and the proposed FT-AS method outperform Case 3 in
terms of convergence time. Therefore, the proposed FT-AS method exhibits advantages in convergence
time and accuracy of position and velocity tracking errors.
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Figure 13. Comparisons of input torque.

The attitude tracking errors of the three methods are shown in Figs. 10 and 11. For the tracking
errors of the MRPs and the angular velocity, the shortest convergence time is Case 1, followed by the
proposed FT-AS method, both of which have a shorter convergence time than Case 2. In addition, for
the convergence accuracy of attitude tracking errors, the MRPs and angular velocity of the proposed
method and Case 1 converge to 1 ∗ 10−4 and 2 ∗ 10−7 rad/s, respectively. However, the MRPs and angular
velocity of Case 2 converge to 2 ∗ 10−3 and 2 ∗ 10−5 rad/s, respectively. Therefore, the proposed FT-AS
method and the method used in Case 1 perform well.

Figures 12 and 13 illustrate the control force and control moment curves. Both the proposed FT-
AS method and Case 2 method ensure that the control force and control moment remain within the
specified limits. In Case 1, however, without saturation limits, the control force and moment initially
exceed the actuator’s limits. Such large control energy will accelerate the convergence of the sliding
mode surface, position tracking error, and attitude tracking error. Nonetheless, this poses a danger in
practical applications as it may cause damage to the spacecraft’s actuators. At the beginning of the
simulation, all three methods exhibit high control force and moment, as large forces and moments are
required for orbital and attitude manoeuvres. In the later stages, the control force and torque stabilise
within the desired range, which is utilised to overcome spatial disturbances.

Nevertheless, it should be noted that the proposed FT-AS method still has some drawbacks, such
as incomplete elimination of control force and moment chattering. Furthermore, the estimation of the
system’s convergence time is relatively conservative.

In conclusion, the FT-DO proposed in this paper can effectively suppress the adverse effects of input
saturation. The proposed FT-AS control system has higher control accuracy and shorter convergence
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time. Compared to traditional control schemes with additional saturation structures, this scheme
simplifies the entire control system structure and has good control performance.

6.0 Conclusion
A FT-AS scheme with a simple control structure is proposed for the spacecraft’s 6-DOF tracking motion.
The proposed approach achieves fixed-time stability for spacecraft with input saturation and offers a
more concise control loop than traditional anti-saturation methods. This paper directly feeds the input
overshoot into the tracking error dynamical system, converting its impact into a modified disturbance
term. This term is then observed using the designed FT-DO. This approach avoids adding additional
structures in the control loop, resulting in a simpler and more modular system. The FT-DO in this paper
has fewer parameters, which is easy to adjust. Based on the FT-DO, a FT-NTSM controller is designed
to ensure the system’s fixed-time stability. The simulation results demonstrate that the designed FT-DO
can accurately observe the disturbances that include the effects of input overshoot. The proposed con-
troller guarantees that the control input remains within the prescribed limits. Compared to the traditional
methods of adding anti-saturation subsystems, the proposed method exhibits faster convergence speed
and achieves comparable or even higher tracking accuracy for both position and attitude. In the future, it
is imperative to research mitigating chattering in sliding mode control systems to enhance their engineer-
ing applicability. Additionally, considering the detrimental effects of actuator failures on the stability of
spacecraft flight, fixed-time fault-tolerant control is also worth further research.
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APPENDIX
A Relationship between MRPs and angular velocity
The attitude kinematic differential equation of the MRPs in matrix form is:

σ̇ = 1

4

⎡
⎢⎣

1 − σ Tσ + 2σ 2
1 2 (σ1σ2 − σ3) 2 (σ1σ3 + σ2)

2 (σ2σ1 + σ3) 1 − σ Tσ + 2σ 2
2 2 (σ2σ3 − σ1)

2 (σ3σ1 − σ2) 2 (σ3σ2 + σ1) 1 − σ Tσ + 2σ 2
3

⎤
⎥⎦
⎡
⎢⎣

w1

w2

w3

⎤
⎥⎦ ] (A1)
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The corresponding vector form of the above equation is:

σ̇ = 1

4

[(
1 − σ Tσ

)
I3 + 2ψ (σ )+ 2σσ T

]
w = 1

4
[B(σ )] w (A2)

The matrix [B(σ )] transforms the angular velocity w into σ̇ . The matrix [B(σ )] is almost orthogonal
except for a generally non-unit scaling factor. The inverse of [B(σ )] is:

[B(σ )]−1 = 1

(1 + σ Tσ )2 [B(σ )]T (A3)

The proof of Equation (A3) is as follows. Based on (A2), [B(σ ) ]T [B(σ )] can be written as:[
B(σ )]T [B(σ )] =[ (1 − σ Tσ

)
I3 − 2ψ(σ )+ 2σσ T]

[(
1 − σ Tσ

)
I3 + 2ψ(σ )+ 2σσ T

]
(A4)

After carrying out the matrix multiplications, [B(σ ) ]T [B(σ )] can be reduced to

[B(σ )]T [B(σ )] = (1 − σ Tσ )2I3 − 4ψ2(σ )+ 4σσ T (A5)

[B(σ )]T [B(σ )] can be further simplified using the identity ψ2(σ )= σσ T − σ Tσ I3 to

[B(σ )]T [B(σ )] = (1 + σ Tσ )2I3 (A6)

Therefore, the Equation (A3) holds. The inverse transformation of Equations (A1) and (A2) in matrix
and vector forms can be written as (A7) and (A8), respectively.

w = 4

(1 + σ Tσ )2 [B(σ )]T σ̇ (A7)

w = 4

(1 + σ Tσ )2

[(
1 − σ Tσ

)
I3 − 2ψ(σ )+ 2σσ T

]
σ̇ (A8)

In this paper, define G(σ )= 1
4

[B(σ )] and G(σ )−1 = 4

(1+σT σ )2

[(
1 − σ Tσ

)
I3 − 2ψ(σ )+ 2σσ T

]
. The

first derivatives of G(σ ) and G(σ )−1 are respectively given by:

Ġ(σ )= 1

4

[−2σ T σ̇ I3 + 2ψ(σ̇ )+ 2σ̇ σ T + 2σ σ̇ T
]

= 1

2

[−σ T σ̇ I3 +ψ(σ̇ )+ σ̇ σ T + σ σ̇ T
]

(A9)

Ġ(σ )−1 = −16σ T σ̇

(1 + σ Tσ )4

[(
1 − σ Tσ

)
I3 − 2ψ(σ )+ 2σσ T

]
+ 4

(1 + σ Tσ )2

[−2σ T σ̇ I3 − 2ψ(σ̇ )+ 2σ̇ σ T + 2σ σ̇ T
]

= 8

(1 + σ Tσ )2

[−σ T σ̇ I3 −ψ(σ̇ )+ σ̇ σ T + σ σ̇ T
]

− 16σ T σ̇

(1 + σ Tσ )4

[(
1 − σ Tσ

)
I3 − 2ψ(σ )+ 2σσ T

]
(A10)

Cite this article: Wei X., Tian Y., Wu S., Zhang D., Shao X. and Chen L. (2024). Fixed-time anti-saturation con-
trol with concise system structure for the 6-DOF motion of spacecraft. The Aeronautical Journal, 128, 1627–1651.
https://doi.org/10.1017/aer.2024.2

https://doi.org/10.1017/aer.2024.2 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2024.2
https://doi.org/10.1017/aer.2024.2

	Nomenclature
	Subscripts
	Greek Symbol
	Introduction
	Problem statement
	Control objective
	Definitions and notations
	Spacecraft model
	Spacecraft dynamics with external disturbance and parameter uncertainties
	Spacecraft tracking error dynamics


	Fixed-time disturbance observer design
	Modified lumped disturbance
	FT-DO design

	Fixed-time non-singular terminal sliding mode controller design
	FT-NTSM controller design
	System stability analysis

	Simulations
	Simulation parameters
	Simulation implementation and results
	Parameter adjustment criteria
	Simulation cases and results


	Conclusion
	APPENDIX
	Relationship between MRPs and angular velocity


