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Abstract

We give some sufficient conditions for the periodicity of entire functions based on a conjecture of C. C.
Yang, using the concepts of value sharing, unique polynomial of entire functions and Picard exceptional
value.
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1. Introduction and main results

We assume that the reader is familiar with elementary Nevanlinna theory [3, 12].
Given a meromorphic function f , the family of all meromorphic functions w safisfying
T (r, w) = o(T (r, f )), where r → ∞ outside of a possible exceptional set of finite
logarithmic measure, is denoted by S ( f ). For convenience, we also include all constant
functions in S ( f ).

It is well known that any periodic entire function f (z) with period c can be written
as an everywhere convergent series

f (z) =

+∞∑
−∞

ane2iπnz/c.

Baker [1] proved that if f (z) is a nonconstant entire function and p(z) is a polynomial
with deg(p(z)) ≥ 3, then f (p) is not a periodic function. Recently, it has been
shown that value sharing can provide sufficient conditions for the periodicity of
meromorphic functions. Heittokangas et al. [4, Theorem 2] showed that if a finite
order transcendental meromorphic function f (z) shares a1, a2 CM and a3 IM with
f (z + c), then f (z) is a periodic function, where a1, a2, a3 ∈ S ( f ) ∪ ∞. Obviously, if
f (z) is a transcendental entire function with finite order and f (z) and f (z + c) share a1
CM and a2 IM, then f (z) is a periodic function, where a1, a2 ∈ S ( f ). Very recently,
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related to the periodicity of entire functions, Wang and Hu [8] mentioned the following
conjecture given by C. C. Yang.

Yang’s Conjecture. Let f be a transcendental entire function and k be a positive
integer. If f f (k) is a periodic function, then f is also a periodic function.

We give the following result related to Yang’s conjecture.

Theorem 1.1. Let f be a transcendental entire function with a nonzero Picard
exceptional value and let k be a positive integer. If f f (k) is a periodic function, then f
is also a periodic function.

Wang and Hu [8] also considered Yang’s conjecture and obtained the following
result.

Theorem A [8, Theorem 1]. Let f be a transcendental entire function and k a positive
integer. If ( f 2)(k) is a periodic function, then f is also a periodic function.

Remark 1.2. (i) Theorem A shows that Yang’s conjecture is true when k = 1. However,
f 2 cannot be replaced by f in Theorem A. For example f (z) = ez + z is not a periodic
function, but f (k) is a periodic function.

(ii) The function f 2 can be replaced by f n in Theorem A provided that n ≥ 3. In
fact, if ( f n)(k) is a periodic function with period c, then

f (z + c)n − f (z)n = p(z), (1.1)

where p(z) is a polynomial with deg(p(z)) ≤ k − 1. Equation (1.1) has no nonconstant
entire solutions if p(z) . 0, which is a direct corollary of Yang’s result [9, Theorem 1]
related to Fermat functional equations: if m, n are positive integers satisfying m−1 +

n−1 < 1, then there are no nonconstant entire solutions f (z) and g(z) that satisfy
a(z) f (z)n + b(z)g(z)m = 1, where a(z),b(z) ∈ S ( f ).Using Yang’s result, we get p(z) ≡ 0.
Hence f (z + c) = t f (z) and tn = 1, thus f (z) is a periodic function with period nc.

We summarise Theorem A and Remark 1.2(ii) in the following corollary.

Corollary 1.3. Let f be a transcendental entire function, k and n positive integers
and n ≥ 2. If ( f n)(k) is a periodic function, then f is also a periodic function.

From Theorem A and Remark 1.2(i), we raise the following question.

Question 1.4. Let f be a transcendental entire function and k a positive integer. Let
a1, a2, . . . , an be constants and an , 0. If (an f n + · · · + a1 f )(k) (n ≥ 2) is a periodic
function, is it true that f is also a periodic function?

The following result gives a partial answer to this question.

Theorem 1.5. Let f be a transcendental entire function and k a positive integer. Let a1
and a2 be constants and a2 , 0. If (a2 f 2 + a1 f )(k) is a periodic function, then f is also
a periodic function.

https://doi.org/10.1017/S0004972719000030 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972719000030


292 K. Liu and P. Yu [3]

Remark 1.6. Suppose we replace a2 f 2 + a1 f by an f n + · · · + a1 f in Theorem 1.5,
where an , 0 and at least one ai , 0 (i = 1, . . . , n − 1). We can attempt a similar
approach to that in the proof of Theorem 1.5 below, but it seems difficult to obtain
expressions for f (z) and f (z + c).

Theorem 1.7. Let k and n be positive integers with n ≥ 2. Let f be a transcendental
entire function with ρ2( f ) < 1 and N(r, 1/ f ) = S (r, f ). If (an f n + · · · + a1 f )(k) is a
periodic function and an , 0, then f is also a periodic function.

The unique polynomial of entire functions (UPE) can also be applied to the
periodicity of entire functions. We first recall the definition of UPE [11]. A polynomial
P(z) is called UPE if, whenever P( f ) = P(g) for two nonconstant entire functions
f and g, then f = g. Li and Yang [6] gave the following results for meromorphic
functions. From the proofs in [6], if f and g are entire functions, then the condition
n > 2m + 2 (m ≥ 2) is enough to give the conclusion.

Theorem B [6, Theorem 1]. Let ai, bi (i = 1, 2) and c be nonzero meromorphic
functions. Suppose m and n with n > 2m + 2 (m ≥ 2) are relatively prime to each
other. Then the functional equation

f n + a1 f n−m + b1 = c(gn + a2gn−m + b2)

has a pair of admissible entire solutions ( f , g), if and only if c = b1/b2 and f = hg,
where h is a meromoprhic function satisfying hn = c and hm = a1/a2.

TheoremC [6, Corollary 1]. Given integers m and n with n > 2m + 2 (m ≥ 2), relatively
prime to each other, and rational functions a1, a2, a3, a4 , 0, the functional equation

f n + a1 f n−m + a2gn + a3gn−m + a4 = 0

has no transcendental entire solutions f and g.

Combining Theorem B with Theorem C gives the following corollary.

Corollary 1.8. Let f be a transcendental entire function, k a positive integer, m
and n relatively prime integers with n > 2m + 2 (m ≥ 2) and let an, a1 be nonzero
rational functions. If (an f n + a1 f n−m)(k) is a periodic function, then f is also a periodic
function.

In addition, Wang and Hu [8, Theorem 2] used the method in [10] to obtain the
following theorem as a partial result towards Yang’s conjecture.

Theorem D. Let n,m, k, p, q be positive integers and f be a transcendental entire
function with finite order. If f n( f (k))m is a periodic function with period c, f and
f (k) have zeros with multiplicities p, q and the multiplicity of the zeros of f n( f (k))m is
more than np, then f is a periodic function with period (m + n)c.
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Remark 1.9. The condition that the multiplicity of the zeros of f n( f (k))m is more than
np in Theorem D means that f and f (k) have common zeros. We give some further
observations on Theorem D. Let f (z) be a transcendental entire function with finite
order.

(1) Assume that f and f (k) have no zeros. Then f (k) = A f , where A is a nonzero
constant. Thus

f (z)n( f (k)(z))m = f (z + c)n( f (k)(z + c))m.

We have
f (z)n+m = f (z + c)n+m,

that is f (z + c) = t f (z) and tn+m = 1. So f (z) is a periodic function with period (n + m)c.

(2) Assume that f (z) has no zeros but f (k)(z) has zeros. Thus f (z) = ep(z), where p(z) is
a nonconstant polynomial, so f (k)(z) = H(z, p(z))ep(z), where H(z, p(z)) is a differential
polynomial in p(z) and m(r,H) = S (r, f ). Thus,

H(z, p(z))me(m+n)p(z) = H(z, p(z + c))me(m+n)p(z+c),

and hence p(z) must be a linear polynomial, that is p(z) = Az + B, where A , 0, B are
constants. Hence f (z) = eAz+B and so f (z) is a periodic function with period 2kπi/A.

(3) Assume that f (z) has zeros but f (k)(z) has no zeros. In this case, f (z) and f (z + c)
share 0 CM. Using the result given by Li and Gao [7, Theorem 1.6], if f (z) is not a
periodic function, then ρ( f ) > 1 and f (z) satisfies one of the following three cases:

(a) ρ( f ) ≤ λ( f ) + 1 and f (z) = P(z)eQ(z), where P(z) is an entire function such that
ρ(P) < λ( f ) and Q(z) is a polynomial with deg(Q) ≤ ρ(P) + 1.

(b) ρ( f ) > λ( f ) + 1 and f (z) = P(z)eQ(z), where P(z) is an entire function such that
ρ(P) < λ( f ) and Q(z) is a polynomial with deg(Q) = ρ(P) ≥ 3.

(c) ρ( f ) > λ( f ) + 1 and f (z) = eQ(z), where Q(z) is a polynomial with deg(Q) = 2.

(4) Assume that f (z) and f (k) have zeros. It is not easy to consider this case from the
point of view of value sharing.

Obviously, case (c) in (3) does not occur for the case that f (z) has zeros. However,
cases (a) and (b) in (3) and case (4) remain open.

2. Proofs of the theorems

To prove Theorems 1.1 and 1.5, we need the following lemma.

Lemma 2.1 [12, Theorem 1.56]. Let f j(z) ( j = 1, 2, 3) be meromorphic functions and
f1(z) nonconstant. If

3∑
j=1

f j = 1
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and
3∑

j=1

N
(
r,

1
f j

)
+ 2

3∑
j=1

N(r, f j) < (λ + o(1))T (r),

where λ < 1 and T (r) = max j=1,2,3{T (r, f j)}, then f2(z) ≡ 1 or f3(z) ≡ 1.

Proof of Theorem 1.1. Assume that d is the nonzero Picard exceptional value. Then
f (z) = ep(z) + d, where p(z) is an entire function and T (r, p(z)) = S (r, f ). Since f f (k) is
a periodic function with period c, we assume that

f (z) f (k)(z) = f (z + c) f (k)(z + c).

Hence,

H(z, p(z))e2p(z) + dH(z, p(z))ep(z) = H(z, p(z + c))e2p(z+c) + dH(z, p(z + c))ep(z+c),

where H(z, p(z)) is a differential polynomial in p(z). Thus,

H(z, p(z))
dH(z, p(z + c))

e2p(z)−p(z+c) +
H(z, p(z))

H(z, p(z + c))
ep(z)−p(z+c) −

1
d

ep(z+c) = 1.

Obviously −ep(z+c)/d is not a constant. From Lemma 2.1, we have two cases.

Case 1: The first possibility is

H(z, p(z))
dH(z, p(z + c))

e2p(z)−p(z+c) = 1 and
H(z, p(z))

H(z, p(z + c))
ep(z)−p(z+c) −

1
d

ep(z+c) = 0.

From this, ep(z)+p(z+c) = d2, therefore, p(z) = B − p(z + c) where B is a constant. Thus,
(H(z, p(z))/dH(z, p(z + c)))e3p(z)−B = 1, so T (r, ep(z)) = S (r, ep(z)), which is impossible.

Case 2: The second possibility is

H(z, p(z))
H(z, p(z + c))

ep(z)−p(z+c) = 1 and
H(z, p(z))

dH(z, p(z + c))
e2p(z)−p(z+c) −

1
d

ep(z+c) = 0.

This gives ep(z) = ep(z+c) and so f (z) = f (z + c). �

Proof of Theorem 1.5. Assume that (a2 f 2 + a1 f )(k) is a periodic function with
period c. Thus, (

a2 f (z + c)2 + a1 f (z + c)
)(k)

=
(
a2 f (z)2 + a1 f (z)

)(k)
.

Furthermore,

a2 f (z + c)2 + a1 f (z + c) = a2 f (z)2 + a1 f (z) + P(z),

where P(z) is a polynomial with deg(P(z)) ≤ k − 1. Thus,

[ f (z + c) − f (z)][a2 f (z + c) + a2 f (z) + a1] = P(z). (2.1)
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Case 1: P(z) ≡ 0. Either f (z + c) = f (z) which implies that f (z) is a periodic function
with period c, or a2 f (z + c) + a2 f (z) + a1 = 0, which implies that f (z) is a periodic
function with period 2c.

Case 2: P(z) . 0. Since f (z) is an entire function, by (2.1), f (z + c) − f (z) = P1(z)eQ(z),

a2 f (z + c) + a2 f (z) + a1 = P2(z)e−Q(z),

where P1(z)P2(z) = P(z) and Q(z) is an entire function. A computation gives

f (z + c) =
P2(z)e−Q(z) − a1 + a2P1(z)eQ(z)

2a2
, f (z) =

P2(z)e−Q(z) − a1 − a2P1(z)eQ(z)

2a2
.

Hence,

P2(z + c)
P2(z)

eQ(z)−Q(z+c) −
a2P1(z + c)

P2(z)
eQ(z+c)+Q(z) −

a2P1(z)
P2(z)

e2Q(z) = 1.

Obviously, −(a2P1(z)/P2(z))e2Q(z) , 1, since f (z) is a transcendental entire function.
From Lemma 2.1, we have to consider two cases.

Case 1: The first possibility is

P2(z + c)
P2(z)

eQ(z)−Q(z+c) ≡ 1 and −
a2P1(z + c)

P2(z)
eQ(z+c)+Q(z) −

P1(z)
P2(z)

e2Q(z) ≡ 0.

In this case, P1(z + c)P2(z + c) = −P1(z)P2(z), which implies that P(z + c) = −P(z), a
contradiction since P(z) is a polynomial.

Case 2: The second possibility is

−
a2 p1(z + c)

p2(z)
eQ(z+c)+Q(z) = 1 and

p2(z + c)
p2(z)

eQ(z)−Q(z+c) −
p1(z)
p2(z)

e2Q(z) = 0.

Here, we also get P(z + c) = −P(z), a contradiction. �

Proof of Theorem 1.7. If (an f n + · · · + a1 f )(k) is a periodic function with period c,
then

an f (z + c)n + · · · + a1 f (z + c) = an f (z)n + · · · + a1 f + P(z), (2.2)

where P(z) is a polynomial with deg(P(z)) ≤ k − 1.
Let f (z + c) = f (z)h(z), where h(z) is a meromorphic function. From the difference

analogue of the logarithmic derivative lemma for meromorphic functions with hyper-
order less than one [2], m(r, h) = S (r, f ). Since N(r, 1/ f ) = S (r, f ), it follows that
N(r, h) = S (r, f ) and T (r, h) = S (r, f ). From (2.2),

an[h(z)n − 1] f (z)n + an−1[h(z)n−1 − 1] f (z)n−1 + · · · + a1[h(z) − 1] f (z) = P(z).

We claim that h(z) is a constant and hn = 1. Otherwise, from

m
(
r,

h j − 1
hn − 1

)
= S (r, f )
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follows T (r,h) = S (r, f ) for j = 1,2, . . . ,n − 1. By the Clunie lemma [5, Lemma 2.4.2],
m(r, f ) = S (r, f ), which is a contradiction. Thus, hn = 1. Assume the next nonzero
coefficient is ak , 0. Then hk = 1 and hn−k = 1. From this, f (z + c) = hn−k f (z), that is,
f (z) is a periodic function with period (n − k)c. This proves Theorem 1.7. �

Proof of Corollary 1.8. If (an f n + a1 f n−m)(k) is a periodic function with period c,
then

an f n + a1 f n−m = an f (z + c)n + a1 f (z + c)n−m + P(z),

where P(z) is a polynomial with deg(P(z)) ≤ k − 1.
If P(z) , 0, then Theorem C implies that there is no entire solution f that satisfies

this equation. If P(z) ≡ 0, then Theorem B implies that f (z) = h f (z + c), where hm = 1.
Thus, f (z) is a periodic function with period mc. �
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