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1

In this paper we find an expression for ¢* as the limit of quotients as-
sociated with a sequence of matrices, and thence, by using the matrix
approach to continued fractions ([5] 12—13, [2] and [4]), we derive the
regular continued fraction expansions of ¢/* and tan 1/ (where % is a positive

integer).
If the real number « has the regular continued fraction expansion
I 1 1
o =a
" 4+ a,+

(which in this paper we shall write as

o= [ao’ ay, a3, 1),

then it is easy to see that the convergents p,/q, to « are given by

P Pu—l) _ (% 1) 4 l) an 1)
(qn - ""(1 0 (1 0 (1 o/’
Thus « may be expressed as a limit of quotients, namely p,/g,, associated
with the sequence of matrices {(‘1’“ (1))’ .

2

We now introduce some notation. If 4 = (? 2) is a matrix, for

definiteness over the field of complex numbers, we define

b
KI(A)=—Z—, o0 Ky(d) =, if d#0.

If {4,} is a sequence of such matrices, and

Ks(Al"'An)»as (S: 1'2)
as # — o0, we say that K (4, - - - A,) converges to «, and we write
205
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Ks(A1A2 ot ') == O
If a;, = 2, = «, we write simply

K(A,4,--°) = a.
With this notation,

(2.1) [, @y, 8, - -] = K{(‘;o (1,) (‘il (1)) ((:2 (l)) }

Thus, if a4, a,, a,, - - - 1s a sequence of integers, all positive except (perhaps)
a,, then the right-hand side of (2.1) represents a unique real number «
and the regular continued fraction expansion of this number is

o= {ay, a,, ay, -]

We note here some simple properties of the functions K, K,. Lemmas 1
to 3 are stated in terms of K,, but apply equally to K,.

LEMMA 1. If B = (g‘ g) and K (A, A, ++) = a, where catd - 0, then

. an+b
T catd '

LEMMA 2. If K (A4, -) =, and {k,} is a sequence of non-zero
complex numbers, then

Kl(Bx41A2 M ‘)

K1{(k1A1)(k2A2) o } = .
LEMMA 3. Suppose K (A, Ay -+) exists. If {B;B,--- B,} is a sub-
sequence of {A, Ay -+ A}, then
Ky(A4,45- ) = Ky(B,B, - - °);
in particular
Ki(Ady ) = Ky{(414,43) (A4 A5 46) - - - (A3n-24301435,) "}

Levwa 4. 1f 4, -+ 4, = (b* 1) = P,, then

n 9n Sn

2 nl r=1
The proofs of Lemmas 1 to 4 are trivial and are left to the reader.
LemMa 5. Let B, Ay, A,, - be matrices over the ving of Gaussian
integers, with |det A,j =1 (r=1,2,--+) and K(A,A,+ ) = a. Then, if

0 b
B;é(o d),Kl(A1°--AnB)—>ocasn—>oo;
and if

B#(: g),Kz(Al---AnB)—Nx.

If B has a non-zero element in each column, K(A,--+- A,B) - «.
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Proor. It suffices to prove the first conclusion of the lemma; the
proof of the second is similar, and the final result follows immediately.

We write
b
AIAZ"'Anz(pn rn)’ B:(d )’
n S c 4
n:_w:KI(AI...AnB)_
aq,.+-cs,

If a or ¢ is zero, the result is trivial, so we suppose that neither is zero.
Since K (4,4, - - -) exists, Lemma 4 shows that |g,s,] — c© as # — 0.
Also (g,,s,) = 1, because

lpnsn_annl = ldet (AIAZ o A‘n)! =

Hence |ag,+cs,} = 1 for all large #, since ag,+cs, is a Gaussian integer
and aq,-+cs, = 0 implies ¢, s, divides ac, which is impossible for sufficiently
large n. Thus

lac|

Pull 7l .

x, — "
l g,|
as n —> 0. Since p,/q, and 7,/s, both tend to a as # — 00, it now follows
that a,, — a.

The next result is of fundamental importance.

n

S,

ﬂ

LEmMA 6. Let B, A,, A,, - - - be non-singular matrices over the ring of
Gaussian integers, with

ldet A, =1(r=1,2,+--) and BC,B1=A, (r=1,2,--).
Then K (A, A, - - -) = a implies K(BC,Cy - - *) = a.

Proor. From Lemma 5, K(4,---A,B) -« as n — co. Noting that
BCy:---C,=4,---4,B we have K(BC1 C,) —>a« as n— oo, the
result.

It is of particular interest to evaluate K (4,4, - --) in the case where
A, has rational integral elements with |det 4,] = 1, since it will then
frequently be possible to transform the product into one of the form exhibited
in (2.1), so yielding a regular continued fraction. A useful result in this
connection is

n

LemMA 7. If a matriz (f b) has integral elements with ¢ > d > 0 and
determinant +1, then

a b) ay l) a, 1) a, 1)
(c ] (1 0 (1 0 (1 o/’
where ay s an integer and a,, - - -, a, are positive integers.
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Proor. If d > 1, we write
a b) (b a—zb) x 1)
(c d _(d c—ad (1 0/’
where x = [¢/d] = 1. Noting that c/d is not an integer, since dic would
imply d|1, we have d > c—xd > 0. Repetition of this process must lead

ultimately to the case d = 1.
Ifd =1, thenc¢ > 1 and a—bc = 1, and we have

a b)_ b a—bc) c 1)
(c 1 —(1 0 (1 0
_ [(a—(c—1)b bc—a) 1 1) c—1 1)
o (1 0 (1 0 (1 o/’
and one of these products is of the required form.

3

We now obtain an expression for e* in the form K(4, 4,45 ).

THEOREM 1.
% /(2 1 2 1
em:K{ (( m+1)+z  (2m+1) )}

(8-1) (2m+1) 2m+1)—=z

m=0

for all (complex) x.

Proor. We first show that

no(@m—1)+x (2m—1) _ (f(®) g, (=)
62 T (G y om1)2) = i hw)”
where '
(3.3) ho(@) = g.(—2%), k,(z)=[f.(—2%)
and
ful@) = 3 e, 4o,
k=0
gn(x) =kéo(n_k)cn,kxk!
with
(2n—Fk—1)!

ok = T Ry R

The relations (3.3) follow immediately from the observation that the left-
hand side of (3.2) is unchanged on interchanging rows and then columns of
each of the matrices and replacing = by —=.
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We now proceed by induction on #. The result is clearly true for
#n = 1, and we assume it true for some » = 1. To prove it true for n+1
it suffices, in view of (3.3), to show that
(3-4) @n+1){f, @)+, (@)} +af, (@) = fria(®),
2n+l {f +gn(x } xgn —g"+1(x),

and it is easily verified that these relations hold.
To establish (3.1), then, we must prove that f, (x)/g,.(—x) — ¢* as
n — oo. This follows from the results
fa(@) " £.(2)
, — et®,
nintl)---(2n—1) nn-+1)--- (2n—1)
We prove the first of these. Using the expression for f,(z), we have for
all complex x

fa(@) nn—1)- ( k—l-l) x¥
nnt1)--- (2n—1) +z 2n—1)(2n—2) - - - (2n— k)k'

3 (1“5)(1‘3)"'(“]%) (b

— eb%,

Clearly a, ; — 1 as n — oo for fixed %, and also

1 1
a < = 2k,
mi < (1 k)" = (1=1)%

2n

so the first result stated follows from Tannery’s theorem [1]. The
second follows from the first and the relation (3.4) (if we divide by
(n4+1)(n+2) - - - (2n-+1) and let n — oo).

4

We now deduce some regular continued fractions from the relation
(3.1). We collect them together in

THEOREM 2. The following are regular continued fraction expansions for
the functions specified, where k denotes an integer subject to the restrictions
stated.
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() e =L @rrDE—1, 112, (k> 1);
e =[2,1,21,1]2,

(1) e¥*=[1, {(6n+1)k—1}, 6(2n+1)k, 1{(6n+5)k—1},1]2, (0dd k>1);
2 =[7,3n42,1,1,3n4+3, 6(2n+3)17,.

1 —_—
(iii) tan 7= [0,k—1,1, 2n+1)k—2]7 (k> 1);

tan1l = [1 2n—1]3,.

(The beginning of the expansion of ¢2 illustrates the meaning of the notation
we have used:
e =107,2,11,3,185,1,1,6,30,8,1,1,--]).

Proor oF THEOREM 2. (i) If we put z = 1/k in (3.1), with integral
k > 0 and use Lemma 2, we obtain

Sl (SR

Using the result
1 — 1
S I A (e [ T o
with a = (2n-}-1)k, we find
eV =1, 2n+41)k—1, 1152,

which is a regular continued fraction if 2 > 1.
If # =1, on using (4.1) with @ = 2»-41 and # > 0, we obtain
e=1[2,1,2n 173,
(i) Similarly
S K :ﬁ ((2v+1)k+2 (2v4+-1)k )} '
o \(2v+1)E 2v+1)k—2

We may transform the product of three successive factors in this expression,
given by » = 3n, 3n+1, 3n+2, into a form which is appropriate when %
is an odd integer. We observe that

B T T
66
S0
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7 Regular continued fractions 211

and apply these factorizations in this order to the three matrices specified,
noting that

PR 1 e R W [ W B P

This yields
3 ((6n+2r—1)2+2 (6n+2r—1)k )
1((6n+2r-— 1)k (6n+2r— Ve—2

ofl e et hon )

and hence the results stated. (For other methods of establishing this result,
and the one for ¢'/* see [5], 123—125, or [3].)
(iii) Since
1 (1—1)e2/* 4 (54 1)
cot " —1 = poT—

application of Lemma 1 to (3.1) with x = 2]k gives

i—1 i+1) °°((2n+1)k—|-2£ @n+1)k )}

1
oty 1= K{(l —1 (2n+1)k (2n+1)k—2i

Since
i—1 t'-i—l) 1 (4120 a )_ a—1 a—2) i—1 i+1)
(1 —1 7( a—2i _(1 1 (1 -1/’

A BT}

Lemma 6 leads to the result

and

cot E —1 = [(2n+1)k—2, 1],
It follows that

cot—il; = [k— W]nd’
and so

] -
tan — = [0, k=1, 1, (2n+1)k—2]7y;
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212 R. F. C. Walters [8]

these are regular continued fractions for integers 2 >0 and 2 > 1,
respectively.
Finally,

tan 1 = [1, 2n—172;.

Notice that these expansions for tan 1/& can be derived from Lam-
bert’s semiregular continued fraction expansion for tan 1/& ([5], 148—149
and [6]).

I should like to thank Professor C. S. Davis and Mr. K. R. Matthews
for help in the preparation of this paper.
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