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Hydrodynamic forces acting on a neutrally buoyant spherical particle immersed in a
wall-bounded axisymmetric stagnation-point flow (Hiemenz–Homann flow) are predicted,
based on a suitable form of the reciprocal theorem. An approximate algebraic form of
the undisturbed velocity field is set up, mimicking the gradual transition of the actual
carrying flow throughout the boundary layer, from a pure linear straining flow in the bulk
to a parabolic flow at the wall. The particle Reynolds number is assumed to be small
and predictions based on the creeping-flow assumption are first derived. Then, inertial
corrections are computed, assuming that the particle stands close enough to the wall for the
latter to be in the inner region of the disturbance. Predictions for the time-dependent slip
velocity between the particle and ambient fluid are obtained in the form of a differential
equation, first assuming that the particle moves along the flow symmetry axis, then
extending the analysis to particles released at an arbitrary radial position. In the former
case, these predictions are compared with results provided by numerical simulations.
When the strain-based Reynolds number (built on the particle radius and strain rate in the
bulk) exceeds 0.1, finite-inertia effects due to particle–wall interactions and to the relative
acceleration between the particle and fluid are found to substantially modify the way the
slip velocity varies with the distance to the wall.

Key words: particle/fluid flows

1. Introduction

After completing his monumental textbook on fluid dynamics, Batchelor turned his
research to what he called micro-hydrodynamics, beginning a second scientific life. His
most outstanding contributions in this field are in the rheology of zero-Reynolds-number
suspensions. Nevertheless, a substantial part of his work during this second period was
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devoted to other aspects of the subject, including particle dispersion and deposition,
mass transfer from particles in linear flows, several aspects of bubble dynamics and
fluidized-bed instabilities. This is how he explored and frequently laid the foundations
of several branches of modern research in the vast field of two-phase flows. For this, he
often relied on the mathematical techniques he developed during the first part of his career
devoted to turbulence. His papers, characterized by a unique combination of penetrating
physical intuition, mathematical rigor, clarity of exposition and attention to detail remain
an inexhaustible source of inspiration. His first contribution to micro-hydrodynamics is
now fifty years old. Since then, experimental techniques and computational capabilities
have made tremendous progress. However, mathematical models and predictions based
on first principles remain the appropriate language to streamline experimental and
computational results, and reach a real understanding of the subtle mechanisms at work
in complex fluid flows. This is what makes Batchelor’s legacy and conception of research
fully alive today. The research presented below seeks to provide a modest illustration of
this point of view.

Predicting the motion, dispersion and possible accumulation of small rigid particles
immersed in non-uniform carrying flows is of paramount importance in all types
of two-phase dispersed flows involved in geophysical, biological and engineering
applications. Nowadays, the motion of small spherical particles in non-uniform, possibly
turbulent, flows is routinely analysed through the prism of the Gatignol–Maxey–Riley
(GMR) equation (Gatignol 1983; Maxey & Riley 1983). However, the set of assumptions
under which this second-order differential equation for the particle position may be
expected to provide a realistic description of the particle fate is quite restrictive. In
particular, the particle is assumed to be far from any of its neighbours or from walls,
its size has to be small compared to all characteristic flow length scales and effects of
flow inertia on the particle-induced disturbance have to be negligible, be they due to the
particle relative velocity with respect to the carrying flow or to the ambient strain or shear
rate. Consequently, the presence of extra contributions to the hydrodynamic force due to
a nearby wall or to the existence of small albeit non-zero flow corrections resulting from
fluid inertia are among the effects which are beyond the range of validity of the GMR
equation. While the first limitation is presumably clear to everyone, the second is less so.
Indeed, this equation incorporates some effects of fluid inertia and unsteadiness, namely
the so-called added-mass force and the force corresponding to the possible non-zero
acceleration of the carrying flow at the position of the particle. However, the contribution
of flow inhomogeneity in the Lagrangian fluid acceleration involved in these two forces
is generally not the leading-order effect due to fluid inertia in the low-but-finite Reynolds
regime. This implies that the GMR equation is rarely consistent as soon as fluid inertia
comes into play. This is because this contribution to the above two forces is linearly
proportional to the particle Reynolds number based on the local shear or strain rate, while
leading-order inertial effects in a non-uniform flow are proportional to the square root
of this Reynolds number, as exemplified by Saffman’s lift force experienced by a small
spherical particle translating in a pure shear flow (Saffman 1965).

Neutrally buoyant particles provide an especially stringent test to this equation (Sapsis
et al. 2011). Indeed, according to the description it is based upon, the only mechanism
capable of producing a velocity difference (so-called slip) between the particle and fluid
(assuming that this slip is initially zero) in that case relies on the so-called Faxén force
due to the possible curvature of the fluid velocity field at the particle scale. Thus, the
GMR equation may for instance correctly predict the longitudinal slip velocity of a
neutrally buoyant particle in a quadratic parallel flow. In contrast, it does not predict any
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Near-wall forces on a particle in a stagnation-point flow

longitudinal slip, nor any lateral migration, when the particle moves in a Couette flow for
instance, although it is well established that both components of slip are non-zero in this
case (Halow & Wills 1970; Ho & Leal 1974; Vasseur & Cox 1976; Leal 1980). Indeed,
small-but-non-zero inertial effects and wall–particle hydrodynamic interactions are at the
root of the generation of both slip components in this flow configuration. The same holds
true for the transverse migration in a Poiseuille flow.

Recently, numerical simulations were performed to explore the dynamics of spherical
neutrally buoyant particles of various sizes released on the axis of an axisymmetric
stagnation-point flow, also known as the Hiemenz–Homann flow (Li et al. 2020). This
configuration was selected as an archetype of situations in which particles are transported
in a flow with a strong wall-normal velocity component, such as that encountered in
impinging jets and normal flow filtration, as well as in T-shaped junctions (Vigolo et al.
2013). Numerical results revealed that, starting from zero at large wall–particle distances,
the slip velocity becomes increasingly positive as the particle approaches the stagnation
point, especially within the boundary layer. This observation indicates that the particle is
actually always lagging behind the fluid. However, starting from zero in the bulk (where the
flow reduces to a pure bi-axial straining motion), the curvature of the wall-normal velocity
component in this flow becomes increasingly negative as the wall is approached. Since the
Faxén force is directly proportional to this curvature and the corresponding pre-factor is
positive, this force is negative all along the stagnation streamline. Consequently, there is
no way to explain the generation of a positive slip velocity based on the influence of the
Faxén force, hence on the limited physical mechanisms accounted for in the GMR equation
(see § 3.2 for more discussion). To make the picture unambiguous, it is worth adding that
lubrication effects are not the cause of the observed positive slip, as the latter reaches a
significant relative magnitude well beyond the separation range within which these effects
operate.

The initial motivation of the present work was provided by the need to rationalize the
behaviours revealed by the numerical results of Li et al. (2020), a goal which could
not be reached using the GMR description for the aforementioned reasons. While the
inertia-induced migration phenomenon across the flow streamlines has been the subject
of many studies over the last half-century in wall-bounded shear flows (see the reviews
by Leal (1980) and Hogg (1994)), much less attention has been drawn to wall-normal
flows, the archetype of which is the Hiemenz–Homann flow (hereinafter abbreviated as
HH flow). The specific configuration in which a sphere is held fixed at a stagnation point
was worked out in the creeping-flow limit by Goren (1970). In the same regime, Goren &
O’Neill (1971) considered the case of a sphere moving in the vicinity of a large obstacle
held fixed in a streaming flow. This is locally equivalent to the problem of a sphere in
motion close to a planar wall with an arbitrary inclination with respect to the upstream
flow. Using bi-spherical coordinates, they determined the tangential and wall-normal
viscous force and torque components for arbitrary wall–particle gaps, including the range
in which lubrication effects are dominant. More recently, Rallabandi, Hilgenfeldt & Stone
(2017) combined the same technique with the use of the reciprocal theorem to develop a
comprehensive theory of the viscous forces experienced by a sphere moving along the axis
of an axisymmetric wall-normal flow with arbitrary strain and curvature.

The aforementioned studies focused on the Stokes-flow regime, disregarding any
influence of flow inertia. However, these effects can no longer be neglected when the size
of the particle increases. In particular, as will be shown later, they become comparable in
magnitude with viscous effects when the particle diameter becomes of the order of the
boundary layer thickness, which is typical of the situations considered by Li et al. (2020).
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To rationalize the trends observed with such ‘large’ neutrally buoyant particles before their
dynamics becomes controlled by lubrication effects, a consistent near-wall force balance
incorporating inertial effects is required. The present paper aims at elaborating such a
weakly inertial theory.

However, besides helping to rationalize the specific observations of Li et al. (2020),
there is a much broader fundamental interest in providing explicit expressions for near-wall
inertial effects in wall-bounded straining flows, which may then be used to predict the
particle motion and deposition dynamics in more complex configurations involving a
significant wall-normal flow component. To the best of our knowledge, no such theory
has been established to date, although the required theoretical tools are available for a long
time, especially thanks to the seminal work by Cox & Brenner (1968). Considering the
three basic kinematic configurations of linear straining, solid-body rotation and uniform
shear flows, the latter two are compatible with the presence of a bounding rigid planar
wall, provided this wall is parallel to the streamlines of the base flow (i.e. perpendicular
to the rotation axis in the case of a solid-rotation flow). The situation is more complex
in the case of a pure straining motion since such a non-uniform flow cannot satisfy the
no-slip condition at the wall. For this reason, a boundary layer within which the vorticity
of the base flow is non-zero takes place. It is presumably this more complex structure
of the carrying flow that, up to now, hampered the development of a consistent weakly
inertial theory of hydrodynamic forces on a particle in this class of wall-bounded flows.
In the spirit of the three fundamental families of linear flows mentioned above, the present
work may be seen as the continuation of theoretical investigations such as those of Cox &
Hsu (1977) and Cherukat & McLaughlin (1994) for wall-bounded parallel shear flows, or
Magnaudet (2003) (hereinafter referred to as M1) for wall-bounded time-dependent shear
and solid-rotation flows.

To make the development of such a theory possible, simplifying assumptions are
required. The reciprocal theorem forms the cornerstone that allows a rigorous force
balance to be obtained irrespective of the flow regime. A recent review article
(Masoud & Stone 2019) provides an excellent overview of the amazing variety of
low-Reynolds-number transport problems in which this theorem allows the solution to
be obtained at a (relatively) low cost. To take advantage of this tool in the present context,
we first set up an algebraic approximation of the HH flow yielding an explicit expression
of the carrying fluid velocity field down to the wall (§ 2.2). Based on the results derived
in M1, the form of the reciprocal theorem suitable to the present problem is re-established
in appendix A and its content is discussed in § 2.3. Most quantities required to compute
explicitly the force contributions revealed by the reciprocal theorem were obtained in
M1 and in Magnaudet, Takagi & Legendre (2003) (hereinafter referred to as M2) by
solving the so-called ‘auxiliary’ problem with the technique of successive reflections.
The corresponding results and their range of validity are summarized in appendix B.
Then, guided by the exact force balance offered by the reciprocal theorem, we first derive
predictions for the forces acting on a particle released on the flow axis in the creeping-flow
limit (§ 3). In a second step, we incorporate inertial corrections, assuming that the
Reynolds number is small but finite and the wall–particle separation is small enough for
the wall to stand within the inner region of the disturbance (§ 4); details on the procedure
used to compute these corrections are provided in appendix D. Predictions for the particle
wall-normal slip velocity based on the purely viscous force balance and on the improved
version incorporating inertial corrections are compared with results from fully resolved
axisymmetric simulations in §§ 3.2 and 4.4, respectively. Technical details about these
simulations are given in appendix C. Finally we consider the more general configuration
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Near-wall forces on a particle in a stagnation-point flow

where the particle is released at an arbitrary radial position from the stagnation streamline.
This configuration, in which the radial and wall-normal particle positions vary over time,
represents a fairly general near-wall situation. Indeed, the carrying flow gradually evolves
from a pure wall-normal straining motion when the particle stands on the axis of the
HH flow, to a pure wall-parallel shear flow when it stands a large distance from the
axis. We show that the carrying flow within the boundary layer then comprises a radial
shear component producing wall-normal and radial lift contributions, and establish the
corresponding force balances on the particle (§ 5). The main findings of the paper are
summarized in § 6.

2. Preliminary steps

2.1. Definitions and scaling
A Newtonian fluid with uniform density ρ and kinematic viscosity ν is bounded by
a flat wall located in the (e1, e2) plane. The fluid flows towards the wall in the form
of an axisymmetric linear straining flow (so-called biaxial straining flow) with a radial
(respectively axial) strain rate B (respectively −2B). As this inviscid solution does not
satisfy the no-slip condition at the wall, a boundary layer with characteristic thickness
δ = (ν/B)1/2 exists along the wall. We consider a neutrally buoyant spherical particle
with radius a standing on the axis of the straining flow and entrained by the fluid towards
the wall. At time T , the gap between the particle and the wall is h(T), so that the distance
separating the particle centre from the wall is �(T) = h(T) + a (see figure 1). We make
use of a coordinate system X = (X1, X2, X3) translating with the particle and having
its origin at its centre. Then we normalize distances by the particle radius, a, whereas
time is normalized by a characteristic time scale, τc, to be defined later. Velocities are
normalized by the unknown slip velocity between the particle and fluid, Vc, so that the
characteristic Reynolds number is Re = aVc/ν, the dimensionless strain rate is α = aB/Vc
(hence the product αRe is the strain-based Reynolds number), and forces are normalized
by ρνaVc. Beyond the boundary layer, the local fluid velocity with respect to the wall is,
in dimensionless form,

U0(x, t) ≈ U0(x = 0, t) + α(x − 3x3e3), (2.1)

where x = (x1, x2, x3) = a−1(X1, X2, X3) denotes the dimensionless local position with
respect to the current position of the particle centre, t = T/τc is the dimensionless time and
e3 is the unit normal to the wall directed into the fluid. In the momentum balance, the above
normalization implies that the advective acceleration is of O(Re) compared to the viscous
term. Similarly, the temporal acceleration is of O(ReSt), with St = a/Vcτc the Strouhal
number comparing the advective time scale a/Vc to the characteristic time τc of the flow.
In the specific problem considered here, apart from the possible transient following the
release of the particle in the flow, unsteadiness arises because of the non-uniformity of the
carrying flow, which transforms into a time-varying flow in the particle reference frame.
It is therefore relevant to select τc = B−1 as the characteristic time scale, which implies
St ≡ α. This is why, compared to viscous effects, time-rate-of-change terms are of
O(αRe).

2.2. A rough model for the boundary-layer flow
The viscous axisymmetric stagnation-point flow problem is governed by a third-order
differential equation supplemented by suitable boundary conditions (Homann 1936). Its
exact self-similar solution cannot be obtained in closed form and must be determined
numerically. To keep the problem tractable analytically, a simple algebraic approximation
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X3
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�(T )δ
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X1

X

Figure 1. Sketch of the flow configuration. The particle radius a, wall–particle separation, �, and
boundary-layer characteristic thickness, δ, yield the dimensionless length ratios κ = a/�, Δ = δ/a and
Λ = δ/kδ� used throughout the paper (the boundary-layer shape parameter kδ is defined in § 2.2).

of this solution is desirable. Rather than trying to fit the full numerical solution with
detailed quadratures, we sought a straightforward algebraic divergence-free expression
of the velocity field satisfying the no-slip condition at the wall and tending toward (2.1)
at large distances from it, with a thickness of the transition layer independent from the
particle size. Defining the inverse of the dimensionless separation, κ(t) = a/�(t), we found
the simplest base flow satisfying these requirements to be

U0(x, t) = U0(x = 0, t)

+ α

{
(x‖ − 2x3e3) − x‖

(1 + Kδ(κ−1 + x3))2 − 2K−1
δ e3

1 + Kδ(κ−1 + x3)

}
, (2.2)

with x‖ = x1e1 + x2e2 and Kδ = kδ(αRe)1/2, kδ denoting an adjustable shape parameter
to be discussed below. The first term within braces is the linear straining flow considered in
(2.1), while the other two contributions represent a rough model of the flow modification
within the boundary layer. In the reference frame translating with the particle, the wall
is located at x3 = −κ−1(t). Therefore the no-slip condition U0(x‖, x3 = −κ−1, t) = 0
implies that the fluid velocity at the current position of the particle centre is U0(x =
0, t) = 2α(K−1

δ − κ−1)e3.
Since αRe = a2B/ν ≡ a2/δ2, the dimensionless characteristic boundary-layer thickness

Δ obeys the relation Δ = (αRe)−1/2, which implies Kδ = kδΔ
−1. Hence the second

term within curly braces in (2.2) reduces to −x‖(1 + kδ)
−2 when the particle stands a

distance κ−1 = Δ from the wall. With kδ = 2, the tangential velocity αx‖(1 − (1 + kδ)
−2)

reaches approximately 90 % of its free-stream value at this position, a percentage that
increases to 98 % for κ−1 = 3Δ. These features are in good agreement with the actual
velocity profile of the HH flow displayed in figure 2 of Li et al. (2020). Thus (2.2)
with kδ ≈ 2 is expected to represent well the variation of the carrying flow in the part
of the boundary layer close to its outer edge. However, the approximate base flow must
also correctly estimate the curvature C = ∂2(U0 · e3)/∂x2

3 of the normal velocity U0 · e3
in the limit x3 → −1/κ , since this curvature governs the variation of all three velocity
components within the inner part of the boundary layer, say for 0 ≤ x3 + 1/κ � Δ. In
this limit, the velocity field (2.2) reduces to the nearly parallel distribution U0(x, t) ≈
2Kδα(κ−1 + x3){x‖ − (κ−1 + x3)e3}, so that (2.2) predicts C ≈ −4Kδα = −4kδα/Δ.
Figure 2 shows how this model approaches the variation of U0 · e3 encountered near
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2.0

1.5

1.0
(x

3
+

1
/k

)/
Δ

0.5

0 0.5 1.0 1.5

–U0   e3/αΔ

Figure 2. Near-wall profile of the wall-normal velocity in the base flow; the velocity and distance to the
wall are normalized using boundary-layer quantities, i.e. Bδ/Vc = αΔ and δ/a = Δ, respectively. Blue line,
theoretical solution (Homann 1936); dotted line, numerical solution (Li et al. 2020); red and green lines, model
(2.2) with kδ = 2 and kδ = 1, respectively.

the wall in the actual HH flow. It turns out that the above value kδ = 2 significantly
over-estimates C, hence −U0 · e3, throughout this region and even beyond. A much
better agreement with the actual profile is obtained with kδ = 1. Nevertheless, with this
lower kδ , the tangential velocity reaches 98 % of its free-stream value only for κ−1 =
6Δ. Hence it appears that a single value of kδ does not allow (2.2) to fit closely the
actual near-wall flow throughout the boundary layer. This is not unexpected since the
velocity field in (2.2) is not an exact solution of the Navier–Stokes equation. Indeed,
the corresponding vorticity, ωδ(x) = −2αKδ(x2e1 − x1e2)(1 + Kδ(κ

−1 + x3))
−3, does

not satisfy the vorticity transport equation, except in the region closest to the wall
(κ−1 + x3 � 1). Nevertheless, since the influence of boundary-layer effects on the particle
dynamics is expected to be large essentially within the O(Δ)-thick region next to the wall,
it is likely that kδ = 1 is the optimal choice to be used in conjunction with the simple
model (2.2). Comparisons of slip velocities predicted by the present theory with results
of fully resolved simulations will later confirm this conclusion (see figure 3b). However,
to keep the results more general, kδ will be left unspecified throughout the developments
performed in the next sections.

Returning to (2.2) and defining

U0
0(t) = U0(x = 0, t) and Λ(t) = κ(t)

Kδ

= κ(t)Δ
kδ

, (2.3a,b)

the carrying flow close to the particle (formally within the region |x3| � (1 + Λ)/κ) may
be expanded in the form

U0(x, t) = U0
0(t) + αb(t)(x − 3x3e3) + αc(t)x3(x − 2x3e3) + · · · , (2.4)

with

U0
0(t) = −2α

1
κ(t)(1 + Λ(t))

e3, αb(t) = α
1 + 2Λ(t)

(1 + Λ(t))2 , αc(t) = 2ακ(t)
Λ2(t)

(1 + Λ(t))3 .

(2.5a–c)

The inviscid base flow (2.1) is recovered in the limit Λ → 0, for which αb → α and
αc → 0. For finite Λ, the leading influence of the boundary layer is to reduce the
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effective strain rate at the position of the particle to an O((1 + 2Λ)/(1 + Λ)2)-fraction
of its free-stream value, and to introduce a quadratic component of the flow with an
O(κΛ2/(1 + Λ)3)-magnitude. The quantity Λ−1 = kδ(κΔ)−1 may be thought of as the
distance separating the particle from the wall normalized by the effective boundary-layer
thickness 6Δ/kδ , the distance to the wall at which the tangential velocity reaches 98 % of
its free-stream value. For reasons to be discussed later, the asymptotic approach developed
in the next sections will be restricted to particles much smaller than the boundary-layer
thickness, which implies Δ � 1. For such particles, Λ varies from near-zero values
when the particle is far from the boundary layer (κ → 0) to large O(Δ)-values (since
1 � kδ � 2) when it gets very close to the wall.

2.3. Reciprocal theorem
Forces acting on a spherical buoyant drop with an arbitrary viscosity immersed in a linear
flow bounded by a single flat wall and translating with velocity V in an arbitrary direction
with respect to that wall were considered in M1. In a preliminary step, a general expression
for the force balance, valid whatever the magnitude of unsteadiness and inertia effects,
was obtained by making use of the reciprocal theorem. It is straightforward to extend this
force balance to the quadratic flow (2.4), and consider the particular case of a neutrally
buoyant rigid particle. For the sake of self-consistency, the main steps of the derivation
are provided in appendix A. As is well known, evaluating wall-normal forces with the
help of the reciprocal theorem requires the determination of the solution of the ‘auxiliary’
problem corresponding to a spherical particle translating perpendicularly to the wall with
unit velocity in a fluid at rest. Let Û and Σ̂ be the fluid velocity and stress fields associated
with this problem, respectively. Then let u(x, t) and V S0(t) = V (t) − U0

0(t) be the velocity
disturbance and time-dependent slip velocity between the particle and fluid involved in the
actual (‘direct’) problem, respectively.

Using the scalings established in § 2.1, the derivation in appendix A provides the
exact dimensionless force balance on a rigid neutrally buoyant spherical particle moving
perpendicular to the wall in the form (A13). This result being valid for an arbitrary carrying
flow, the force balance in a quadratic flow such as that defined by (2.4) becomes

Re
(

4
3
πα

dV
dt

−
∫
VA

DU0

Dt
dV

)
· e3 = F̂ D · V S0 − T̂ D : ∇0U0 − 1

2
ŜD

...∇0∇U0

− Re
∫
V
(Û + e3) ·

(
α

∂u
∂t

+ u · ∇U0 + (U0 − U0
0) · ∇u + (u − V S0) · ∇u

)
dV,

(2.6)

where VA and V refer to the volume occupied by the particle and the fluid,
respectively, and F̂ D = ∫

A Σ̂ · n dA is the drag force on the particle in the auxiliary
problem, n denoting the unit normal to the particle surface A directed into the fluid.
The gradient ∇0U0 = ∇U0(x = 0) = αb(I − 3e3e3) and Hessian ∇0∇U0 = ∇(∇U0)
(x = 0) = αce3(I − 2e3e3) of the undisturbed velocity (2.4) at the centre of the particle
being non-zero, they provide additional contributions to the force through the first- and
second-order moments of the surface stress, T̂ D = ∫

A xΣ̂ · n dA and ŜD = ∫
A xxΣ̂ ·

n dA, with x the local position with respect to the particle centre and I the Kronecker
delta. In (2.6), d/dt is the time derivative following the particle motion, while DU0/Dt
is the acceleration of the undisturbed carrying flow. In the reference frame translating
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Near-wall forces on a particle in a stagnation-point flow

with the particle, this acceleration reads DU0/Dt = αdU0/dt + (U0 − V ) · ∇U0, the
α-pre-factor resulting from the scaling of unsteady effects as discussed in § 2.1.

Beyond the boundary layer, the carrying flow is linear, implying ∇0∇U0 = 0 and
making the undisturbed fluid acceleration uniform. Hence the left-hand side of (2.6)
is proportional to the relative acceleration α dV/dt − DU0/Dt. Since αb = α, ∇U0 =
α(I − 3e3e3) is of O(α) there, and all terms in (2.6) involving the fluid and particle
accelerations are of O(αRe). The left-hand side of (2.6) then yields a net inertial force
F 0 on the particle

F 0 · e3 = 4
3
παRe

(
dV S0

dt
− 2V S0

)
· e3. (2.7)

Within the boundary layer, the local strain rates αb(t) and αc(t) in (2.4) vary with the
position of the particle with respect to the wall. Then an additional force proportional to
αc(t) takes place, owing to the −1

2 ŜD
...∇0∇U0 contribution in the right-hand side of (2.6).

Moreover, the body force
∫
VA(DU0/Dt) dV includes quadratic corrections proportional to

dαc/dt and αb(t)αc(t) which modify (2.7) into

F 0 · e3 = 4
3
πRe

{(
α

dV S0

dt
− 2αbV S0

)
· e3 − 1

5

(
6αbαc − dαc

dt

)}
. (2.8)

2.4. Solving the auxiliary problem
To make practical use of (2.6), a key step is to solve the auxiliary problem. An exact
solution of this problem based on bipolar coordinates, valid until the particle touches
the wall, was derived independently by Brenner (1961) and Maude (1961). Nevertheless
making use of the corresponding solution to compute inertial terms involved on the
right-hand side of (2.6) is non-trivial. A more tractable approach consists in assuming
formally that the separation between the particle and the wall is large and seeking the
solution in the form of a series of ‘reflections’ of the fundamental solution corresponding
to a particle translating in an unbounded fluid. To this end, it is customary to expand
the solution with respect to the small parameter κ = a/� = (1 + ε)−1, where ε = h/a is
the dimensionless gap. An approximate solution truncated at O(κ4) was obtained in M1
and M2 using this technique. The main steps involved in the elaboration of this solution
are summarized in appendix B, together with the explicit expressions for F̂ D, T̂ D and
ŜD required to evaluate the first three contributions on the right-hand side of (2.6). This
appendix also discusses the limit of validity of this approximate solution, determined by
comparing its predictions for the drag force with exact solutions and computational results.
The conclusion is that this truncated solution is valid approximately up to κ = 0.5, i.e.
down to ε ≈ 1. Clearly, lubrication effects that take place when κ → 1 (ε → 0) cannot be
captured and stay beyond the capabilities of the present asymptotic theory.

3. Zero-Reynolds-number approximation

We now assume that inertia effects are small, i.e. Re � 1 and αRe � 1. Actually, since the
particle is considered to be neutrally buoyant, the dimensional slip velocity Vc is expected
to be much smaller than the strain-based velocity Ba, so that α is large. Hence the previous
two conditions may be ordered in the form

Re � αRe � 1. (3.1)

However, αRe = a2B/ν and Bδ2/ν = 1 by definition, so that the dimensionless
characteristic boundary-layer thickness Δ = δ/a is such that Δ = (αRe)−1/2. Hence (3.1)
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may be rewritten in the form

Re � Δ−2 � 1. (3.2)

This condition implies that for the strain Reynolds number αRe to be small, the particle
must be much smaller than the boundary layer thickness. This is why only ‘small’
particles satisfying this condition fall into the field of application of the asymptotic theory
developed in the rest of this paper.

3.1. Wall- and curvature-induced Faxén forces
In this section we totally disregard inertial effects, which in particular implies that the
contributions of the volume integrals on the left- and right-hand sides of (2.6) are
neglected. The total force acting on the particle is then merely the sum of the contributions
resulting from the slip velocity V S0, and the successive gradients of the carrying flow at
the position of the particle, ∇0U0 and ∇0∇U0.

Inserting the explicit expression for T̂ D provided by (B2) in (2.6), with ∇0U0 derived
from (2.4), reveals that in the present axisymmetric straining flow the force moment
T̂ D = ∫

A x(Σ̂ · er) dS yields a net force on the particle

F F · e3 = 45
4 παbκ

2(1 + 9
8κ + · · · ). (3.3)

This force tends to repel the particle from the wall, i.e. to make it lag behind the impinging
straining flow (2.1). With reference to the well-known Faxén force resulting from the
inhomogeneity of the undisturbed velocity field in quadratic flows, this contribution may
be thought of as a wall-induced Faxén force. Its origin is made clear by considering
the fundamental solution of the ‘direct’ problem in the unbounded case. As the particle
is neutrally buoyant, this solution is merely the sum of a stresslet and an irrotational
quadrupole. Since the disturbance induced by the stresslet decays as r−2, with r = ‖x‖
the distance to the particle centre, its reflection on the wall induces a velocity correction
proportional to αbκ

2e3 in the vicinity of the particle, yielding an O(κ2)-repelling force.
Rallabandi et al. (2017) made use of bipolar coordinates to evaluate the drag force acting
on a spherical particle translating perpendicularly to a curved wall along the axis of an
arbitrary non-uniform axisymmetric flow. They found that the linear variation of the flow
induces a normal force, say F RA · e3, which in the present notations reads −6πBe3 ·
∇0U0 · e3. In the limit of large gaps and weak wall curvature, B → 15

16ε−2 (their (5.4a)).
Since κ ≈ ε−1 in that limit and e3 · ∇0U0 = −2αbe3 in the present flow, their result may
be re-written in the form F RA · e3 → 45

4 πκ2αb in this specific situation, which is exactly
the leading-order contribution in (3.3). For ε = 1 (κ = 1/2), the O(κ3)-approximation
of F F provided by (3.3) and the exact solution of Rallabandi et al. (2017) differ by less
than 13 %.

Evaluating now the contribution of the quadratic flow component ∇0∇U0 in (2.6) with
the aid of (B3), we find that the corresponding force is

F Fδ · e3 = π
(
1 + 9

8κ + 81
64κ2 + 217

512κ3)(∇2)0U0 · e3 + 15
8 πκ3e3

· ∇0(e3 · ∇U0) · e3 + O(κ4), (3.4)

where (∇2)0U0 denotes the Laplacian of the carrying velocity field at the position
of the particle centre. The corresponding term in (3.4) is the classical Faxén force
originating in the curvature of the carrying flow. In the present context, this force is
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Near-wall forces on a particle in a stagnation-point flow

zero when the particle stands in the outer flow region, but increases as it approaches
the wall once it is immersed within the boundary layer. A similar force component was
computed by Rallabandi et al. (2017) who, in present notations, wrote it in the form
3πD(∇2)0U0 · e3. Figure 3 in their paper indicates that D → 1/3 for κ → 0 and increases
to 0.65 for κ = 1/2. The prediction (3.4) fully agrees with this variation, with less than
1 % difference for κ = 1/2.

The contribution proportional to ∇0(e3 · ∇U0) · e3 in (3.4) results from the anisotropy
introduced by the wall at O(κ3) in the solution of the auxiliary problem (see the
discussion in appendix B). The force resulting from this contribution was also computed
by Rallabandi et al. (2017) (C-term in their (4.12) and figure 3). In the present context, the
quadratic velocity component in (2.4) is of O(αc), hence of O(κ) for a given Λ according
to (2.5a–c), so that the O(κ3)-terms in (3.4) have to be neglected to remain consistent with
the general O(κ4)-truncation discussed in § 2.4. With U0 given by (2.4), (3.4) then yields

F Fδ · e3 ≈ −2π
(
1 + 9

8κ + 81
64κ2)αc. (3.5)

Finally, taking into account (B1), (3.3) and (3.5) and the definitions of αb and αc in
(2.5a–c), the zero-Re force balance resulting from (2.6) is found to be

24
(

1 + 9
8
κ + · · ·

)
V S0 · e3 ≈ ακ

{
45

1 + 2Λ

(1 + Λ)2

(
1 + 9

8
κ + · · ·

)
κ

− 16
(

1 + 9
8
κ + · · ·

)
Λ2

(1 + Λ)3

}
. (3.6)

The wall-induced force (3.3) resulting from the gradients of the carrying flow is
responsible for the first contribution within the curly brackets. It tends to produce a positive
slip velocity growing quadratically as the separation decreases. The curvature-induced
Faxén force (second term within the curly brackets) acts to reduce this positive
slip. However, the resulting behaviour is not entirely intuitive. In the limit of large
separations, i.e. Λ → 0, the right-hand side of (3.6) is positive only if κ � 45

16 k2
δΔ

−2(1 −
135
16 kδΔ

−1)−1. So, at a given separation such that κ � Δ−1, only sufficiently large
particles experience a positive slip. For instance, with kδ = 1, the slip of a particle 20
times smaller than the boundary-layer characteristic thickness (i.e. such that Δ = 20) is
found to be positive for κ � 0.014 but is then negative until κ ≈ 0.089 before it becomes
positive again for smaller separations. Very close to the wall, Λ is large for small particles.
Therefore both terms on the right-hand side of (3.6) behave as 1/Λ in that limit but the
large pre-factor of the first of them ensures that the positive driving force dominates.
For instance, still with kδ = 1, Λ = 2.5 (respectively 5) when κ = 1/2 (respectively 1)
for particles corresponding to Δ = 5, so that the positive force is approximately 4.5
(respectively 7.5) times larger than the negative one. That the slip velocity predicted
by (3.6) is positive whatever the particle size in the limit κ → 1 is of physical interest,
although the present theory is not expected to apply in that limit. Since the fluid velocity
is still negative (i.e. directed towards the wall) at the position of the particle centre, but
the velocity of the particle has to vanish when the latter touches the wall, the actual
slip velocity is undoubtedly positive. Obviously, lubrication effects not accounted for in
the present theory contribute to slow down the particle as it gets very close to the wall
(Li et al. 2020). Nevertheless, what (3.6) reveals is that the longer-range hydrodynamic
forces considered here contribute to this slowing down, as they force the slip velocity to
be positive and to increase with κ for κ � 1.
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Figure 3. Slip velocity profile as a function of the gap ε = κ−1 − 1 for a particle with relative radius
Δ−1 = 0.3 compared to the characteristic boundary-layer thickness. (a) Comparison between simulation
results (green dashed line) and predictions of the GMR equation using the undisturbed flow (2.2) with kδ = 1
(green line); (b) comparison between simulation results (green dashed line) and predictions of (3.6) with kδ = 2
(black line) and kδ = 1 (green line).

3.2. Comparison with numerical results
Li et al. (2020) reported results of fully resolved numerical simulations carried out with
particles released from rest on the stagnation streamline of a HH flow. Although analyses
in their paper focus on ‘large’ particles, some of which with radii of the order of the total
boundary-layer total thickness (up to Δ−1 = 3.2), other simulations were run with smaller
particles, corresponding to relative sizes Δ−1 down to 0.1 (Q. Li, private communication
2019). Technical details about these simulations are provided in appendix C. Here, we
select some of these results obtained with ‘small’ particles to discuss several features of
the near-wall variations of the slip velocity V S0 with the position of the particle, and
compare present zero-Reynolds-number predictions (which are in principle only valid for
Δ−1 � 1) with those of the full Navier–Stokes equations. In figures 3–5, slip profiles
are plotted vs the dimensionless gap ε = κ−1 − 1 to make the physical interpretation
easier.

First of all, figure 3(a) compares the numerical slip velocity profile typical of a small
particle (with a radius ten times smaller than the total boundary-layer thickness 3Δ) with
the prediction of the GMR model. In this case, the strain Reynolds number is 0.09 and
the maximum slip-based Reynolds number is less than 0.03, so that inertial effects are
expected to be negligibly small throughout the particle trajectory. Hence the GMR model
(e.g. (48) in Maxey & Riley (1983)) reduces to a balance between the viscous drag linearly
proportional to V S0 and the curvature-induced Faxén force proportional to (∇2)0U0, both
of which evaluated as if the particle motion were taking place in an unbounded fluid. In
the notations of (2.6), this balance results in

F̂∞
D · V S0 ≈ 1

2 Ŝ∞
D

...∇0(∇U0), (3.7)

with, following (B1) and (B3), F̂∞
D ≡ F̂ D(κ → 0) = −6πe3 and Ŝ∞

D ≡ ŜD(κ → 0) =
−2πIe3. According to (2.4), ∇0(∇U0) = (∇2)0U0 = −2αce3 is negative throughout the
near-wall region and increases as the wall is approached through the rise of αc. Hence (3.7)
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Figure 4. Slip velocity in the near-wall region for particles with increasing relative size Δ−1 = 0.3
(green lines), 0.4 (purple lines), 0.5 (black lines). Dashed lines show simulation results; solid lines show
creeping-flow prediction (3.6) using the undisturbed flow (2.2) with kδ = 1.

predicts that the slip velocity is negative (i.e. the particle leads the fluid) and increases
as the gap goes to zero. This is in contradiction with the numerical profile displayed
in figure 3(a) which shows that, starting from zero far from the wall, the slip velocity
becomes increasingly positive down to the wall.

Obviously the shortcoming of the GMR model in the present context is due to the
omission of wall interaction effects. In the present theory, when the particle stands within
the boundary layer, the magnitude of these effects is influenced by the shape parameter kδ

involved in the approximate flow model (2.4). The discussion in § 2.2 suggested that the
value kδ = 2 properly describes the outer part of the boundary layer (where the particle
stands when the separation distance is larger than Δ, i.e. ε > Δ − 1), whereas kδ = 1
much better describes the flow profile in the inner region relevant when ε � Δ − 1.
Figure 3(b) shows the predictions of (3.6) for the same small particle obtained with
these two values of kδ; particles with a smaller or larger size behave similarly. First of
all, it must be noticed that, unlike the GMR prediction in figure 3(a), both predictions
are in qualitative agreement with the numerical slip velocity profile. This emphasizes
the crucial role of the repelling wall-induced Faxén force (3.3) in the particle dynamics.
Moreover, in line with the earlier discussion in § 2.2, the figure confirms that the predicted
profile obtained with kδ = 2 agrees slightly better with numerical data for ε � 2, while a
much better agreement is obtained with kδ = 1 for ε � 1.5. Hence the latter value is to
be selected to obtain reliable predictions in the near-wall region, where the slip velocity
exhibits large variations with the distance to the wall.

Last, figure 4 compares predictions based on (3.6) (with kδ = 1) with numerical results
for three different particle sizes corresponding to Δ−1 = 0.3, 0.4 and 0.5, i.e. αRe =
0.09, 0.16 and 0.25, respectively. For each particle, the slip velocity is found to increase
sharply as the particle approaches the wall. Moreover, the larger the particle the larger V S0
is when the dimensionless gap becomes small enough, typically ε � 1.5. These trends
are well captured by the viscous prediction. However, (3.6) starts to under-predict V S0
when the gap is such that ε � Δ. More precisely, for an increasing particle size, the
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viscous theory is found to under-estimate the actual slip velocity at ε = 1 by 5 %, 17 %
and 22 %, respectively. Therefore, the larger the particle, the stronger the under-estimate
of V S0 is, a clear indication that inertial effects become responsible for an increasing
fraction of the slip velocity as the particle size increases. At smaller gaps, the smallest
particle displays a peculiar behaviour, since the slight under-estimate observed for ε � 1
almost vanishes. However, this agreement is presumably fortuitous since the asymptotic
expressions involved in (3.6) are barely accurate for such small gaps. We rather suspect that
the corresponding simulation is slightly under-resolved in this case, owing to a marginally
sufficient number of grid points per particle radius (see appendix C).

4. Leading-order inertial effects

4.1. General considerations
The above discussion sheds light on the limitations of the purely viscous force balance
(3.6) when the particle size increases and the wall is approached. To extend the validity of
the theory toward larger particles, it is mandatory to include inertial corrections. Strictly
speaking, only the limit of small-but-finite inertial effects can be tackled theoretically,
which keeps the condition (3.2) unchanged. Nevertheless, in practice one may hope the
results of such a weakly inertial theory to apply within an extended range of particle
sizes satisfying the less restrictive condition Re � Δ−2 � 1. This is the goal of the
developments summarized in the present section.

The force balance (2.6) is valid without any restriction regarding the magnitude
of inertial effects. It provides the contribution of the velocity disturbance to these
effects in the form of a volume integral over the entire flow domain. Examining the
momentum equation for the disturbance under condition (3.1) reveals that inertial terms
become comparable to viscous terms at distances of O((αRe)−1/2) from the particle.
Hence, provided the latter is close enough to the wall for the condition

κ−1 � (αRe)−1/2 ⇐⇒ κ2 � αRe, (4.1)

to be satisfied, the flow field is properly approximated by the quasi-steady Stokes solution
throughout the wall–particle gap. As recognized by Cox & Brenner (1968), this in turn
implies that in the outer region corresponding to distances r � (αRe)−1/2 from the particle
centre, the disturbance decays faster than in an unbounded domain, owing to the influence
of the ‘image’ field that cancels the disturbance at the wall. Because of this faster decay,
Cox & Brenner (1968) and Cox & Hsu (1977) showed that, within a large class of carrying
flows, including the family of quadratic flows of interest here, the leading-order inertial
corrections can be obtained through a regular perturbation procedure provided the particle
is sufficiently close to the wall for (4.1) to hold. Their argument was extended to unsteady
situations in M1. Nevertheless, second-order inertial corrections of O(Re2), O(αRe2)
and O((αRe)2) remain associated with a singular perturbation, similar to the classical
Oseen problem (Proudman & Pearson 1957). Therefore, a consistent description of
small-but-finite inertial effects may be obtained solely via a regular perturbation procedure
only if the leading-order contributions are larger than the second-order ones. Provided (3.1)
holds, all the above second-order corrections are smaller than the O(αRe)-terms involved
in the volume integral on the right-hand side of (2.6). This is why we concentrate on the
first three contributions to this volume integral in what follows.
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4.2. Effects of unsteadiness

The inertial force associated with unsteady effects, namely F U = −αRe
∫
V(Û + e3) ·

(∂u/∂t) dV in (2.6), was computed in M1 in the case where unsteadiness arises solely
through time variations of the slip velocity. As far as α does not vary (i.e. αb = α and
αc = 0 in (2.4)) this contribution does not depend on the specific spatial structure of the
carrying flow. Consequently, results derived in M1 apply directly to the present problem.
In particular, (17b) of M1 provides the e3-component of the unsteady contribution F U in
the form

F U · e3 = −9
4
παRe

(
κ−1 − 13

108
+ O(κ)

)
dV S0

dt
· e3. (4.2)

This result only holds if the condition (4.1) is satisfied, which makes the limit κ → 0
irrelevant. To understand the physical origin of this force, it is useful to evaluate its
order of magnitude at the maximum wall–particle distance for which (4.2) is valid, i.e.
κ−1 ∼ (αRe)−1/2. In this situation, the leading-order term in (4.2) is of O((αRe)1/2).
This is reminiscent of the magnitude of the ‘unsteady Oseen force’ computed by Lovalenti
& Brady (1993) in the case of a particle with a finite slip Reynolds number accelerating
or decelerating in an unbounded flow domain with the fluid at rest at infinity. Indeed,
these authors found the unsteady Oseen force to be of O((StRe)1/2). Since St ≡ α here,
the magnitude of F U predicted by (4.2) for κ−1 ∼ (αRe)−1/2 is similar to that of the
inertial force they computed. This is a strong indication that F U is not a force that
originates from the wall, but is merely what is left from the unsteady Oseen force as
the wall is approached. Starting from a magnitude of O((αRe)1/2) for large separation
distances (κ → 0), the unsteady Oseen force is gradually weakened by the wall as κ

increases and becomes of O(αRe) for small separations (κ → 1). The prediction (4.2)
expresses this near-wall variation for moderate-to-small separation distances such that
κ � (αRe)1/2. Lovalenti & Brady (1993) showed that the unsteady Oseen force primarily
results from the time variations of the wake structure due to the particle acceleration
or deceleration. Any disturbance originating in a time variation of V S0 requires a finite
time to diffuse away from the particle surface and reach the wake region. For this
reason, the expression for this force in the case of an unbounded fluid domain involves
a convolution integral. The corresponding kernel, inertial by nature, is distinct from that
associated with the Basset–Boussinesq force, which originates in the unsteady diffusion
of vorticity close to the particle. The near-wall situation considered here, combined with
the slow evolution implied by the restriction ReSt ≡ αRe � 1, drastically reduces the
above finite memory effect. Indeed, these slow variations imply that the leading-order
contribution to the disturbance u is governed by the quasi-steady Stokes equation at
distances less than (ReSt)−1/2. Since the dominant contribution to the near-wall unsteady
effects is provided by a regular perturbation procedure, only this quasi-steady disturbance
is involved, making the resulting force only dependent on the current acceleration
dV S0/dt. The same happens with the contribution due to the time rate-of-change of the
near-particle disturbance, which usually yields the Basset–Boussinesq force and is here
also encapsulated in the O(κ−1)-term of (4.2), while the added-mass contribution and
second-order corrections associated with the unsteady Oseen force form the O(κ0)-term.
Hence the entire contribution of unsteady effects at any time is expressible solely in terms
of the current acceleration dV S0/dt when the particle gets close enough to the wall and
time variations are slow enough for the condition αRe � 1 to be satisfied.

914 A18-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

39
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.398


J. Magnaudet and M. Abbas

Note that, since κ is less than 1 by definition, the κ−1-term is always dominant in (4.2).
Hence F U always tends to lower the relative acceleration dV S0/dt, just as the familiar
added-mass effect does.

When the particle stands within the boundary layer, other sources of unsteadiness arise
through the time-dependent strain rates αb(t) and αc(t). Since dκ/dt = −α−1κ2V · e3,
the definitions of αb and αc in (2.5a–c) imply that dαb/dt = 2κ(Λ2/(1 + Λ)3)V · e3 and
dαc/dt = −6κ2(Λ2/(1 + Λ)4)V · e3. To express the corresponding contributions to the
force, it is convenient to split the particle velocity in the form V = V S0 + U0

0, with U0
0

as given in (2.5a–c). Keeping in mind that αReΛ2 = k−2
δ κ2 and that Λ = O(1) for κ =

O(Δ−1), variations of αb(t) are found to contribute to generate a non-zero slip through
an O(κ2)-source term (since U0

0 ∝ κ−1), and an O(κ3)-correction to the pre-factor of
the force contribution proportional to V S0, i.e. to the drag coefficient. Variations of αc(t)
provide contributions smaller by an O(κ/(1 + Λ))-factor. Let us first consider the force
resulting from αb(t)-variations. The procedure employed to compute this contribution and
all those to come in this section is summarized in appendix D. According to (D5) and the
considerations that follow, this force is found to be

F Uδ · e3 ≈ −15
4

παRe
dαb

dt

(
1 + 9

8
κ

)
(U0

0 + V S0) · e3

≈ 15π

2k2
δ

κ2

(1 + Λ)3

{
2α

1 + Λ

(
1 + 9

8
κ

)
− κV S0 · e3

}
, (4.3)

where the second approximation is obtained by incorporating the explicit expressions for
dαb/dt and U0

0.
The source term in (4.3) (first term within braces) is positive, contributing to make

the particle lag behind the fluid. That a body translating steadily perpendicular to a wall
generates a non-zero normal force directly through the time variation of its position is not
uncommon. In particular, this is the case in the inviscid limit, where the increase of the
fluid volume entrained by the body as it gets closer to the wall results in a repulsive force,
just as in (4.3) (Milne-Thomson 1962).

At this point it is useful to compare the magnitude of the O(κ3)-terms in (4.3) with those
involved in the zero-Re approximation (3.6), keeping in mind that Λ becomes large when
κ → 1. To fix ideas, let us consider a particle 10 times smaller than the boundary-layer
thickness, i.e. Δ = 10, standing at the position corresponding to κ = 1/2. With kδ = 1
one then has Λ = 5. Consequently the ratio of the O(κ3)-source term in (4.3) to its
counterpart in the curvature-induced Faxén term in (3.6) is of O(1/Λ2(1 + Λ)) ≈ 0.007.
Similarly, the ratio of the O(κ3)-drag correction in (4.3) (second term within braces) to
the corresponding term in (3.6) is of O(1/(1 + Λ)3) ≈ 0.005. These estimates indicate
that O(κ3)-corrections weighted by a 1/Λn-factor with n ≥ 3 are negligibly small at the
present order of approximation. For this reason, such terms will be systematically dropped
in what follows, and only the leading-order O(κ2)-source term present in (4.3) will be kept
when F Uδ will be inserted in the final force balance. As mentioned above, contributions
involved in the force correction resulting from variations of αc(t) are smaller than those
induced by αb(t)-variations by an O(κ/(1 + Λ))-factor. Hence the previous argument
shows that all of them are negligible at the present order of approximation. For the same
reason, the last two terms within parentheses on the right-hand side of (2.8) also provide
a negligible contribution to the inertial force F 0.
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Near-wall forces on a particle in a stagnation-point flow

4.3. Effects of advective transport
Within the framework of the above conditions, especially (3.1), the other contributions
to be considered in the volume integral of the right-hand side of (2.6) are the advective
terms proportional to αRe, which result from the quasi-linear contribution u · ∇U0(x, t) +
(U0(x, t) − U0

0(t)) · ∇u in the disturbance momentum equation. Due to the ambient
strain, the leading-order contribution to the disturbance arises from a stresslet. For this
reason, its advective transport by the linear flow component (and vice versa) yields a
contribution of O(α2

bRe). Cox & Hsu (1977) evaluated a similar term in the case of a
uniformly sheared carrying flow, where it yields a net lift force on the particle; their
prediction was later confirmed by Cherukat & McLaughlin (1994). Although the scaling
of this force with respect to αb, Re and κ does not depend on the specific linear base flow
under consideration, the pre-factor that determines its actual strength does. To the best of
our knowledge, this contribution, say F I , has not been evaluated so far in the axisymmetric
straining flow (2.1). Based on (D6) and the considerations that follow, the final result valid
up to O(κ) is

F I · e3 ≈ (
1 + 9

8κ
)75

16πα2
bRe. (4.4)

The force F I arises due to the asymmetry created by the wall in the transport of the stresslet
by the straining flow and vice versa. In a linear shear flow, the counterpart of F I involves
a pre-factor 55

96π instead of 75
16π (Cox & Hsu 1977). Consequently, the magnitude of F I is

approximately 8.2 times larger in the present axisymmetric straining flow than in a uniform
shear with strength αb. Similar to that of F U , the above prediction for F I only holds up
to a maximum separation of O((αbRe)−1/2). For larger separations, F I must tend to zero
as κ → 0 but this decay cannot be captured by the regular expansion procedure employed
here.

Within the boundary layer, several additional contributions arise, due to the presence
of the quadratic flow component in (2.4). A detailed examination of their respective
magnitudes reveals that the largest one is provided by the transport of the leading
O(αb)-stresslet by the quadratic O(αc)-flow component and vice versa. This mechanism
results in an O(κ−1αbαcRe)-force, the formal expression of which takes the form (D7).
As outlined in appendix D, numerical evaluation of this expression and truncation
considerations based on the argument discussed at the end of § 4.2 lead to

F Iδ · e3 ≈ 85
8

αbαcReκ−1 = 85
4

α
1 + 2Λ

(1 + Λ)5 κ2, (4.5)

where the last equality results from the definitions of αb and αc in (2.5a–c) and the relation
Λ2 = κ2/(k2

δαRe).
Another inertial effect results from the transport of the Stokeslet associated with the slip

velocity by the ambient straining flow and vice versa. This advective process yields a force
whose leading-order contribution is proportional to αbReκ−1V S0. Since the zero-Re force
balance (3.6) suggests that the slip velocity is of O(κ2αb), this force correction is expected
to be of O(κα2

bRe), i.e. smaller than F I by an O(κ)-order of magnitude. Nevertheless, for
κ = O(αbRe)1/2, αbReκ−1V S0 = (αbRe)1/2V S0. Hence this effect provides a correction
to the drag which is for instance larger than the second term in the inertial force F 0 in
(2.7) and must be included for consistency. Details regarding the computation of this
contribution are also provided in appendix D (see (D8) and the comments that follow).
Its final expression is found to be

F Dα · e3 ≈ π

16
αbRe

(
45κ−1 − 1861

60

)
V S0 · e3. (4.6)
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For similar reasons, the contribution resulting from the transport of the Stokeslet
associated with the slip velocity by the quadratic flow and vice versa must
also be considered. The corresponding force is proportional to αcReκ−2V S0 ∼
(κ/k2

δ (1 + Λ)3)V S0. As outlined in appendix D, evaluating the corresponding volume
integral and truncating the result in line with the discussion in § 4.2 yields

F Dαδ · e3 ≈ 3
4
παcReκ−2

(
1 + 9

4
κ

)
V S0 · e3 = 3

2
π

κ

k2
δ (1 + Λ)3

(
1 + 9

4
κ

)
V S0 · e3.

(4.7)

It is worth noting that, although the boundary-layer contributions (4.3), (4.5) and (4.7)
are inertial by nature, the strain Reynolds number αRe no longer appears in their final
expression once U0

0, αb and αc have been replaced by their definitions as given in (2.5a–c).
This is because they are proportional to dαb/dt or αc, both of which are proportional to
κΛ2 ∝ κ3Δ2, and Δ equals (αRe)−1/2.

4.4. Final force balance
All contributions computed in §§ 4.2 and 4.3 may finally be gathered to enhance (3.6) with
effects of finite fluid inertia. The updated force balance can be expressed in the form

(F 0 − F U) · e3 − F̂ D · V S0 − (F Dα + F Dαδ) · e3 = (F F + F Fδ + F I + F Iδ + F Uδ) · e3,
(4.8)

with F 0 as given in (2.8), and F U , F Uδ , F I , F Iδ , F Dα and F Dαδ taken from (4.2)–(4.7).
We then define the ratios

AΛ = 1 + 2Λ

(1 + Λ)2 , BΛ = 1
k2
δ (1 + Λ)3

, CΛ = 1
k2
δ (1 + Λ)4

, DΛ = Λ2

(1 + Λ)3 .

(4.9a–d)

Boundary-layer effects become negligible in the double limit Λ � 1 (i.e. the separation
κ−1 is very large compared to Δ/kδ) and kδ → ∞ (i.e. the fluid layer within which the
no-slip condition at the wall significantly influences the carrying flow is much thinner
than Δ), in which case AΛ → 1 and BΛ, CΛ and DΛ → 0. Nevertheless, condition (4.1)
implies that the inertial corrections derived in §§ 4.2 and 4.3 are valid only for κ � Δ−1,
i.e. Λ � k−1

δ . Therefore predictions involving these corrections are not expected to be
relevant for small values of Λ. As already mentioned, Λ is large when κ → 1 since
we are considering small particles. Consequently all four ratios in (4.9a–d) go through
O(1)-values in some intermediate range of κ and become small in the limit κ → 1. The
final approximate force balance (4.8) takes the form

9αRe
(

κ−1 + 17
36

)
dV S0

dt
· e3 + 24

{
1 + 9

8
κ + 81

64
κ2 + 473

512
κ3 − 1

4
κ

(
1 + 9

4
κ

)
BΛ

− 15
32

αRe
(

κ−1 + 4421
2700

)
AΛ

}
V S0 · e3 ≈ α

{
κ2AΛ

(
45

(
1 + 9

8
κ

)
+ 85BΛ

)

+ 60κ2CΛ − 16κ

(
1 + 9

8
κ + 81

64
κ2

)
DΛ + 75

4
αRe

(
1 + 9

8
κ

)
A2

Λ

}
. (4.10)

Inertial forces F I and F Iδ resulting from the advective transport of the stresslet by the
linear and quadratic flow components, respectively, and F Uδ resulting from the time

914 A18-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

39
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.398


Near-wall forces on a particle in a stagnation-point flow

variation of the straining rate about the particle, all provide positive contributions to
the right-hand side of (4.10). Hence they all contribute to make the particle lag behind
the fluid (since U0

0 · e3 < 0), similar to the wall-induced Faxén force F F. Only the
curvature-induced Faxén force F Fδ tends to make the particle lead the fluid; the smaller
the particle the larger the relative influence of this force at a given distance from the
wall. Consider for instance a particle standing a distance Δ from the wall, i.e. Λ = 1.
The right-hand side of (4.10) then becomes negative only if Δ−1 � 0.037. Comparing
with the prediction provided by the zero-Re approximation (3.6) indicates that inertial
effects lower the critical size of particles for which the driving force changes sign at
this location by a factor of 1.6. Alternatively, inertial effects may be said to enhance
the positive slip between the particle and the fluid. Moreover, all inertial terms that
contribute to the BΛ- and αReAΛ-terms in the pre-factor of the V S0-term, namely
forces F Dα and F Dδ resulting from the transport of the Stokeslet by the linear and
quadratic flow components, respectively, and the advective part of the force F 0 due to
the acceleration of the undisturbed flow, decrease the drag coefficient. Hence they all tend
to enhance the slip velocity for a given value of the overall source term, reinforcing the
role of inertia in the slip increase. Incidentally, this points out to the fact that, unlike
the usual inertial increase of the drag coefficient encountered in the classical Oseen
problem (Proudman & Pearson 1957), inertial corrections in the HH flow lower the drag
coefficient.

4.5. Comparison with numerical results
Unlike the purely viscous solution (3.6), predictions involving inertial corrections are only
meaningful within a limited separation range, since (4.10) is expected to be valid only in
the near-wall region such that κ � Δ−1. Consequently, the larger the particle the smaller
the separation range over which the comparison between predictions of (4.10) and results
of fully resolved simulations is relevant. As (4.10) is a first-order differential equation
with respect to V S0, an initial condition for the slip velocity is required. If the expressions
obtained for the inertial corrections were valid up to large separations, V S0(t = 0) = 0
in the limit κ → 0 would be a natural choice. Given their limited range of validity, an
alternative is required. Without results from fully resolved simulations available, the most
obvious choice is to use the slip velocity provided by the viscous prediction (3.6) to
initialize the determination of V S0 at a position κi such that κi = O((αRe)1/2) = O(Δ−1).
Since figure 2 indicates that the carrying flow model (2.4) correctly fits the actual
HH profile with kδ = 1 up to a distance to the wall of approximately 1.5Δ, we select
κi = (1.5Δ)−1, i.e. εi = 3Δ/2 − 1, a position at which the creeping-flow approximation
(3.6) and the fully resolved simulation predict close values of the slip velocity. Based
on this initialization protocol, figure 5(a) compares predictions of (4.10) with simulation
results for the three particles already considered in figure 4.

In all cases, inertial effects are seen to increase the slip velocity at a given separation
distance (compare the predictions corresponding to the thin and thick solid lines for each
particle). This is because all inertial terms on the right-hand side of (4.10) are positive,
while all inertial corrections to the drag coefficient in the left-hand side are negative.
Moreover, since αRe = Δ−2 and all coefficients AΛ − DΛ are decreasing functions of
Λ (hence of Δ), increasing the particle size, i.e. Δ−1, makes all inertial terms on the
right-hand side increase at a given κ . Because of this, the larger the particle the stronger
the inertial correction to the slip at a given distance from the wall is. Both features act
to compensate for the deficiencies of the purely viscous force balance (3.6) analysed in
§ 3.2. This makes the weakly inertial prediction based on (4.10) significantly closer to
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Figure 5. Predictions for the slip velocity in the near-wall region for particles with increasing relative size
Δ−1 = 0.3 (green lines), 0.4 (purple lines), 0.5 (black lines); all predictions are based on the undisturbed flow
(2.2) with kδ = 1. (a) initial gap εi = 3Δ/2 − 1; (b) εi = Δ − 1. Dashed lines show simulation results; thick
solid lines show finite-Re prediction from (4.10); thin solid lines in (a) show creeping-flow prediction (3.6) (the
thick purple line and the thin black line almost overlap).

the numerical solution for moderate-to-small gaps (the agreement deteriorates at small
gaps for the smallest particle, owing to the peculiar behaviour of the numerical prediction
mentioned in § 3.2).

Nevertheless, a closer look at the slip velocity profiles in figure 5(a) shows that the slope
d(V S0 · e3)/dκ is under-estimated for ε � εi, which maintains the predicted values of V S0
slightly below those found in the simulations down to ε ≈ εi/3. To get some insight into
the origin of this shortcoming, it is of interest to consider the predictions of (4.10) obtained
by selecting a smaller initial separation, κi = Δ−1, i.e. εi = Δ − 1. Since the viscous
force balance (3.6) significantly under-estimates the actual slip velocity at this smaller
separation (see figure 4), we employed the value V S0(εi = Δ − 1) provided by the fully
resolved simulations as initial condition in this case. As figure 5(b) shows, the prediction
resulting from (4.10) now closely agrees with the simulation results for ε ≤ εi, especially
for the largest two particles. The agreement extends down to a dimensionless gap ε ≈ 0.3
(κ ≈ 3/4), significantly beyond the expected limit of validity (ε ≈ 1) of the truncated
asymptotic expression of the ‘auxiliary’ solution. The reason why the slope d(V S0 · e3)/dκ

is correctly predicted when εi = Δ − 1 but is under-estimated when εi = 3Δ/2 − 1 is
readily identified in (4.10), keeping in mind that the term that absorbs the local variations
of V S0 is the unsteady force proportional to dV S0/dt. As discussed in § 4.2, the expression
(4.2) for this contribution is dominated by a term proportional to κ−1. The growth of this
term with the separation distance is only correct as far as the wall stands in the inner
region of the disturbance. For larger separations, it becomes unphysical, since the entire
contribution must tend toward the finite ‘unsteady Oseen force’ computed by Lovalenti &
Brady (1993) when κ → 0. This unphysical growth makes this force over-estimated for
κ � (αRe)1/2 and is responsible for the slight under-estimate of V S0 noticed for ε � εi
in figure 5(a). This analysis leads to the conclusion that the technical bottleneck that
restricts most the validity of (4.10) towards larger separations is the limited range of
validity of (4.2). This calls for a specific study aimed at deriving the proper expression
for the unsteady Oseen force in the case where the particle is already influenced by the
wall but the latter stands in the outer region of the disturbance.
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Near-wall forces on a particle in a stagnation-point flow

κ–1(t)

V(t)

e1

e2

e3VS0(t)

ρ0(t)

Figure 6. Sketch of the configuration with the particle released some distance from the axis of the HH flow.

5. A particle released off axis

5.1. Preliminaries
Up to now, we constrained the particle to move along the symmetry axis of the HH flow.
Although the simulations of Li et al. (2020) only addressed this case, it represents a quite
specific situation. The techniques used to obtain the various wall-normal forces in §§ 3
and 4 may also be applied to predict the wall-parallel slip velocity component and the
modifications of the slip wall-normal component when the particle stands an arbitrary
time-dependent radial distance from the axis, say ρ0(t), as sketched in figure 6. In order
for the flow to satisfy the no-slip boundary condition at the wall whatever x0‖ = ρ0(t)e1,
the radial position x‖ involved in (2.2) has to be changed into x‖ + x0‖ (hence x into
x + x0‖). With this transformation, the undisturbed flow field in the vicinity of the particle
(|x3| � (1 + Λ)/κ) takes the form

U0(x, t) = Uρ0
0 (t) + {αb(t)(x − 3x3e3) + αc(t)x3(x − 2x3e3)}

+ ρ0(t){αc(t)x3 + αd(t)x2
3}e1 + · · · , (5.1)

with

Uρ0
0 (t) = U0

0(t) + αbρ0e1 and αd(t) = −3ακ2 Λ2

(1 + Λ)4 , (5.2a,b)

with αb(t), αc(t) and U0
0(t) being still as given in (2.5a–c). Compared to (2.4), (5.1) reveals

that, at a radial position ρ0 from the axis, the undisturbed flow comprises an additional
shear component proportional to ρ0(t)αc(t), a parabolic component proportional to
ρ0(t)αd(t) etc., all of which correspond to a radial flow whose intensity increases linearly
with ρ0. As time elapses, the particle is transported away from the axis ρ0 = 0 by the
carrying flow. Therefore ρ0(t) increases, which makes the radial component in (5.1)
increase at the expanse of the axial wall-normal component. In other words, the flow in
the vicinity of the particle looks more and more like a wall-parallel shear flow.

Let us provisionally consider that the particle stands beyond the boundary layer.
Compared to the axisymmetric configuration contemplated so far, there is no change in
the strain-induced disturbance, since the straining motion is identical to that in (2.1). In
particular, the disturbance does not depend on the radial position ρ0. Consequently, all
forces which only depend on the strain rate and distance to the wall are unchanged. This
remark enables us to conclude that no source term for the parallel slip component can
exist as far as the particle has not entered the boundary layer, even though inertial effects
are taken into account. Indeed, the two contributions F F in (3.3) and F I in (4.4) result
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from the interaction of the ρ0-independent stresslet with the wall, so that any non-zero
e1-component of one of these forces would be ρ0-independent. Since no radial force
component can exist when the particle stands on the flow axis, such a component remains
null whatever ρ0.

To obtain the various contributions to the radial force within the boundary layer, we
need to project the reciprocal theorem onto the e1-direction. The result is similar to (2.6),
except that the unit vector e3 has to be replaced with e1 everywhere, and the relevant
auxiliary problem now corresponds to a sphere steadily translating with unit velocity in
the e1-direction. Solving this problem with the techniques described in appendix B yields
an approximation of the corresponding velocity field, Û‖, accurate up to terms of O(κ3).
The surface quantities F̂ D‖, T̂ D‖ and ŜD‖ which are the counterparts of F̂ D, T̂ D and ŜD
in (2.6) may then be deduced; the corresponding evaluations result in (B4)–(B6). Last, the
radial component of the inertial body force due to the relative acceleration between the
particle and the undisturbed flow is

F 0 · e1 = 4
3
πRe

{(
α

dV S0

dt
+ αbV S0

)
· e1+ρ0αcV S0 · e3 − 1

5

(
d(ρ0αd)

dt
− 3ρ0αbαd

)}
,

(5.3)

with V S0(t) = V (t) − Uρ0
0 (t).

5.2. Stokes-flow approximation
Applying (B5) and (B6) to (5.1), the e1-projection of the reciprocal theorem indicates that
the ρ0-dependent radial component of the carrying flow generates a non-zero force such
that

F Fδ · e1 ≈ −3
8
παcρ0κ

{
5κ + 8

1 + Λ

(
1 + 9

16
κ

)}
. (5.4)

Both terms on the right-hand side of (5.4) provide a negative contribution to F Fδ , making
the particle lag behind the fluid in the e1-direction. Balancing (5.4) with the drag force
−F̂ D‖ · V S0 evaluated with the aid of (B4), the creeping-flow approximation indicates
that, for small κ , the radial slip velocity is primarily due to the first term on the right-hand
side of (5.4). This yields

V S0 · e1 ≈ −αρ0κ
2 Λ2

(1 + Λ)4 . (5.5)

Since Λ = κΔ/kδ , the radial slip in (5.5), which originates from the curvature-induced
Faxén force, is of O(κ4Δ2) compared to the radial component of the primary straining
flow. As the particle gets closer to the wall, Λ becomes large. There, the dominant
contribution to the right-hand side of (5.4) is provided by the second term, i.e. the
wall-induced Faxén force associated with the radial shear flow ρ0αcx3e1 in (5.1), and the
relative slip becomes of O(κ2Δ−1).

5.3. Inertial corrections
Similar to the route followed in § 4, we first compute inertial forces due to unsteadiness
and then consider advective contributions.
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Near-wall forces on a particle in a stagnation-point flow

First of all, the radial component of the force F U due to possible time variations in the
radial slip velocity was computed in M1 and was found to be

F U · e1 = −9
4
παRe

(
3κ−1 + 217

216
+ O(κ)

)
dV S0

dt
· e1. (5.6)

This result still applies here, as it is independent of the background flow.
The argument provided in § 5.1 indicates that none of the inertial contributions resulting

from the axisymmetric component of the carrying flow in (5.1) can have a non-zero
radial component. Hence, only the radial flow ρ0(t){αc(t)x3 + αd(t)x2

3}e1 in (5.1) may
provide non-zero radial forces arising from unsteadiness or advective transport. Moreover,
contributions due to the parabolic component ρ0αdx2

3e1 are smaller by a factor of
O(κ(1 + Λ)−1) than those due to the shear component ρ0αcx3e1. Consequently, following
the argument discussed in § 4.2, only the latter needs to be considered at the present order
of approximation. To compute the corresponding inertial corrections, the relevant shear
Reynolds number has to be small. As the strength of the shear in (5.1) is ρ0αc and the
magnitude of αc cannot exceed values of O(α), this condition implies ρ0αRe � 1, i.e.

ρ0 � Δ2. (5.7)

Due to the presence of the radial shear component in the carrying flow, the disturbance
now comprises a stresslet and an irrotational quadrupole which are not present when the
particle stands on the axis of the HH flow. Close to the particle, the velocity disturbance
induced by this stresslet, say ustr‖, has the form x1x3x/r5 while that induced by the stresslet
associated with the primary axisymmetric strain, say ustr⊥, has the form x/r3 − 3(x2

3x/r5).
Similar to (4.3), the evolution of the radial and wall-normal particle positions result in

a net force, as it makes the strength of the ustr‖-contribution vary over time through the
time variations of ρ0αc. Following the results and approximations discussed at the end of
appendix D, the leading-order contribution to this force is found to be

F Uδ · e1 ≈ 33
4

παρ0κ
3 7 + 2Λ

k2
δ (1 + Λ)5

. (5.8)

Time variations of ρ0αd induce a qualitatively similar contribution, but it is negligible at
the present order of approximation for the reason mentioned above.

Let us now consider advective contributions. Gradients of the axisymmetric disturbance
ustr⊥ are advected by the shear flow and vice versa, which yields a radial inertial force, say
F Iδ · e1. As reported in appendix D, evaluation of (D12) yields

F Iδ · e1 = 15
16

πα
ρ0

k2
δ

κ3
(

1 + 9
16

κ

)
(1 + 2Λ)

(1 + Λ)5 . (5.9)

Here also we disregard the O(κ/(1 + Λ))-smaller contribution of the parabolic radial flow
component in (5.1) to the advective transport of ustr⊥.

Similar to (4.6) in the wall-normal direction, advection of the Stokeslet-type disturbance
associated with the radial slip velocity V S0 · e1 by the base straining flow (and vice versa)
results in an inertial correction to the radial drag coefficient. According to (D11) and the
comments that follow, evaluation of this contribution up to O(κ0)-terms yields

F Dα · e1 = − π

32
αRe

(1 + 2Λ)

(1 + Λ)2

(
99κ−1 + 29 237

120
+ O(κ)

)
V S0 · e1. (5.10)

Similarly, we must consider the force resulting from the transport of the same disturbance
by the radial shear flow and vice versa. However, the eigenvectors of the velocity gradient
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e3e1 corresponding to the radial shear flow are inclined by an angle of ±π/4 with respect
to the (e1, e3) axes. For this reason, this advective transport results in a transverse force
along the e3-direction, not in a correction to the drag. For the same reason, the transport
of the disturbance associated with the wall-normal slip V S0 · e3 by the shear flow yields a
radial force along the e1-direction. The first of these contributions was computed to leading
order by Cox & Hsu (1977), and to second order by Lovalenti in an appendix to Cherukat
& McLaughlin (1994). The second was computed in M1 and M2; its second-order term
was amended by Magnaudet (2004). Making use of these results and noting that the shear
strength in (5.1) is ρ0αc, the lift force resulting from both contributions may be written in
the form

F Lδ = − 9
16

π
ρ0

k2
δ

κ2 1
(1 + Λ)3

{(
5 + 253

432
κ

)
(V S0 · e3)e1 +

(
11
3

+ 443
144

κ

)
(V S0 · e1)e3

}
.

(5.11)
Last, in a shear flow, the stresslet ustr‖ is known to induce an inertial force perpendicular to
the streamlines, i.e. a lift force acting in the e3-direction. With a shear rate α and a particle
free to rotate as it is here, this contribution, first computed at leading order by Cox & Hsu
(1977), yields a force 55

96πα2Ree3 + O(κ). Considering again that the shear rate in (5.1) is
ρ0αc and taking into account the 1 + 9

8κ multiplicative factor resulting from the reflection
of the Stokeslet at stake, this lift force, say F Lα2 , is here

F Lα2 · e3 ≈ 55
24

πα

(
ρ0

kδ

)2

κ4
(

1 + 9
8
κ

)
Λ2

(1 + Λ)6 . (5.12)

Although (5.12) reveals a κ4-dependence of F Lα2 , ρ0 may become large, which makes this
force potentially significant when κ increases, as discussed below.

5.4. Final force balance
The contributions derived in §§ 5.2 and 5.3 may finally be gathered to obtain the
differential equation governing the evolution of the radial slip. Defining EΛ = 1/(1 + Λ)

and FΛ = (7 + 2Λ)/(1 + Λ)2 and applying the same truncation rules as in § 4, this force
balance may be recast in the form

9αRe
(

3κ−1 + 115
72

)
dV S0

dt
· e1 + 24

{
1 + 9

16
κ + 81

256
κ2 + 217

4096
κ3

+ 33
64

αRe
(

κ−1 + 34357
11880

)
AΛ

}
V S0 · e1 ≈ 3αρ0κ

2
{
κBΛ

(
11FΛ + 5

4
AΛ

)

−DΛ

(
5κ + 8EΛ

(
1 + 9

16
κ

))}
− 45

4
ρ0κ

2BΛV S0 · e3, (5.13)

with AΛ, BΛ and DΛ as defined in (4.9a–d).
Moreover, (5.12) and the e3-projection of (5.11) represent lift contributions which alter

the evolution of the wall-normal slip velocity. More specifically, at an arbitrary radial
position ρ0(t), the right-hand side of (4.10) is supplemented by the ρ0-dependent inertial
contribution

FL3ρ0 = ρ0κ
2BΛ

{
55
6

αρ0κ
2DΛ

(
1 + 9

8
κ

)
− 9

4

(
11
3

+ 443
144

κ

)
V S0 · e1

}
. (5.14)

Terms involving the slip velocity on the right-hand side of (5.13) and (5.14) couple
the evolution of the slip along the e1- and e3-axes. In a given direction, they tend to
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Near-wall forces on a particle in a stagnation-point flow

produce a slip with opposite sign in the perpendicular direction. This is similar to the
familiar Saffman lift force (Saffman 1965) which drives a particle leading the fluid toward
the low-velocity side in a shear flow. Unlike the situation noticed in (4.10), the inertial
correction to the drag coefficient is positive in (5.13), similar to the usual Oseen correction.
Inertial effects proportional to αρ0 in (5.13) and (5.14) provide positive source terms that
tend to make the particle lead the fluid. However, present expressions for the inertial
corrections are valid only for separations such that κ � Δ−1, so that Λ is of O(1) or larger.
Because of this, negative (i.e. inward) zero-Reynolds-number effects corresponding to the
two types of Faxén forces already present in (5.4) always dominate on the right-hand side
of (5.13), and inertial forces (5.8) and (5.10) are only able to reduce the relative inward
motion between the particle and the fluid.

In contrast, the first term on the right-hand side of (5.14), which results from the lift force
(5.12), may become large when the radial distance increases, owing to its ρ2

0-dependence.
Since it behaves as (ρ0/Δ

2)2 very close to the wall (Λ � 1), it is of O(Δ−1) for
ρ0 ∼ Δ3/2, similar to the two Faxén contributions that dominate the right-hand side of
the wall-normal force balance (4.10). It even becomes the dominant source term if ρ0
stands in the range Δ3/2 � ρ0 � Δ2. Indeed, at such large radial distances, the shear
flow component in (5.1) has become larger than the base straining flow. For this reason,
the particle motion in the e3-direction is dominated by lift effects associated with the
shear, rather than by the interaction of the axisymmetric straining flow with the wall. In
other terms, what (4.10) supplemented with (5.14) describes is the wall-normal dynamics
of a particle in a carrying flow which gradually evolves from a bi-axial straining flow at
small ρ0 to a nearly wall-parallel uniform shear flow at large ρ0. While this wall-normal
dynamics is initially primarily governed by the wall-induced and curvature-induced Faxén
forces (3.3) and (3.5), it becomes eventually dominated by the inertial shear-induced lift
force (5.12).

6. Concluding remarks

In this investigation, we made use of a suitable form of the reciprocal theorem to establish
the force balance on a neutrally buoyant spherical particle moving close to a flat wall
in an axisymmetric stagnation-point flow. An algebraic representation of the carrying
flow within the boundary layer allowed us to obtain an approximate representation of
the undisturbed velocity field valid throughout the flow domain. The corresponding
representation specifies how the background linearly varying straining motion gradually
transitions to a quadratic wall-parallel flow. To apply an asymptotic approach, we
considered particles with sizes much smaller than the boundary-layer thickness and
small-but-finite Reynolds numbers. We employed a reflection technique truncated after
three reflections, which keeps the technical difficulty reasonable but restricts predictions
to moderate wall–particle separations, in principle not smaller than the particle radius.
Conversely, we focused on separations smaller than the boundary-layer thickness to obtain
the leading-order expression of inertial effects through a regular expansion procedure.

When the particle stands on the flow axis, it is submitted to two antagonistic Faxén
forces, one specific to near-wall linearly varying flows, the other generic to quadratic
carrying flows. Nevertheless the former is always dominant when the separation decreases,
which tends to make the particle lag the fluid. Inertial effects reinforce this tendency in two
ways. On the one hand, the wall induces an asymmetry in the advective transport of the
disturbance, which results in repelling inertial forces depending only on the local strain
rate of the carrying flow and relative size of the particle with respect to the separation.
On the other hand, inertial corrections tend to reduce the drag coefficient, thus enhancing
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the slip velocity with respect to the creeping-flow limit. Overall, the wall-normal slip
increases sharply as the particle gets closer to the wall; the larger the particle, the larger
the slip velocity. Present predictions are quantitatively confirmed by comparisons with
data resulting from fully resolved simulations within the range of separations and particle
sizes where asymptotic expressions for the various forces are expected to be relevant.

When the particle is released some distance from the flow axis and stands within the
boundary layer, a radial component of the slip velocity develops. The two types of Faxén
forces contribute to generate an inward radial slip which makes the particle lag the fluid. In
contrast, inertial effects increase the drag coefficient and tend to make the particle lead the
fluid. For this reason, the overall radial slip is lowered by finite-Re corrections. In addition,
the fluid velocity in the vicinity of the particle comprises a radial shear component,
the magnitude of which increases linearly with the radial distance to the flow axis. The
near-wall advective transport associated with this shear generates several distinct lift forces
acting along both the radial and wall-normal directions. All of these lift contributions tend
to enhance the corresponding slip velocity component. The strength of the radial shear
grows at the expense of the wall-normal straining component of the carrying flow when
the radial distance to the axis of the HH flow increases. Hence the particle surroundings
transition gradually toward the more familiar wall-parallel shear flow configuration in
which a neutrally buoyant particle has long been known to lag the fluid and experience
a repelling lift force.

It is obviously desirable to extend present results toward smaller and larger separations.
Predictions taking into account inertial corrections were found to agree well with results
of fully resolved simulations down to gaps corresponding approximately to one third of
the particle radius. Extension toward smaller gaps is required to incorporate lubrication
effects and predict the late stages of the particle approach to the wall. Nevertheless, the
reflection technique is unsuitable for such an extension, as the flow within a narrow gap
can barely be viewed as a small or even moderate distortion of the base disturbance in
an unbounded flow. An appropriate representation, such as that provided by the bipolar
coordinate system, is known to allow the exact viscous solution to be computed down to a
vanishingly small gap (Brenner 1961; Maude 1961; Rallabandi et al. 2017). Employing this
representation to express nonlinear inertial effects is probably a viable approach to obtain
predictions at low-but-finite Reynolds number down to the wall (Cherukat & McLaughlin
1994). In the opposite limit, determining how the various near-wall inertial forces vary
with increasing separation is required to obtain a uniformly valid description of the
rheology of a suspension of neutrally buoyant particles in the prototypical configuration
of the HH flow. This is especially necessary regarding the unsteady Oseen force, whose
asymptotic expression exhibits an unphysical growth and eventually a divergence at large
separations, an undesired behaviour which was found to limit the range of applicability
of present predictions. To this aim, it is necessary to consider situations in which the wall
stands in the outer region of the disturbance, which immediately introduces a singular
perturbation problem. Use of matched asymptotic expansions in the spirit of the study by
Vasseur & Cox (1977) on the near-wall migration of a particle in a stagnant fluid should
provide the way to deal with this transitional regime.
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Near-wall forces on a particle in a stagnation-point flow

Appendix A. Derivation of the force balance (2.6)

The reciprocal theorem providing the force balance on a buoyant drop with an arbitrary
viscosity moving in an arbitrary direction with respect to a planar wall in a linear flow
was obtained in M1 (equation (8)). Although the extension to a quadratic flow and the
specialization to the case of a rigid particle are straightforward, we provide the complete
derivation in this appendix for the sake of self-consistency.

First, using the scalings and definitions introduced in § 2.1, the undisturbed flow obeys

∇ · U0 = 0; ∇ · Σ0 = Re
DU0

Dt
≡ Re

{
α

∂U0

∂t
+ (U0 − V ) · ∇U0

}
in V, (A1)

U0 = 0 on Aw, (A2)

where Σ0 is the undisturbed stress tensor, Aw denotes the planar wall bounding the fluid
domain V and the Lagrangian acceleration DU0/Dt is expressed in the reference frame
(R) translating with the particle.

Let now U = U0 + u − V be the relative fluid velocity with respect to the particle, u
denoting the velocity disturbance and V the absolute translational velocity of the particle.
In (R), the ‘direct’ problem governing U and the associated stress tensor Σ is

∇ · U = 0; ∇ · Σ = Re
{
α

∂U
∂t

+ U · ∇U
}

in V, (A3)

U = 0 on A, (A4)

U + V = 0 on Aw; U + V → U0 for ‖x‖ → ∞, (A5)

where A denotes the particle surface, and x is the local distance to the particle centre.
Equation (A3) and the first of (A4) express the no-slip condition on the particle (assuming
that it does not rotate) and wall surfaces, respectively, while the second of (A4) expresses
the vanishing of the disturbance in the far field. Since (R) is non-inertial, the pressure
field involved in Σ includes a contribution αRe x · dV/dt due to the complementary
acceleration.

In the ‘auxiliary’ problem, the particle is assumed to steadily translate with unit velocity
e3. The corresponding relative velocity Û and associated stress tensor Σ̂ obey

∇ · Û = 0; ∇ · Σ̂ = 0 in V, (A6)

Û = 0 on A, (A7)

Û + e3 = 0 on Aw; Û + e3 → 0 for ‖x‖ → ∞. (A8)

In the direct problem, the particle is assumed to be neutrally buoyant, so that it experiences
no net force. In contrast, it experiences a net drag F̂ D in the auxiliary problem. Hence∫

A
Σ · n dS = 0; F̂ D =

∫
A

Σ̂ · n dS, (A9a,b)

with n is the unit normal to A directed into the fluid.
Introducing the surface A∞ bounding the fluid domain at large distances from the

particle and the outward unit normal ne to V (with ne = −n on A), one can form the
surface integral

∫
A∪Aw∪A∞

{(Û + e3) · Σ − (U + V ) · Σ̂} · ne dS . Transforming this
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integral with the aid of the divergence theorem then yields

F̂ D · V +
∫
Aw∪A∞

{
(Û + e3) · Σ − (U + V ) · Σ̂

}
· ne dS

= Re
∫
V
(Û + e3) ·

(
α

∂U
∂t

+ U · ∇U
)

dV . (A10)

Note that, although (A3) includes an additional term if the particle rotates, (A10) is
left unchanged by this rotation because the particle is only translating in the ‘auxiliary’
problem, so that the corresponding torque is zero.

Noting that U + V → U0 and Σ → Σ0 − αRe(x · dV/dt)I for ‖x‖ → ∞ (with I the
Kronecker delta), and making use of the no-slip condition on Aw, the surface integral
in (A10) is seen to tend toward

∫
Aw∪A∞

{(Û + e3) · {Σ0 − αRe(x · dV/dt)I} − U0 · Σ̂} ·
ne dS . Further use of the divergence theorem and the no-slip condition on A allows this
surface integral to be transformed as∫

Aw∪A∞

{
(Û + e3){·Σ0 − αRe(x · dV/dt)I} − U0 · Σ̂

} · ne dS

= Re
∫
V
(Û + e3) ·

(
DU0

Dt
− α

dV
dt

)
dV +

∫
A

{
e3 · Σ0 − U0 · Σ̂

} · n dS

− 4
3
παRe e3 · dV

dt
. (A11)

Last, from the definition of U it is readily established that (see also (5) in M1 and the
comments that follow)

α
∂U
∂t

+ U · ∇U = α
∂u
∂t

+ U · ∇u + u · ∇U0 + DU0

Dt
− α

dV
dt

. (A12)

Introducing (A11) in (A10) and making use of (A12) one finally obtains

4
3
παRe e3 · dV

dt
= Re e3 ·

∫
VA

DU0

Dt
dV + F̂ D · V −

∫
A

U0 · Σ̂ · n dS

− Re
∫
V
(Û + e3) ·

(
α

∂u
∂t

+ U · ∇u + u · ∇U0

)
dV, (A13)

where
∫
VA dV = 4

3π is the particle volume, VA denoting the volume enclosed in A.
To compute the surface integral in (A13), we introduce a Taylor expansion of the

undisturbed velocity about the particle centre in the form

U0(x, t) = U0
0(t) + (x · ∇0)U0(t) + 1

2(xx : ∇0∇)U0(t) + · · · , (A14)

where ∇0U0(t) and ∇0∇U0(t) denote the gradient and Hessian of the undisturbed
velocity evaluated at the centre of the particle, respectively. Then, defining the particle slip
velocity V S0 = V − U0

0 and the first- and second-order surface moments of the auxiliary
surface traction Σ̂ · n as

T̂ D =
∫
A

xΣ̂ · n dS; ŜD =
∫
A

xxΣ̂ · n dS, (A15a,b)

(2.6) is obtained.
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Near-wall forces on a particle in a stagnation-point flow

Appendix B. Approximate solution of the auxiliary problem

An approximate solution of the auxiliary problem may be sought in the form of a series
of ‘reflections’ of the fundamental solution corresponding to a particle translating in an
unbounded fluid. The solution is expanded with respect to the small parameter κ , the
inverse of the dimensionless distance separating the particle from the wall. At O(κ0), the
fundamental solution satisfying the no-slip condition at the particle surface is the sum of a
Stokeslet and an irrotational dipole (or degenerate Stokes quadrupole). These singularities
induce velocity disturbances decaying with the distance r = ‖x‖ to the particle centre as
r−1 and r−3, respectively. Therefore the remains of these disturbances are of O(κ) and
O(κ3) at the wall, respectively. To satisfy the no-slip condition there, image singularities
have to be added to the solution. Determining these images is made possible by using
Faxén’s transformation which allows an integral representation of fundamental solutions
of the Laplace equation in the presence of a wall (Happel & Brenner 1973; Ho & Leal
1974). Image solutions can then be expanded in the vicinity of the particle to determine
the wall-induced disturbance ‘felt’ by the latter. Following this technique, the image
of the fundamental Stokeslet is found to induce the near-particle disturbance −9

8κe3 −
9

32κ2(x − 3x3e3) + O(κ3). This disturbance implies that a Stokeslet with strength 27
32κ

and a stresslet with strength 45
64κ2, plus associated irrotational dipoles and quadrupoles,

have to be added to the fundamental solution to enforce the no-slip boundary condition
at the particle surface. Successive reflections may be carried out to further improve the
representation as the particle gets close to the wall. The drag force F̂ D and the first- and
second-order moments T̂ D and ŜD involved in (2.6) may finally be computed, which yields
(see equations (A6) and (A7) in M1 for F̂ D and T̂ D, respectively)

F̂ D = −6π(1 + 9
8κ + 81

64κ2 + 473
512κ3 + · · · )e3 + O(κ4), (B1)

T̂ D = −15
8 πκ2(1 + 9

8κ + · · · )(e1e1 + e2e2 − 2e3e3) + O(κ4), (B2)

ŜD = −2π(1 + 9
8κ + 81

64κ2 + 217
512κ3)Ie3 − 15

4 πκ3e3e3e3 + O(κ4). (B3)

Note that the second-order moment ŜD = ∫
A xx(Σ̂ · n) dS (a third-order tensor) remains

isotropic on its first two indices only up to O(κ2). At next order, the O(κ3)-image
of the fundamental Stokeslet induces a quadratic correction 3

16κ3{x3x + (5
2 (x2

1 + x2
2) −

2x2
3)e3} in the near-particle flow. This correction and the associated singularities

(Stokes quadrupole, Stokeslet, irrotational octupole and dipole) yield the −15
4 πκ3e3e3e3

contribution in (B3).
In M2 it was pointed out that the O(κ5)-approximation of F̂ D predicts an infinite

drag for κ ≈ 0.85, while the exact solution (Brenner 1961; Maude 1961) proves that
the drag remains finite until the particle touches the wall, i.e. κ = 1. This is because
in the unbounded solution which serves as a starting point for the reflection technique,
streamlines exhibit a fore–aft symmetry past the particle, while for κ � 1 the actual
streamlines in the gap are highly distorted by the presence of the wall. This remark
gives an indication regarding the minimum gap for which the reflection technique
provides a satisfactory approximation of the near-wall disturbance. Based on a comparison
with full numerical solutions, it was concluded in M2 that the O(κ5)-approximation
allows a realistic estimate of F̂ D up to κ ≈ 0.7. With κ = 0.5, the O(κ3)-approximation
in (B1) predicts that the drag is 1.995 times larger than in an unbounded flow,
while the aforementioned O(κ5)-approximation (equation (51b) in M2) predicts an
increase by a factor of 2.16, very close to the exact solution displayed in figure 3 of

914 A18-29

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

39
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.398


J. Magnaudet and M. Abbas

Rallabandi et al. (2017) which yields a factor of 2.14. Hence the O(κ3)-prediction is
within 7 % of the actual drag, and this difference decreases to less than 3 % for κ = 0.4.
These estimates indicate that the O(κ4)-truncation of the solution of the auxiliary problem
provides accurate predictions for the drag force for κ � 0.5.

In § 5, the solution of the auxiliary problem corresponding to a particle steadily
translating with unit velocity in the e1-direction is involved. This solution, which we
denote with a ‖ index, may be found in M1 (equations (A3a), (A5) and (A7a)) and M2
(equations (13b), (C2), (C3)). In particular one has

F̂ D‖ =
∫
A

(Σ̂‖ · n) dS = −6π

(
1 + 9

16
κ + 81

256
κ2 + 217

4096
κ3

)
e1 + O(κ4), (B4)

T̂ D‖ =
∫
A

x(Σ̂‖ · n) dS = 15
8

πκ2
(

1 + 9
16

κ

)
(e1e3 + e3e1) + O(κ4), (B5)

ŜD‖ =
∫
A

xx(Σ̂‖ · n) dS = −2π

(
1 + 9

16
κ + 81

512
κ2

)
Ie1 + O(κ3), (B6)

where the first- and second-order moments T̂ D‖ and ŜD‖ of the surface traction Σ̂‖ · n are
required to evaluate the wall- and curvature-induced Faxén forces, respectively.

Appendix C. Technical characteristics of fully resolved simulations

The numerical results which serve as a reference to check the present predictions were
obtained with fully resolved simulations based on the axisymmetric time-dependent
Navier–Stokes equations. Technical details are provided in Li et al. (2020) and only a
brief summary is given here for the sake of self-consistency.

The Navier–Stokes solver is based on a finite volume spatial discretization on a staggered
grid, with spatial derivatives evaluated using centred schemes. A third-order Runge–Kutta
Crank–Nicolson time-advancement algorithm coupled with a projection technique is
employed to advance the solution in time and satisfy the incompressibility condition. An
immersed boundary technique is used to determine the particle position as a function of
time. To this end, an artificial force density is added to the fluid momentum equation. This
force is set to zero outside the particle using a smoothed Heaviside function. Within the
volume occupied by the particle, it is proportional to the difference between the local fluid
velocity and the particle velocity, and inversely proportional to the time step. In this way,
it enforces the no-slip boundary condition at the particle surface. The particle motion is
governed by Newton’s second law. The coupling between the flow solver and the immersed
boundary scheme is achieved by expressing the hydrodynamic force on the particle as the
difference between the time rate-of-change of the fluid momentum enclosed within the
particle volume and the volume integral of the above artificial force.

The simulations are carried out within a cylindrical domain with a size of 32δ × 63δ

(with δ = (ν/B)1/2) in the radial and wall-normal directions, respectively. The velocity
components corresponding to the theoretical Homann solution (Homann 1936) are
imposed on all boundaries of this domain, except on the bounding wall where the fluid
velocity is set to zero. Particles are released from rest on the flow axis at a position such
that the initial dimensionless gap is εi = 30 in each case. Thus, the initial wall–particle
separation ranges from 9.3δ for the smallest particle to 15.5δ for the largest one. In all
cases, the particles quickly adjust to the carrying flow, so that their slip velocity is reduced
to negligibly small values well before they enter the boundary layer.
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Near-wall forces on a particle in a stagnation-point flow

The computational grid is highly non-uniform, being much refined in the wall-normal
direction near the stagnation point to capture lubrication effects. For the three particle
sizes considered in §§ 3.2 and 4.5, the minimum cell size is 1.5 × 10−3δ in the radial
direction close to the flow axis, and 1 × 10−4δ in the wall-normal direction close to the
wall. Over one particle radius, the number of grid cells in the radial direction ranges
from 32 for the smallest particle to 43 for the largest one. In the wall-normal direction,
this number depends on the particle position, increasing as the separation decreases.
When the wall–particle gap equals the particle radius (ε = 1), it ranges from 33 for the
smallest particle to 46 for the largest one. It is important to stress that properly capturing
the particle-induced disturbance in the present neutrally buoyant situation requires a
significantly finer grid than in the more familiar buoyancy/gravity-driven case. This is
because, close to the particle, the disturbance decays as 1/r2 with the distance to the
particle centre, instead of 1/r in the latter case.

Appendix D. Computation of near-wall inertial effects

The procedure required to compute inertial corrections in the framework of the present
assumptions was established by Cox & Brenner (1968) (see § 6.1 in M2 for a summary).
First of all, it is convenient to introduce the outer coordinates (x̄1, x̄2, x̄3) = κ(x1, x2, x3),
so that the wall stands at x̄3 = −1 and the particle is shrunk to a small sphere r̄ ≤ κ

around the origin x̄ = 0. With these strained coordinates, the elementary volume is dV̄ =
κ−3 dV and the gradient operator is changed into ∇̄ = κ−1∇. Then a uniformly valid
approximation of the leading contributions to the velocity fields Û and u involved in (2.6)
is required. This approximation, which we denote as ¯̂U and ū, respectively, has to satisfy
the no-slip condition on both the particle and wall.

We detail the procedure in the case of the forces F Uδ and F I encountered in §§ 4.2 and
4.3, respectively; the evaluation of all other inertial contributions follows a similar path.
As the fundamental contribution to ¯̂U (respectively ū) is a Stokeslet (respectively stresslet)
plus the corresponding image, they are respectively of O(κ) and O(αbκ

2) once expressed
in strained coordinates. The corresponding pre-factors are 3

4 and −5
2αb, respectively (e.g.

(A2a) and (A2c) in M1). Therefore, referring to (2.6), the leading-order contribution to
F Uδ , say F Uδ0, may be written as

F Uδ0 · e3 ≈ 15
8

αRe
dαb

dt
(U0

0 + V S0) · e3

∫
V̄

¯̂USto · Ū str dV̄, (D1)

where ¯̂USto (respectively ŪStr) stands for the uniformly valid expression of the unit
Stokeslet (respectively stresslet) plus its image. Similarly, based on (2.4) and (2.6), the
leading contribution F I0 to F I is

F I0 · e3 = 15
8

α2
bRe

∫
V̄

¯̂USto · {
Ū str · (I − 3e3e3) + (x̄ − 3x̄3e3) · ∇̄Ū str

}
dV̄ . (D2)

Following the techniques outlined in appendix C of M2, one finds

¯̂USto =
(

1
r̄

− 1
τ

)
e3 +

(
1
r̄3 − 1

τ 3

)
x̄3x̄ − 2

(1 + x̄3)

τ 3

(
e3 + 3

(2 + x̄3)

τ 2 (x̄ + 2e3)

)
,

(D3)
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Ū str =
(

1
r̄3 − 1

τ 3

)
x̄ − 3

(
1
r̄5 − 1

τ 5

)
x̄2

3x̄

+ 6
(1 + x̄3)

τ 5

(
2x̄3e3 + 3(x̄ + 2e3) − 5

(2 + x̄3)
2

τ 2 (x̄ + 2e3)

)
, (D4)

with r̄ = (x̄2
1 + x̄2

2 + x̄2
3)

1/2 and τ = (r̄2 + 4(1 + x̄3))
1/2 (note that τ = r̄ for x̄3 = −1,

i.e. at the wall, and τ > r̄ everywhere in the fluid domain). As both fields exhibit axial
symmetry with respect to the x̄3-direction, the volume integrals in (D1) and (D2) may
be reduced to double integrals, say 2πI with I = ∫ ∞

−1

∫ ∞
0 J(ρ̄, x̄3)ρ̄ dρ̄ dx̄3, by setting

r̄ = (ρ̄2 + x̄2
3)

1/2 and integrating along the azimuthal direction. The double integrals
may presumably be evaluated exactly by employing contour integration. To save time,
we rather evaluated them numerically using the open software Maxima, after having
circumvented the integrable singularity at x̄ = 0. In the case of (D1), this evaluation
returned I = −0.9999 with a 4-digit accuracy, from which we inferred that the exact
value is −1. Similarly, with the same accuracy, we found I = 1.24998 in the case of
(D2), from which we inferred that the exact value is I = 5/4. Therefore (D1) and (D2)
yield eventually

F Uδ0 · e3 ≈ −15
4

παRe
dαb

dt
(U0

0 + V S0) · e3, (D5)

F I0 · e3 ≈ 75
16

πα2
bRe. (D6)

Equations (D5) and (D6) only provide the leading-order term in the κ-expansion of the
corresponding inertial force, say F Uδ · e3 and F I · e3, respectively. In general, computing
higher-order terms requires several additional contributions to be considered. First of
all, the integration volume V̄ used during the numerical evaluation of (D1) and (D2)
was artificially extended within the particle volume. Therefore the contribution provided
by this volume must be subtracted from the result. Second, at O(κ0) and O(κ), the
complete velocity disturbance past the particle in the ‘direct’ (respectively ‘auxiliary’)
problem involves a stresslet and an irrotational quadrupole (respectively a Stokeslet and
an irrotational dipole). Contributions due to the two irrotational singularities are not
accounted for in (D1) and (D2). They may be evaluated in unstrained coordinates by
integrating the corresponding combinations of terms involved in the volume integrals∫
VI (Û + e3) · (∂u/∂t) dV and

∫
VI (Û + e3) · {u · (I − 3e3e3) + (x − 3x3e3) · ∇u} dV ,

respectively. In these integrals, the relevant integration volume VI is the ‘inner’ fluid
volume within which the distance to the particle centre is such that 1 ≤ r < k0κ

−γ with
k0 = O(κ0) and 0 < γ < 1 (Cox & Brenner 1968). However, in the specific case of
F Uδ and F I , both the disturbance u and (in the case of F I) the straining component
of the ambient velocity field are odd functions of x3 close to the particle, up to
O(κ2)-corrections. For this reason, all of the above terms result in a zero net contribution
to the O(κ)-correction of the corresponding force. In contrast, the magnitude of the
Stokeslet ¯̂USto in (D1) and (D2) is actually 3

4(1 + 9
8κ + · · · ), owing to its successive

reflections. Consequently, the next term in the κ-expansion of these inertial forces is
merely 9

8κF Uδ0 and 9
8κF I0, which finally yields (4.3) and (4.4), respectively.

Within the boundary layer, the advective transport of the O(αb)-stresslet by the
quadratic flow and vice versa yields an additional O(κ−1αbαcRe)-force, which at leading
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order, is

F Iδ0 · e3 ≈ 15
8

αbαcReκ−1
∫
V̄

¯̂USto · {
Ū str · {e3x̄ + x̄3(I − 4e3e3)}

+ x̄3(x̄ − 2x̄3e3) · ∇̄Ū str
}

dV̄ . (D7)

Numerical integration returned the value of the volume integral as 2π × 2.8333, i.e.
virtually 17

3 π. Since all integrands involved in the first-order ‘inner’ corrections to this
leading-order estimate are even functions of x3, they provide non-zero contributions at
O(ακ3). Nevertheless, due to the definition of αb and αc in (2.5a–c), these contributions
are weighted by (1 + 2Λ)/(1 + Λ)5, whereas the O(ακ3)-correction to the wall-induced
Faxén force in (3.6) is weighted by (1 + 2Λ)/(1 + Λ)2. Following the argument discussed
in § 4.2, the former corrections are negligibly small in the present context. Consequently,
the relevant approximation for the inertial force under consideration is merely F Iδ ≈ F Iδ0,
which yields (4.5).

The inertial correction to the drag coefficient arising from the transport of the Stokeslet
associated with the slip velocity by the base straining flow and vice versa may be computed
though a similar approach. The formal expression for the leading term of this contribution,
say F Dα0, is similar to that of F I0 in (D2), except that Ū str has to be replaced by ¯̂USto
and the pre-factor is now − 9

16αbReκ−1V S0 · e3. Using the technique outlined above, the
volume integral was found to be 2π × (−2.5001), from which we infer that its exact value
is −5π, so that

F Dα0 · e3 = 45
16 παbReκ−1V S0 · e3. (D8)

In this case, the integrand is an even function of x3 in the vicinity of the particle. Therefore
the calculation of the O(κ0)-correction to F Dα0 requires the aforementioned ‘inner’ terms
to be evaluated. Moreover, the combination of the two Stokeslets at stake implies that
the actual pre-factor of (D8) is 45

16 παbReκ−1(1 + 9
4κ + · · · ). Gathering all O(κ0)-terms

eventually yields F Dα · e3 = (1 + 9
4κ)F Dα0 · e3 − 124

15 π + O(κ), which leads to (4.6).
At leading order, the contribution resulting from the transport of the Stokeslet associated

with the slip velocity by the quadratic flow and vice versa, say F Dδ0, is similar to
that of F Iδ0 in (D7), except that Ū str has to be replaced by ¯̂USto and the pre-factor is
now −9

8 (κ/k2
δ (1 + Λ)3)V S0 · e3. The value of the volume integral returned by numerical

integration was 2π × (−0.6666) ≈ −4
3π. All integrands involved in the first-order

‘inner’ corrections are odd functions of x3, so that the only contribution at O(κ2)

results from the reflection of the two Stokeslets, which yields a (1 + 9
4κ)-multiplicative

factor. Neglecting O(κ3)-terms in agreement with the argument discussed in § 4.2, the
O(ακ2)-approximation of this force is then F Dδ ≈ (1 + 9

4κ)F Dδ0, from which (4.7) is
obtained.

Inertial forces also affect the radial slip velocity when the particle stands some distance
away from the flow axis. Their computation involves the uniformly valid expression of the
unit Stokeslet in the e1-direction and, for some of them, that of the unit stresslet associated
with the shear component of the base radial flow. According to equations (C2) and (C5) in
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M2, the corresponding expressions are

¯̂USto‖ =
(

1
r̄

− 1
τ

)
e1 +

(
1
r̄3 − 1

τ 3

)
x̄1x̄ − 2

(1 + x̄3)

τ 3

(
e1 − 3

x̄1

τ 2 (x̄ + 2e3)

)
(D9)

¯̂U str‖ =
(

x̄3

r̄5 + 2 + x̄3

τ 5

)
x̄1x̄ + 2

(1 + x̄3)

τ 5

(
(2 + x̄3)e1 + x̄1e3 − 5

x̄1

τ 2 (2 + x̄3)(x̄ + 2e3)

)
.

(D10)

The volume integral involved in the computation of the drag correction F Dα · e1 resulting
from the transport of the Stokeslet associated with the radial slip velocity by the base
straining flow and vice versa is similar to that in (D2) with Ū str and ¯̂USto both replaced
by ¯̂USto‖. The value provided by numerical integration was 5.5002 × π ≈ 11

2 π. Hence at
leading order

F Dα0 · e1 = −99
32

παbReκ−1V S0 · e1. (D11)

The O(κ0)-corrections to this estimate arise from the first reflection of the Stokeslet,
which induces a 1 + 9

8κ-multiplicative factor on the right-hand side of (D11), and from
the ‘inner’ terms which provide an additional −62

15παReV S0 · e1 contribution. Collecting
all terms, (5.10) is obtained at O(κ0).

The formal expression for the leading-order force resulting from the advection of the
axisymmetric stresslet by the shear flow component and vice versa is

F Iδ0 · e1 = 15
8

Reαbαcρ0

∫
V̄

¯̂USto‖ · {Ū str · e3e1 + x̄3e1 · ∇̄Ū str} dV̄ . (D12)

The numerical value of the volume integral was found to be 0.2500 × π, from which we
inferred that its exact value is π/4. Taking into account the 1 + 9

16κ multiplicative factor

resulting from the reflection of the Stokeslet ¯̂USto‖ then yields (5.9).
Finally, the formal expression for the leading-order force due to time variations of

the shear flow component ‘felt’ by the particle as it moves is similar to (D5) with Ū str

(respectively ¯̂USto) replaced by Ū str‖ (respectively ¯̂USto‖). However, the pre-factor now
results from the evolution of the particle position along both the normal and radial
directions. Hence this pre-factor is now 15

8 (d/dt)(ρ0(t)αc(t)) = 15
4 κ(Λ2/(1 + Λ)3)(V S0 ·

e1 − 3ρ0(κ/(1 + Λ))V S0 · e3 + αρ0((7 + 2Λ)/(1 + Λ)2)), where we have used the fact
that dρ0/dt = α−1V · e1.

The numerical value of the volume integral was found to be 2.2001 × π, i.e. virtually
11
5 π. Close to the particle, the integrand is odd with respect to x3 but the reflection of the

Stokeslet introduces a 1 + 9
16κ-multiplicative factor. Truncating the result according to the

criteria introduced in § 4.2 finally yields (5.8).
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