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We introduce a pointwise variant of the Assouad dimension for measures on metric
spaces, and study its properties in relation to the global Assouad dimension. We
show that, in general, the value of the pointwise Assouad dimension may differ from
the global counterpart, but in many classical cases, the pointwise Assouad dimension
exhibits similar exact dimensionality properties as the classical local dimension,
namely it equals the global Assouad dimension almost everywhere. We also prove an
explicit formula for the Assouad dimension of certain invariant measures with
place-dependent probabilities supported on self-conformal sets.
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1. Introduction

Originally, the Assouad dimension was defined as a means to investigate embedding
problems of metric spaces [1], and it is still used as an important tool in the field
[23]. In the past decade, the interest in the Assouad dimension has seen a substantial
increase also in fractal geometry, and various Assouad-type dimensions have been
developed and studied in many classical cases. The book by Fraser [9] collects
the recent developments in one place and provides an introduction to Assouad
dimensions in fractal geometry. The Assouad dimension describes the local structure
of the space by quantifying the size of the thickest parts of the space across all scales,
which provides a heuristic on why it is effective in the study of embedding problems:
if the space has locally thick parts, it can not be embedded into a small space.

As is usual in dimension theory, the Assouad dimension of a space is closely
connected to a dual notion of dimension for measures supported on the space.
For a finite Borel measure μ fully supported on a metric space X, this Assouad
dimension of the measure is defined by

dimA μ = inf
{

s > 0: ∃C > 0, s.t. for all x ∈ X, 0 < r < R,

μ(B(x,R))
μ(B(x, r))

� C

(
R

r

)s}
, (1.1)
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where B(x, r) is the closed ball with centre x and radius r. The Assouad dimension
of a measure has a similar intuition behind it as the Assouad dimension of a space:
it quantifies the size of the least regular parts of the measure across all scales.

Perhaps the most important concepts in the dimension theory of measures are
the upper and lower local dimensions of a measure defined at x ∈ X by

dimloc(μ, x) = lim sup
r→0

log μ(B(x, r))
log r

,

and

dimloc(μ, x) = lim inf
r→0

log μ(B(x, r))
log r

,

respectively. When the upper and lower limits agree, the limit is denoted by
dimloc(μ, x) and it is called the local dimension of the measure μ at x. Unlike
the different notions of ‘global’ dimension, which are concerned with the average
regularity (e.g. in the case of Hausdorff, packing and Minkowski dimensions) or
extremal regularity (in the case of Assouad and lower dimensions) of the measure
on its full support, these pointwise dimensions quantify the regularity of the mea-
sure around a given point. The upper and lower local dimensions can be thought of
as the pointwise analogue of the Hausdorff and packing dimensions of the measure,
respectively, and in this paper, we widen the theory by defining a natural pointwise
analogue of the Assouad dimension. We call this dimension the pointwise Assouad
dimension of the measure and define it at x ∈ X by

dimA(μ, x) = inf
{

s > 0: ∃C(x) > 0, s.t. for all 0 < r < R,

μ(B(x,R))
μ(B(x, r))

� C(x)
(

R

r

)s}
.

The crucial difference to the global Assouad dimension of the measure is that the
constant C in the definition may depend on the point x. Similarly as the Assouad
dimension captures information on the least regular parts of the measure across
all scales, the pointwise Assouad dimension quantifies the least regular scales at a
given point. The aim of this paper is to discuss the basic properties of the pointwise
Assouad dimension from a fractal geometric point of view.

We note that the ideas in the definition are not entirely new, as was pointed out
to us by Anders and Jana Björn as well as the anonymous referee. In [3], the authors
consider certain ‘exponent sets’, one of which corresponds to our definition of the
pointwise Assouad dimension, and use them to give sharp estimates for variational
p-capacities of annuli in metric spaces. The authors give some examples about the
behaviour of these exponent sets, however, most of the measures they consider are
absolutely continuous, which by the Lebesgue differentiation theorem can have ‘non-
trivial’ (that is different from the dimension of the Lebesgue measure) pointwise
Assouad dimension only in a set of measure zero. In contrast, the measures we
study are singular and, as we will see, their pointwise Assouad dimensions have
‘non-trivial’ behaviour almost everywhere. Therefore, we believe that the present
article is a welcome contribution to the theory from a fractal geometric point of
view, and that the results in this paper and [3] complement each other quite well.
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1.1. Main results and the structure of the paper

The structure of the paper is as follows. We begin by establishing some notation
and recalling basic results concerning Assouad dimensions of sets and measures in
§ 2. In § 3 we discuss some basic properties of the pointwise Assouad dimension
and its relations to various existing notions of dimension. In particular, we observe
that the pointwise Assouad dimension is always bounded from above by the global
Assouad dimension, and that the inequality can be strict. To contrast this, we
devote the rest of the paper to the study of the cases where the maximal pointwise
Assouad dimension coincides with the global one. In fact, we show that in many
classical constructions we have an exact dimensionality property, meaning

dimA(μ, x) = dimA μ, (1.2)

for μ-almost every x. This is analogous to the classical exact dimensionality property
for the local dimension, which the measure is said to satisfy if dimloc(μ, x) = dimH μ,
for μ-almost every x. We start with the general setting of quasi-Bernoulli measures
supported on strongly separated self-conformal sets in § 4, and in theorem 4.1
prove the exact dimensionality property (1.2) for these measures. The results are
complemented in § 5, where we provide an explicit formula for the Assouad dimen-
sion of certain invariant measures for place-dependent probabilities in theorem 5.3.
These place-dependent invariant measures satisfy the assumptions of § 4 so as a
corollary we obtain the almost sure formula for the pointwise Assouad dimension
as well. In the final § 6 we are interested in self-similar and self-affine measures.
In theorems 6.1 and 6.4, we prove the exact dimensionality property (1.2) for self-
similar measures satisfying the open set condition and self-affine measures on certain
Bedford–McMullen carpets, respectively.

2. Preliminaries

Unless stated otherwise, we assume that (X, d) is a metric space, with no additional
structure. Since we assume the metric d to be fixed, we omit it from the notation
and refer to (X, d) simply as X. Unless stated otherwise, a measure always refers
to a finite Borel measure fully supported on X and when needed, we denote the
support of μ by supp(μ). If f : X → Y is a map from X to another metric space Y ,
we denote the pushforward of the measure μ under the map f by f∗μ := μ ◦ f−1.
For constants C, we sometimes use the convention C(· · · ), if we want to emphasize
the dependence of C on the quantities inside the parentheses.

2.1. Assouad dimension of sets and connection to weak tangents

We are mainly focused on dimensions of measures in this paper, but to place the
results in a wider context, we recall some results concerning the Assouad dimensions
of sets. The Assouad dimension of a set F ⊂ X is defined by

dimA F = inf
{

s > 0: ∃C > 0, s.t. for all x ∈ F, 0 < r < R,

Nr(B(x,R) ∩ F ) �
(

R

r

)s}
,
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where Nr(E) denotes the smallest number of open balls of diameter r needed to
cover the set E ⊂ X. A convenient way to bound the Assouad dimension of a set
from below is given by the weak tangent approach. Recall that a map T : X → X is
a similarity if there exists c > 0, such that d(T (x), T (y)) = cd(x, y), for all x, y ∈ X.
The constant c is called the similarity ratio (of T ).

For simplicity we give the definition of weak tangents when X ⊂ R
d and make

a brief remark that they can be defined in complete metric spaces using pointed
convergence in the Gromov–Hausdorff distance [15, 20]. A closed set F ⊂ B(0, 1)
is said to be a weak tangent of a compact set X ⊂ R

d if there is a sequence of
similarities Tn : R

d → R
d, such that

Tn(X) ∩ B(0, 1) → F,

in the Hausdorff distance. The collection of weak tangents of X is denoted by
Tan(X). The following proposition gives an easy way to bound the Assouad dimen-
sion from below. For the proof in the general setting see e.g. [20, proposition
6.1.5].

Proposition 2.1. If X ⊂ R
d is compact, then dimA X � dimA F , for all F ∈

Tan(X).

2.2. Assouad dimension of measures and the doubling property

Let us now turn our attention to the dimensions of measures. When referring to
(1.1) we sometimes use the term global Assouad dimension to avoid ambiguity with
the pointwise variant. Originally, the global Assouad dimension of a measure was
called the upper regularity dimension in [16], but due to the intimate connections
between this notion of dimension and the Assouad dimension for sets, the term
Assouad dimension of a measure is now widely used. A simple volume argument
implies that for a measure μ fully supported on a metric space X, we have the
inequality dimA X � dimA μ. Moreover, in [19, 24] it was shown that

dimA X = inf{dimA μ : μ is a measure fully supported on X},

which further supports the current terminology.
The Assouad dimension of a measure has two important properties. First of all,

it characterizes the doubling property, which the measure μ is said to satisfy if there
is a constant C � 1, such that for any x ∈ X, r > 0, we have

μ(B(x, 2r)) � Cμ(B(x, r)). (2.1)

Measures that satisfy (2.1) are called doubling measures and it is a simple exercise
to show that a measure has finite Assouad dimension if and only if it is doubling
[9, lemma 4.1.1].
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Secondly, the Assouad dimension is ‘the greatest of all dimensions’ [9], that is

dimH μ � dimP μ � dimA μ,

where dimH μ := ess infx∈Xdimloc(μ, x) and dimP μ := ess infx∈Xdimloc(μ, x) are
the Hausdorff dimension and the packing dimension of the measure μ respec-
tively. As we will see in the next section, the pointwise Assouad dimension enjoys
properties which are analogous to the two properties mentioned.

3. Pointwise Assouad dimension

In this section, we discuss the basic properties of the pointwise Assouad dimension
of measures. It turns out that we have a correspondence between measures with the
pointwise doubling property and those with finite pointwise Assouad dimension. A
measure μ is said to be pointwise doubling at x ∈ X, if there is a constant C(x) � 1,
such that

μ(B(x, 2r)) � C(x)μ(B(x, r)).

We also refer to [3] for some discussion on the pointwise doubling property. The
following proposition collects some of the basic properties of the pointwise Assouad
dimension. Note that the properties (1) and (2) are the pointwise analogues for the
basic properties of the global Assouad dimension discussed in § 2.2.

Proposition 3.1. Let μ be a Borel measure fully supported on a metric space X.
Then for any x ∈ X,

(1) dimA(μ, x) is finite if and only if μ is pointwise doubling at x,

(2) dimloc(μ, x) � dimloc(μ, x) � dimA(μ, x) � dimA μ,

(3) if μ has an atom at x, then dimA(μ, x) = 0.

Proof. Claim (1) is a trivial modification of [9, lemma 4.1.1].
For (2), note that the first and last inequalities follow straight from the definitions,

so it suffices to prove the middle inequality. Fix x ∈ X, and let s > dimA(μ, x) be
arbitrary. Then by definition, there is a constant C depending only on x, such that
for all 0 < r < R,

μ(B(x, r))
μ(B(x,R))

� C
( r

R

)s

.

In particular, by fixing R we see that μ(B(x, r)) � crs, where c = Cμ(B(x,R))
Rs . Taking

logarithms, dividing by log r and taking r → 0 shows that dimloc(μ, x) � s. Since
s > dimA(μ, x) was arbitrary, this finishes the proof.

For (3), assume that μ has an atom at x ∈ X. Let 0 < r < R, and note that

μ(B(x,R))
μ(B(x, r))

� μ(X)
μ({x}) =

μ(X)
μ({x})

(
R

r

)0

.

Since the constant μ(X)
μ({x}) depends only on x, we have dimA(μ, x) � 0, which is

enough to prove the claim. �
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Remark 3.2. One can define the pointwise lower dimension of μ at x analogously
to the lower dimension of a measure as

dimL(μ, x) = sup
{

s > 0: ∃C(x) > 0, s.t. ∀0 < r < R,

μ(B(x,R))
μ(B(x, r))

� C(x)
(

R

r

)s}
.

Then proposition 3.1(2) is strengthened to

dimL μ � dimL(μ, x) � dimloc(μ, x) � dimloc(μ, x) � dimA(μ, x) � dimA μ,

for all x ∈ X. We will not, however, pursue the study of the pointwise lower
dimension any further in this paper.

3.1. Relationships to other dimensions

Next we investigate the relationships between the pointwise Assouad dimension
and other common notions of dimension in fractal geometry. We will focus on
the global Assouad dimension, the packing dimension, and the upper Minkowski
dimension of measures and the Assouad dimension of the support of the measure.

As proposition 3.1 shows, the global Assouad dimension provides an upper bound
for the pointwise Assouad dimension at every point. The natural question that
arises is if the converse holds at some point, i.e. is it true that supx∈X dimA(μ, x) =
dimA μ. It turns out that generally speaking this is not the case, even in compact
spaces. The following is an example of a non-doubling measure, which is pointwise
doubling at all points of its support. By proposition 3.1(1) and the analogous fact
for the global Assouad dimension, we see that this measure has finite pointwise
Assouad dimension at all points, but infinite global Assouad dimension.

Example 3.3. Let xn = 2−n, and let μ =
∑∞

n=0(3
−nδ−xn

+ 2−nδxn
), where δx

denotes the point mass centred at x. Clearly the measure is a finite Borel measure
fully supported on the set X = {0} ∪⋃∞

n=0{xn,−xn}. By considering yk = −xk,
and rk = 2−k, it follows by a simple calculation that

μ(B(yk, 2rk))
μ(B(yk, rk))

�
∑∞

n=k−1 3−n +
∑∞

n=k 2−n∑∞
n=k−1 3−n

= 1 +
(

3
2

)k−2

→ ∞,

as k → ∞, which shows that μ is not doubling.
The fact that μ is pointwise doubling at X \ {0} follows from properties (1) and

(3) of proposition 3.1, and a standard calculation shows that for any 2−k � r <
2−k+1, we have

μ(B(0, 2r))
μ(B(0, r))

�
2
∑∞

n=k−2 2−n∑∞
n=k 2−n

� 24−k

21−k
= 8,

which shows that μ is pointwise doubling at 0.
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The upper Minkowski dimension of a measure was introduced in [7] and it is
defined by

dimMμ = inf{s > 0: there exists a constant c > 0 such that

μ(B(x, r)) � crs, for all x ∈ supp(μ) and 0 < r < 1}.
In [7, proposition 4.1] it was shown that

dimP μ � dimMμ � dimA μ. (3.1)

By definition of dimP μ and proposition 3.1(2) we have the general relationship
dimP μ � dimA(μ, x), for μ-almost every x. Recalling (3.1), it is natural to ask if a
similar inequality holds for the upper Minkowski dimension in some direction. This
turns out not to be the case. For some self-affine measures on Bedford–McMullen
carpets (see § 6 for the definitions), we have dimMμ � dimA(μ, x), for μ-almost all
x. Example 6.6 provides an explicit example satisfying this property. However, it is
also possible to have dimMμ > dimA(μ, x) for all x, as the following example shows.

Example 3.4. Let μ =
∑∞

n=0(3
−nδ−2−n + 2−nδ2−n) be the measure of example 3.3.

Let us first show that dimMμ � log 3
log 2 . Let s < log 3

log 2 , xn = −2−n, and rn = 2−(n+2).
Then

μ(B(xn, rn)) = 3−n = r
n log 3

(n+2) log 2
n < rs

n,

for all large enough n. Since rn → 0 with n, this implies that dimMμ � s, and taking
s → log 3

log 2 gives the claim.
Since μ has an atom at every x ∈ X \ {0}, by proposition 3.1(3), dimA(μ, x) =

0 < dimMμ. At the origin, a simple calculation shows that for any 2−L < r � 2−L+1

and 2−N−1 � R < 2−N , we have

μ(B(0, R))
μ(B(0, r))

� 2
∑∞

n=N 2−n∑∞
n=L 2−n

=
22−N

21−L
� 8
(

R

r

)
,

and therefore dimA(μ, 0) � 1 < log 3
log 2 � dimMμ.

Finally, a natural question to ask is if the Assouad dimension of the support of
a measure is a lower bound for the pointwise Assouad dimension of the measure,
as it is for the global one. Our next example shows that this is also not generally
the case, in fact, there are measures supported on sets of full Assouad dimension,
which have 0 pointwise Assouad dimension at all points. The example is original,
but builds on a construction by Le Donne and Rajala [18, example 2.20].

Example 3.5. Let xn,k = 2−2n

+ k4−2n

and let X = {0} ∪⋃∞
n=1

⋃n−1
k=0{xn,k}.

Define the measure μ as

μ =
∞∑

n=1

n−1∑
k=0

2−n

n
δxn,k

.

It is straightforward to show that μ is a finite doubling measure fully supported on
X. We show that dimA X = 1, and dimA(μ, x) = 0, for every x ∈ X.
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To show that dimA X = 1, by proposition 2.1 it is enough to show that [0, 1] is a
weak tangent for the set X. For each n ∈ N define a similarity Tn : R → R by

Tn(x) = n−142n

(x − 2−2n

),

and note that

Tn(X) ∩ [0, 1] =
n−1⋃
k=0

{
k

n

}
→ [0, 1],

in the Hausdorff distance as n → ∞, that is [0, 1] is a weak tangent to X.
Next we show that dimA(μ, x) = 0, for every x ∈ X. Note that every point x ∈

X \ {0} is an atom so by proposition 3.1(3), dimA(μ, x) = 0, so we only need to
consider the case x = 0. Fix 0 < r < R < 1, and choose numbers L,N ∈ N, such
that 2−2L

< r � 2−2L−1
and 2−2N+1 � R < 2−2N

. Clearly [0, xL+1,L] ⊂ B(0, r) and
B(x,R) ⊂ [0, xN,N−1], so we have

μ(B(0, R))
μ(B(0, r))

� μ([0, xN,N−1])
μ([0, xL+1,L])

� 2L−N+1 � 2
log r

log R
.

Note that for any s > 0, the function φ(t) = ts log t is decreasing for 0 < t < e−
1
s ,

so for all 0 < r < R < e−
1
s we have

μ(B(0, R))
μ(B(0, r))

� 2
(

R

r

)s

.

Since this holds for arbitrary s > 0, we have dimA(μ, 0) = 0.

4. Quasi–Bernoulli measures on self-conformal sets

As was observed in example 3.3, a strict inequality is certainly possible in
supx dimA(μ, x) � dimA μ, but it turns out that in many natural cases where the
measure has some kind of rigid structure, the pointwise Assouad dimension coin-
cides with the global variant almost everywhere. We start by proving the exact
dimensionality property (1.2) for the most general case of this paper in this section,
and work our way down to more specific classes of measures in §5 and 6. For the
convenience of the readers who are familiar with the definitions, we give the state-
ment of the main result of this section first, and define the necessary concepts after
that. The main result we prove at the end of this section is the following.

Theorem 4.1. If μ is a quasi-Bernoulli measure fully supported on a self-conformal
set F satisfying the strong separation condition, then

dimA(μ, x) = dimA μ < ∞,

for μ-almost every x ∈ F .

Remark 4.2. In this generality, it is not possible to obtain an explicit formula
for the Assouad dimension, however, to complement the result, in § 5 we provide
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an example class of measures which satisfy the assumptions of theorem 4.1, and
calculate their Assouad dimension explicitly.

Let us start by recalling some basics of iterated function systems. Let Λ be a
finite index set, and associate to each i ∈ Λ a contraction map ϕi from a compact
subset of R

d to itself. The collection {ϕi}i∈Λ is known as an iterated function system
(IFS). By a foundational result of Hutchinson [14], every IFS has a unique compact
and non-empty invariant set F satisfying

F =
⋃
i∈Λ

ϕi(F ),

called the limit set of the IFS. To make the study easier, one often imposes some
restrictions on the defining maps. In this section we will concentrate on the class
of quasi-Bernoulli measures supported on self-conformal sets. In addition to the
conformality assumption, which we define later, we require that the IFS satisfies
the strong separation condition (SSC), namely we assume that for any distinct
i, j ∈ Λ, we have ϕi(F ) ∩ ϕj(F ) = ∅.

When studying limit sets of iterated function systems, it is often useful to consider
a symbolic representation of the IFS. Let Σ = {(i1, i2, . . .) : ik ∈ Λ} denote the set of
infinite sequences of the symbols in Λ. We call Σ the symbolic space and members
of Σ (infinite) words. For an integer n, let Σn = {(i1, i2, . . . , in) : ik ∈ Λ} be the
set of finite words of length n and let Σ∗ =

⋃
n∈N

Σn ∪ {∅} denote the set of all
finite words of any length. For any i ∈ Σ, let i|0 = ∅ denote the empty word. We
use the abbreviation i = (i1, i2, . . .) for a fixed element of Σ and the same notation
i = (i1, . . . , in) for elements of Σn, but the meaning will be clear from the context.
For i = (i1, . . . , in) ∈ Σn, let i− = (i1, . . . , in−1) denote the finite word obtained
by dropping the last element of i. If i ∈ Σ, we write i|n = (i1, . . . , in) ∈ Σn for the
projection of i onto the first n coordinates. For i ∈ Σn, the cylinder [i] ⊂ Σ is defined
to be the set of all infinite words in Σ whose first n letters are the letters of i. In
some proofs, we use for i ∈ Σ and j ∈ Σ∗ the notation j � i, to mean that the word
i contains the word j as a substring.

For the contractions ϕi we abbreviate

ϕi|n = ϕi1 ◦ . . . ◦ ϕin
.

Recall that there is a natural correspondence between the symbolic space Σ and
the limit set F by the coding map π : Σ → F defined by

{π(i)} =
∞⋂

n=1

ϕi|n(F ). (4.1)

When F satisfies the SSC, this map is a bijection.

4.1. Self-conformal sets

Next we define self-conformal sets which act as a support for the measures we
study in this section. Recall that an IFS {ϕi}i∈Λ on R

d is called self-conformal if
it satisfies the following assumptions:
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(C1) There is a set Ω ⊂ R
d, which is open, bounded and connected, and a compact

set X ⊂ Ω with non-empty interior, such that

ϕi(X) ⊂ X,

for all i ∈ Λ.

(C2) For each i ∈ Λ, the map ϕi is a C1+ε-diffeomorphism, and ϕi : Ω → Ω is
conformal. That is, for all x ∈ Ω, the linear map ϕ′

i(x) is a similarity. In
particular, for every y ∈ Ω, we have

|ϕ′
i(x)y| = |ϕ′

i(x)||y|,

where |ϕ′
i(x)| denotes the operator norm of the linear map ϕ′

i(x).

The use of the bounded open set Ω here is essential since contractive conformal maps
defined on whole R

d are in fact similarities. The limit set F of an IFS satisfying (C1)
and (C2) is called a self-conformal set. In the following we let ||ϕ′

i|| = supx∈Ω |ϕ′
i(x)|.

It follows from the fact that each ϕi is a contraction, that ||ϕ′
i|| < 1, for all i ∈ Σ∗,

and that for a fixed i ∈ Σ, ||ϕ′
i|n || is strictly decreasing in n. Let us recall some key

lemmas for the proof of theorem 4.1.

Lemma 4.3. There are constants C > 1, δ > 0, such that the self-conformal set F
satisfies the following.

(i) For all i ∈ Σ∗ and x, y ∈ Ω, we have |ϕ′
i(x)| � C|ϕ′

i(y)|.
(ii) For any x, y, z ∈ F , with |x − y| � δ, we have

C−1|ϕ′
i(z)| � |ϕi(x) − ϕi(y)|

|x − y| � C|ϕ′
i(z)|,

for all i ∈ Σ∗.

(iii) For all i ∈ Σ∗,

C−1 ||ϕ′
i|| � diam(ϕi(F )) � C ||ϕ′

i|| .

The first property in lemma 4.3 is commonly called the Bounded Distortion Prop-
erty (BDP) and it originates in [21]. Property (ii) is a special case of [8, lemma
2.3] and property (iii) is proved in [21].

Lemma 4.4. For all i, j ∈ Σ∗, we have

C−1||ϕ′
i|| · ||ϕ′

j|| � ||ϕ′
ij|| � ||ϕ′

i|| · ||ϕ′
j||,

where C > 1 is the constant of lemma 4.3.
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Proof. Using the chain rule, and the conformality of the IFS, it is easy to see that
for all x ∈ F we have

|ϕ′
ij(x)| = |(ϕi ◦ ϕj)′(x)| = |ϕ′

i(ϕj(x)) · ϕ′
j(x)| = |ϕ′

i(ϕj(x))| · |ϕ′
j(x)|.

Applying lemma 4.3 we get that for all y ∈ F

C−1|ϕ′
i(y)| · |ϕ′

j(x)| � |ϕ′
ij(x)| � |ϕ′

i(ϕj(x))| · |ϕ′
j(x)| � ||ϕ′

i|| · ||ϕ′
j||.

The result follows by taking suprema. �

Remark 4.5. Let i ∈ Σ be n-periodic. Notice that, by applying the previous lemma
iteratively, we have

C−k||ϕ′
i|n ||k � ||ϕ′

i|kn
|| � ||ϕ′

i|n ||k.

The exponential growth of the distortion in the lower bound is a problem in § 5
when we want to establish a lower bound for the Assouad dimension of the measure
we investigate. The following lemma provides a precise estimate for this purpose.

Lemma 4.6. If x = π(i), where i ∈ Σ is n-periodic for some n ∈ N, then for any
k ∈ N we have

|ϕ′
i|kn

(x)| = |ϕ′
i|n(x)|k.

Proof. Let i ∈ Σ be n-periodic, and let x = π(i). By the definition of π, this implies
that

ϕi|n(x) = x. (4.2)

Let k ∈ N. Using the chain rule, (4.2) and the conformality of the IFS we find that

|ϕ′
i|kn

(x)| = |((ϕi1 ◦ . . . ◦ ϕin
) ◦ . . .

k times
◦ (ϕi1 ◦ . . . ◦ ϕin

))′(x)|

= |(ϕi1 ◦ . . . ◦ ϕin
)′(x) · . . .

k times
· (ϕi1 ◦ . . . ◦ ϕin

)′(x)|

= |ϕ′
i|n(x)k| = |ϕ′

i|n(x)|k.

�

4.2. Quasi–Bernoulli measures

A probability measure ν on Σ is called quasi-Bernoulli if there exists a uniform
constant C � 1, such that for all i, j ∈ Σ∗, we have

C−1ν([i])ν([j]) � ν([ij]) � Cν([i])ν([j]),

where here and hereafter ij denotes the concatenation of the finite words i and j.
Note the similarity to lemma 4.4. If C can be taken to equal 1, then the measure
is called a Bernoulli measure.

To simplify notation, from hereafter we write A � B to mean that A is bounded
from above by B multiplied by a uniform constant. Similarly, we say that A � B,
if B � A and A ≈ B if B � A � B.
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Recall that two measures μ and ν are said to be equivalent if μ(A) = 0 if and
only if ν(A) = 0. In the following σ : Σ → Σ denotes the left-shift defined by σ(i) =
i2i2 . . .. Also recall that a measure ν on Σ is ergodic if either ν(A) = 0 or ν(A) = 1,
for all σ-invariant sets A ⊂ Σ.

For the rest of this section, let N ⊂ Σ denote the set of infinite words, which
contain all finite words as a substring, that is

N = {i ∈ Σ: j � i, for all j ∈ Σ∗}.
The following lemma is simple, but crucial to the proof of theorem 4.1.

Lemma 4.7. If ν is a quasi-Bernoulli measure, then ν(Σ \ N ) = 0.

Proof. It is well known that if ν is a quasi-Bernoulli measure, then the measure ν̃
obtained as a weak-∗ accumulation point of the sequence

ν̃n :=
1
n

n−1∑
j=0

ν ◦ σ−j ,

is a σ-invariant and ergodic quasi-Bernoulli measure, which is equivalent with ν
[11]. Therefore, we may assume without loss of generality that ν is σ-invariant and
ergodic. Now for every j ∈ Σ∗, we see by applying Birkhoff’s ergodic theorem, that

lim
n→∞

1
n

n∑
i=0

χ[j](σni) =
∫

Σ

χ[j] dν = ν([j]) > 0,

for ν-almost every i ∈ Σ, where χ[j] denotes the indicator function of the set [j]. In
particular, this implies that for almost every i, there is n ∈ N, such that χ[j](σni) =
1, that is j � i. Let Σj = {i ∈ Σ: j � i}, so by the previous ν(Σ \ Σj) = 0. By
definition of N , we have

ν(Σ \ N ) = ν

⎛
⎝Σ \

⋂
j∈Σ∗

Σj

⎞
⎠ = ν

⎛
⎝ ⋃

j∈Σ∗

Σ \ Σj

⎞
⎠ �

∑
j∈Σ∗

ν(Σ \ Σj) = 0.

�

We say that a measure μ supported on a self-conformal set F is quasi-Bernoulli if
it is the projection of a quasi-Bernoulli measure ν supported on Σ under the natural
projection π : Σ → F defined as in (4.1). Next we show that the quasi-Bernoulli
measures supported on self-conformal sets satisfying the SSC are doubling, which
in particular implies that the Assouad dimensions of these measures are finite. After
that, we prove the main theorem of this section, theorem 4.1.

Proposition 4.8. If μ is a quasi-Bernoulli measure fully supported on a self-
conformal set F satisfying the strong separation condition, then μ is doubling.

Proof. Let δ = mini�=j d(ϕi(F ), ϕj(F )), which is positive since F is strongly sepa-
rated. Fix an integer k satisfying maxi∈Σk

||ϕ′
i|| < δ

2C4 , where C is the maximum
of the constant given by lemma 4.3. Finally, let c = mini∈Σk+1 ν([i]).
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Since F is compact and μ is fully supported on F , it is easy to see that it suffices
to consider only uniformly small values of r > 0. Therefore let

0 < r < min{||ϕ′
i|k || : i ∈ Σk}.

Note that the right-hand side is positive since X is compact so this is possi-
ble. Also fix x ∈ F , let i ∈ Σ be such that π(i) = x, and choose n ∈ N as the
unique integer satisfying C||ϕ′

i|n || < r � C||ϕ′
i|n−1

||. This immediately implies that
ϕi|n(F ) ⊂ B(x, r). Note that by the assumption on r we have

||ϕ′
i|n || < ||ϕ′

i|k ||.

so in particular n > k. For any l ∈ N and i ∈ Λ let i|li denote the word
(i1, i2, . . . , il, i) and notice that by the strong separation condition and lemma
4.3(1)–(3), we have for all large enough l ∈ N and i �= j that

d(ϕili(F ), ϕilj(F )) := inf
x∈ϕili(F )

y∈ϕilj(F )

|x − y| � δ

C2
· diam(ϕi|l(F )) � δ

C3
||ϕ′

i|l ||. (4.3)

Now using lemma 4.4, we have for every y ∈ B(x, 2r)

d(y, ϕi|n−k−1(F )) � 2r <
δ

C4 maxi∈Σk
||ϕ′

i||
r � δ

C3 maxi∈Σk
||ϕ′

i||
||ϕ′

i|n−1
||

� δ

C3

||ϕ′
i|n−1

||
||ϕ′

σn−k−1i|k ||
� δ

C3
||ϕ′

i|n−k−1
||,

in particular, combining this with estimate (4.3), we have B(x, 2r) ∩ F ⊂
ϕi|n−k−1(F ). Therefore, using the quasi-Bernoulli property, we have

μ(B(x, 2r))
μ(B(x, r))

�
μ(ϕi|n−k−1(F ))

μ(ϕi|n(F )))
=

ν([i|n−k−1])
ν([i|n])

� 1
ν([σn−k−1i|k+1])

� 1
c
.

Since the upper bound is independent of x and r, the claim follows. �

Proof of theorem 4.1. It follows from proposition 4.8 that dimA μ is finite. Let s <
dimA μ and c > 0. Now there is a point y ∈ F and radii 0 < r < R, satisfying

μ(B(y,R))
μ(B(y, r))

> c

(
R

r

)s

.

Let i ∈ N , x = π(i) and let j ∈ Σ, such that π(j) = y. Now choose k, n ∈ N as the
unique integers which satisfy

||ϕ′
j|n+1

|| � R < ||ϕ′
j|n ||, and ||ϕ′

j|k || < r � ||ϕ′
j|k−1

||.

Then ϕj|k(F ) ⊂ B(y, Cr) and B
(
y, δ

2C R
) ∩ F ⊂ ϕj|n(F ), where C is the constant

of lemma 4.3. Using the quasi-Bernoulli property and the fact that μ is doubling,
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we get that

c

(
R

r

)s

<
μ(B(y,R))
μ(B(y, r))

�
μ(ϕj|n(F ))
μ(ϕj|k(F ))

=
ν([j|n])
ν([j|k])

� ν([σnj|k−n])−1.

Now since i ∈ N , there is an index l ∈ N, such that σli|k−n = σnj|k−n. Let R′ =
||ϕ′

i|l || and r′ = ||ϕ′
i|l+n

||, and observe that by lemma 4.4,

R′

r′
=

||ϕ′
i|l ||

||ϕ′
i|l+n

|| � 1
||ϕ′

σli|n ||
=

1
||ϕ′

σnj|k−n
|| �

||ϕ′
j|n ||

||ϕ′
j|k ||

=
R

r
.

Again, it is easy to see that ϕi|l(F ) ⊂ B(x,CR′) and B
(
x, δ

2C r′
) ∩ F ⊂ ϕi|l+n

(F ),
so using the doubling and quasi-Bernoulli properties of μ, we see that

μ(B(x,R′))
μ(B(x, r′))

�
μ(ϕi|l(F ))

μ(ϕi|l+k−n
(F ))

=
ν([i|l])

ν([i|l+k−n])
� ν([σli|k−n])−1

= ν([σnj|k−n])−1 � c

(
R

r

)s

� c

(
R′

r′

)s

.

This shows that dimA(μ, x) � s, and taking s → dimA μ gives dimA(μ, x) � dimA μ.
Since this holds for all i ∈ N , the claim follows from lemma 4.7. �

5. Measures with place-dependent probabilities

In this section, we study the class of invariant measures with place-dependent prob-
abilities supported on strongly separated self-conformal sets. The results of § 4
show that these measures are doubling and that their pointwise Assouad dimen-
sion coincides with the global Assouad dimension at almost every point. Our main
result of this section, theorem 5.3, complements these results by giving an explicit
formula for their Assouad dimension. To our knowledge, the formula has not been
previously established in the literature. Let us begin by defining our setting.

5.1. Place-dependent invariant measures

We assume that our IFS {ϕi}i∈Λ is self-conformal, that is it satisfies (C1) and
(C2). In contrast to the case of self-conformal measures where we assign a uniform
measure pi on the set ϕi(F ), now we allow the mass concentration to depend
continuously on the point, that is we choose for each i ∈ Λ a Hölder continuous
function pi : X → (0, 1), which satisfy

∑
i∈Λ pi(x) ≡ 1 and consider the probability

measures satisfying the equation∫
f(x) dμ(x) =

∑
i∈Λ

∫
pi(x)f ◦ ϕi(x) dμ(x),

for f ∈ C(X) where here and hereafter C(X) denotes the set of continuous real
valued functions on X. We define the Ruelle operator T : C(X) → C(X) by

(Tf)(x) =
∑
i∈Λ

pi(x)f ◦ ϕi(x),
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and let T ∗ : M(X) → M(X) denote the adjoint operator, where M(X) is the set of
Borel probability measures on X. Recall that for ν ∈ M(X), T ∗ν is given by

T ∗ν(B) =
∑
i∈Λ

∫
ϕ−1

i (B)

pi(x) dν(x),

for all Borel subsets B ⊂ X. Barnsley et al. [2] as well as Fan and Lau [8] have
studied the measures which are invariant under T in a setting which is more general
than ours. The next proposition, which is vital to this section, is a special case of
[8, theorem 1.1] or [2, theorem 2.1] and we refer to the mentioned papers for the
proof.

Proposition 5.1. Let F be a self-conformal set satisfying the SSC and pi : X →
(0, 1) be Hölder continuous for every i ∈ Λ. Then there is a unique Borel probability
measure μ satisfying

T ∗μ = μ.

Furthermore, for every f ∈ C(X), Tnf converges uniformly to the constant∫
f(x) dμ(x).

We call the measure μ an invariant measure with place-dependent probabilities,
which we shorten to just invariant measure for the remainder of this section. As was
the case with self-similar measures and Bernoulli measures on the corresponding
code space, there is also a natural correspondence between the invariant measure
μ and a Gibbs measure on the code space. Let us define some useful notation for
this section. For i ∈ Σ we slightly abuse notation by writing pi(i) := pi(π(i)) and
ϕi(i) := ϕi(π(i)), where π : Σ → F is the natural projection given by (4.1). For
i ∈ Σ and n ∈ N we let

pi|n(i) =
n∏

k=1

pik
(σk−1i).

Denote by P (Σ) ⊂ Σ the set of periodic points of Σ. For i ∈ P (Σ) with period of
length n, we let

pi = pi|n(i),

and

|ϕ′
i| = |ϕ′

i|n(i)|.
The following lemma is a well-known consequence of the Ruelle–Perron–Frobenius
theorem [4], and it follows from proposition 1.3 and theorem 1.6 of [8].

Lemma 5.2. There exists a unique σ-invariant probability measure ν on Σ, and a
constant C > 1 such that for any x ∈ F , i ∈ Σ and n ∈ N, we have

C−1pi|n(i) � ν([i|n]) � Cpi|n(i).

Furthermore, ν is quasi-Bernoulli and we have μ = π∗ν, where μ is the measure of
proposition 5.1.
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The previous lemma together with proposition 4.8 immediately imply that the
measure μ is doubling. We are now ready to state the main result of this section.
Recall that P (Σ) denotes the set of periodic words in Σ.

Theorem 5.3. Let μ be a place-dependent invariant measure fully supported on a
self-conformal set F , which satisfies the SSC. Then

dimA μ = sup
i∈P (Σ)

log pi

log |ϕ′
i|

.

Proof. Let us start with the upper bound. For the rest of the proof let s =
supi∈P (Σ)

log pi

log |ϕ′
i| . Let x ∈ F and i ∈ Σ, such that π(i) = x. Let 0 < r < R and choose

integers k and n which satisfy

|ϕ′
i|n+1

(x)| � R < |ϕ′
i|n(x)|, and |ϕ′

i|k(x)| < r � |ϕ′
i|k−1

(x)|.

This immediately implies that ϕi|k(F ) ⊂ B(x,Cr), where C is the con-
stant of lemma 4.3. As before, let δ = mini�=j{d(ϕi(F ), ϕj(F )) : i �= j}. Then
it is also easy to see that B(x, δ

2C R) ∩ F ⊂ ϕi|n(F ). Let us set j =
(ik−n+1, ik−n+2, . . . , ik, ik−n+1, ik−n+2, . . . , ik, . . .) ∈ P (Σ). Note that lemma 5.2
shows that

k∏
j=k−n+1

pij
(σj−1i) �

n∏
l=1

pjl
(σl−1j).

Using proposition 4.8 to conclude that μ is doubling and lemmas 4.3(1) and 4.4,
we get

μ(B(x,R))
μ(B(x, r))

�
μ(B(x, δ

2C R))
μ(B(x,Cr))

�
μ(ϕi|n(F ))
μ(ϕi|k(F ))

�
pi|n(i)
pi|k(i)

=

∏n
j=1 pij

(σj−1i)∏k
j=1 pij

(σj−1i)
=

⎛
⎝ k∏

j=k−n+1

pij
(σj−1i)

⎞
⎠−1

�
(

n∏
l=1

pjl
(σl−1j)

)−1

= |ϕ′
j|n(j)|−

log
∏n

l=1 pjl
(σl−1j)

log |ϕ′
j|n (j)|

� |ϕ′
j|n(j)|−s � |ϕ′

i|k−n−1
(x)|−s �

( |ϕ′
i|n(x)|

|ϕ′
i|k(x)|

)s

�
(

R

r

)s

.

This shows that dimA μ � s, for any x ∈ F .
For the lower bound, let t < s, and choose i ∈ P (Σ), such that

log pi

log |ϕ′
i|n(x)| � t,

where x = π(i) and n is the period of i. For every k ∈ N let rk = |ϕ′
ikn

(x)| =
|ϕ′

in
(x)|k, where the second equality follows from lemma 4.6. Using the SSC and
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proposition 4.8 we get

μ(B(x, rk)) � μ(ϕi|kn
(F )) =

kn∏
j=1

pij
(σj−1i)

= pk
i = r

k log pi
k log |ϕ′

i|n (x)|
k � rt

k.

Taking logarithms and limits shows us that

dimloc(μ, x) � t,

so in particular by proposition 3.1(2), dimA μ � t. Taking t → s finishes the proof.
�

Using the fact that the measure μ is quasi-Bernoulli, theorem 4.1 gives the
following immediate corollary.

Corollary 5.4. If μ is a place-dependent invariant measure fully supported on a
self-conformal set F satisfying the SSC, then

dimA(μ, x) = sup
i∈P (Σ)

log pi

log |ϕ′
i|

,

for μ-almost every x ∈ F

Remark 5.5. By [10, theorem 2.4], the Assouad dimension of a self-similar measure
μ under the SSC is given by the formula

dimA μ = max
i∈Λ

log pi

log ri
, (5.1)

see § 6 for definitions. Our theorem 5.3 can be viewed as a generalization of this
result. Indeed, an IFS consisting of similarities ϕi with similarity ratios ri is a self-
conformal IFS, with |ϕ′

i(x)| = ri, for all x ∈ F . Moreover, when each pi(x) ≡ pi, the
assumptions of theorem 5.3, and we have

dimA μ = sup
i∈P (Σ)

log pi

log |ϕ′
i|

= sup
i∈Σ∗

log pi

log ri
= max

i∈Λ

log pi

log ri
.

This together with corollary 5.4 gives the following slightly stronger version of
[10, theorem 2.4]: If μ is a self-similar measure satisfying the SSC, then

dimA(μ, x) = max
i∈Λ

log pi

log ri
= dimA μ,

for μ-almost every x ∈ F .
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6. Self-similar and self-affine measures

In this section we will concentrate on two important IFS constructions: self-similar
and self-affine measures. In the main results of this section, theorems 6.1 and 6.4, we
establish the exact dimensionality property (1.2), for doubling self-similar measures
satisfying the open set condition, and for some self-affine measures supported on
Bedford–McMullen sponges.

Let F be a limit set of an IFS, as defined in the beginning of § 4, and attach
to each i ∈ Λ a probability pi ∈ (0, 1), such that

∑
i∈Λ pi = 1. Recall that by [14],

there exists a unique Borel probability measure μ fully supported on F satisfying

μ =
∑
i∈Λ

piμ ◦ ϕ−1
i .

When the contractions ϕi are similarities or affine maps, F is called a self-similar or
a self-affine set, respectively, and μ is called a self-similar or a self-affine measure.
If the maps ϕi are similarities, we denote their similarity ratios by ri ∈ (0, 1). In
all of the proofs, we assume that diam(F ) = 1, which does not result in loss of
generality, since re-scaling the set does not affect its geometry.

Self-similar and self-affine sets and measures are perhaps the most important
prototypical examples of fractal sets and measures. These classes have been well
studied in the past decades, and substantial progress has been made in understand-
ing their dimensional properties. See for example [12] for recent developments in
the self-similar case and [5, 13] for the self-affine case. To make their study eas-
ier, it is usual to impose some sort of separation conditions on the defining maps.
The most common separation conditions are the SSC (see § 4) as well as the open
set condition (OSC), which the set F is said to satisfy if there exists an open set
U ⊂ R

d, such that ϕi(U) ⊂ U for all i ∈ Λ and ϕi(U) ∩ ϕj(U) = ∅ for i �= j. We say
that a self-similar measure fully supported on a self-similar set F satisfies the SSC
if F does and similarly for the OSC.

6.1. Self-similar measures and the open set condition

The doubling properties of self-similar measures are quite well studied. The fact
that self-similar measures satisfying the SSC are doubling follows, for example, from
proposition 4.8, and as mentioned in remark 5.5, their Assouad dimension was
explicitly computed by Fraser and Howroyd [10], and it is given by the formula
(5.1). Slightly surprisingly, relaxing the SSC to the OSC changes the situation
dramatically. Yung [25] provides examples of self-similar sets satisfying the OSC
for which (1) only the canonical self-similar measure is doubling, (2) all self-similar
measures are doubling, (3) the measures are doubling for some (non-canonical)
but not all choices of the weights pi. In particular this shows that the Assouad
dimension of self-similar measures satisfying the OSC can in many cases be infinite.
Still, it is an interesting question to study the Assouad dimension of doubling self-
similar measures which do not satisfy the SSC. In the main theorem of this section,
we show that if a self-similar measure satisfying the OSC is doubling, then the
Assouad dimension is given by the natural formula (5.1). Furthermore, we show
that the pointwise Assouad dimension agrees with the global Assouad dimension
almost everywhere, obtaining a stronger version of remark 5.5.
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In this section, we use the notation

ci|n =
n∏

k=1

cik
,

for any parameters ci, with i ∈ Λ. Recall that we may construct a Bernoulli measure
ν on Σ by setting for all i ∈ Σn,

ν([i]) = pi,

and extending this to the whole space Σ in the usual way. There is a natural
correspondence between the Bernoulli measure ν and the self-similar measure on
F , namely

μ = π∗ν, (6.1)

where π : Σ → F is the coding map given by (4.1). The proof of the next theorem,
which is our main result of this section, builds on ideas of [10, 25].

Theorem 6.1. Let μ be a self-similar measure satisfying the OSC. If μ is doubling,
then

dimA μ = max
i∈Λ

log pi

log ri
,

and for μ-almost every x ∈ F , we have

dimA(μ, x) = dimA μ.

Proof. Let s = maxi∈Λ
log pi

log ri
. We start by showing that dimA μ � s. Let x ∈ F ,

0 < r < R < 1 and let i ∈ Σ, be a (not necessarily unique) word satisfying π(i) = x.
Choose integers k and l, such that ri|k � R < ri|k−1 and ri|l+1 < r � ri|l . We
may assume from this point on that l > k, since otherwise R

r would be bounded
from above by a uniform constant, which does not bother us. Now ϕil+1(F ) ⊂
B(x, r), so in particular μ(B(x, r)) � pi|l+1 . Define Λx,R = {j ∈ Σ∗ : rj � R <
rj− , d(x, ϕj(F )) � R}. Note that the OSC implies that there is a constant M � 1
independent of x and R, such that

#Λx,R � M.

For the simple proof of this see [17, proposition 1.5.8]. By definition, for every
j ∈ Λx,R we have diam(ϕj(F )) = rj � R < ri|k−1 , and since x ∈ ϕi|k−1(F ), this
implies that d(ϕi|k−1(F ), ϕj(F )) � R < ri|k−1 . Combining these estimates we see
that ϕj(F ) ⊂ B(ϕi|k−1(F ), 2ri|k−1), where B(ϕi|k−1(F ), 2ri|k−1) denotes the open
2ri|k−1 -neighbourhood of the set ϕi|k−1(F ). Therefore, since μ is doubling, we may
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apply theorem 1.1 of [25] to see that there is a constant C > 0, such that

pj � Cpi|k−1

holds independently from j and i. Furthermore, it is clear that

B(x,R) ∩ F ⊂
⋃

j∈Λx,R

ϕj(F ),

so we may estimate

μ(B(x,R))
μ(B(x, r))

�
∑

j∈Λx,R
pj

pi|l+1

� MC
pi|k−1

pi|l+1

=
MC

pik
pil

pi|k
pi|l

� MC

p2
min

(
pil−k+1pil−k+2 · · · pil

)−1

� MC

p2
min

⎛
⎝r

log pik−l+1
log rik−l+1
il−k+1

r

log pik−l+2
log rik−l+2
il−k+2

· · · r
log pil
log ril
il

⎞
⎠−1

� MC

p2
min

(
ri|k
ri|l

)s

� MC

p2
min

(
R

r

)s

,

which is enough to show that dimA μ � s.
To finish the proof, it is enough to show that the lower bound holds for the

pointwise Assouad dimension at almost every point. For this, let i ∈ Λ be the index
maximizing log pi

log ri
and define Nn = {i ∈ Σ: (i, . . . , i) � i} and subsequently N =⋂

n∈N
Nn. Pick x ∈ π(N ) and note that as a special case of lemma 4.7, we have

that π(N ) is a set of full measure. Let i ∈ N be a (not necessarily unique) sequence
such that π(i) = x. Now for any n ∈ N there is an integer k such that

i = (i1, . . . , ik, i, i, . . . , i︸ ︷︷ ︸
n

, ik+n+1, . . .).

Choose Rn = ri|k and rn = ri|k+n
, so ϕik

(F ) ⊂ B(x,Rn), and thus

μ(B(x,Rn)) � μ(ϕik
(F )) = pi|k−1 ,

and by calculations similar to above,

μ(B(x, rn)) � MCpi|k+n
.

Therefore

μ(B(x,Rn))
μ(B(x, rn))

� 1
MC

p−n
i =

1
MC

(r−n
i )s =

1
MC

(
Rn

rn

)s

.

Since Rn

rn
→ ∞ as n → ∞, this shows that dimA(μ, x) � s. This finishes the proof,

since now at μ-almost every x, we have s � dimA(μ, x) � dimA μ � s. �

Remark 6.2. It is an interesting question, if the same formula (5.1) for the Assouad
dimension of self-similar measures works with even less restrictive separation
conditions, such as the weak separation condition.
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6.2. Self-affine measures on Bedford–McMullen sponges

A result similar to theorem 4.1 also holds for self-affine measures on very strongly
separated Bedford–McMullen sponges, which we define as follows. We work in R

d,
with d � 2. Start by choosing integers n1 < n2 < . . . < nd, and after that choose
a subset Λ ⊂∏d

q=1{0, . . . , nq − 1}. The set Λ is the code space associated with
the Bedford–McMullen sponge. For all ı̄ = (i1, i2, . . . , id) ∈ Λ, we define an affine
transform ϕı̄ : [0, 1]d → [0, 1]d by

ϕı̄(x1, . . . , xd) =
(

x1 + i1
n1

, . . . ,
xd + id

nd

)
.

The limit set of this IFS is called a Bedford–McMullen carpet if d = 2 or a Bed-
ford–McMullen sponge if d > 2. With this construction, we associate a probability
vector (pı̄)ı̄∈Λ, and define the self-affine measure μ on F as usual. Recall that μ
is related to a Bernoulli measure ν on the code space Σ by (6.1). To establish
bounds for the measures of balls, we need a separation condition which is strictly
stronger than the strong separation condition. Following Olsen [22], we say that a
Bedford–McMullen sponge F satisfies the very strong separation condition (VSSC),
if for words (i1, . . . , id), (j1, . . . , jd) ∈ Λ satisfying ik = jk, for all k = 1, . . . , q − 1,
and iq �= jq, for some q = 1, . . . , d, we have |iq − jq| > 1. We also need the following
quantity. For q = 1, . . . , d and ı̄ = (i1, . . . , id), define

pq (̄ı) = p(iq|i1, . . . , iq−1) =

∑̄
j∈Λ

jk=ik, k=1,...,q

pj̄

∑̄
j∈Λ

jk=ik, k=1,...,q−1

pj̄
, (6.2)

if (i1, . . . , iq, iq+1, . . . , id) ∈ Λ for some iq+1, . . . , id, and 0 otherwise. These numbers
can be interpreted as the conditional probabilities that the qth digit of a randomly
chosen member of Λ equals the qth digit of ı̄, given that the first q − 1 coordinates
did. The following theorem was proved by Fraser and Howroyd [10, theorem 2.6].

Theorem 6.3. Let μ be a self-affine measure on a Bedford–McMullen sponge
satisfying the VSSC. Then

dimA μ =
d∑

q=1

max
ı̄∈Λ

− log pq (̄ı)
log nq

.

Again, we extend this result and prove that the pointwise Assouad dimension
coincides with this value at almost every point.

Theorem 6.4. Let μ be a self-affine measure on a Bedford–McMullen sponge F
satisfying the VSSC. Then

dimA(μ, x) = dimA μ,

for μ-almost every x ∈ F .
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For the proof we need the concept of approximate cubes introduced by Olsen [22].
For clarity, we use ω to represent members of the set Σ instead of i which we used
in the self-similar case. We denote the approximate cube of level k ∈ N centred at
ω = (̄ı1, . . .) = ((i1,1, . . . , i1,d), . . .) ∈ Σ by Qk(ω), and define it by

Qk(ω) = {ω′ = (j̄1, . . .) ∈ Σ: jt,q = it,q, ∀q = 1, . . . , d and ∀t = 1, . . . Lq(k)},

where Lq(k) is the unique number that satisfies

n−Lq(k)−1
q < n−k

1 � n−Lq(k)
q . (6.3)

The geometric equivalent of the approximate cube Qk(ω) is its image under the
projection map π : Σ → R

d. The image π(Qk(ω)) is contained in

d∏
q=1

[
i1,q

nq
+ . . . +

iLq(k),q

n
Lq(k)
q

,
i1,q

nq
+ . . . +

iLq(k),q

n
Lq(k)
q

+
1

n
Lq(k)
q

]
,

which is a hypercuboid in R
d with all side lengths comparable to n−k

1 .
Olsen [22] observed that the measure of an approximate cube is given by

μ(π(Qk(ω))) =
d∏

q=1

Lq(k)−1∏
j=0

pq(σjω), (6.4)

where σ : Σ → Σ is the left-shift and pq(ω) = p(i1,q|i1,1, . . . , i1,q−1), where the right-
hand side is as in equation (6.2). Recall also that a Bernoulli measure on the code
space Σ is shift invariant.

The following proposition by Olsen shows that we can approximate the balls
centred at the Bedford–McMullen sponges by approximate cubes of comparable
size.

Proposition 6.5. Let ω ∈ Σ and k ∈ N.

(i) If the VSSC is satisfied, then B(π(ω), 2−1nk
1) ∩ F ⊂ π(Qk(ω)).

(ii) π(Qk(ω)) ⊂ B(π(ω), (n1 + . . . + nd)nk
1).

The proof of the proposition can be found in [22, proposition 6.2.1]. Let us now
prove theorem 6.4. The proof follows ideas of Fraser and Howroyd [10, theorem
2.6], where they carefully construct sequences of points and scales, which give the
desired exponent for the lower bound. The difficulty we face when compared to
the approach in [10], is that where they have the freedom to choose the point
they consider for each pair of scales independently, we have to find a single point
where we see the desired behaviour at arbitrarily small scales. Due to the non-
conformality of the sponge, this essentially means that we not only need to find
long enough sequences of convenient symbols in the symbolic space, but we also
have to control their location within the word.
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Proof of theorem 6.4. First we note that Lq(n) increases with n and, since nq are
strictly increasing, decreases with q. It is an elementary exercise to show that for
every k ∈ N, there is an integer nk, such that for all n � nk, we have

Ld(n) < Ld(n + k) < Ld−1(n) < Ld−1(n + k) < . . . < L1(n) < L1(n + k).

For q = 1, . . . , d, let pmin
q = minı̄∈Λ pq (̄ı), and let ı̄min

q be some element of Λ which
achieves this minimum. Define for every k ∈ N the set

Ik =
⋃

n�nk

d⋂
q=1

σ−Lq(n)[ ı̄min
q , . . . , ı̄min

q︸ ︷︷ ︸
Lq(n+k)−Lq(n) times

].

Note that an element ω ∈ Ik has the form

ω = (̄ı1, . . . ı̄Ld(n), ı̄
min
d , . . . , ı̄min

d , ı̄Ld(n+k)+1, . . . , ı̄L2(n),

ı̄min
2 , . . . , ı̄min

2 , ı̄L2(n+k)+1, . . . , ı̄L1(n), ı̄
min
1 , . . . , ı̄min

1 , ı̄L1(n+k)+1, . . .). (6.5)

It is also a simple exercise to show that if i, j ∈ Σ∗, and q, � ∈ N, such that � > q + |i|,
and A,B ⊂ Σ, with A ⊂ Λq × [i] and B ⊂ Λ� × [j], then

ν(A ∩ B) = ν(A)ν(B). (6.6)

Now we choose m1 = nk and then inductively mi = L1(mi−1 + k) + 1, for every
i > 1, and define Ai := (

⋂d
q=1 σ−Lq(mi)[ ı̄min

q , . . . , ı̄min
q︸ ︷︷ ︸

Lq(mi+k)−Lq(mi) times

])c. Noting that Ic
k ⊂

⋂
i∈N

Ai and applying (6.6) inductively first to the sets Ai and then to the sets
σ−Lq(mi)[ ı̄min

q , . . . , ı̄min
q︸ ︷︷ ︸

Lq(mi+k)−Lq(mi) times

], we obtain

ν(Ic
k) � ν

(⋂
i∈N

Ai

)
=
∏
i∈N

ν(Ai)

=
∏
i∈N

⎛
⎜⎜⎝1 − ν

⎛
⎜⎜⎝ d⋂

q=1

σ−Lq(mi)

⎡
⎢⎢⎣ ı̄min

q , . . . , ı̄min
q︸ ︷︷ ︸

Lq(mi+k)−Lq(mi) times

⎤
⎥⎥⎦
⎞
⎟⎟⎠
⎞
⎟⎟⎠

=
∏
i∈N

(
1 −

d∏
q=1

(pmin
q )Lq(mi+k)−Lq(mi)

)
�
∏
i∈N

⎛
⎜⎝1 − (pmin

q )d︸ ︷︷ ︸
<1

⎞
⎟⎠ = 0.

Thus ν(Ik) = 1, and moreover ν(I) = 1, where I =
⋂

k∈N
Ik.

Now let s = dimA μ given by theorem 6.3, x = π(ω), where ω ∈ I, and let Rk =
(n1 + . . . + nd)n−n−1

1 , and rk = 2−1n
−(n+k)−1
1 , where k and n are chosen, such that
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ω is given by equation (6.5). Observe that by proposition 6.5 and equations (6.3)
and (6.4), we have

μ(B(x,Rk))
μ(B(x, rk))

=

∏d
q=1

∏Lq(n)
j=0 pq(σjω)∏d

q=1

∏Lq(n+k)
j=0 pq(σjω)

=
1∏d

q=1

∏Lq(n+k)

j=Lq(n)−1 pq(σjω)

=
d∏

q=1

(
1

pmin
q

)Lq(n+k)−Lq(n)+2

�
d∏

q=1

(
1

pmin
q

)(n+k)
log n1
log nq

−n
log n1
log nq

+1

� (pmin
q )−d

d∏
q=1

(
1

pmin
q

)k
log n1
log nq

= (pmin
q )−d

d∏
q=1

(
nk

1

)− log pmin
q

log nq

� (min
q

pmin
q )−d

(
nk

1

)s
= C

(
Rk

rk

)s

,

where C = (minq pmin
q )−d · (2(n1 + . . . + nd))s > 0 is a constant. Taking k → ∞, we

see that Rk

rk
→ ∞, which is enough to prove that dimA(μ, x) � s. This holds for all

x = π(ω), such that ω ∈ I, where I has full measure, proving the claim. �

Example 6.6. Here we give an example of a measure μ, with dimMμ < dimA(μ, x),
for μ-almost every x. Let μ be a self-affine measure on a Bedford–McMullen carpet.
By [9, theorem 8.6.2], the upper Minkowski dimension of μ is given, in the notation
of § 6, by the formula

dimMμ = max
ı̄∈Λ

(− log pı̄

log n2

)
+ max

ı̄∈Λ

(
log p1(̄ı)
log n2

+
− log p1(̄ı)

log n1

)
,

and from theorems 6.3 and 6.4, it follows that the pointwise Assouad dimension is
given by

dimA(μ, x) = max
ı̄∈Λ

(− log pı̄

log n2
+

log p1(̄ı)
log n2

)
+ max

ı̄∈Λ

(− log p1(̄ı)
log n1

)
,

at μ-almost every x. By choosing the pı̄, for example in a way that pı̄ and pı̄

p1(ı̄)
are

minimized in the same column, and p1(̄ı) is minimized in a different column, we
have

dimA(μ, x) > dimMμ,

for μ-almost every x. For example, we may choose n1 = 3 and n2 = 4, and Λ =
{(0, 0), (0, 3), (2, 0)}, with p(0,0) = 1

8 , p(0,3) = 5
8 and p(2,0) = 1

4 . Then we have

dimA(μ, x) =
log 6
log 4

+
log 4
log 3

>
log 2
log 4

+
log 4
log 3

= dimMμ.,

for μ-almost every x.
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7. Discussion

Most of the results of this paper follow a similar pattern by providing exact dimen-
sionality properties for the pointwise Assouad dimension. A natural follow up to the
results of this paper would be to conduct finer analysis of the pointwise Assouad
dimension and develop tools for multifractal analysis in this setting. Classically, the
multifractal spectrum of a measure is given by the Hausdorff dimension of α-level
sets of the local dimension. The celebrated multifractal formalism states that, in
many cases, this spectrum is given by the Legendre transform of the Lq-spectrum
of the measure, see e.g. chapter 11 of [6] for details. Of course, a natural question
to ask is if something similar is true for the dimension spectrum of the level sets of
the pointwise Assouad dimension.

Question 1. What is the multifractal Assouad spectrum of a strongly separated
self-similar measure μ? By this we mean quantity

fA(α) := dimH{x ∈ X : dimA(μ, x) = α}.

Using the Hausdorff dimension instead of the Assouad dimension in the definition
is natural, since it is easy to see that each α-level set of the pointwise Assouad
dimensions is dense in the support and the Assouad dimension of sets is stable
under closures.
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