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Abstract

In this paper, compositions of a natural number are studied. The number of restricted compositions is
given in a closed form, and some applications are presented.

2000 Mathematics subject classification: primary 05A17; secondary 68R05.

Keywords and phrases: composition, partition, restricted, maximal element, minimal element.

1. Introduction

Compositions and partitions of a natural number n frequently appear in research
and in practical applications. Although the number of compositions or partitions
satisfying particular requirements can be obtained from their generating functions, this
is a serious drawback, since it requires symbolic computational facilities and exact
computations, because of the computational complexity involved. In this paper, we
present a closed form formula for the number of restricted compositions, and give
some applications of the results.

Let us be more precise. The list of natural numbers ti , which sum to a natural
number n, is an integer composition of n. The set of all such lists, where the ordering
of the summands matters, is the set of all integer compositions of n. The set of
restricted integer compositions of n is the subset of all compositions that satisfy some
additional restrictions, for example, on the number of summands, on the values of
summands, and so on. Let a, b, n ∈ N with a ≤ b ≤ n. Let C(n, a, b) denote the
number of compositions of n, such that summands ti are natural numbers, bounded
as a ≤ ti ≤ b, for all i . Furthermore, let C(n, k, a, b) denote the number of those
restricted compositions of n, where the number of summands is equal to k,

k∑
i=1

ti = n, a ≤ t j ≤ b, j = 1, 2, . . . , k.
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Clearly,

C(n, a, b)=
bn/ac∑

k=dn/be

C(n, k, a, b).

It is trivial to prove that

C(n) := C(n, 1, n)= 2n−1 and C(n, k) := C(n, k, 1, n)=

(
n − 1
k − 1

)
.

There are also known formulas for the special cases

C(n, k, a, n)=

(
n − ka + k − 1

k − 1

)
, C(n, a, n)=

bn/ac∑
k=1

C(n, k, a, n).

Also an obvious recursive relation for the general case

C(n, k, a, b)=
n−a∑

i=n−b

C(i, k − 1, a, b)

is right at hand. Nevertheless, generating functions are known for both C(n, k, a, b)
and C(n, a, b). They are of the form [2, 6](

za 1− zb−a+1

1− z

)k

and
1

1− za((1− zb−a+1)/(1− z))
, (1.1)

respectively. We are also interested in a closed form formula for the number of
compositions of n with more than one maximal (or minimal) element. We will denote
them by Max(n) and Min(n), respectively. Again, there are generating functions
known for C(n)−Max(n) and C(n)−Min(n), which are of the form

(1− z)2
∞∑
j=1

(
z j

1− 2z + z j+1

)2

and (1− z)2
∞∑
j=1

(
z j

1− z − z j

)2

,

respectively [6].
It is quite easy to obtain closed form formulas at least for C(n, 1, b) and C(n, a, b),

a > 1. Namely, by (1.1),

1
1− z((1− zb)/(1− z))

=

∞∑
n=0

C(n, 1, b)zn.

Since

1
1− z((1− zb)/(1− z))

=
1− z

1− 2 z + zb+1 = (1− z)
∞∑

i=0

(2z − zb+1)i

= (1− z)
∞∑

i=0

i∑
j=0

(−1) j
(

i

j

)
2i− j zi− j z j (b+1),
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the coefficient at zn becomes

C(n, 1, b)= g(n, b)− g(n − 1, b),

where

g(n, b) :=
∑
i, j

i+ jb=n

(−1) j
(

i

j

)
2i− j .

Similarly C(n, a, b)= g(n, a, b)− g(n − 1, a, b), a > 1, where

g(n, a, b)=
∑
i, j,`

i+ j (a−1)+`(b−a+1)=n

(−1)`
(

i

j

)(
j

`

)
.

But it seems that deriving an explicit formula for C(n, k, a, b) is a far more difficult
problem.

The paper is organized as follows. In Section 2 closed form formulae for the number
of restricted compositions and restricted partitions are obtained. These are used as a
basis for studying two related problems in Section 3. The paper concludes with some
examples in Section 4.

2. Restricted compositions

In this section, our aim is to find a combinatorial closed form expression for
C(n, k, a, b).

THEOREM 2.1. Let a ≤ b ≤ n and dn/be ≤ k ≤ bn/ac. To each composition of n
assign a vector i = (i2, i3, . . . , ib), where i j denotes the frequency of the number j in
the composition. Moreover, let

α j := n − k( j − 1)−
b∑

`= j+1

(`− j + 1)i`, β j := k −
b∑

`= j+1

i`,

γ j :=

⌊n − k −
∑b
`= j+1(`− 1)i`
j − 1

⌋
, j = 2, 3, . . . , b.

Then:

(a) C(n, k, 1, b)=
∑

i2=α2,i3,...,ib
max{0,α j }≤i j≤min{β j ,γ j }

b∏
`=2

(
k −

∑`−1
j=2 i j

i`

)
;

(b) C(n, k, a, b)= C(n − k(a − 1), k, 1, b − (a − 1));
(c) if (kb − n)/(k − 1) ∈ N and (ka + (b − a)− n)/(k − 1) ∈ N0, then

C(n, k, a, b)=

(
n − ka + k − 1

k − 1

)
.
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PROOF. First, note that the frequency of number 1 is n −
∑b
`=2 `i` and so the number

of summands in the composition is

k(i) := n −
b∑
`=2

(`− 1)i`. (2.1)

Furthermore, there are exactly

b∏
`=2

(
k(i)−

∑`−1
j=2 i j

i`

)
different compositions with the same vector i . Since the number of summands has
to be k, the only admissible compositions are those with k(i)= k. Therefore, the
relations(

k −
b∑
`= j

i`

)
( j − 1)≥ n −

b∑
`= j

`i` ≥ k −
b∑
`= j

i` ≥ 0, j = 2, 3, . . . , b,

have to be satisfied. With the help of (2.1), we obtain the appropriate ranges for
numbers i j ,

max{0, α j } ≤ i j ≤min{β j , γ j }, 3≤ j ≤ b, i2 := α2 = γ2.

The first formula is therefore proven. In order to show that an additional condition,
which requires the summands in the composition to be at least a, does not increase the
difficulty of the problem, let us define a function

f :

{
(t1, . . . , tk),

k∑
i=1

ti = n, a ≤ ti ≤ b

}

→

{
(s1, . . . , sk),

k∑
i=1

si = n − k(a − 1), 1≤ si ≤ b − (a − 1)
}
,

f : (t1, t2, . . . , tk) 7→ (t1 − (a − 1), t2 − (a − 1), . . . , tk − (a − 1)),

which is clearly a bijection and thus

C(n, k, a, b)= C(n − k(a − 1), k, 1, b − (a − 1)).

To prove the last statement of the theorem, assume C(n, k, a, b)= C(m, k, a2, m).
Then m = n + k(m − b) and a2 = a + m − b. Hence

m =
kb − n

k − 1
, a2 =

ka + (b − a)− n

k − 1
.

If m ∈ N and a2 ∈ N0, then C(m, k, a2, m) is well defined and it follows that

C(n, k, a, b) = C(m, k, a2, m)= C(m − ka2, k, 0, m − ka2)

=

(
n − ka + k − 1

k − 1

)
. 2
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This result can be used to derive some interesting properties of restricted
compositions.

COROLLARY 2.2. The following formulae hold true:

C(n, k, 1, 2)=
(

k

n − k

)
, C(n, 1, 2)=

n∑
k=dn/2e

(
k

n − k

)
=

bn/2c∑
k=0

(
n − k

k

)
,

C(n, k, a, a + 1)=
(

k

n − ka

)
, C(n, a, a + 1)=

bn/ac∑
k=dn/a+1e

(
k

n − ka

)
.

Suppose now that one is interested in restricted partitions. The list of natural
numbers, which sum to n and where the ordering of summands is not important, is the
set of integer partitions of n. The partitions, where the number of summands is equal
to k and where they are bounded between a and b, will be denoted by P(n, k, a, b).
The following corollary follows directly from Theorem 2.1.

COROLLARY 2.3. Let 1≤ a ≤ b ≤ n and dn/be ≤ k ≤ bn/ac. To each partition of n
assign a vector i = (i2, i3, . . . , ib), where i j denotes the frequency of the number j
in the partition. Moreover, let α j , β j and γ j , j = 2, 3, . . . , b, be as in Theorem 2.1.
Then:

(a) P(n, k, 1, b)=
∑

i2=α2,i3,...,ib
max{0,α j }≤i j≤min{β j ,γ j }

1;

(b) P(n, k, a, b)= P(n − k(a − 1), k, 1, b − (a − 1)).

3. Two related problems

It is interesting to consider the problem of counting the compositions where more
than one maximal (or minimal) summand exists. An application will be given in the
final section. Using Theorem 2.1, one can prove the following theorem.

THEOREM 3.1. Let Max(n) denote the number of all compositions of n, such that
there are at least two maximal summands, and let Min(n) denote the number of all
compositions of n, such that there are at least two minimal summands. Then

Max(n)= 1+
bn/2c∑
i=2

bn/ ic∑
νi=2

n−iνi∑
k=d(n−iνi )/(i−1)e

(
k + νi

νi

)
C(n − iνi , k, 1, i − 1),

Min(n)=
bn/2c∑
i=1

bn/ ic∑
νi=2

b(n−iνi )/(i+1)c∑
k=sign(n−iνi )

(
k + νi

νi

)
C(n − iνi , k, i + 1, n − iνi ).

PROOF. Let us denote the value of maximal summands by i and the frequency of i
in the composition by νi . If i = 1, then there is exactly one appropriate composition.
Now let i ∈ {2, 3, . . . , bn/2c} and νi ∈ {2, 3, . . . , bn/ ic}. Consider the summands

https://doi.org/10.1017/S0004972709000902 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972709000902
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TABLE 1. Values of Max(n) and Min(n) for n ≤ 13.

n 1 2 3 4 5 6 7 8 9 10 11 12 13
Max(n) 0 0 0 1 3 8 17 36 72 144 286 569 1133
Min(n) 0 1 1 5 8 21 44 94 197 416 857 1766 3621

which are smaller than i , and denote the number of these summands by k := k(i, νi ).
Clearly d(n − iνi )/(i − 1)e ≤ k ≤ n − iνi . Then there are C(n − iνi , k, 1, i − 1)
different possible compositions among them. But now the maximal summands could
be arranged through the sequence of summands, which implies

(k+νi
νi

)
possibilities of

where to set these νi maximal summands.
To prove the second formula, let i denote the value of minimal summands.

Therefore i ∈ {1, 2, . . . , bn/2c}, and νi ∈ {2, 3, . . . , bn/ ic}. Now let k denote the
number of summands which are greater than i . If n − iνi = 0, then k = 0 and there is
exactly one such composition. Suppose that n − iνi > 0. If b(n − iνi )/(i + 1)c = 0,
there is no appropriate composition containing νi summands i , otherwise k can be any
number between 1 and b(n − iνi )/(i + 1)c. Further, there are exactly(

k + νi

νi

)
C(n − iνi , k, i + 1, n − iνi )

compositions containing νi summands i and k summands greater than i . 2

Let MaxC(n) (MinC(n)) denote the number of compositions of n, such that
there is exactly one maximal (minimal) summand, respectively. Since Max(n)+
MaxC(n)= C(n)= 2n−1 and Min(n)+MinC(n)= C(n), Max(n) and Min(n) can
also be computed via MaxC(n) and MinC(n).

COROLLARY 3.2. Let Max(n) and Min(n) be as in Theorem 3.1. Then

MaxC(n)=
n∑

i=2

n−i∑
k=d(n−i)/(i−1)e

(k + 1)C(n − i, k, 1, i − 1),

MinC(n)=
n∑

i=1

b(n−i)/(i+1)c∑
k=sign(n−i)

(k + 1)C(n − i, k, i + 1, n − i).

PROOF. The expressions can be obtained similarly as in the proof of Theorem 3.1. 2

Although it seems easier to obtain Max(n) and Min(n) from MaxC(n) and MinC(n),
we observe that the time complexity increases this way.

The next important question is the asymptotic behavior of Max(n) and Min(n) for
large integers n. Numerical examples and Table 1 point to the following conjecture.

CONJECTURE 3.3. Let Max(n) and Min(n) be as in Theorem 3.1. Then

lim
n→∞

Max(n + 1)
Max(n)

= lim
n→∞

Min(n + 1)
Min(n)

= 2.
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t0 = 0 t3 = 1

FIGURE 1. All possible cases for n = 3.

4. Examples

An interesting application of Max(n) arises in numerical analysis, in particular in
asymptotic analysis of the geometric Lagrange interpolation problem by Pythagorean-
hodograph (PH) curves [1, 5]. Here the number of cases of the problem considered
that need to be studied can be significantly reduced by knowing Max(n) in advance.
More precisely, if the geometric interpolation (see [3], for example) by PH curves of
degree n is considered, the unknown interpolating parameters ti , i = 1, 2, . . . , n − 1,
have to lie in

D =
{
(ti )

n−1
i=1 ∈ Rn−1

| t0 := 0< t1 < t2 < · · ·< tn−1 < 1=: tn
}
.

It turns out that the interpolation problem requires the analysis of a particular nonlinear
system of equations involving the unknown ti only at the boundary of D. Quite clearly,
if the point in Rn−1 is to be on the boundary of D, at least two consecutive ti have to
coincide (but not all of them, since t0 = 0 and tn = 1). Thus the number of cases
considered is equal to C(n + 1)− 2= 2n

− 2 (see Figure 1, for example).
Some further observations reduce the problem to the analysis of particular parts of

the boundary. Let

νi :=

0 ti−1 6= ti ,

max
0≤ j≤i−1

{i − j | t`+1 = t`, j ≤ `≤ i − 1} otherwise,

where i = 1, 2, . . . , n. It turns out that if the sequence (νi )
n
i=1 has a unique maximum,

the corresponding choice of parameters (ti )
n−1
i=1 can be skipped in the analysis. But

the number of sequences (νi )
n
i=1 for which the maximum is not unique is precisely

Max(n + 1).
Let us conclude the paper with an another example. In high order parametric

polynomial approximation of circular arcs ([4], for example), the coefficients
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of the optimal solution involve the number of restricted partitions of a natural
number. Namely, the coefficients of the parametric polynomial approximant p(t)=
(x(t), y(t))T , where

x(t) :=
n∑

k=0

αk tk, y(t) :=
n∑

k=0

βk tk,

are of the form

αk =


k(n−k)∑

j=0

P̃( j, k, n − k) cos
(

k2π

2n
+
π

n
j

)
k is even,

0 k is odd,

and

βk =


0 k is even,
k(n−k)∑

j=0

P̃( j, k, n − k) sin
(

k2π

2n
+
π

n
j

)
k is odd,

where P̃(n, k, b) :=
∑k
`=1 P(n, `, 1, b).
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