
11

Beyond Normal Modes

Throughout Part 1, we employed the classical normal mode description of insta-
bility growth. All perturbations, �X ′, from the equilibrium state were represented
by expressions like �X ′ ∝ eσ t+i(kx+�y). The goal was to find complex values of σ
that signal growth, decay, oscillations/waves, or a combination of these. We also
focused on the fastest-growing mode, which is expected to dominate the solution
in the long time limit. However, this focus can be too restrictive; other modes can
be an important part of the solution. In this chapter we will introduce a different
approach to stability analysis that allows for more general temporal structures. We
will find that, over limited times, disturbances can grow considerably faster than
the fastest-growing normal mode. This has especially important implications for
the emergence of turbulence in geophysical flows.

11.1 Instability as an Initial Value Problem

Consider the evolution of a specific initial perturbation of some equilibrium state.
This is equivalent to an initial value problem where the perturbation is specified at
some initial time, �X0 = �X(t0), and we seek its state at all subsequent times, �X(t).
Previously, we sidestepped consideration of the initial condition by focusing on the
fastest-growing mode, which should dominate the solution at late times. At earlier
times, however, solutions can exhibit non-intuitive transient behavior, including
rapid initial growth. If this initial growth is large enough, it may trigger nonlinear
effects such as the transition to turbulence before the fastest-growing normal mode
can be established. Also, when unstable conditions last only for a limited time, it
is important to know which disturbances will grow the most over that interval.

To fix these ideas, consider a system of coupled, linear, first-order ordinary
differential equations,

d �X
dt

= A �X , (11.1)
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248 Beyond Normal Modes

which reduces to an eigenvalue problem when the time dependence �X ∝ eσ t is
assumed. We have often reduced our system of equations to such a form, and it may
help the reader to review (2.17, 2.18) from the convection chapter or (3.12) describ-
ing shear instability. In the case of convection �X(t) could represent a concatenation
of the vertical velocity and buoyancy discretized in the vertical, or possibly the
coefficients of these variables in a Fourier series (Chapter 13). After solving for
the eigenvalues, σ j , and the associated eigenvectors, �ζ j , we can write the general
solution as

�X(t) = B1�ζ1eσ1t + B2�ζ2eσ2t + · · · (11.2)

The coefficients B1, B2, . . . are then determined by the initial condition:

�X0 = B1�ζ1 + B2�ζ2 + · · · (11.3)

or, more compactly,

�X0 = Z �B, (11.4)

where Z is the matrix whose columns are the eigenvectors of A:

Z = [ �ζ1 | �ζ2 | . . . ],
and �B is a vector of coefficients

�B =
⎡⎢⎣ B1

B2
...

⎤⎥⎦ .
If we let σ1 denote the eigenvalue with the maximum real part (which could be

negative), then we can see from (11.2) that, as t → ∞, the solution will become
dominated by that mode:

�X(t) → B1�ζ1eσ1t .

This simplification is the reason we have focused on the fastest-growing mode in
previous sections.

But what if we’re interested in growth over a finite time interval? We will
see that, in geophysical stability problems, the fastest-growing mode alone is
often not sufficient to describe the growth of perturbations over finite times. In
fact, over a finite time, a problem like (11.1) can have all eigenvalues decaying
(i.e., σr < 0), and still exhibit growth! An example is the plane Couette flow
that we discussed in section 5.1. That flow has no growing eigenmodes, yet is
known to become unstable at sufficiently high Reynolds number (Orszag and Kells,
1980).
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11.2 Transient Growth in Simple Linear Systems 249

11.2 Transient Growth in Simple Linear Systems

As a simple illustration of transient growth, consider a system like (11.1) consisting
of only two components, �X = (X1, X2). As a specific example, we choose

A =
[ −0.1 1

0 −0.2

]
. (11.5)

Both eigenvalues of A are real and represent exponential decay: σ1 = −0.1 and
σ2 = −0.2. As is conventional, we order the eigenvalues so that σ1 > σ2. The
eigenvectors, �ζ1 = (1, 0) and �ζ2 = (−0.9950, 0.0995), are not orthogonal; in fact,
they are nearly parallel.

To complete the problem, we choose an initial condition that is arbitrary except
that it contains substantial contributions from both eigenvectors, as we can tell by
solving (11.4) for �B:

�X0 = (0.1, 1); (B1, B2) = (10.1, 10.05).

The solution is then

�X(t) = 10.1�ζ1e−0.1t + 10.05�ζ2e−0.2t

The evolution of this system is shown in Figure 11.1. The left-pointing eigen-
vector �ζ2 decays rapidly, and with it, its contribution to �X . As a result, �X points

(a)

(b)
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Figure 11.1 (a) Evolution of �X from its initial value �X0, with the eigenvectors
shown as red arrows (after Schmid, 2007). After an initial period of growth, the
evolution of �X follows that predicted by the eigenvector �ζ1 and eigenvalue (σ1 <
0) with the largest growth rate. This is also seen in (b), where the amplitude of
| �X | is shown over time (solid line), along with the two different eigenvector terms,
|B1�ζ1eσ1t | and |B2�ζ2eσ2t | (dashed lines). The initial growth interval is indicated
by gray shading.
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Figure 11.2 As in Figure 11.1, but for the case of orthogonal eigenvectors.

progressively more to the right, and its magnitude increases. At late times, the con-
tribution from �ζ2 is negligible. �X is then nearly parallel to �ζ1, and decays with
rate σ1.

As you might anticipate from the last example, a necessary condition for large
initial growth is that the eigenvectors be non-orthogonal. In fact, when the eigen-
vectors are orthogonal, transient growth is not observed. To demonstrate this,
let

A =
[ −2 1

1 −4

]
. (11.6)

The symmetry of A guarantees that the eigenvectors can be chosen to be orthogo-
nal: �ζ2 = (−0.38, 0.92), and �ζ1 = (0.92, 0.38). The corresponding eigenvalues are
again both negative: σ1 = −1.59 and σ2 = −4.41.

The evolution begins with the same initial condition as in the previous case:
�X0 = (0.1, 1). The resulting evolution of �X(t) is shown in Figure 11.2. Once again
the contribution from �ζ2 decays rapidly so that �X ultimately becomes parallel to �ζ1,
but the length of �X decreases monotonically. This is what we would expect based
on our experience with normal modes.
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11.3 Computing the Optimal Initial Condition 251

Since transient growth requires that the eigenvectors of the system are non-
orthogonal, it would be helpful to have a general rule to assess whether this is
the case for a given matrix A. It is a general property of linear algebra that nor-
mal matrices contain only eigenvectors that are orthogonal,1 with the converse
also holding, i.e., any matrix with orthogonal eigenvectors is normal. A normal
matrix, A, has the property that AA† = A†A, with the dagger indicating the Her-
mitian transpose (the transpose of the complex conjugate, also called the adjoint)
of A.

11.3 Computing the Optimal Initial Condition

We’ve seen how an arbitrarily chosen initial state can exhibit transient growth
regardless of the signs of the eigenvalues. Under what conditions is this likely to
happen? For a given system, can we identify an initial state that is “optimal,” in
some sense, for transient growth? The meaning of “optimal” can vary depending
on the particular behavior we’re interested in, but the methods of matrix calculus
allow us to explore a wide range of those behaviors.

We begin by writing the general solution to the initial value problem (11.1) as

�X(t) = eAt �X0, (11.7)

where eAt is the matrix exponential function. In case you’re unfamiliar, eAt is a
matrix defined by

eAt = I +
∞∑

n=1

Antn

n! , (11.8)

(similar to the infinite series representation of the scalar function eat ), where the
symbol I is the identity matrix. It has two properties that we’ll need:

d

dt
eAt = AeAt and eAt |t=0 = I,

both of which you can (and should) derive using (11.8). With these you can confirm
that eAt �X0 is indeed the solution of (11.1).

To generalize the concept of growth beyond the exponential kind, we define an
amplification factor (sometimes called the gain) G, at any given time, as

G(t, �X0) = 〈 �X(t), �X(t)〉
〈 �X0, �X0〉

. (11.9)

This is the factor by which the squared amplitude of the solution �X(t) exceeds that
of the initial condition, �X0.

1 Or can be chosen to be orthogonal.
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252 Beyond Normal Modes

Two aspects of (11.9) should be noted:

● We have used 〈·, ·〉 to denote the inner product, which could take different forms.
Here we will consider only the Euclidean inner product – equivalent to the vector
dot product, 〈�a, �b〉 = �a∗ · �b for complex vectors �a and �b (more on this in section
11.8).

● G depends on (i) the initial state �X0, (ii) the time t over which the system has
evolved, and (iii) the matrix A that controls the evolution of �X . The first two are
listed explicitly in (11.9), the third is implicit.

Given the solution (11.7), the amplification factor can be written as

G(t, �X0) = 〈eAt �X0, eAt �X0〉
〈 �X0, �X0〉

= 〈eA†t eAt �X0, �X0〉
〈 �X0, �X0〉

. (11.10)

The last equality uses the properties

〈 �X ,A�y〉 = 〈A† �X , �y〉,
and

(eAt)† = eA†t .

This shows that it is the matrix eA†t eAt that determines the amplification at time t .
Now let us ask, what is the initial condition that optimizes growth over a given

time interval 0 ≤ t ≤ T ? To answer this, we must maximize G(T, �X0)with respect
to the initial condition �X0. For tidiness, we define the matrix

E(T ) = eA†T eAT

and write the elements of �X0 as x1, x2, . . . , xN , so that the gain becomes

G = Ei j x∗
i x j

x∗
k xk

. (11.11)

We now take the derivative of G with respect to a generic element x∗
� , resulting in

∂G

∂x∗
�

= E�j x j

x∗
k xk

− Ei j x∗
i x j

(x∗
k xk)2

x� = 1

x∗
k xk

[
E�j x j − Gx�

] = 0. (11.12)

(Variations with respect to x� and x∗
� are independent. Differentiating with respect

to x� gives the complex conjugate of 11.12.)
The quantity in square brackets must be zero, or

E �X0 = G �X0. (11.13)

This tells us that the optimal gain G is the largest eigenvalue of E, and �X0 is the
corresponding eigenvector. (Because E is Hermitian, the gain G is guaranteed to
be real.)
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11.4 Optimizing Growth at t = 0+ 253

To sum up, here is the procedure for calculating the maximum growth over time
T .

(i) Compute the stability matrix A.
(ii) For a target time T , compute eAT , e.g., in Matlab using the built-in function

expm(A*T).
(iii) Multiply eAT by its Hermitian conjugate to get E.
(iv) Compute the largest eigenvalue of E and its eigenvector �X0.
(v) If desired, compute the evolution �X(t) = eAt �X0.

The interested student may want to investigate the method of singular value decom-
position, described in the appendix to this chapter, which facilitates certain aspects
of this calculation.

11.4 Optimizing Growth at t = 0+

As we have seen, the optimal initial condition is a function of the target time T . An
important special case is the limit T → 0, i.e., the initial condition that grows most
rapidly immediately after t = 0. This can be found by Taylor expanding eA†t eAt

about t = 0, i.e.,

eA†t eAt = (I + A†t + · · · )(I + At + · · · ) = I + (A + A†)t + O(t2) (11.14)

Substituting this into the amplification factor gives

G(t, �X0) = 1 + 〈(A + A†) �X0, �X0〉
〈 �X0, �X0〉

t + O(t2). (11.15)

Recalling the definition (11.9), we express the initial exponential growth rate of
| �X | in terms of G:

1

2

dG

dt
= | �X |

| �X0|2
d

dt
| �X | → 1

| �X |
d

dt
| �X | (11.16)

as t → 0, with | �X |2 = 〈 �X , �X〉. This shows that the initial growth rate is given by
0.5dG/dt . Therefore, taking the derivative of (11.15) we can write

Initial growth rate = 1

2

dG

dt
= 〈0.5(A + A†) �X0, �X0〉

〈 �X0, �X0〉
. (11.17)

Comparing (11.17) with (11.10), the definition of G, we see that the problem of
maximizing dG/dt at t = 0 is isomorphic to the maximization of G in section
11.3. The same calculation therefore shows that the maximum initial growth rate
is the largest eigenvalue of (A + A†)/2, and the initial condition �X0 that achieves
that growth rate is the corresponding eigenvector.

https://doi.org/10.1017/9781108640084.012 Published online by Cambridge University Press

https://doi.org/10.1017/9781108640084.012


254 Beyond Normal Modes

11.5 Growth at Short and Long Times: a Simple Example

To demonstrate the different choices for optimal amplification of a perturbation we
look at the system described by the matrix

A =
[ −1 −31.8

0 −2

]
. (11.18)

This matrix has real decaying eigenvalues σ1,2 = −1,−2, but is non-normal
and exhibits transient growth, as shown in Figure 11.3. The evolution of the
amplification factor, G(t), is shown for

(i) the optimal perturbation for initial growth (section 11.4),
(ii) the optimal perturbation for the target time T = 0.1 (section 11.3), and

(iii) the optimal G(t) possible at each time, denoted by Gopt(t), which acts as an
upper bound on G(t).

As expected from the preceding discussion, the optimal initial growth curve
(blue curve on Figure 11.3) is steep initially, exceeding the growth of the opti-
mal for T = 0.1 (red curve; see the closeup in the right-hand frame). By t = 0.03,
however, the optimal curve for T = 0.1 has caught up and grows more rapidly
from then on.

The overall optimum growth Gopt is close to the blue curve near t = 0 and close
to the red curve near T = 0.1. This is not surprising since the initial states for the
blue and red curves are optimized for maximum growth over those times.

Figure 11.3 Evolution of the amplification factor, G(t, �X0), for two different ini-
tial conditions in time, corresponding to optimal initial growth (blue), and the
optimal amplification at the target time 0.1 (red). The dashed black curve repre-
sents the maximum amplification possible at each time, Gopt(t). The right panel
is a closeup of the evolution for the time interval 0 ≤ t ≤ T , with T = 0.1.
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11.6 Example: The Piecewise Shear Layer 255

The final case to consider is the maximum possible amplification over all times.
This is referred to as the global optimal, and can be seen to occur at t = 0.7 (Figure
11.3, left frame). This initial condition is a good candidate to reach large amplitude
and possibly trigger a transition to turbulence.

11.6 Example: The Piecewise Shear Layer

A geophysical example that we are able to solve analytically is the piecewise-
linear shear layer of section 3.3. Recall that the solution for the vertical velocity
eigenfunction can be written as

ŵ(z) = B1e−k|z−h| + B2e−k|z+h| (11.19)

with the coefficients B1, B2 determined from (3.31). The latter can be reformulated
as an eigenvalue problem σ �B = A �B, where

A� = −ιk�
[

1 − 1
2k�

− e−2k�

2k�
e−2k�

2k�
−1 + 1

2k�

]
, (11.20)

and the shear scaling

ŵ� ≡ ŵ/u0 , k� ≡ kh , σ� ≡ σh/u0

has been applied.
Note that the dispersion relation for the dimensionless eigenvalue problem,

det(A� − σ�I) = 0, returns equation (3.32) in dimensionless form, and the results
presented in Figure 3.7. The normal modes of the shear layer are unstable for
long waves with 0 < k� < 0.64, and are neutral propagating vorticity waves for
k� � 0.64. Here, we investigate the example k� = 0.2, for which the eigenvalues
are σ� = ±0.149. Using the method described in section 11.4 we determine the
initial state that grows fastest at t = 0+, then follow its evolution to later times.

The result is shown by the solid curve on Figure 11.4. The dashed lines represent
the optimal initial growth rate (steeper line) and the maximum eigenvalue of A (less
steep). This exponential growth appears linear because the amplitude is plotted on
a log scale. As expected, the perturbation grows at the optimal rate near t = 0, then
converges to the fastest-growing normal mode as t → ∞.

Note that the optimal perturbation attains the same amplitude as the eigenmode
despite its initial amplitude being smaller by about a factor of 2. Conversely, if the
two were initialized with the same amplitude, the optimal perturbation would end
up bigger by a factor of 2. Along with the change in growth rate comes a change in
the structure of the disturbance, which converges over time to the fastest-growing
normal mode.
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growth
Initial

NM

X(t)

growth

Figure 11.4 Example of large initial growth of a perturbation on the piecewise
shear layer with k� = 0.2. The dashed lines show two curves with different growth
rates corresponding to the optimal initial growth and that of the fastest-growing
normal mode (NM growth).

Figure 11.5 Optimal initial growths for the piecewise shear layer (black line). The
normal mode growth rates are shown by the dashed line together for comparison.
Adapted from Heifetz and Methven (2005).

11.7 Mechanics of Transient Growth in a Shear Layer

Using the method of section 11.4, we may calculate the optimal initial growth for
each value of the dimensionless wavenumber, k�. The result is simply

1

2

dG

dt
= 1

2
e−2k� , (11.21)

the right-hand side being the positive eigenvalue of (A + A†)/2 with A given by
(11.20). As shown in Figure 11.5, this optimal initial growth rate is a monotoni-
cally decreasing function of k�, and exceeds the growth rate of the fastest-growing
normal mode for all k� except k� = 0.5.

In section 3.12 we learned of the wave resonance mechanism of shear layer
instability. These same ideas can be used to understand the enhanced initial growth
found here. In particular, we learned that there is an optimum phase relationship
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11.8 Generalizing the Inner Product 257

between the upper and lower vorticity waves to cause mutual amplification, �θ =
π/2 (as sketched in Figure 3.23). This optimal phase difference is only found for
the special case k� = 0.5, where the phase speeds of the vorticity waves in isolation
from each other are equal. For all other unstable k�, different�θ are required so that
the waves will phase-lock (i.e., bring each other to a stationary state) and thereby
undergo sustained growth.2

In the present case, however, we are not concerned about sustained growth; we
seek only to maximize instantaneous growth at t = 0. Therefore, phase-locking
is not required. In our discussion of wave resonance we derived the dimensionless
growth rate (3.88) in terms of �θ :

σ� = 1

2
sin(�θ)e−2k� . (11.22)

The factor e−2k� quantifies the strength of the interaction between the two waves
and is greater when k� is small. If �θ is not constrained by the requirement of
phase-locking, we can simply set it to π/2 for all k�, in which case (11.22) becomes
the optimal initial growth rate (11.21). Once again, enhanced instantaneous growth
is possible for all k� �= 0.5. The initial growth rate is largest in the limit k� → 0.

Take note – this result poses a challenge to our “rule of thumb” that says insta-
bility on a shear layer has wavelength ∼ 8 times the layer thickness (section 3.3.3).
Since naturally occurring shear instabilities do not have infinite time to grow,
(11.21) suggests that longer wavelengths are more likely to attain visible amplitude.
Is this true? We don’t know; go find out!

Exercise: Review the other rules of thumb that we derived in Chapter 3 based
on the fastest-growing normal mode. How do you think these would change
if we considered the optimal initial disturbance instead? Is there an analog
of Squire’s theorem for optimals? How might three-dimensional disturbances
grow?

11.8 Generalizing the Inner Product

Throughout this chapter we have used the simple Euclidean inner product to calcu-
late the magnitude of our solution vector | �X(t)|. However, we have either looked
only at arbitrary abstract systems or avoided stating exactly what this quantity cor-
responds to. Here we mention some different choices that are common, and note
that this choice affects the results of the transient growth analysis.

In our featured example of a shear layer, we used the magnitude of the coef-
ficient vector �X = (B1, B2), with the B j given in (11.19). In this case, our inner

2 The exact relationship �θ(k�) is plotted in Figure 3.26.
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product 〈 �X , �X〉 = | �X |2 corresponds to the vertical part of the kinetic energy,3 given
explicitly by ∫

ŵ(z, t)2dz =
∫
ŵ∗ŵdz (11.24)

=
∫ [|B1|2δ(z − h)+ |B2|2δ(z + h)

]
dz (11.25)

= |B1|2 + |B2|2. (11.26)

Other choices of norms are possible, and these are usually based on physical
considerations for each particular problem. Another common choice is an energy
norm, which measures the “size” of the perturbation in terms of its total energy.
Regardless of the choice of norm, we can switch by a simple transformation so that
all of the results in this chapter remain valid.

11.9 Summary

In this chapter we have seen that a more general linear stability analysis is possible
when taking into account the evolution of normal modes other than the fastest-
growing mode. The results can be summarized as follows.

● Transient growth exceeding the fastest-growing normal mode is possible for
systems described by non-normal matrices, which give rise to non-orthogonal
eigenvectors. (For normal systems, in contrast, maximum growth is given by the
fastest-growing, or least-decaying, normal mode.)

● For any desired target time T , eigen-analysis of the matrix eA†T eAT gives the
optimal amplification factor and the initial condition corresponding to it.

● The fastest-growing initial condition and growth rate can be found from an
eigen-analysis of the matrix (A + A†)/2.

● Transient growth in the piecewise shear layer can be understood intuitively
from the wave interaction perspective: the requirement of phase-locking is
removed.

3 As noted previously, these B j are proportional to vorticity anomalies associated with the vorticity waves on
the edges of the shear layer, and can be written as B j ∝ q̂ j = −�Q j η̂ j . Therefore, the amplitude factor

G(t) ∝ |q̂1|2 + |q̂2|2 corresponds to a quantity called enstrophy, which is generally defined as

E(t) =
∫

q ′(z, t)2dz. (11.23)

In this case we say that we are using the enstrophy norm. This is a common alternative to energy when
examining the transient growth of shear flows.
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11.10 Appendix: Singular Value Decomposition

The procedure for calculating the transient growth of initial conditions can be
streamlined through the use of the singular value decomposition (SVD). In fact,
this is such a standard method in matrix algebra that it can be accomplished in
Matlab with a single command: svd(A). To better understand what is inside the
“black box” of the SVD, let us think how we might construct an ideal solution to
the problem of optimal growth of �X(t) without prior knowledge of the SVD.

It is important to keep in mind that we already know a full solution to our prob-
lem of determining the time evolution of �X(t). From (11.2) it is expressed as a
linear combination of the eigenvectors, �ζ j , of A, along with their amplification
factors eσj t , and the coefficients, B j , required to produce the initial condition �X0,
i.e.,

�X(t) = B1�ζ1eσ1t + B2�ζ2eσ2t + · · · (11.27)

This can all be written compactly in matrix form

�X(t) = ZeDtZ−1 �X0, (11.28)

with the coefficients determined from �B = Z−1 �X0.
We have learned that the problem with this representation of the solution, for

non-normal A, is that the �ζ j are not orthogonal. This leads to amplification factors,
eσ j t , that are not representative of the growth of the perturbation. Can we find a
different representation of eAt = ZeDtZ−1, so that the eigenvector columns of Z
are orthogonal, and therefore the entries in the diagonal matrix are representative
of the perturbation growth? It turns out we can, and this representation is the SVD.

To see this, we first note that the different “representation” of eAt that we seek, is
in fact a different set of basis vectors for �X(t) than the eigenvectors of A. This new
set of basis vectors will have the desirable property that they will all be orthogonal
to each other – exactly what is missing in the �ζ j . Such a representation of eAt will
necessarily have the form of

eAt = U#V−1, (11.29)

where the columns, �u j , of U are the basis vectors we are seeking, # is a diagonal
matrix with amplification factors, # j , of each basis vector �u j , and V−1 has the
job of converting �X0 to the coordinates of our new basis, i.e., V−1 �X0 will play an
equivalent role as �B.

Since the �u j are orthogonal (and normalized to have unit amplitude) we can
write

〈�ui , �u j 〉 = �u†
i · �u j =

{
0, i �= j
1, i = j

. (11.30)
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In the language of linear algebra we say that U is a unitary matrix. An important
property of a unitary matrix is that U−1 = U†. It can be shown that V is also a
unitary matrix, so that we can write (11.29) exactly as the SVD, i.e.,

eAt = U#V†. (11.31)

A useful property of the SVD is that we may order the entries such that the
largest amplification factor is first, and given by#1, together with its corresponding
basis vector �u1. It is this combination that we are ultimately after, since we know
it provides the maximum amplification (analogous to the fastest-growing mode for
a normal matrix). Given what we already know of the SVD, we are now able to
come up with a simple recipe to determine all of U, #, and V, with the following
steps.

(i) Take the right product of (11.31) with V and consider only the first column to
give

eAt �v1 = #1�u1. (11.32)

(ii) Then find a similar relationship by performing the left product of (11.31) with
U† and then taking the conjugate transpose to give

eA†t �u1 = #1�v1. (11.33)

(iii) A formula for �v1 and #1 can then be found by taking the left product of
(11.32) with eA†t to give

eA†t eAt �v1 = #1eAt �u1 = #2
1 �v1, (11.34)

where the last step comes from using (11.33). This shows that#2
1 is the largest

eigenvalue of the matrix eA†t eAt , and �v1 is its eigenvector.
(iv) Similarly, we can find �u1 from taking the left product of (11.33) with eAt , and

use (11.32) to find

eAt eA†t �u1 = #1eAt �v1 = #2
1 �u1. (11.35)

Our recipe to construct the SVD is complete, and we have the ideal form for
expressing the solution �X(t), in terms of orthogonal basis vectors with ordered,
real, amplification factors. This also demonstrates that the SVD can be found
directly from the eigen-properties of the matrices eA†t eAt and eAt eA†t . Note that
an identical statement was arrived at when we considered a formula for G(t) in
(11.10).
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11.11 Further Reading

Nice overview papers on transient and optimal growth, which this material has
been based on, are Farrell (1996), Trefethen et al. (1993), and Schmid (2007). A
full treatment of transient growth and wave interactions in the piecewise shear layer
is discussed in Heifetz and Methven (2005). More recent advances are described
by Kerswell et al. (2014), Kaminski et al. (2014), and Luchini and Bottaro (2014).
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