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Summary

The total gametic disequilibrium between two loci linked to polymorphic inversions can be
partitioned into two types of components: within and between chromosome arrangements. The
within components depend on the gametic disequilibrium within each chromosome arrangement.
The between components depend on the locus-inversion disequilibria. This partitioning has
practical applications and is indispensable for studying the dynamics of these systems because
inversions greatly reduce recombination in the heterokaryotypes while allowing free, and
sometimes different, recombination in each of the homokaryotypes. We provide equations for the
per generation change of the various disequilibria for systems with two and three chromosome
arrangements, and the general recursive equations predicting the disequilibria after any number of
generations for the case of two arrangements. Simulation studies were carried out using different
values of the recombination parameters and all possible initial conditions. The results show a
complex convergence to linkage equilibrium in inversion systems. The various disequilibria can
have local maxima and minima while approaching equilibrium and, moreover, their dynamics
cannot be described, in general, using a single parameter, i.e. an effective recombination rate. We
conclude that the effects of inversions on gametic disequilibria must be carefully considered when
dealing with disequilibria in inversion systems. The formulae provided in this paper can be used

for such purpose.

1. Introduction

Chromosome inversions not only diminish but also
redistribute recombination among the various karyo-
types. In the heterokaryotypes, single crossovers
within the inversion loop give rise to non-functional
or non-viable aneuploid meiotic products. Recom-
binants between loci included within the inverted
segment (or between one locus and the inversion
itself) result from double crossovers and gene con-
version events only. Since these processes take place at
very low rates, of the order of 107 or 10~ per locus
per generation (Chovnick, 1973; Ishii & Charlesworth,
1977), recombination is drastically reduced, yet not
completely excluded, in the heterokaryotypes. In the
homokaryotypes, on the other hand, recombination is
freely allowed and when inversions shift the position
of genes along the chromosome, recombination
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rates differ among homokaryotypes for different
arrangements.

Obviously, the effects on recombination exerted by
chromosome inversions should be taken into account
when measuring and testing gametic disequilibria
between loci. The usual way to do so is to calculate the
association considering only those chromosomes with
a particular arrangement (Charlesworth ez al. 1979;
Fontdevila et al. 1983 ; Zapata et al. 1986 ; Knibb ez al.
1987; Knibb & Barker, 1988; Zapata & Alvarez,
1992), i.e. the disequilibrium within chromosome
arrangements. When there are locus-inversion dis-
equilibria, associations between loci result also from
the pooling of different chromosome arrangements.
This disequilibrium can be termed disequilibrium
between chromosome arrangements. The total dis-
equilibrium between two loci, A and B, linked to a
polymorphic chromosome, C, may be partitioned into
within and between components as follows (Ruiz et al.
1991):

D AC D BC

Dup=uy D gyt DAB(02)+7’ ¢y
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where u, and wu, are the frequencies of the two
chromosome arrangements, C, and C,; D refers to
Lewontin—Kojima (1960) measure of gametic dis-
equilibrium; D, g, is the disequilibrium between A4
and B within arrangement C, (producing the within
components of total disequilibrium); and D, and
D, are the locus-inversion disequilibria (producing
the between component, Dy = (Do Do)/ (U, u4,)).

Locus-inversion disequilibria may be accounted for
by several factors. The coadaptation hypothesis
postulates that inversions protect allele combinations
that are favourable or adaptive from recombination
(Dobzhansky, 1970; Lewontin, 1974; Krimbas &
Loukas, 1980). This proposal is supported by theo-
retical work on the origin and increase in frequency of
inversions. Multilocus models show that locus-
inversion disequilibria are generated when an inversion
trapping an allele combination with high fitness
increases in frequency (Charlesworth & Charlesworth,
1973). In two-locus, two-allele models with selection,
when the system finally reaches equilibrium, locus-
inversion disequilibria are maximal if recombination
in heterokaryotypes is zero (Deakin, 1972; Charles-
worth, 1974; Deakin & Teague, 1974). There are,
however, other non-selective explanations. Ishii &
Charlesworth (1977) derived the rate of decay of
locus-inversion disequilibria and pointed out that
these disequilibria may be historical if the associations
generated by chance when the inversion arose are kept
long enough over time by the recombination-reducing
effect of inversions. Additionally, random drift may
also produce locus-inversion disequilibria if the
effective population size is small enough (Nei & Li,
1975, 1980; Strobeck, 1983).

Gametic disequilibria within chromosome arrange-
ments may also arise by selective and non-selective
causes, although relatively little work has been done
on this particular subject. Theoretical work on the
origin of inversions (Deakin, 1972; Charlesworth,
1974 ; Deakin & Teague, 1974) predicts that in two-
locus, two-allele systems gametic disequilibrium within
chromosome arrangements will be non-existent when
the inversion reaches equilibrium if recombination in
the heterokaryotypes is zero. However, in more
complex situations, epistatic selection may conceiv-
ably generate this kind of disequilibrium. The existence
of within disequilibria is implicit in the model
of recombination-induced heterosis proposed by
Wasserman (1968) in which several coadapted haplo-
types are assumed to segregate inside each of the
arrangements. A formal and explicit treatment of the
rate of decay of disequilibria within chromosome
arrangements has not been carried out. The rate of
decay of the total disequilibrium between two loci
linked to polymorphic inversions has not been worked
out either.

In this paper, we first extend the partition of the
total disequilibrium between two loci to the general
case of multiple alleles and chromosome arrange-
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ments. Then, we derive the rate of decay of the
different components in an ideal (infinite and pan-
mictic) population for systems of two multiallelic loci
linked to chromosomes polymorphic for two or three
arrangements, a common type of inversion poly-
morphism in Drosophila (Sperlich & Pfriem, 1986;
Krimbas & Powell, 1992). Finally, we explore the
dynamics of gametic disequilibria in these systems by
means of deterministic simulations.

2. The model

We analysed the dynamics of gametic disequilibria in
a system of two multiallelic loci, 4 and B, linked to a
chromosome, C, segregating for two or three arrange-
ments. Recombination was the only evolutionary
factor considered in our model. That is, we assumed
the population to be infinite and panmictic, gener-
ations to be discrete, and selection, mutation and
migration to be absent. The only parameters that may
change in this model from one generation (¢) to the
next (+1) are gametic frequencies and, therefore,
gametic disequilibria. Allelic frequencies are constant
in the population taken as a whole but may change
within a particular chromosome arrangement. We
used the measures of disequilibrium D (Lewontin &
Kojima, 1960) and D’ = D/D,,,. (Lewontin, 1964).
Two loci may be linked to an inversion in several
ways. Here we consider three possibilities: both loci,
only one, or none of them located within the inverted
chromosome segment (Fig. 1). Four recombination
parameters are required to provide a full description
of the system dynamics. Let r, (r;) denote the
recombination frequency between locus A4 (B) and the
inversion, and r, and r, that between 4 and B in the
two possible homokaryotypes, C,C, and C,C,,
respectively. Assuming no interference, the recom-
bination frequency between 4 and B in the hetero-
karyotypes, r,,, is equal to r,+r,—2r,r,. In the
case of three chromosome arrangements which differ
by two overlapping inversions, the two loci may be
located in several different positions also. Here we
considered six cases (cases in which the two loci are
located beyond the same breakpoint of an inversion
are assimilable to the cases with two arrangements).
Those cases may be described using nine recom-
bination parameters. Let r, (r;) be the recombination
frequency between locus A4 (B) and inversion C, C,;
(ry) that with inversion C,C,; and r), (rp) that with
inversion C,C,. The frequencies of recombination
between A and B in the three homokaryotypes, C, C,,
C,C, and C,C,, will be denoted as r,, r, and r,,
respectively. The recombination frequencies between
A and B in the three heterokaryotypes can be defined,
assuming no interference, as above: r,, = r, +r,—2r,
PoiTog=Fytrg—=2r rg;and ri, = vl +rp—=2rr,. All
these recombination parameters include any processes,
such as crossing-over and gene conversion events,
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Fig. 1. The three possible general situations (a, b and ¢)
of loci 4 and B in relation to the two chromosome
arrangements. Recombination parameters are indicated.

producing effective recombination between the two
loci or between one of them and an inversion.

The analytical study of the model was carried out as
far as possible using Mathematica 2.2 (1993). The
algebra, however, quickly becomes unwieldy and we
used deterministic simulations to explore the dy-
namical outcome of the entire set of possible initial
conditions and recombination parameters. The simu-
lations iterated the recursive equations previously
derived for either 2000 generations or until the
absolute value of all disequilibria became less than
1078,

3. Results

(1) Partition of the gametic disequilibrium between
two loci into components: generalization to multiple
alleles and chromosome arrangements

Consider two loci, 4 and B, with m and n alleles,
respectively (4,,4,,...,4,,...,4 B.B,,...B,, ...,

Ly LA ] m> s Mg
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B,) and a polymorphic chromosome, C, with an
arbitrary number, k, of chromosome arrangements
(C,C,...,C,Cy,...,C). Such a system allows for
mnk different gametic combinations (haplotypes). A
full description of the (mnk — 1) independent haplotype
frequencies requires the same number of parameters.
The appropriate description for studying the dynamics
of the system includes three types of parameters: the
allelic frequencies, the locus-inversion disequilibria,
and the disequilibria between the two loci within each
of the chromosome arrangements. There are
(m+n+k—3) independent allelic frequencies. Let p,
(9,) denote the population frequency of the allele 4,
(B,), and u; (u,) that of chromosome arrangement C,
(C)). There are mk disequilibrium parameters de-
scribing the association between locus A4 and
chromosome C of the form:

DAfC, =f(AfCl)_pfui3 )]
yet only (m—1)(k—1) are independent. Similarly,
there are (n—1)(k—1) independent disequilibrium
parameters between locus B and chromosome C.
Finally, any chromosome arrangement, C,, may be
considered as a separate subpopulation, and the
disequilibrium between the two loci calculated within
this subpopulation. There can be (m—1)(n—1) in-
dependent disequilibrium parameters (D 4,,) de-
scribing the association between the two loci within
each of the k chromosome arrangements.

An alternative description of the mnk haplotypes
may be obtained using a different set of parameters:
the allelic frequencies, the pairwise gametic dise-
quilibria D, ., D,. and D, and the three-locus
disequilibria D . (see Bennet, 1954; Thompson &
Baur, 1984; Robinson et al. 1991). For each allele
combination, 4, B,, a disequilibrium parameter may
be defined in the total population, D ., = f(4, B,) —p;
q,- There will be mn such disequilibrium parameters,
yet only (m—1) (n—1) will be independent. This total
disequilibrium may be shown to be equal to:

k D D
- a0y VB ¢y
DA,B, § U, DA,B,(C,) +iz<: ; uu, ) 3)

where the following simplifying notation is used:
Dy =Dy c~u; D, and
DB!CU =U; DB‘C‘—uiDBgcj. (4)

Equation 3 shows that the total disequilibrium
between two loci can be partitioned into k& within
arrangements components (as many as different
arrangements, first term in the right hand of the eqn)
and k(k—1)/2 between arrangements components (as
many as different heterokaryotypes, second term in
the right hand). This formula is a generalization of
that provided by Ruiz et al. (1991) for the simple case
of two chromosome arrangements. In addition, each
haplotype has a three-locus disequilibrium parameter
associated with it, D,,. (Thompson & Baur, 1984).
Thus, there are mnk such parameters, yet only (m—1)
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(n—1)(k—1) are independent. The three-locus dis-
equilibrium corresponding to a given haplotype, say 4,
B, C,, may be written as follows:

DAfBgC, = utg:,- (DA,B’(C,)_DA,Bg(C;))

(1 —ut)

Uy

-+

D,.D
DA,C, DB‘C‘_ut(Z —Alc;—B&)-
1+ 4

)
Therefore, both the two-locus total disequilibria, D,
and the three-locus disequilibria, D_,., can be
expressed in terms of our descriptive parameters, i.e.
they do not provide new information about the
system.

The range of these disequilibrium measures varies
greatly with allelic frequencies. Thus, they are in-
appropriate for comparisons among populations,
generations and/or pairs of loci with different allelic
frequencies. The standardized measure of disequi-
librium, D" (Lewontin, 1964), is very useful for
comparative purposes because its range is frequency
independent (Lewontin, 1988). For the total dis-
equilibrium, D, ;is computed aseither D, ,/D, . when
D, p > 0 (where D, is min{p(1 —q,), (1—p,)q,}), or
D, ,/D,,, when D, <0 (where D, is max{—p,p,,
—(1—=pp)(1—g)}). Thatis, D), ; stands for the amount
of actual disequilibrium relative to the maximum
disequilibrium of the same sign that might be attained
by the population under study. Lewontin’s D’ can be
easily applied also to obtain relative values of the
locus-inversion disequilibria, D). and Dj., and the
disequilibria within arrangements, D' 5,

(1i) Per generation rate of decay of the gametic
disequilibrium : two chromosome arrangements

We derive in this section the per generation rate of
change of the gametic disequilibrium in a system with
two chromosome arrangements, C, and C, (fre-
quencies #, and u,, respectively). Hereafter the sub-
indices of the alleles are dropped out to simplify the
notation, i.e. 4 and B stand now for any given pair of
alleles at the two loci (4, and B,). The subindices of
the arrangements are also dropped out from locus-
inversion disequilibria, 1.e. D, stands for D,. and
for =D,

If ¢ denotes any generation, the two locus-inversion
disequilibria in generation 7+ 1 are equal to:

D, (t+1)=D,()(1—r,) (6a)
Dyo(t+1) =Dy ()(1—rp). (6b)

The disequilibrium between 4 and B within ar-
rangement C, in generation ¢+ 1 is:

DAB(CI)(I+ )= DAB(cn(t) (M—uyry~u, r12)
—UyT, rB(DAB(Cl)(t) - DAB(CZ)(I)

D, (D) Dyt
+ AC(u)u BC( )rA rB (7)
1%2
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and the disequilibrium within arrangement C, may be
expressed in a similar way. Using (3), (6) and (7), the
total disequilibrium D, in generation f+1 may be
derived:

D y(t+1)=u; D,y (DX —uyr;—uyry,)
+uy D ypico() (L —uyry—u,ry,)

+ DAC(t) DBC(t)
Uy Uy

(1 _r12)‘ (8)

(iii) Disequilibrium dynamics with two chromosome
arrangements

As pointed out before, in our model, the only
parameters that can change from one generation () to
the next (¢4 1) are the two disequilibria within, D .,
and D, c,,, and the two locus-inversion disequilibria
that build together the between component of the
total disequilibrium, Dy, = (Do D)/ (1, u,). Using
matrix algebra and eqns 6 and 7, it can be proved that
the general recursions for Dy, (¢), D gy, () and
D 4 pica)(1) are:

Dyry(0) = DBTW(O) /\tl
D iy () = kA +m, Ag+my Ag
DAB(CZ)(t) = jA1+n, Ay +n, A5, 9)

where the A, are the eigenvalues of the system (see the
Appendix for notation and derivation). Obviously,
the total disequilibrium between A and B, D ,4(¢), can
also be expressed in these terms:

D,y () = A;(DBTW(O) +uy K+ uy J) + A(uy my+uy ny)
+ A5, My +uy ny). (10)

It can be shown that 0 <A,, A,, A; <1 unless
r,=ry =0, in which case A, = 1. Therefore, it is
obvious from eqn 9 that the system will always tend to
an equilibrium point in which D ,(t) = Dy (t) =
D, gicry(t) = D 1pce)() = 0, except when r, =r,=0.
In the latter case, when ¢ tends to 00, D,p,(8) =
D, pcn(®) =0 and D,y (f) = Dp.y(0), yet this will
never happen as long as double crossovers and gene
conversion events present r,, from being zero. The
asymptotic rate per generation of approach to
equilibrium is given by min[1—2A,,1—2,,1—A;];
comparing these rates with that in a system without
inversions (r, or r,) it is obvious that the approach to
equilibrium is always delayed in a system with two
chromosome arrangements, just as expected from
their recombination-reducing effect.

A most interesting feature of this system is that the
total disequilibrium and the within arrangements
disequilibria do not converge to equilibrium in a
monotonically decreasing way even through the locus-
inversion disequilibria do. The generation at which
the maximum or minimum value of disequilibrium is
attained (z,,,,) can be ascertained by equating to zero
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Fig. 2. Two arrangements. Temporary increase of within
disequilibria. (Initial conditions: D, = D, = D, = 0-25,
Dy = Dapcyy =Dype=0,r,=r,=02, r,=ry=
0-01). [D and D’ are shown.]

the first partial derivatives of eqns. 9 and 10. It can be
proved in this way that these disequilibria can have
local maxima and minima for ¢ > 0, i.e. they can
increase and decrease during their convergence to
equilibrium. Even though these oscillations are tran-
sient, they can last many generations. For example, if
r=r=02 r,=ry, =006, u, =09, D, (0) =
0-25and D g 5,(0) = —0-25, then ¢, for D,y 15 72
and ¢, for D, is 34.

A deterministic simulation study was carried out to
explore the full space of possible initial conditions and
recombination parameters. In these simulations,
locus-inversion disequilibria and within arrangements
disequilibria were given all possible combinations of
extreme and intermediate values (for example, positive
maximum values for D,. and D,.; a negative
maximum value for D,y ,, and a positive maximum
for D,z c,) and similarly with the allelic and inversion
frequencies (for example, p, = ¢, = 0-5, 4, = 09 and
u, = 0-1). Recombination parameters covered the
three cases depicted in Fig. 1 and included also a
survey of variation in the magnitude of recombination.
Every set of recombination parameters was combined
with every set of initial values of frequencies and
disequilibria.

As analytically shown from eqns 9 and 10, the total
and within arrangements disequilibria can experience
oscillations during their convergence to equilibrium.
These oscillations are the product of their dynamical
interactions and, therefore, are useful to their study.
The necessary conditions for these oscillations to take
place are the following.

(1) The within disequilibria can increase in two
different ways. First, when D 50w, 74> T's + 0 (Fig.
1¢). In this case, as can be seen from eqn 7, the
increase is a consequence of double crossing-over in
the heterokaryotypes (Fig. 2). The disequilibria
generated in this manner always have the same sign as
the between component of the total disequilibrium; it
is generated in the same amount in both arrangements,
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Fig. 3. Two arrangements. (a) Temporary increase in total
disequilibrium due to different recombination frequencies
in homokaryotypes (initial conditions: D,, = D,. = D,
=00, D, gy =025 D, peyy =—025 D pe =0125,r, =
04, r, =01, r, =001, r, = 0). (b) Temporary increase in
total disequilibrium due to interaction of between and
within disequilibria (initial conditions: p, = ¢, = 08, u, =
05, D,,=001; D,. =Dy =005, D,py, =009, D,y
=—009, D,,, =0045,r, =04, r,=01,r, =001, ry =
0). (¢) Case of initial complete association of an inversion
with the gamete in which it occurred (initial conditions:
=0 =06u=08D,, =D, =Dp.=—008, D,
=—015, D50, =00, D, 5. =—0048, r, = 04, r, = 01,
r, =001, r, = 0). {D’ is shown.]

but may decay at a different rate in each one. Second,
when there is a difference in disequilibrium between
the two arrangements, double crossing-over can also
produce disequilibrium within an arrangement from
the disequilibrium within the other because of the
transfer of non-equilibrium gametes (haplotypes)
between arrangements.

(2) The basic condition for the total disequilibrium
to increase is that its components have different signs
and decay at different rates. This will happen when:

(2.1) In a given generation, D,y and D g,
have different signs and different absolute values.
Then D, will increase if the rate of decay of the
within component whose sign is imposed on D, is
large enough for this disequilibrium to disappear and
the other disequilibrium to become dominant. This
will occur more easily when the two within dis-
equilibria decay at different rates, and this will happen
when (see eqn 9) (a) recombination frequencies are
different in the two homokaryotypes, or (b) the two
chromosome arrangements have different frequencies
(Fig. 3a).

(2.2) The sign of the between component is different
from the sign of the within components and their
values and rates of decay are such that they determine
alternatively the sign of D,, (Fig. 3b).

Given that in this case the total disequilibrium
includes three components, there can be at most a
major local maximum and a major local minimum in
the approach to the equilibrium. Of course, the
production of new within disequilibria allows new
oscillations, but their magnitude is negligible because
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Fig. 4. Three arrangements. Temporary increase in
between disequilibria (initial conditions: p, = p, = 0'5, u,
=034, u,=u, =033, D,, =009, D, =D, =017,
Doy = Dgey = —0005, D,pc1y = Dupcry = Dancsy = 0>
D, p.,=00544, D, ., =—00272, r, =r,=r,=03,r, =
ry=r,=ry =005, r;=r,=01).

the new within disequilibria are always small (about
107, see Fig. 2).

These simulations are just aimed to explore the
behaviour of our model in the whole space of possible
initial conditions. However, situations with special
biological significance can be studied. An example is
represented in Fig. 3¢. If an inversion, after increasing
in frequency, remains associated with the gamete in
which it originated, a total disequilibrium can be
generated of inverse sign to that in the original
population, giving rise to the kind of dynamics we
have just described.

(iv) Three chromosome arrangements. Per generation
rate of decay of gametic disequilibrium and
disequilibrium dynamics

We will consider now the case of three chromosome
arrangements, C,, C, and C,. We derive the per
generation rate of decay of the various disequilibria
under the same conditions as above. The simulations
were carried out using the same criteria as above. The
associations of allele A and the three chromosome
arrangements in generation 7+ 1 are:

DACl(t+ 1) = DAcl(t)'-rA DAcw(t)_r:DAcm(t)
DA02(1+ 1) = DACZ(I) +r, DAC”(t)_r; DAC%(t)
D (t4+1) =D e (D+rs Dy, (D+r3Dyc (), (11)

where the notation follows that in (4). Analogous
expressions can be derived in locus B. We can see that
the locus-inversion disequilibria do not decrease
monotonically in this case. They are not independent
because D ey +Dyeo+ Dycs = Dper+Dpert+ Dpes =
0. These disequilibria, therefore, may experience
oscillations due to their different signs and rates of
decay (Fig. 4).
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Fig. 5. Three arrangements. Temporary increase in within
disequilibria with several oscillations (initial conditions:

Py =Py =05, u, =034, u, = u, = 033, D, = 009, D,

=Dy, =017, D,y = Dy, = — 0005, D, scry = Dapees)
=Dpen =0, Dypey =00544, D, = —00272, 1, =1,
=r,=03,r,=r,=ry,=r,=005r;,=r,=01). [D
and D’ are shown.]

BC1

The disequilibrium between alleles 4 and B within
chromosome arrangement C, in generation 41 is:
DAB(CI)(t+ )= DAB(C,)(t) (M —uyry—uyrys—usry,)

—U T, rB(DAB(Cl)(l) - DAB(CZ)(I))
—UsTyTy (DAB(CI)(t) - DAB(Ca)(t))

1(ryrg
+— D HD t
1( U, Acw( ) BClz( )

r// r//
+La%sp ) DBC,,,(r))

Uty

1
+F (ra DACw(t)

1

+7y DAcw(t)) (rg DACw(t)

+r5 Dy, (1)) (12)
Again, analogous expressions can be derived for
disequilibria within arrangements C, and C,. The
production of within disequilibria is rather more
complicated in this system than in the one with two
chromosome arrangements. Within disequilibria can
undergo two oscillations (Fig. 5).

Finally, the total disequilibrium between locus 4

and Bin generation ¢+1 is:

D, p(t-1) = D 5(0) —u, D ,pc, (O (uyry+uprip+ugry)
Uy DAB(Cz)(t) (uyrp+uyry+uy r23)
—Ug DAB(CS)(I) (ul Fis + Uy Fyg + Uy ra)

D@D, Dac, (0 Dae, )

U, 12 u, g 13
DACu(t) DBC”(I)
- Fo3- (13)
Uy Uy

The conditions for D,, to increase are fully
analogous to those of the system with two arrange-
ments. The only difference is that there can be
more oscillations because of the presence of three
within and three between components which may
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Fig. 6. Three arrangements. Several oscillations in rotal
disequilibrium (initial conditions: p, = p, = 0:5, u, = 05,
Uy =ty =025, D,, = —005 D,., = Dy, =005, D,., =
Dyey = —0-025, DAB(Cl) = —0-16, D pco, = 024, D 153
=—016, D 0, = =005, D0, = 0075, r, =05, r, =03,
ry=0%1r,=r,=r,=0,r,=0001, r, = r; = 0005). [D
is shown.]

have different signs and may decay at different rates
(Fig. 6).

4. Discussion

When two multiallelic loci are linked to a system of
polymorphic inversions, the total disequilibrium be-
tween any two alleles can be partitioned into two types
of components: (1) those that are functions of the
disequilibria within chromosome arrangements; and
(2) those that depend on the locus-inversion dis-
equilibria (the between components). This decom-
position is based on the recombination-redistribution
effect of inversions and is necessary for two main
reasons. On one side, it has a clear practical application
(see Betran et al. 1995), allowing one to disentangle
the source of particular allelic associations observed
in natural populations. On the other side, since the
disequilibria within arrangements and the locus-
inversion disequilibria decay at different rates, it is the
appropriate starting point to study the dynamics of
these systems.

We have used for this dynamical analysis a relatively
simple model in which the only evolutionary factor
involved was recombination. We focused our attention
on such a model because any special feature of its
dynamics may be attributed entirely to the presence of
inversions that reduce and redistribute recombination.
The effect of other evolutionary forces, such as
selection, migration, mutation or genetic drift, is
currently under investigation (Navarro et al., unpub-
lished). One of the features of our model is no
interference, which is a realistic assumption only when
distances separating loci are long enough (Foss et al.
1993). However, even when interference has an effect
in our system, it will not be a qualitative but a
quantitative effect: the percentage of haplotype
(gamete) transference between arrangements will tend
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to be increased when compared with the percentage of
independent transference of the two loci.

The disequilibrium between two loci not linked to
chromosome inversions decays according to the
known expression: D(f) = D(0)(1—r)* (Crow &
Kimura, 1970). The addition of two or more arrange-
ments complicates the situation considerably, and
the formulae for the rate of decay of the various
disequilibria become complex functions of the various
recombination parameters and the frequencies of the
chromosome arrangements.

When only two chromosome arrangements are
considered, locus-inversion disequilibria decay mono-
tonically at a rate which depends only on the
recombination rate between each locus and the
inversion (eqn 7). If this recombination is very low, as
when the locus is located within the inversion, the
formula may be approximated by D(z) = D(0)e™
(Ishii & Charlesworth, 1977). When a third arrange-
ment is present, however, locus-inversion disequilibria
change at rates which are functions of the various
recombination rates and the arrangement frequencies
(eqn 11). Consequently, they do not always decay but
may suffer transient increases due to the flow of alleles
between arrangements (Fig. 5). This flow can, given
the approximate recombination rates, accelerate the
rate of decay of disequilibria. If those disequilibria are
maintained by selection, the arrangement mainly
facilitating flux (usually the intermediate arrangement)
will be selectively eliminated.

The disequilibrium within a particular chromosome
arrangement does not decay monotonically but shows
a complex rate of change whether two (eqn 7) or three
arrangements (eqn 12) are considered. It may even
increase temporarily due to the ‘flow’ of dis-
equilibrium from the between components or from the
disequilibria within other chromosome arrangements
(Figs. 3 and 6). This ‘flow’ is produced by double
crossing-over and would not take place if either r, =
ry=ry=0or ry,=r,=r;=0. The conversion of
the disequilibrium between into disequilibrium within
was already noted by Charlesworth (1974, see his
table 3). If we assume that recombination is completely
suppressed in heterokatyotypes, then the disequi-
librium within arrangement C, decays monotonically
at a rate (1 —u, r,). This shows that, other things being
equal, within disequilibria will have a longer life in the
less frequent arrangements. Moreover, the lower the
frequency of an arrangement the smaller will be its
effective population size (N, = u,2N; Nei & Li, 1980)
and the easier it will be for genetic drift to generate
disequilibria within it. Therefore, within disequilibria
should be more frequently found in the less frequent
arrangements (setting aside problems of statistical
power for testing the disequilibria).

The disequilibrium within and the locus-inversion
disequilibria have very different dynamics. Our results
show that, as a general rule, when (r,,r,) > (r,)), the
within disequilibrium will always decay at a faster rate
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than the locus-inversion disequilibria. This tendency
will decrease with an increasing number of arrange-
ments, but it will still be true when using realistic
values for recombination parameters, that is, when
recombination rates in heterokaryotypes are as small
as 107* or 10™® per loci per generation. This is
consistent with the more frequent finding of significant
disequilibria of the latter type (see Nei and Li, 1980;
Sperlich & Pfriem, 1986; Zapata & Alvarez, 1987,
1992; Krimbas & Powell, 1992).

The dynamics of the total disequilibrium between
two loci is even more complex because this dis-
equilibrium is made up of several components each
decaying at a different rate (eqns 9 and 10). This
disequilibrium may also increase temporarily and
even show oscillations lasting up to hundreds of
generations (Figs. 3 and 6). It should be recalled
though that rotal disequilibrium is not generated de
novo, it 1s only released by recombination from the
disequilibrium between and/or within concealed in
the initial conditions. If recombination between the
two loci and the inversions is assumed to be zero, then
the total disequilibrium changes at the rate:

D, p(t+1) =D p()—uir, D 5, —uyry DAB(CZ)' (14)

This expression shows that even in this simplified
situation, the total disequilibrium will exhibit a
complex pattern of decay. Its dynamics cannot be
described using a single parameter, an effective
recombination rate, such as the average frequency of
recombination. Instead of that, it is necessary to
obtain information about all possible recombination
parameters (as in Betran et al. 1995) to describe the
system fully.

The dynamics of disequilibria in a system with
chromosome inversions parallel that in a subdivided
population with migration (Nei & Li, 1973; Li & Nei,
1974 ; Feldman & Christiansen, 1975; Tachida, 1994):
chromosome arrangements play the role of sub-
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populations and recombination that of migration.
Covariance in genic frequencies between subpopula-
tions generates disequilibria within populations
when migration is present. Likewise, when locus-
inversion disequilibria are present, double crossing-
over and /or conversion generates disequilibria within
chromosome arrangements. Migration may also trans-
fer disequilibrium from one subpopulation to another,
and again recombination may produce a similar
effect. Moreover, disequilibrium in a subdivided
population exhibits an oscillatory behaviour similar
to that of the total disequilibrium in our system. Of
course, when no selection, mutation or drift are
involved, both systems will tend towards complete
linkage equilibrium. There are, however, important
differences which make polymorphic inversions a
more complex situation. Firstly, the magnitudes of the
implied parameters are very different; migration will
generally be greater than recombination in hetero-
karyotypes. Secondly, while disequilibrium decays
at the same rate in all subpopulations, it may change
at a different rate within each arrangement; migration
will act as double crossing-over or double gene
conversion but will not allow single-locus inter-
changes, i.e. there is no independent locus-inversion
recombination. Moreover, any single arrangement
added to the system necessarily adds its own (and
different) recombination parameters to it, so that a
single parameter describing between arrangements
interchange, as migration, is not possible. Finally,
recombination implies necessarily reciprocal inter-
change and migration does not.
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The recurrence equations are obtained from (7) and (8). In matrix notation those equations may be written as:

D(t+1) = RD(),

where D(¢) is the (3 x 1) vector with elements D,z zrw,> D 4501y a0d D 5o, ; and R is the following (3 x 3) matrix:

(1—",1)(1_’3) 0

R= r Ty 1—riu —r uy—rgu,+r, rpu,

Tals Farpth

0

Fargiy

1—ryuy—r uy—rgu,+r, rgu,

The eigenvalues for R are A, = (1—r,)(1—rp), A, =2+g—0b)/2, A, = (2+g+b)/2, and the corresponding

eigenvectors are:

a 0 0
e c—b c+b
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where

a=(uuriry+r,(r,+rg—
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ry—=re)—r rg(ri+r))/(ryrg)

b= ((u(—ry—rg+r rg+r)—u(—r,—rg+r rg+rg+r)):+4u u,r’ ri)?

c=((rytrg—r rg)(uy—u)—ryu, +ryuy)
d=2r,rpu,

e=uy(r,—ry,)

S=u(ri—ry)

g=(—ro—rgtrrg—riu —ryu,).
The general recursions are:
Dpry(t) = Dpry(0) A
D, picry(t) = kAL +my A+ my A
D 4 pca(t) = jAT 0, A5+ 1, AG,
where

k= (Dgrw(0)e)/a
J=Dzwr(0)f)/a

my, = ((b—c) (DAB(CI)(O) ad— DAB(C2)(0) a(b+c)— Dy (0)ed+ D gpy (0) flb+ )/ (2abd)
my, = ((b+c) (DAB(CI)(O) ad+ DAB(C2)(0) a(b—c)—~ Dgrw(0) ed— D g7y (0) fIb—c)/(2abd)
n = (DAB(CI)(O) a(b+c) _DAB(CI)(O) da+ D zr(de —fc—fb))/(2ab)
n, = (DAB(C2)(0) alb—c)+ DAB(C])(O) da+ Dgry(—de+fc—fb))/(2ab).
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