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On Kleiman–Piene’s question for Gauss maps

Satoru Fukasawa

Abstract

We study the product of a Fermat hypersurface Xp+1
0 + · · ·+ Xp+1

n = 0 ⊂ Pn with n � 3
and P1, embedded in P2n+1 by Segre embedding where p > 0 is the characteristic of the
base field. This smooth variety is nonreflexive and has Gauss map which is an embedding.
This gives a negative answer to the following Kleiman–Piene question in any positive
characteristic: does the separability of the Gauss map imply reflexivity? The only known
smooth examples, which give a negative answer, are given by Kaji in characteristic 2.

1. Introduction

Let X ⊂ PN be a smooth projective variety of dimension n, CX be the conormal variety {(x,H) ∈
X×PN ∗ | TxX ⊂ H} ⊂ X×PN ∗, where TxX is the projective embedded tangent space at a point
x, with the natural projection p2 : CX → PN ∗, and let X∗ = p2(CX) be its dual. The Gauss map γ
on X is the morphism from X to the Grassmannian G(n,N) ∼= G∗(N −n−1, N) which assigns to a
point x ∈ X the projective tangent space TxX ∈ G(n,N), or its dual (TxX)∗ ∈ G∗(N −n− 1, N).
Now we study γ : X → G∗(N − n − 1, N). We have the diagram

CX

�

γ′
��

��

Iγ(X) ��

��

X∗

X
γ �� γ(X)

where Iγ(X) = {(E,H) ∈ γ(X)×PN ∗ | H ∈ E} ⊂ γ(X)×PN ∗ and γ′(x,H) = ((TxX)∗,H). Then,
Kleiman and Piene raised the following question.

Question [KP91, pp. 108–109]. Is Iγ(X) → X∗ separable?

If dim γ(X) = 1, then it is known that Iγ(X) → X∗ is always separable [Fuk05, Kaj92].
Nonreflexive projective varieties with separable Gauss maps give a negative answer. (X is called

reflexive if CX → X∗ is separable [Kle86].) In characteristic 2, the first such varieties were found
by Kaji [Kaj03]. He studied Segre varieties (i.e. products of projective spaces embedded by Segre
embeddings) and their duals. He proved that some odd-dimensional Segre varieties, for example
P1 × P1 × P1, are not reflexive in characteristic 2 and have Gauss maps that are embeddings. If
we do not need the smoothness of X, then the present author already found nonreflexive varieties
with birational Gauss maps in any positive characteristic [Fuk].

In this paper we study the product of a Fermat hypersurface Xp+1
0 + · · · + Xp+1

n = 0 ⊂ Pn and
P1, embedded in P2n+1 by Segre embedding where p > 0 is the characteristic of the base field.
This smooth variety, call it X, has a Gauss map which is an embedding and inseparable morphism
Iγ(X) → X∗ when n � 3. Consequently, X is nonreflexive if n � 3. The author thinks that this
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is the first smooth example, in characteristic p > 2 or of even dimension, which gives a negative
answer to the Kleiman–Piene’s question.

We work over an algebraically closed field K of characteristic p > 0. Varieties are integral
algebraic schemes over K. Here [v] ∈ PN denotes the point of PN corresponding to the equivalence
class of v ∈ AN+1 \ 0.

2. Product of a Fermat hypersurface and the projective line

Let Y ⊂ Pn with n � 3 be a Fermat hypersurface given by Xp+1
0 +· · ·+Xp+1

n = 0, and X = Y ×P1 ⊂
P2n+1 embedded by Segre embedding. Let (1 : x1 : · · · : xn) be an affine coordinates of Y and (1 : u)
be of P1, then X is (the closure of) the image of f : Y ×P1 → P2n+1; (1 : x1 : · · · : xn)× (1 : u) �→
(1 : x1 : · · · : xn−1 : u : xn : x1u : · · · : xnu). We take x1, . . . , xn−1 as a system of local coordinates of
Y (i.e. the function field K(Y ) is separable algebraic over K(x1, . . . , xn−1)). The projective tangent
space at f(x1, . . . , xn, u) is spanned by the n + 1 row vectors of the following matrices:



1 x1 . . . xn−1 u xn x1u . . . xn−1u xnu

0 1 . . . 0 0
∂xn

∂x1
u . . . 0

∂xn

∂x1
u

...
...

. . .
...

...
...

...
. . .

...
...

0 0 . . . 1 0
∂xn

∂xn−1
0 . . . u

∂xn

∂xn−1
u

0 0 . . . 0 1 0 x1 . . . xn−1 xn




∼ (
In+1 A

)

where In+1 is the (n + 1) × (n + 1) unit matrix and

A =




xn −
n−1∑
j=1

∂xn

∂xj
xj −x1u . . . −xn−1u −

n−1∑
j=1

∂xn

∂xj
xju

∂xn

∂x1
u . . . 0

∂xn

∂x1
u

...
...

. . .
...

...
∂xn

∂xn−1
0 . . . u

∂xn

∂xn−1
u

0 x1 . . . xn−1 xn




.

We also have
∂xn

∂xj
= −xp

j

xp
n

for j = 1, . . . , n − 1. These imply that the Gauss map on X is an embedding. Calculation of
the dual vector space shows that γ(X) ⊂ G∗(n, 2n + 1) is locally represented by the matrix
B =

(−tA In+1

)
. Let ρi be the (i + 1)th row vector of B for 0 � i � n. By using a local

trivialization, Iγ(X) → X∗ is generically identified with the morphism g : Y0 × A1 × Pn → X∗;
(x1, . . . , xn)×(u)×(t0 : · · · : tn) �→ [t0ρ0+· · ·+tnρn] where Y0 is an affine locus of Y with X0Xn �= 0.
The affine lifting is ĝ : Y0 × A1 × An+1 → X̂∗; (x1, . . . , xn) × (u) × (t0, . . . , tn) �→ t0ρ0 + · · · + tnρn

where X̂∗ is the affine cone of X∗. By easy computation, we have

∂ĝ

∂xj
=

(
tj + tn

∂xn

∂xj

)
u

where u = t(u, 0, . . . , 0,−1, 0, . . . , 0). This implies that the rank of the differential of g is n + 2,
and hence drops when n � 3. We can easily check that X∗ is a hypersurface, hence Iγ(X) → X∗ is
inseparable when n � 3.
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