ESTIMATING THE SIZE OF THE (*H*, *G*)-COINCIDENCES SET IN REPRESENTATION SPHERES

D. DE MATTO[S](https://orcid.org/0000-0001-9046-1473)[®], E. L. DOS S[A](https://orcid.org/0000-0002-2495-8761)NTOS[®] and T. O. SOUZA[®]

(Received 11 May 2022; accepted 7 September 2022; first published online 17 October 2022)

Abstract

Let *W* be a real vector space and let *V* be an orthogonal representation of a group *G* such that $V^G = \{0\}$ (for the set of fixed points of *G*). Let *S*(*V*) be the sphere of *V* and suppose that $f : S(V) \rightarrow W$ is a continuous map. We estimate the size of the (H, G) -coincidences set if *G* is a cyclic group of prime power order \mathbb{Z}_{p^k} or a *p*-torus \mathbb{Z}_p^k .

2020 *Mathematics subject classification*: primary 55M20; secondary 55M35.

Keywords and phrases: Borsuk–Ulam theorem, (*H*,*G*)−coincidence, representation spheres.

1. Introduction

Let *G* be a finite group which acts on a space *X* and let $f : X \to Y$ be a continuous map from *X* into another space *Y*. If *H* is a subgroup of *G*, then *H* acts on the right on each orbit *Gx* of *G* as follows: if $y \in Gx$ and $y = gx$, with $g \in G$, then $h \cdot y = gh^{-1}x$. A point $x \in X$ is said to be an (H, G) -*coincidence point* of f (as introduced by Gonçalves *et al.*) in [\[6\]](#page-5-0)) if *f* sends every orbit of the action of *H* on the *G*-orbit of *x* to a single point. Of course, if *H* is the trivial subgroup, then every point of *X* is an (H, G) -coincidence. If $H = G$, this is the usual definition of a *G*-coincidence point, that is, $f(x) = f(gx)$ for all $g \in G$. Let us denote by $A(f, H, G)$ the set of all (H, G) -coincidence points. Borsuk–Ulam theorems estimate the size of the set $A(f, H, G)$. For the case when the target space *Y* is a CW-complex, this problem was considered by Gonçalves *et al.* [\[6\]](#page-5-0) (for the subgroup $H = \mathbb{Z}_p$ of a finite group *G*, *X* a homotopy sphere and *Y* a CW-complex) and Gonçalves *et al.* [\[7\]](#page-5-1) (for the subgroup $H = \mathbb{Z}_p$ of a finite group *G*, *X* under certain (co)homological assumptions and *Y* a CW-complex). In [\[5\]](#page-5-2), by considering the target space $Y = M$ a manifold and *H* a proper nontrivial subgroup of *G*, we proved a formulation of the Borsuk–Ulam theorem for manifolds in terms of (*H*, *G*)-coincidences which has applications to the famous topological Tverberg problem (see for example, [\[1\]](#page-5-3)).

[©] The Author(s), 2022. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

Let *W* be a real vector space and let *V* be an orthogonal representation of a group *G* with $V^G = \{0\}$. Let *S(V)* be the sphere of *V* and suppose that $f : S(V) \to W$ is a continuous map. We estimate the size of $A(f, H, G)$ if G is a cyclic group of prime power order \mathbb{Z}_{p^k} or a *p*-torus \mathbb{Z}_p^k (Theorems [3.1,](#page-2-0) [3.2](#page-4-0) and [3.5\)](#page-4-1).

2. Bourgin–Yang versions of the Borsuk–Ulam theorem for \mathbb{Z}_{p^k} and \mathbb{Z}_p^k

Let $G = \mathbb{Z}_{p^k}$ be a cyclic group of prime power order, $k \ge 1$. Given two powers p^m , p^n of *p* with $1 \le m \le n \le k - 1$, we set

$$
\mathcal{A}_{m,n} := \{ G/H \mid H \subset G, p^m \leq |H| \leq p^n \},\
$$

where $|H|$ is the cardinality of *H*. We write \mathcal{A}_X for a set of all the *G*-orbits of a space *X* (up to a homeomorphism and thus up to an isomorphism of finite *G*-sets).

Let *V* be an orthogonal representation of $G = \mathbb{Z}_{p^k}$, *p* prime, $k \ge 1$, such that $V^G = \{0\}$ (for the set of fixed points of *G*). For $G = \mathbb{Z}_{p^k}$, with *p* odd, every nontrivial irreducible orthogonal representation is even dimensional and admits a complex structure [\[10\]](#page-6-0), so *V* also admits such a structure. We write $d(V) = \dim_{\mathbb{C}} V = \frac{1}{2} \dim_{\mathbb{R}} V$, an integral numerical invariant of *V*.

The following Bourgin–Yang versions of the Borsuk–Ulam theorem for complex orthogonal representations of $G = \mathbb{Z}_{p^k}$, p prime, $k \ge 1$ and for real orthogonal representations of $G = \mathbb{Z}_{2^k}$, $k \geq 1$ are from [\[8\]](#page-6-1).

THEOREM 2.1 [\[8,](#page-6-1) Theorem 3.6]. *Let V, W be two complex orthogonal representations of the cyclic group G* = \mathbb{Z}_{p^k} , $p > 2$ *prime, k* ≥ 1 , *such that* $V^G = W^G = \{0\}$ *. Let f* : $S(V) \stackrel{G}{\rightarrow} W$ be an equivariant map and $Z_f := f^{-1}(0) = \{v \in S(V) \mid f(v) = 0\}$ *. Suppose* $\mathcal{A}_{S(V)} \subset \mathcal{A}_{m,n}$ and $\mathcal{A}_{S(W)} \subset \mathcal{A}_{m,n}$. Then

$$
\dim Z_f \ge 2\Biggl(\Bigl\lceil\frac{(d(V)-1)m}{n}\Bigr\rceil - d(W)\Biggr).
$$

THEOREM 2.2 [\[8,](#page-6-1) Theorem 3.9]. *Let V, W be two real orthogonal representations of the cyclic group* $G = \mathbb{Z}_{2^k}$, $k \ge 1$ *, such that* $V^G = W^G = \{0\}$ *. Let* $f : S(V) \stackrel{G}{\rightarrow} W$ be an *equivariant map and* $Z_f = f^{-1}(0)$ *. Suppose that* $\mathcal{A}_{S(V)} \subset \mathcal{A}_{m,n}$ *and* $\mathcal{A}_{S(W)} \subset \mathcal{A}_{m,n}$ *. Then*

$$
\dim(Z_f) \ge \left\lceil \frac{(d(V) - 1)m}{n} \right\rceil - d(W).
$$

The next result is the classical version of the Bourgin–Yang theorem for a *p*-torus $\mathbb{Z}_p^k = \mathbb{Z}_p \times \mathbb{Z}_p \times \cdots \times \mathbb{Z}_p$ (*k* times).

THEOREM 2.3 [\[9,](#page-6-2) Theorem 2.1]. *Let V and W be two orthogonal representations of the group* $G = \mathbb{Z}_p^k$ *such that* $V^G = W^G = \{0\}$ *. Let* $f : S(V) \to W$ *be a continuous map. Then*

$$
\dim Z_f \geq \dim_{\mathbb{R}} V - \dim_{\mathbb{R}} W - 1.
$$

For further recent extensions of the Bourgin–Yang theorem, see [\[2,](#page-5-4) [3\]](#page-5-5).

3. Estimating the size of the (*H*, *G*)-coincidences set

Let *W'* be a real vector space and $f : S(V) \to W'$ a continuous map. In this section, we estimate the size of the set $A(f, \mathbb{Z}_{p^i}, \mathbb{Z}_{p^k})$ under various assumptions.

THEOREM 3.1. Let V be a complex orthogonal representation of the cyclic group $G =$ \mathbb{Z}_{p^k} , *p* ≥ 3 *prime and k* ≥ 1*, such that* $V^G = \{0\}$ *and let W' be a real vector space. Let* $f: S(V) \rightarrow W'$ *be a continuous map.*

(1) *If* $\mathcal{A}_{S(V)} \subset \mathcal{A}_{1,p^{k-1}}$, then for all *i* with $1 \leq i \leq k$,

$$
\dim A(f, \mathbb{Z}_{p^i}, \mathbb{Z}_{p^k}) \ge 2 \left[\frac{d(V) - 1}{p^{k-1}} \right] - (p^k - p^{k-i}) dW'.
$$

(2) *If* $\mathcal{A}_{S(V)}$ ⊂ $\mathcal{A}_{1,p^{i-1}}$ *for some i with* $1 \le i \le k$ *, then*

$$
\dim A(f, \mathbb{Z}_{p^i}, \mathbb{Z}_{p^k}) \ge 2\left[\frac{d(V) - 1}{p^{i-1}}\right] - (p^k - p^{k-i}) dW'.
$$

PROOF. Let *i* be fixed with $1 \le i \le k$. Consider the real vector space $\bigoplus_{j=1}^{p^k} W'$, which is the direct sum of p^k copies of *W*'. The space $\bigoplus_{j=1}^{p^k} W'$ admits an action of the cyclic group $G = \mathbb{Z}_{p^k}$, given by

$$
g(w_1, w_2, \dots, w_{p^k}) = (w_2, \dots, w_{p^k}, w_1)
$$

for a fixed generator $g \in G$ and for each $(w_1, \ldots, w_{p^k}) \in \bigoplus_{j=1}^{p^k} W'$. Denote by $\Delta(W'^{p^{k-i}})$ the diagonal of $\bigoplus_{j=1}^{p^k} W' = W'^{p^{k-i}} \oplus \cdots \oplus W'^{p^{k-i}}$. Then

$$
\bigoplus_{j=1}^{p^k} W' = \Delta(W'^{p^{k-i}}) \oplus (\Delta(W'^{p^{k-i}}))^{\perp},
$$

where $\Delta(W'P^{k-i})^{\perp}$ is the orthogonal complement of $\Delta(W'P^{k-i})$. Now $\Delta(W'P^{k-i})$ is a *G*-subspace of $\bigoplus_{j=1}^{p^k} W'$ of dimension p^{k-i} dim *W'*, so $\Delta(W^{p^{k-i}})^{\perp}$ is a *G*-subrepresentation of $\bigoplus_{j=1}^{p^k} W'$ of dimension $(p^k - p^{k-i})$ dim *W*' for which $(\Delta(W'^{p^{k-i}})^{\perp})^G = \{0\}.$

Denote by a_1, \ldots, a_r a set of representatives of the left lateral classes of G/\mathbb{Z}_{p^i} , where $r = p^{k-i}$. Consider the map

$$
F: S(V) \to \Delta(W'^{p^{k-i}}) \oplus \Delta(W'^{p^{k-i}})^{\perp}
$$

defined by

$$
F(x) = (F_0(x), F_1(x), \ldots, F_{p^i-1}(x)),
$$

where $F_j(x) = (f(a_1h^jx), \dots, f(a_rh^jx))$, $j = 0, 1, \dots, p^j - 1$, for a fixed generator *h* ∈ \mathbb{Z}_{p^i} . The linear orthogonal projection along the diagonal $\Delta(W^{p^{k-i}})$ defines a *G*-equivariant map $\rho : \Delta(W'^{p^{k-i}}) \oplus \Delta(W'^{p^{k-i}})^{\perp} \to \Delta(W'^{p^{k-i}})^{\perp}$. Let us denote by *l* the composition

$$
S(V) \xrightarrow{F} \Delta(W'^{p^{k-i}}) \oplus \Delta(W'^{p^{k-i}})^{\perp} \xrightarrow{\rho} \Delta(W'^{p^{k-i}})^{\perp},
$$

with

$$
Z_l = l^{-1}(0) = (\rho \circ F)^{-1}(0) = F^{-1}(\Delta(W'^{p^{k-i}})) = A(f, \mathbb{Z}_{p^i}, \mathbb{Z}_{p^k}).
$$

For a fixed generator $g \in G$, we can take $h = g^{p^{k-i}}$, $a_1 = e$, $a_2 = g$, ..., $a_r = g^{p^{k-i}-1}$, then *F* is a *G*-equivariant man Moreover and then *F* is a *G*-equivariant map. Moreover,

$$
\mathcal{A}_{S(\Delta(W^{p^{k-i}})^{\perp})} \subset \mathcal{A}_{1,p^{i-1}} \subset \mathcal{A}_{1,p^{k-1}}.
$$

To check the validity of the inclusion $\mathcal{A}_{S(\Delta(W^{p^{k-i}})^{\perp})} \subset \mathcal{A}_{1,p^{i-1}}$, it suffices to prove that the cardinality of the orbit $\mathbb{Z}_{p^k}w$ belongs to the set $\{p^k, p^{k-1}, \ldots, p^{k-i+1}\}$ for any $w = (w_1, \ldots, w_{p^k}) \in S(\Delta(W^{\prime p^{k-i}})^{\perp}).$ From [\[4,](#page-5-6) Ch. 1, Proposition 4.1], the cardinality of the orbit $\mathbb{Z}_{\geq k}$ we belong to the set $\{p^k, p^{k-1}, \ldots, p, p^0 = 1\}$. Let $w = (w_1, \ldots, w_k)$ be an the orbit $\mathbb{Z}_{p^k} w$ belongs to the set $\{p^k, p^{k-1}, \ldots, p, p^0 = 1\}$. Let $w = (w_1, \ldots, w_{p^k})$ be an element in $S(\Delta(W'_{i}^{p^{k-i}})^{\perp})$ and suppose that $|\mathbb{Z}_{p^{k}}w| \in \{p^{k-i}, p^{k-i-1}, \ldots, p^0 = 1\}$, that is, $|\mathbb{Z}_{p^{k}}w| = p^{j}$ for some *i* with $0 \le i \le k - i$ $|Z_{p^k}w| = p^j$ for some *j* with $0 \le j \le k - i$.

Assertion. We have $\mathbb{Z}_{p^k}w = \{w, gw, \dots, g^{p^j-1}w\}$, for a fixed generator *g* of \mathbb{Z}_{p^k} .

In fact, consider a cyclic group G, $g \in G$ a fixed generator and $\{w, gw, \ldots, g^{s-1}w\}$ the maximum set of the first *s* elements of the orbit *Gw* that are distinct from each other. From this definition, $g^s w \in \{w, gw, \dots, g^{s-1} w\}$. Suppose that

$$
g^s w = g^i w \quad \text{for some } i \text{ with } 1 \le i \le s - 1.
$$

Then

$$
g^{s-i}w = w \quad \text{where } 1 \le s - i \le s - 1.
$$

However, this contradicts the definition of the set $\{w, gw, \ldots, g^{s-1}w\}$.

Now, if $g^t w \in Gw$, for some $t \in \mathbb{N}$, we have $t = ns + r$ with $0 \le r \le s - 1$. Therefore,

$$
g^t w = g^{ns+r} w = g^r(g^{ns}) w = g^r w \in \{w, gw, \dots, g^{s-1} w\},\
$$

since $g^{ns}w = (g^s \cdots g^s)w = w$ and $0 \le r \le s - 1$.

Thus, for a fixed generator *g* of \mathbb{Z}_{p^k} ,

$$
w = g^{p^j} w = g^{p^j} (w_1, \dots, w_{p^j}, \dots, w_{(p^{k-j}-1)p^{j}+1}, \dots, w_{p^k})
$$

= $(w_{p^j+1}, \dots, w_{2p^j}, \dots, w_{(p^{k-j}-1)p^{j}+1}, \dots, w_{p^k}, w_1, \dots, w_{p^j})$

and so $w \in \Delta(W'^{p^j})$. Since

$$
\Delta(W') \subset \Delta(W'^p) \subset \cdots \subset \Delta(W'^{p^{k-i-1}}) \subset \Delta(W'^{p^{k-i}})
$$

and $j \in \{0, 1, \ldots, k - i\}$, we conclude that $w \in \Delta(W'^{p^i}) \subset \Delta(W'^{p^{k-i}})$, which is a contra-
distinction since $\Delta(W'^{p^{k-i}}) \cap S(\Delta(W'^{p^{k-i}})) = 0$ diction since $\Delta(W'_{\mathbf{p}}^{p^{k-i}}) \cap S(\Delta(W'_{\mathbf{p}}^{p^{k-i}})^{\perp}) = \emptyset$.

This proves the assertion and the theorem follows from Theorem [2.1.](#page-1-0) \Box

We also have the following estimate for the size of $A(f, \mathbb{Z}_{2^i}, \mathbb{Z}_{2^k})$.

THEOREM 3.2. Let V be a real orthogonal representation of the cyclic group $G = \mathbb{Z}_{2k}$, $k \ge 1$ *, such that* $V^G = \{0\}$ *and let W be a real vector space. Let* $f : S(V) \rightarrow W'$ *be a continuous map.*

(1) *If* $\mathcal{A}_{S(V)} \subset \mathcal{A}_{1,2^{k-1}}$ *, then for all i with* $1 \leq i \leq k$ *,*

$$
\dim A(f,\mathbb{Z}_{2^i},\mathbb{Z}_{2^k})\geq \left\lceil \frac{d(V)-1}{2^{k-1}} \right\rceil - (2^{k-1}-2^{k-i}) \, dW'.
$$

(2) *If* $\mathcal{A}_{S(V)} \subset \mathcal{A}_{1,2^{i-1}}$ *, then for some i with* $1 \leq i \leq k$ *,*

$$
\dim A(f, \mathbb{Z}_{2^i}, \mathbb{Z}_{2^k}) \ge \left\lceil \frac{d(V)-1}{2^{i-1}} \right\rceil - (2^{k-1} - 2^{k-i}) \, dW'.
$$

PROOF. For $G = \mathbb{Z}_{2^k}$, $k \ge 1$, using the same steps as in the proof of Theorem [3.1](#page-2-0) and applying Theorem [2.2](#page-1-1) gives the result.

REMARK 3.3. We observe that Theorems [3.1](#page-2-0) and [3.2](#page-4-0) have peculiar characteristics that differentiate them from the classic results on (*H*, *G*)-coincidences. The first is that the action of the group *G* on the sphere $S(V)$ is not necessarily free. The second is that the theorems provide an estimate for the dimension of the set of (*H*, *G*)-coincidences of a continuous function $f : S(V) \to W'$, for all subgroups $H = \mathbb{Z}_{p^i}$ of $G = \mathbb{Z}_{p^k}$.

EXAMPLE 3.4. Let *G* and *W'* be \mathbb{Z}_4 and \mathbb{R} , respectively. Let $\pi : S^1 \to \mathbb{R}$ be the projection on the first factor and $p : \mathbb{R} \to \mathbb{R}$ be the polynomial function $p(x) =$ $x(x-1)(x+1)$. Consider the action of \mathbb{Z}_4 on S^1 as the rotation of $\pi/4$. Then $f = p \circ \pi$ is such that $A(f, \mathbb{Z}_2, \mathbb{Z}_4) = \{(1, 0), (0, 1), (-1, 0), (0, -1)\}\$ and therefore dim $A(f, \mathbb{Z}_2, \mathbb{Z}_4) =$ 0. In this case, we have the equality

$$
\dim A(f, \mathbb{Z}_{2^i}, \mathbb{Z}_{2^k}) = \left\lceil \frac{d(V)-1}{2^{i-1}} \right\rceil - (2^{k-1} - 2^{k-i}) \, dW',
$$

where $V = \mathbb{R}^2$, $k = 2$ and $i = 1$.

If we take $p(x) = x^2(x-1)(x+1)$ and $f = p \circ \pi$, then all points of S^1 are $(\mathbb{Z}_2, \mathbb{Z}_4)$ -coincidence points of *f*, that is, $A(f, \mathbb{Z}_2, \mathbb{Z}_4) = S^1$ and therefore, $\dim A(f, \mathbb{Z}_2, \mathbb{Z}_4) = 1.$

The next result is an (*H*, *G*)-coincidence version of the Bourgin–Yang theorem for p -torus \mathbb{Z}_p^k .

THEOREM 3.5. Let V and W' be two orthogonal representations of the group $G = \mathbb{Z}_p^k$ *such that* $V^G = W'^G = \{0\}$ *. Let* $f : S(V) \rightarrow W'$ *be a continuous map. Then*

$$
\dim A(f, \mathbb{Z}_p^i, \mathbb{Z}_p^k) \ge \dim_{\mathbb{R}} V + (p^k - p^{k-i}) \dim_{\mathbb{R}} W' - 1.
$$

PROOF. Let a_1, \ldots, a_r be a set of representatives of the left lateral classes of G/\mathbb{Z}_p^i , where $r = n^{k-i}$, Let $\mathbb{Z}^i = \{b_1, \ldots, b_n\}$ be a fixed enumeration of algebraic of \mathbb{Z}^i . where $r = p^{k-i}$. Let $\mathbb{Z}_p^i = \{h_1, \ldots, h_{p^i}\}\$ be a fixed enumeration of elements of \mathbb{Z}_p^i . Consider the map

$$
F: S(V) \to \Delta(W'^{p^{k-i}}) \oplus \Delta(W'^{p^{k-i}})^{\perp}
$$

defined by

$$
F(x) = (F_1(x), F_2(x), \ldots, F_{p^i}(x)),
$$

where $F_i(x) = (f(a_1h_ix), \dots, f(a_rh_ix)), i = 1, \dots, p^i$.

where $F_j(x) = (f(a_1h_jx), \dots, f(a_rh_jx)), j = 1, \dots, p^i$.

For a fixed enumeration $\mathbb{Z}_p^k = \{g_1, \dots, g_{p^k}\}\$ of the elements of \mathbb{Z}_p^k , we define a \mathbb{Z}_p^k -action on $\Delta(W'^{p^{k-i}}) \oplus \Delta(W'^{p^{k-i}})^{\perp}$ as follows: for each $g_j \in \mathbb{Z}_p^k$ and for each $(y_1, ..., y_{p^k}) \in \Delta(W'^{p^{k-i}}) \oplus \Delta(W'^{p^{k-i}})^{\perp}$, set

$$
g_j(y_1,\ldots,y_{p^k})=(y_{\sigma_{g_j}(1)},\ldots,y_{\sigma_{g_j}(p^k)}),
$$

where the permutation σ_{g_j} is defined by $\sigma_{g_j}(k) = u$, $g_k g_j = g_u$. Then *F* becomes \mathbb{Z}^k -equivariant \mathbb{Z}_p^k -equivariant.

The linear orthogonal projection along the diagonal $\Delta(W'^{p^{k-i}})$ defines a *G*-equivariant map

$$
\rho: \Delta(W'^{p^{k-i}}) \oplus \Delta(W'^{p^{k-i}})^{\perp} \to \Delta(W'^{p^{k-i}})^{\perp}.
$$

Let us denote by *l* the composition

$$
S(V) \xrightarrow{F} \Delta(W'^{p^{k-i}}) \oplus \Delta(W'^{p^{k-i}})^{\perp} \xrightarrow{\rho} \Delta(W'^{p^{k-i}})^{\perp},
$$

with $Z_l = l^{-1}(0) = (\rho \circ F)^{-1}(0) = F^{-1}(\Delta(W'^{p^{k-i}})) = A(f, \mathbb{Z}_p^i, \mathbb{Z}_p^k)$. From Theorem [2.3,](#page-1-2) $\dim Z_l \geq \dim_{\mathbb{R}} V + \dim_{\mathbb{R}} \Delta(W'^{p^{k-i}})^{\perp} - 1$, that is,

$$
\dim A(f, \mathbb{Z}_p^i, \mathbb{Z}_p^k) \ge \dim_{\mathbb{R}} V + (p^k - p^{k-i}) \dim_{\mathbb{R}} W' - 1.
$$

References

- [1] P. V. M. Blagojević, F. Frick and G. Ziegler, 'Counterexamples to the Topological Tverberg Conjecture and other applications of the constraint method', *J. Eur. Math. Soc. (JEMS)* 21 (2019), 2107–2116.
- [2] Z. Błaszczyk, W. Marzantowicz and M. Singh, 'Equivariant maps between representation spheres', *Bull. Belg. Math. Soc. Simon Stevin* 24(4) (2017), 621–630.
- [3] Z. Błaszczyk, W. Marzantowicz and M. Singh, 'General Bourgin–Yang theorems', *Topology Appl.* 249 (2018), 112–126.
- [4] G. E. Bredon, *Introduction to Compact Transformation Groups*, Pure and Applied Mathematics, 46 (Academic Press, New York, 1972).
- [5] D. de Mattos, E. L. dos Santos and T. O. Souza, '(*H*, *G*)-coincidence theorems for manifolds and a topological Tverberg type theorem for any natural number *r*', *Bull. Belg. Math. Soc. Simon Stevin* 24 (2017), 567–579.
- [6] D. L. Gonçalves, J , Jaworowski and P. L. Q. Pergher, 'Measuring the size of the coincidence set', *Topology Appl.* 125 (2002), 465–470.
- [7] D. L. Gonçalves, J. Jaworowski, P. L. Q. Pergher and A. Y. Volovikov, 'Coincidences for maps of spaces with finite group actions', *Topology Appl.* 145(1–3) (2004), 61–68.

[8] W. Marzantowicz, D. de Mattos and E. L. dos Santos, 'Bourgin–Yang version of the Borsuk–Ulam theorem for Z*p^k* -equivariant maps', *Algebr. Geom. Topol.* 12 (2012), 2245–2258.

- [9] W. Marzantowicz, D. de Mattos and E. L. dos Santos, 'Bourgin–Yang version of the Borsuk–Ulam theorem for *p*-toral groups', *J. Fixed Point Theory Appl.* 19 (2017), 1427–1437.
- [10] J.-P. Serre, *Linear Representations of Finite Groups*, Graduate Texts in Mathematics, 42 (Springer, New York, 1977).

D. DE MATTOS, Departamento de Matemática, Universidade de São Paulo-USP-ICMC, Caixa Postal 668, 13560-970 São Carlos-SP, Brazil e-mail: deniseml@icmc.usp.br

E. L. DOS SANTOS, Departamento de Matemática, Universidade Federal de São Carlos, Centro de Ciências Exatas e Tecnologia, CP 676, CEP 13565-905 São Carlos-SP, Brazil e-mail: edivaldo@dm.ufscar.br

T. O. SOUZA, Faculdade de Matemática, Universidade Federal de Uberlândia, Campus Santa Mônica - Bloco 1F - Sala 1F120, Av. João Naves de Avila, 2121, Uberlândia, MG, CEP 38.408-100, Brazil e-mail: tacioli@ufu.br

<https://doi.org/10.1017/S0004972722001125>Published online by Cambridge University Press