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Abstract

Let T be a continuous t-norm (a suitable binary operation on [0, 1]) and A" the space of
distribution functions which are concentrated on [0, ). The 7 product of any F, G in A" is
defined at any real x by

(F, G)x)= sup T(F(u),G(v)),

utvex

and the pair (A", v) forms a semigroup. Thus, given a sequence {F} in A, the n-fold product
rr(F, -+, F,) is well-defined for each n. Moreover, the resulting sequence {7r(F,,---,F,)} is
pointwise non-increasing and hence has a weak limit. This paper establishes a convergence
theorem which yields a representation for this weak limit. In addition, we prove the Zero-One
law that, for Archimedean f-norms, the weak limit is either identically zero or has supremum 1.

Subject classification (Amer. Math. Soc. (MOS) 1970): 60F99, 60B99.

1. Introduction

If T is a t-norm, that is, a suitable binary operation on [0, 1], and A" is the
space of one dimensional distribution functions which are concentrated on
[0, ), then the 7 product of F, G in A" is defined at any x by

(1.1) 7r(F, G)(x)= sup T(F(u), G(v)).

If the t-norm T is left-continuous as a two place function then the operation
7r is a mapping from A* X A* into A* and the pair (A", 77) is a semigroup,
called a 71 semigroup. The 71 operations are quite distinct from the operation
of convolution of distribution functions [Schweizer and Sklar (1974)] and 7+
semigroups play a prominent role in the theory of probabilistic metric spaces
[Schweizer (1967, 1975)].

Since the 7+ operations are associative, for any sequence {F} in A”, the
227
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n-fold 7+ product 7r(Fi,---, F.) is well defined for each n. Moreover, the
induced sequence of distribution functions {rr(F,,---, F,)} is pointwise non-
increasing {Moynihan (1978)] and hence has a unique weak limit in A*. We
call this weak limit the infinite v product of the sequence {F}. Two naturally
arising problems in this situation are to determine when an infinite r+ product
is non-trivial (that is, not identically zero) and to give a representation for it.
The first question was partially solved in Moynihan (1978), where, using the
concept of the T-conjugate transform on a given 7+ semigroup [Moynihan
(1977)], we established:

THEOREM 1.1. Given an Archimedean t-norm T and a sequence {F} in
A", the sequence of 7+ products {v+(Fi,- -+, F,)} has a non-trivial weak limit in
A" if and only if there exists a sequence of positive numbers {a;} such that
2 ai <o and lim,.. T(Fi(a)), -, F{a.))>0.

In this paper we greatly improve on the above result by showing in
Section 2 that, for any continuous t-norm T, if G is the infinite 7+ product of
the sequence {F} in A", then, for any x,

(1.2) G(x)=sup {Ll_rg T(Fi(a.),-- -, F{a.))

Note that, for any integer n, (1.1) implies that

n
2 a, = x}.
=1

Thus (1.2) asserts that the limit and sup operations may be interchanged (for
continuity points) and thus we obtain a convergence theorem for infinite 7r
products. Clearly (1.2) shows that Theorem 1.1 holds for any continuous
t-norm.

However, as will be seen, Theorem 1.1 is a necessary and key tool used in
establishing the results in this paper.

In Section 3 we show that, for an Archimedean t-norm T, if G € A" is the
infinite 7+ product of a sequence {F} in A", then, if G is non-trivial,

(1.3) r(F, -, F)(x) = sup{ T(Fi(a.),: -, Fa.))

sup G(x)= lim T(sup Fi(x),-- -, sup F(x )).

In particular, it then follows that if each F; is non-defective (that is, has
supremum 1) then the supremum of the infinite 7+ product of the sequence
{F} is either 0 or 1, that is, the limit function is either identically zero or has
supremum 1. Finally, for a sequence of non-defective distribution functions
{Fi}, we show that the corresponding infinite 7 product is non-trivial for
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3] Products of distribution functions 229

T = Product exactly when it is non-trivial for T = T,,, where T,.(a, b)=
max{a + b —1,0}.

Before we present our results, we state some definitions and known facts:
The spaces of distribution functions which we will consider are

A* ={F:R—{0, 1]| F is left-continuous, non-decreasing and F(0) = 0}

and

@*={F€A+

sup F(x)= 1}.
In particular ¢, and ¢.. in A” are defined by

go(x)= {(1)’ i fg’ and £.(x)=0forall x.

A t-norm is a two-place function T : [0, 1] X [0, 1]— [0, 1] which is symmetric,
associative, non-decreasing in each place and has 1 as a unit and 0 as a null
element. We say that a t-norm is Archimedean if T is continuous and satisfies
T(a,a)< a for all a € (0, 1); and strict if T is continuous on the closed unit
square and is strictly increasing in each place on (0, 1] x (0, 1]. Note that a
strict t-norm must also be Archimedean.

From Aczél (1966), Ling (1965) we have the following important charac-
terization of t-norms: The ¢t-norm T is Archimedean if and only if there exists
a continuous and increasing function h :{0, 1]—[0, 1] with A (1) = 1 such that
T is representable in the form

(1.4) T(x,y)=h""(h(x) h(y)),
where h'"" is the pseudo-inverse of h, that is,
0, 0=x=h(0)
1.5 ’
( ) h [—ll(x) —

h~(x) h0)=x=1;

where h™' is the usual inverse of h on [h(0), 1]. The function h of (1.4) is
called a multiplicative generator of the Archimedean t-norm T.

Finally, if {F} is a sequence in A™ then we say {F,} converges weakly to F
in A*, written F,—F, if F,(x)—> F(x) for all continuity points x of the limit
function F.

2. A convergence theorem for infinite 7 products

In this section we establish the identity (1.2) for infinite 7+ products for
any continuous f-norm T.
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First note that, since any ¢-norm T is associative, it naturally induces a
well-defined n-place operation on [0, 1]. Thus, for any sequence {a:} in [0, 1],
we define, recursively,

" n—1

2.1) T(ai,  -,a.)= T a; = T( T a, an>.
i=1 i=]

Also, we let

n
a; = lim T a;,

n—ow i=1

22)

By

where the sequence {Ti_, a;} is non-increasing and hence its limit always
exists.

The 7y operations given by (1.1) are examples of triangle functions
[Schweizer (1975)] on A*. For any triangle function 7 and sequence {F} in A™,
we also define, recursively,

@.3) #(Fy--+ F)=7(r(F,,- - Fa1), F)

and let 77_, F; denote the weak limit in A* of the sequence {r(F},---,F,)}.
Our first step toward establishing (1.2) is:

Lemma 2.1. Let T be a continuous t-norm and let 7 = 7. Then, for any
sequence {F} in A" and any x, we have that

3 a=x}.

Proor. For any x, choose {a;} so that 2., a; = x and a, >0 for all i.
Then, for any n,

(2.4) ( . F.-)(x); sup{ T F(a)

re(F o F)) 2 7e(F e ) (3 a)
@5)

=T F(a)z T F(a)
i=1 i=1

Also note that if any a; = 0, then the last term in (2.5) is zero. Thus, since the
right hand side of (2.4) is easily shown to be left-continuous, if we let n > » in
(2.5), then our desired result is obtained.

Next we prove (1.2) for Archimedean ¢-norms.

Lemma 2.2. Let T be an Archimedean t-norm and let v = 1. Then, for
any sequence {F} in A* and any x, we have_ that

i=1

(2.6) (ii F.-)(x) = sup{_;’lu'l F(a:)
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Proor. If 7i., F,;=¢. then by Lemma 2.1 we are done. So assume
otherwise, so that by Theorem 1.1 there exists a sequence of positive numbers
{a;} such that

@.7) Ya<e and T F(a)>0.
i=1 =

Now choose any x and let £ > 0 be arbitrary. By the uniform continuity of T
there exists a 6 >0 so that

(2.8) T(b,1-8)>b— -j forany b€[0,1].

Next, using Moynihan (1978), Lemma 3.1, if h is the multiplicative generator
of T then we have from (2.7) that

29 w1 ([ThFG@)) = T F(a)>o0,

i=1 =
whence, by (1.5), II.; hF(a,) > h (0) = 0. Thus, since """ is continuous with
h'"(1) = 1, we have, for some integer M >0, that [I7_,, hF,(a;) is sufficiently
close to 1 to insure that

2.10) T F(a)=h"" ( 11 hE-(a.-)) >1-8.
= i=M
Now by left-continuity there exists a continuity point y of 7i-, F,with y <x so
that
@11) (7 E)o>(5R)m-%

and, by weak convergence, we have, for some N >0, that for n= N

(2.12)

(B B0~ (1, E)(y)l <3

Now choose n = max{M, N} and also sufficiently large so that =_.,, a <
x —y. Then by (1.3) there exist {b;,---,b,} such that £/, b, =y and

€
(2.13) T(Fi(by), -+, Fuba)) = o (Fy, -+, F)(y) — e

Letting b = a; for i > n, we then have that Z7_, b; < x and, from (2.8) through
(2.13),
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T Eo)=T( T E®), T, Fla))
= T(TT(FI, S AORES .-j;,F-‘(“f)>

2.14) >1r(Fye o, F)Y)— 5

> (EEIP})(x)—e.

Clearly, if we let ¢, =b,+(x =27, b) and ¢, = b, for i >1, then -, ¢; = x
and T7., F(c:)= T7-, F(b:), whence, since ¢ >0 was arbitrary, (2.14) estab-
lishes the reverse inequality to (2.4), completing the proof.

We will also need:

Lemma 2.3, Let T be a continuous t-norm, let v = 7 and let {F} be a
sequence in A*. Then, for any ¢ >0, if (7=, F)(x)Z ¢ for some x >0, then
there exists a sequence of non-negative numbers {a.} such that

@.15) Sa<w and .inf{F(a)ze

Proor. Suppose that (2.15) does not hold for some & >0. Let
a; = sup{x |F(x)<e} foralli.

Then a; = 0 for each i. Also, if a. = « for any integer k, then it follows, since
7r is non-decreasing and F, =g, for each i, that (v7-, F)(x) = Fi(x) < ¢ for all
x. Otherwise, inf; {F(a; + 27')} = ¢, whence, necessarily,

i}j‘,l(a,.+2“)= (Zai>+1=w.

Now choose any x > 0. Then, for some N >0, we have =L, a; > x. If we
let & = (Z,a;))— x, then, for any {b,,---, by} with =¥, b, = x, we must have
b. = a. — 8/N for some integer k with 1=k = N. Thus, since Min is the
strongest t-norm [Schweizer (1975)], that is, T(u, v)=Min(u, v) for all
u, v €0, 1], it follows that
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(jl F) ()= 7r(F, - Fa)(x) = sup{iill; F(b)

é MaX{F1 (al_‘ _13—),' ",FN<aN_£‘>} < £,

completing the proof.
We can now establish:

=sup {Min {Fy(b))," - -, Fx{(bn)}

THEOREM 2.1. Let T be any continuous t-norm, let v = 7 and let {F} be a
sequence in A*. Then, for any x,

(El E)(x)= sup{ é‘l F(a) Zai = x}.

ProoF. We have from Paalman-de Miranda (1964), Theorem 2.5.4, p. 87
that T is an ‘“‘ordinal sum” of Archimedean ¢-norms and the ¢t-norm Min; that
is, if

E={x€[0,1]|T(x, x) = x}

then [0, 1\E = U,c,(d, &) where {(d,e)|i €J} is a finite or countable
collection of disjoint open intervals. Furthermore, if T; denotes T restricted to
[d, e} X [d, &], then ([d,, e:], T)) is a semigroup with unit e; and null element
d. (Note T{(x,x)<x for all x €(d, e).) In other words, T consists of
Archimedean “blocks” along the diagonal of the unit square and T = Min
outside of these blocks, that is, T(x, y) = Min(x, y) if (x, y) € [d;, &] X [d;, ]
for any i € J.
Let (d, ) be any one of these open intervals and, for any F € A", define

F*€ A" by

0, F(x)=d,

F*(x)=4 F(x), d<F(x)=Ze

e, F(x)>e.
Then, for any F, G € A™ and real x, we claim that:
(2.16) If rr(F, G)(x) € (d, e] then 7r(F, G)(x) = 7 (F*, G*)(x).

To prove (2.16) we first note that if the first part of (2.16) holds, then we can
evaluate 7+(F, G)(x) by restricting the supremum in (1.1) to those pairs u, v
where T(F(u), G(v)) € (d, e]. Now, using the ordinal sum above, this can
happen only if either (i) both F(u),G(v)Ze and T(F(u), G(v))=e;
or (ii) F(u)E(d,e) and G(v)Z e, so that T(F(u), G(v))= F(u); or (iii)
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G(w)E(d,e) and F(u)=e, so that T(F(u), G(v))= G(v); or (iv) both
F(u),G(wv)E(d,e). But in all of these cases T(F(u), G(v))=
T(F*(u), G*(v)). Since clearly T(F(u), G(v))= T(F*(u), G*(v)) for all
other pairs u, v, (2.16) then follows.

In addition, we can easily extend (2.16) inductively to obtain that if
r(Fi, -, F.)(x) € (d, e] then
(2.17) r(Fy, -, F)(x) = 7o (F%, -+, Fi)(x).

Thus, if x is a continuity point of 7i-, F; and (77-, F)(x) € (d, ), then
r(F1,- -, F.)(x) € (d, e) for all n sufficiently large, whence

(2.18) (F1, -, Fi)(x)— ( ,_El E) (x).

Next define the operation T, on [0, 1] X [0, 1] by
T(d+w(e—d),d+y(e—d)—d

(2.19) Ta(w,y)= e —d
Then it is clear that T, is an Archimedean ¢-norm. Furthermore, for any i, if
we define
0, F¥(u)=0,
— *g 2_
(2.20) Gilu)= Fielid d, otherwise;

then G; € A" for all i and, for all u, v, if F1(#)>0 and F3(v)>0 then
Ta(Gi(u), Go(v)) = (T(Fi(u), F3(v)) — d)(e —d)™".

An easy induction step then yields that for any integer n, if F¥(u;) >0 for all i,
then

(2.21) Ta(G1(u1), -+, Ga(una)) = (T(F¥(u), -+, F¥(u,))— d)e — d)™*

Now if any F¥(u) =0 then T(F%(u.)," -, Fn(u.))=0. Thus, using (1.3) and
(2.21), we have, for any y such that 7-(F71,---, Fi)(y)>0, that

714(Giy s, Ga)(y) = (7o (F 1, FI)(y) — d)(e — d) .

In particular then, if G denotes the weak limit in A* of the sequence
{r7.(G1,**+,G,)} and x is as in (2.18) then

@.22) G(x)= ((? E)(x)—d)(e—d)“.

Hence, using Lemma 2.2 and the fact that (2.21) holds whenever its left-hand
side is non-zero, we have that
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9]
G(x)= sup{ i,: Gi(a) Z a = x}
@2 = [sup{ j’] Fi(a:) 2 a = x} - d] (e —d)",

Since F,=F% for each i, (2.22) and (2.23) then yield that
sup{i"F.(a,—) 2a,—=x}=<.:- F.-)(x),
i=1 i=1 i=1

whence, using Lemma 2.1, we have that (2.6) holds.
To complete our proof suppose, for a given x, that (v;-, F}(x) & (d, ¢)

for any i, that is, suppose (7i-1 F)(x)=c¢ € E so that T(c, c)=c. Then by
Lemma 2.3 there exists a sequence of non-negative numbers {a:} such that

2 a; = x}; sup{ iID"IF".f(ai)

> a; <o and inf{F(a)}Zc.
i=1 '
Let £ >0 be arbitrary. Now by left-continuity there exists a continuity point y
of r7., F; with y < x such that
= £
(.LP")()’)>C_§
We can then find an integer N sufficiently large so that we have both

SN =x—y and

2 (Fyy- - Fa)(y) (? E)(y)’ <3

Next by (1.3) there exist {b;,---, by} so that =_, b, =y and
T(Fi(b), -+, Fa(bn)) Z 7 (Fi, -+, Fa)(y) = -

Thus if we let b = a; for i > N then 2., b; = x and, combining the above
results and using the given facts about ordinal sums, we have that

TRe)=T(TF®), T, F(a))

z T((ElF.«)(y)—g,c>z T(F —gC)=c—e¢.

As in the end of the proof of Lemma 2.2, this yields equality in (2.6), at least
for continuity points of 7=, F. But, since both sides of (2.6) are left-

continuous, the result then follows for all x.
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ReMARK. The pointwise limit of the sequence {77 (F, - - -, F.)} may not be
left-continuous, and hence may not equal the right-hand side of (2.6). For
example, for each integer n, let F.(x) = go(x —27") for all x. Then, for any
t-norm T,

Tr(F, -, F)(x)=eo(x —(1-27"))
Thus rr(F,---, F.)(1) =1 for all n, but 7(F,,---,F.)(x)—0 for all x <1.

3. Supremums of infinite 7r products

In general, for supremums of weak limits of infinite 7 products, the most
we can say is:

THEOREM 3.1. Let T be a continuous t-norm and let v = 7. Then, for any
sequence {F} in A", we have that

3.1) sup(lEIF,-)(x)é T sup Fi(x).

Proor. Using Theorem 2.1, for any y, we have

> a= y}§ j"lsupF.-(x).

(7)o = sup{ T Fa)

Letting y — then yields our result.
In the Archimedean f-norm case we obtain the following improvement
to Theorem 3.1:

THEOREM 3.2. Let T be Archimedean and let v = 1r. Then, for any
sequence {F} in A*, we have that if 77, F.#¢. then

(32 sup (|7 F) ()= T sup F(x).

Proor. In view of Theorem 3.1, we need only establish the reverse
inequality to (3.1). This is easily done by using part of the proof of Lemma 2.2.

First, let £ > 0 be arbitrary and let 8 > 0 be such that (2.8), in which /4 is
replaced by &, holds. Then, since 7i_, F,# ¢., there exists a sequence of
positive numbers {a;} such that (2.7) holds.
Also, we can again find an integer M >0 so that (2.10) holds.

Hence, combining (2.8) and (2.10) with (2.6) we have that
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sup (E} F,-)(x)= lim (El F,-) (x + i ai)

x> i=M+1

v

lim T

X —»00

N

.'I‘Zd: F'(x/M)’ izzﬂ F'(a')>

(3.3)

v

T( i:’Iq‘l (sgp F.~(x)>, 1- 6)

v
e

fl

(Sgp E(x)) —¢

iiv
=¥

I
—-

' (sup E(x)) —£.
Since ¢ >0 is arbitrary, this completes the proof.

For sequences of non-defective (that is, supremum 1) distribution
functions, Theorem 3.2 yields the following Zero-One Law for infinite
products:

THEOREM 3.3. Let T be Archimedean and let v = tr. Then, for any
sequence {F} in 97, the supremum of 7., F, is either 0 or 1.

ExampLE. Theorem 3.3 (and hence also Theorem 3.2) does not hold for
(continuous) non-Archimedean ¢-norms. For suppose the t-norm T satisfies
T(c, c)=c for some ¢ with 0 <c¢ <1. Then if we let F,E®™ be given by

0, x =90,
F.(x)= c, 0<x=1, for all n,
1, 1<x;

then it is easily shown that sup, (77-1 F)(x)=c.
The method of Theorem 3.2 can also be used to establish:

THEOREM 3.4. Let T be a strict t-norm and let v = 7. Let {F} be a
sequence in A so that F(x)>0 for all x >0 and all i. Then either 77-, F,=¢..
(so that (7=, F)(x)=0 for all x >0) or (77~ F)(x)>0 for all x >0.

Thus if 7r(F, -, F)(y)—0 for any y >0, then 7(F, - -, F){(x)—0
for all x.

Proof. If (77.: F}# €. then again by Theorem 1.1 there exists a
sequence of positive numbers {a:} such that (2.7) holds. Then for any x >0
there exists an integer M > 0 so that Z7_u., ai < x/2. Thus, using (2.6) and the
fact that T is strict (so that T(g, 8) >0 for any &, 8 >0), we have that
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completing the proof.

We close with a somewhat surprising result about infinite 7r products. As
mentioned previously, a crucial question is whether the weak limit of the
pointwise non-increasing sequence {rr(F,, - -, F.)} is not identically zero, that
is, not equal to ¢... For a given sequence {F}, it would appear that the answer
to this question should depend strongly on the particular ¢t-norm T being
used. But, at least for Product and T,(a, b) = max{a + b — 1, 0}, this is not so,
for we have:

THEOREM 3.5. Let {F} be a sequence in D*. Then
(34) Teroa(Fyy -, )= €.
if and only if
(3.5) 7, (F, -+ -,F,‘)—“-;ew.

Proor. Suppose (3.4) does not hold. Then there exists a sequence of
positive numbers {a;} such that 7, a; <o and 1., F(a:) >0. But then, by a
well-known result on infinite products, we have that 2., (1 — F(a;)) <. In
particular, for some N >0, we have 27_n.; (1~ F(a:))<1/2. Now, since we
are in 97, for each integer i with 1 =i = N, we can find a number b, >0 so
that F,(b;)>1~(2N)™". Letting b; = a; for i > N, we then have that 2{., b; <
© and

T, Fi(b) = max{lnig}[(ZF(b)) n—l)] }

= max{l— Z(I—E(bi)),0}>0,

since 27, (1— F(b:))<1. But then, by Theorem 1.1, (3.5) does not hold.
The converse is easily established by the fact that Product is stronger
than T,, that is, a-b = T.(a, b) for all q, b € [0, 1]. Thus

’rl’x'od(-l:;lla""I;‘n)g TT,,.(FI"”,F'I)

for all n, whence (3.4) implies (3.5), completing the proof.
Theorem 3.5 does not hold in A*, but is easily shown to generalize as
follows:
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CoroLLARY 3.1. Let {F} be a sequence in A™. If =7_, (1 - sup, F(x))=1
then (3.5) holds. If 27., (1 -sup, F(x))<1, then (3.5) holds if and only if
(3.4) holds.

ReMARK. Product and T, are the two standard non-isomorphic examples
of Archimedean t-norms. Thus one might conjecture whether convergence to
£- of an infinite 7 product of a given sequence {F} in @ is a class property of
Archimedean t-norms. But this conjecture is false, as is seen by the following:

ExampLE. For each integer i >0, define FEZ" by
0, x =0,
F(x)= 1~%, 0<x =i
1, i <x.
then it is easily checked using Theorem 1.1 that (3.4) does not hold. However,

if we let T be the Archimedean t-norm which is multiplicatively generated
using (1.4) by h(x)=1~V1-x, then

1—%,0<x§L

hF(x)=
1, 1<x.

Hence, for any sequence of positive numbers {a;} satisfying 7., a; <, it is
clear that

T Fa)= 1 ([] k@) = K0) =0,

whence, by Theorem 1.1, Tr(Fl,"',F,.)—:) Lo
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