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Abstract

Let T be a continuous t-norm (a suitable binary operation on [0,1]) and A* the space of
distribution functions which are concentrated on [0, °°). The TT product of any F, G in A+ is
defined at any real x by

T T ( F , G ) ( X ) = sup T(F(u),G(v)),

and the pair (A+, TT) forms a semigroup. Thus, given a sequence {FJ in A*, the n-fold product
TT(F,,---,F,,) is well-defined for each n. Moreover, the resulting sequence {TT(F,,-- -,Fn)} is
pointwise non-increasing and hence has a weak limit. This paper establishes a convergence
theorem which yields a representation for this weak limit. In addition, we prove the Zero-One
law that, for Archimedean f-norms, the weak limit is either identically zero or has supremum 1.

Subject classification (Amer. Math. Soc. (MOS) 1970): 60F99, 60B99.

1. Introduction

If T is a t-norm, that is, a suitable binary operation on [0,1], and A+ is the
space of one dimensional distribution functions which are concentrated on
[0, °°), then the TT product of F, G in A+ is defined at any x by

(1.1) rT(F,G)(x)= sup T(F(u),G(v)).

If the f-norm T is left-continuous as a two place function then the operation
TT is a mapping from A+ x A+ into A+ and the pair (A+, TT) is a semigroup,
called a TT semigroup. The TT operations are quite distinct from the operation
of convolution of distribution functions [Schweizer and Sklar (1974)] and TT

semigroups play a prominent role in the theory of probabilistic metric spaces
[Schweizer (1967, 1975)].

Since the TT operations are associative, for any sequence {F,} in A+, the
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228 Richard Moynihan [2]

n-fold TT product TT(FU- • -,Fn) is well defined for each n. Moreover, the
induced sequence of distribution functions {TT(FU • • •, Fn)} is pointwise non-
increasing [Moynihan (1978)] and hence has a unique weak limit in A+. We
call this weak limit the infinite TT product of the sequence {F,}. Two naturally
arising problems in this situation are to determine when an infinite TT product
is non-trivial (that is, not identically zero) and to give a representation for it.
The first question was partially solved in Moynihan (1978), where, using the
concept of the T-conjugate transform on a given TT semigroup [Moynihan
(1977)], we established:

THEOREM 1.1. Given an Archimedean t-norm T and a sequence {F} in
A+, the sequence of TT products {TT(FI, • • -,Fn)} has a non-trivial weak limit in
A+ if and only if there exists a sequence of positive numbers {aj such that
2r.,fl(<oo and \imn^T(F1(a1),---,Fn(an))>0.

In this paper we greatly improve on the above result by showing in
Section 2 that, for any continuous (-norm T, if G is the infinite TT product of
the sequence {F} in A+, then, for any x,

(1.2) G(x) = sup [lira TiFiaJ, • • ;Fn(an))

Note that, for any integer n, (1.1) implies that

(1.3)

Thus (1.2) asserts that the limit and sup operations may be interchanged (for
continuity points) and thus we obtain a convergence theorem for infinite TT

products. Clearly (1.2) shows that Theorem 1.1 holds for any continuous
(-norm.

However, as will be seen, Theorem 1.1 is a necessary and key tool used in
establishing the results in this paper.

In Section 3 we show that, for an Archimedean (-norm T, if G £ A+ is the
infinite TT product of a sequence {F,} in A+, then, if G is non-trivial,

sup G(x) = lim r(sup F,(x), • • •, sup Fn(x)).
x n-**> \ x x I

In particular, it then follows that if each F, is non-defective (that is, has
supremum 1) then the supremum of the infinite TT product of the sequence
{F} is either 0 or 1, that is, the limit function is either identically zero or has
supremum 1. Finally, for a sequence of non-defective distribution functions
IF}, we show that the corresponding infinite TT product is non-trivial for
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[3] Products of distribution functions 229

T = Product exactly when it is non-trivial for T = Tm, where Tm(a, b) =
max {a + b-1,0}.

Before we present our results, we state some definitions and known facts:
The spaces of distribution functions which we will consider are

A+ = {F: R—>[0,1] | F is left-continuous, non-decreasing and F(0) = 0}

and

@ + = | F E A + supF( jc )= l | .

In particular e0 and e« in A+ are defined by

£o(x)=f?' *S!J: and £„(*) = 0 for all x.

A t-norm is a two-place function T:[0,1] x [0, 1]—»[0,1] which is symmetric,
associative, non-decreasing in each place and has 1 as a unit and 0 as a null
element. We say that a r-norm is Archimedean if T is continuous and satisfies
T(a, a)< a for all a G (0,1); and strict if T is continuous on the closed unit
square and is strictly increasing in each place on (0,1] x (0,1]. Note that a
strict f-norm must also be Archimedean.

From Aczel (1966), Ling (1965) we have the following important charac-
terization of /-norms: The f-norm T is Archimedean if and only if there exists
a continuous and increasing function h :[0,1]—»[0,1] with fc(l)= 1 such that
T is representable in the form

(1.4) T(x,y)=hl'1\h(x)-h(y)),

where / i M 1 is the pseudo-inverse of h, that is,

fo, 0§x

\h-\x)

where h' is the usual inverse of h on [h(0), 1]. The function h of (1.4) is
called a multiplicative generator of the Archimedean f-norm T.

Finally, if {FJ is a sequence in A+ then we say {Fn} converges weakly to F
in A+, written Fn^>F, if Fn(x)—»F(x) for all continuity points x of the limit
function F.

2. A convergence theorem for infinite rT products

In this section we establish the identity (1.2) for infinite TT products for
any continuous /-norm T.
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First note that, since any /-norm T is associative, it naturally induces a
well-defined n-place operation on [0,1]. Thus, for any sequence {aj in [0,1],
we define, recursively,

(2.1) T{ai,--;an)= T at = T("T a,, an).
i-l \ i-l /

Also, we let

(2.2) T at = lim T ah
i = l n-*» i = l

where the sequence {T,"=i a<} is non-increasing and hence its limit always
exists.

The TT operations given by (1.1) are examples of triangle functions
[Schweizer (1975)] on A+. For any triangle function T and sequence {F} in A+,
we also define, recursively,

(2.3) r(F1,---,Fn)=r(T(F1,---,Fn-1),Fn)

and let T T - I F denote the weak limit in A+ of the sequence {T(F 1 , - - - ,F , )} .

Our first step toward establishing (1.2) is:

LEMMA 2.1. Let T be a continuous t-norm and let T = TT. Then, for any
sequence {F} in A+ and any x, we have that

(2.4) ( ; F)(x)g sup{ T Ft*) 2 a, = x\.
\ i-l / I i-l i-l )

PROOF. For any x, choose {a;} so that Sf-i a, = x and af > 0 for all i.
Then, for any n,

(2.5)

g T F{a,)^ TF(ai)
i = l i - l

Also note that if any at ̂  0, then the last term in (2.5) is zero. Thus, since the
right hand side of (2.4) is easily shown to be left-continuous, if we let n -* °° in
(2.5), then our desired result is obtained.

Next we prove (1.2) for Archimedean f-norms.

LEMMA 2.2. Let T be an Archimedean t-norm and let T - rT. Then, for
any sequence {F,} in A+ and any x, we have, that

(2.6) ((T F,)(x) = sup^T Ffa) | | a, = xj.

https://doi.org/10.1017/S1446788700011721 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700011721


[5] Products of distribution functions 231

PROOF. If r7-iFi = e^ then by Lemma 2.1 we are done. So assume
otherwise, so that by Theorem 1.1 there exists a sequence of positive numbers
{at} such that

(2.7) 2 a> <°° a n d T Fi(ai

Now choose any x and let e > 0 be arbitrary. By the uniform continuity of T
there exists a 8 > 0 so that

(2.8) T(b, l-S)>b-~ for any b<=[0,1].

Next, using Moynihan (1978), Lemma 3.1, if h is the multiplicative generator
of T then we have from (2.7) that

(2.9) h™ ( ft hFlte)) = |T Ffa) > 0,

whence, by (1.5), 117-1 hF{a.i) > h(0)^0. Thus, since ftM1 is continuous with
h[~n(l) = 1, we have, for some integer M >0 , that nf=M JiF^a,) is sufficiently
close to 1 to insure that

(2.10) T Ffa) = fcM1 ( ft hFfa)) > 1 - 8-

Now by left-continuity there exists a continuity point y of T7=I F> with y < x so
that

(2.11)

and, by weak convergence, we have, for some N > 0, that for n g N

(2.12)

Now choose n g max{M, N} and also sufficiently large so that 2r=n+i aj <
x - y. Then by (1.3) there exist {bu • • -, bn) such that Sr=i k = y and

(2.13) T(F1(b1),-;Fn(bn))^rT(F1,---,Fn)(y)-1.

Letting fe = af for i > n, we then have that 27-1 h < x and, from (2.8) through
(2.13),
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Fib,) =

(2.14) >TT(F1,---,Fn)(y)-f

Clearly, if we let Ci = bt + (x - 2°°-i bL) and cf = b, for i > 1, then 2°°=i c, = x
and 77=1 Fj(Cj)=g T7-i F^b), whence, since e > 0 was arbitrary, (2.14) estab-
lishes the reverse inequality to (2.4), completing the proof.

We will also need:

LEMMA 2.3. Let T be a continuous t-norm, let r = rT and let {F,} be a

sequence in A+. Then, for any e > 0 , if (TT-I F,)(X)=S e for some x > 0 , then
there exists a sequence of non-negative numbers {a j such that

(2.15) X af < oo and . inf { F ^ ) } g e
i-l '

PROOF. Suppose that (2.15) does not hold for some e > 0 . Let

at = sup{x | F ( x ) < e} for alii.

Then ftgO for each i. Also, if ak = °° for any integer fc, then it follows, since
TT is non-decreasing and Fjg£0 for each i, that ( T ^ I F ) ( x ) g Fk(x)< e for all
x. Otherwise, inf, {F(ai +2"')}& e, whence, necessarily,

Now choose any x > 0. Then, for some N > 0, we have Sf,, a, > x. If we
let 5 = (Sf=i af) - x, then, for any {bx, • • •, bN} with Sf,, b, = x, we must have
bk ^ ak - 8/N for some integer k with 1 g ic ^ N. Thus, since Min is the
strongest f-norm [Schweizer (1975)], that is, T(u, v)S Min(«, v) for all
u,v& [0, 1], it follows that
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( T F) (x) ^ TT{Flt • • -,FN)(x) = supf T Ffa) 2 *< = *}

^ sup{Min{Fi(fc,), • • -,FN(AN)} g *• = x]

completing the proof.
We can now establish:

THEOREM 2.1. Let Tfce any continuous t-norm, let T = TT and let {FJ be a
sequence in A+. Then, /or any x,

f ? F,)(x) = supf T F^a,) J a, = x}.

PROOF. We have from Paalman-de Miranda (1964), Theorem 2.5.4, p. 87
that T is an "ordinal sum" of Archimedean f-norms and the f-norm Min; that
is, if

£ = { x G [ 0 , l ] | r ( x , x ) = x}

then [0,1]\£ = Ui6j(dj, e,) where {(d,-, ef)| i £ J} is a finite or countable
collection of disjoint open intervals. Furthermore, if Tt denotes T restricted to
[di, Ci] x [dj, e,], then ([di? d], T) is a semigroup with unit ef and null element
dj. (Note Tt(x, x) < x for all x G (d<, ef).) In other words, T consists of
Archimedean "blocks" along the diagonal of the unit square and T = Min
outside of these blocks, that is, T(x, y) = Min(x, y) if (x, y) £ [di; e,\ x [dj, e<]
for any i G J.

Let (d, e) be any one of these open intervals and, for any F G A+, define
F*GA+ by

F*(x) =
o,
F(x),
e, F(x)>e.

Then, for any F, G G A+ and real x, we claim that:

(2.16) If TT(F, G)(x)e (d, e] then rT(F, G)(x) = rT(F*, G*)(x).

To prove (2.16) we first note that if the first part of (2.16) holds, then we can
evaluate TT(F, G){X) by restricting the supremum in (1.1) to those pairs u, v
where T(F(u),G(v))G(d,e]. Now, using the ordinal sum above, this can
happen only if either (i) both F(u), G(v)^e and T(F(M), G(V)) = e;
or (ii) F(«)G(d, e) and G(u)Se, so that T(F(u),G(v)) = F(u); or (iii)
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G(v)E(d,e) and F(u)^e, so that T(F(u), G(v)) = G(v); or (iv) both
F(u), G(v)G(d, e). But in all of these cases T(F(u),G(v)) =
T(F*(u),G*(v)). Since clearly T(F(u),G(v))^ T(F*(u),G*(v)) for all
other pairs «, v, (2.16) then follows.

In addition, we can easily extend (2.16) inductively to obtain that if
TT(Flt--;Fn)(x)E(d,e] then

(2.17) TT(F,, • • •, Fn)(x) = rT(F?, • • -, F*)(x).

Thus, if x is a continuity point of rf-i Ff and (rf-i Fj)(x)G(d, e), then
TT(FI,-- -,FB)(x)E (d, e) for all n sufficiently large, whence

(2-18)

Next define the operation TA on [0,1] x [0,1] by

(2.19) TA(W, y) =

Then it is clear that TA is an Archimedean f-norm. Furthermore, for any i, if
we define

f F*(«) = 0,
(2.20)v 7

e - d
otherwise;

then G £ A+ for all i and, for all u, u, if F?(«)>0 and F$(v)>0 then

7.(0,(1*), G2(o)) = (T(FT(M), F ! ( O ) ) - d)(e - d)'\

An easy induction step then yields that for any integer n, if F?(UJ) > 0 for all i,
then

(2.21) r4G1(M1),--,Gn(Mn)) = (r(F?(«1) , - -- ,F:(«n))-d)(e-d)-1

Now if any F*(u,) = 0 then T(Ft(Ml),-••,F*(«n)) = 0. Thus, using (1.3) and
(2.21), we have, for any y such that TT(Ff,---,F*)(y)>0, that

In particular then, if G denotes the weak limit in A+ of the sequence
{TT A (GI ," - ,G, , )} and x is as in (2.18) then

(2.22) G(x)=

Hence, using Lemma 2.2 and the fact that (2.21) holds whenever its left-hand
side is non-zero, we have that
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[9] Products of distribution functions 235

G(x)=sup

(2.23)
g a, = xj - - d)"1,

Since F^FI for each i, (2.22) and (2.23) then yield that

supf T F{th) 2 a, = x] g sup{ T F*(a;) 2 a, = x} = ( ? Ff)(x),

whence, using Lemma 2.1, we have that (2.6) holds.
To complete our proof suppose, for a given x, that (rf-i F)(x)£ (d*, gj)

for any i, that is, suppose (T7=I F)(X) = c £ £ so that T(c, c) = c. Then by
Lemma 2.3 there exists a sequence of non-negative numbers {aj such that

2 «i < °° and inf {Ffa)} g c.
i = l '

Let e > 0 be arbitrary. Now by left-continuity there exists a continuity point y
of TT-I F with y < x such that

(,?,"•)
We can then find an integer N sufficiently large so that we have both
Sf-N+i a, = x — y and

< ! •

Next by (1.3) there exist {bi,---,bN} so that Sf-i fci = y and

Thus if we let h = a< for i > N then Sf-i & = x and, combining the above
results and using the given facts about ordinal sums, we have that

,) = T ( T F

- f' c) = ~e,c)=c-e.

As in the end of the proof of Lemma 2.2, this yields equality in (2.6), at least
for continuity points of TT-I F. But, since both sides of (2.6) are left-
continuous, the result then follows for all x.
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REMARK. The pointwise limit of the sequence {rT(Fu • • -,Fn)} may not be
left-continuous, and hence may not equal the right-hand side of (2.6). For
example, for each integer n, let Fn(x)= eo(x - 2 " ) for all x. Then, for any
f-norm T,

Thus TT(F1,--,Fn)(l)= 1 for all n, but TT(FU-- -,Fn)(x)^0 for all x < 1.

3. Supremums of infinite TT products

In general, for supremums of weak limits of infinite TT products, the most
we can say is:

THEOREM 3.1. Let The a continuous t-norm and let T = TT. Then, for any
sequence {F} in A+, we have that

(3.1) supf r F ) ( J C ) S f supF<(x).
x \ ' - ' / ' - ' x

PROOF. Using Theorem 2.1, for any y, we have

( i , F | ) ( y ) = S U P { ,fiFf(a i ) 2 «< = y} = ,f;supF<(*)-

Letting y -><» then yields our result.
In the Archimedean f-norm case we obtain the following improvement

to Theorem 3.1:

THEOREM 3.2. Let T be Archimedean and let T = rT. Then, for any
sequence {F,} in A+, we have that if rT^iE^e^ then

(3.2) supf T F,)(JC)= f sup F(x).
X \ ' l I ' ~* X

PROOF. In view of Theorem 3.1, we need only establish the reverse
inequality to (3.1). This is easily done by using part of the proof of Lemma 2.2.

First, let e > 0 be arbitrary and let S > 0 be such that (2.8), in which e/4 is
replaced by e, holds. Then, since T H - I F ^ £», there exists a sequence of
positive numbers {at} such that (2.7) holds.
Also, we can again find an integer M > 0 so that (2.10) holds.

Hence, combining (2.8) and (2.10) with (2.6) we have that
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[11] Products of distribution functions 237

sup ( x F)(x)= lim ( x FJ (x + ^ a-)

& lim T( T F{XIM), T Ffa))

(3-3) & T( f ( sup F(x)), 1 - s)

M / \

> jli [supFi(x)j-£

= .^ (supFi(x))-e.
1 \ X /

Since e > 0 is arbitrary, this completes the proof.
For sequences of non-defective (that is, supremum 1) distribution

functions, Theorem 3.2 yields the following Zero-One Law for infinite xT

products:
THEOREM 3.3. Let T be Archimedean and let T = rT- Then, for any

sequence {FJ in 3l+, the supremum of T?=1 F is either 0 or 1.

EXAMPLE. Theorem 3.3 (and hence also Theorem 3.2) does not hold for
(continuous) non-Archimedean f-norms. For suppose the f-norm T satisfies
T(c, c)= c for some c with 0< c < 1. Then if we let FnE3)+ be given by

0, x^O,
c, 0<x^ l , for all n,
1, K x ;

then it is easily shown that sup, (xT-i F)(x)= c.
The method of Theorem 3.2 can also be used to establish:

THEOREM 3.4. Let T be a strict t-norm and let r = xT. Let {F} be a
sequence in A+ so that F(x) > 0 for all x > 0 and all i. Then either xT=i F = e«
(so that (T~=I F ) ( X ) = 0 for all x >0) or (T7=I F)(x) >0 for all x >0.

Thus if xT(F1,---,Fn)(y)-»0 for any y >0, then TT(FU • • -, FB)(x)-»0
/or a// x.

PROOF. If (xr=iF)/ece then again by Theorem 1.1 there exists a
sequence of positive numbers {<zj such that (2.7) holds. Then for any x >0
there exists an integer M > 0 so that 2r=M+i «i < x/2. Thus, using (2.6) and the
fact that T is strict (so that T(e, 8 )>0 for any e, S >0), we have that
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U «)<•>*

completing the proof.
We close with a somewhat surprising result about infinite TT products. As

mentioned previously, a crucial question is whether the weak limit of the
pointwise non-increasing sequence {rT{Fu • • -,Fn)} is not identically zero, that
is, not equal to £„. For a given sequence {F,}, it would appear that the answer
to this question should depend strongly on the particular r-norm T being
used. But, at least for Product and Tm(a, b)~ max {a + b - 1,0}, this is not so,
for we have:

THEOREM 3.5. Let {F} be a sequence in 3)*. Then

(3.4) TPlod{Fu---,Fn)-^e^

if and only if

(3.5) TTm(Fi,--;F.)^>€..

PROOF. Suppose (3.4) does not hold. Then there exists a sequence of
positive numbers {a j such that Sr=i at < °° and nr_i F,{cii)>0. But then, by a
well-known result on infinite products, we have that 21°-1 (1 -F j ( a i ) )< a ) - In
particular, for some N > 0 , we have £r=N+i (1 ~ F(aj))< 1/2. Now, since we
are in 2)+, for each integer i with 1 Si i S= N, we can find a number bt > 0 so
that Fj (bt) > 1 - (2N)~\ Letting b{ = a, for i > N, we then have that 2°°-i k <
oo and

= max { Jim [( 2 F(k)) - (n - 1)]

= max j 1 -

since 2°°-i (1-Fi(bi))<l. But then, by Theorem 1.1, (3.5) does not hold.
The converse is easily established by the fact that Product is stronger

than Tm, that is, ab g Tm(a, b) for all a, b G [0,1]. Thus

for all n, whence (3.4) implies (3.5), completing the proof.
Theorem 3.5 does not hold in A+, but is easily shown to generalize as

follows:
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COROLLARY 3.1. Let {FJ be a sequence in A+. If £°°-i (1 - sup* F(x)) g 1
then (3.5) holds. If E~-i (1-sup, Fi(x))< 1, tfien (3.5) holds if and only if
(3.4) holds.

REMARK. Product and Tm are the two standard non-isomorphic examples
of Archimedean f-norms. Thus one might conjecture whether convergence to
£„ of an infinite rT product of a given sequence {FJ in Si+ is a class property of
Archimedean /-norms. But this conjecture is false, as is seen by the following:

EXAMPLE. For each integer i >0 , define FiE.3) + by

0, xSO,

1 0 < x =

then it is easily checked using Theorem 1.1 that (3.4) does not hold. However,
if we let T be the Archimedean f-norm which is multiplicatively generated
using (1.4) by h(x) = 1 - V l - x, then

hFi(x) =
' 1, Kx.

Hence, for any sequence of positive numbers {aj satisfying 27= 1 a, < °°, it is
clear that

whence, by Theorem 1.1, TT(Fi,---,Fn)-^£».
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