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Large-eddy simulations of a flat-plate boundary layer, without a leading edge, subject
to multiple levels of incoming free-stream turbulence are considered in the present
work. Within an input–output model, where nonlinear terms of the incompressible
Navier–Stokes equations are treated as an external forcing, we manage to separate inputs
related to perturbations coming through the intake of the numerical domain, whose
evolution represents a linear mechanism, and the volumetric nonlinear forcing due to
triadic interactions. With these, we perform the full reconstruction of the statistics of the
flow, as measured in the simulations, to quantify pairs of wavenumbers and frequencies
more affected by either linear or nonlinear receptivity mechanisms. Inside the boundary
layer, different wavenumbers at near-zero frequency reveal streaky structures. Those that
are amplified predominantly via linear interactions with the incoming vorticity occur
upstream and display transient growth, while those generated by the nonlinear forcing are
the most energetic and appear in more downstream positions. The latter feature vortices
growing proportionally to the laminar boundary layer thickness, along with a velocity
profile that agrees with the optimal amplification obtained by linear transient growth
theory. The numerical approach presented is general and could potentially be extended
to any simulation for which receptivity to incoming perturbations needs to be assessed.
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1. Introduction

Boundary-layer flows are among the most studied problems in fluid dynamics due to their
practical importance in the determination of the skin-friction drag of objects, heat transfer
and stall characteristics in airplane wings and turbine blades.

Nevertheless, to this day, there is no general mathematical model capable of predicting
the transition from laminar to turbulent flow under all conditions, even for the simplest case
of a boundary layer over a flat plate without pressure gradient (Saric, Reed & Kerschen
2002; Fransson & Shahinfar 2020). This unpredictability is mainly due to the multiple
parameters that are known to affect transition, such as free-stream turbulence intensity,
sound, surface roughness, leading-edge shape and the still incomplete knowledge of how
these parameters interact.

Concerning environmental effects, a simplified roadmap to turbulence is described by
Morkovin, Reshotko & Herbert (1994) as a function of disturbance amplitudes, with
transition beginning with the process denoted receptivity (Morkovin 1969), in which
wave-like disturbances originating in the free flow enter the boundary layer.

If the magnitude of environmental disturbances is weak, the initial growth of the
boundary-layer instabilities can be described by modal stability theory, which predicts
the exponential evolution of the primary unstable modes (eigenfunctions) of the
Orr–Sommerfeld–Squire (OSS) equations over relatively long lengths (Reed, Saric &
Arnal 1996). In the boundary layer over flat plates, subject to no pressure gradient, these
primary instabilities are two-dimensional oscillatory modes called Tollmien–Schlichting
(TS) waves (Schubauer & Skramstad 1947). Then, at large enough perturbation
amplitudes, nonlinear effects take place and the unstable linear modes lose symmetry,
degenerating into secondary instabilities before breaking into turbulent spots due to
nonlinear mechanisms.

On the other hand, in the presence of stronger environmental forcing, turbulent
spots inside the boundary layer appear much sooner than predicted by modal stability,
completely bypassing primary mode growth. This phenomenon, therefore called bypass
transition (Morkovin 1969, 1985), has since been associated with cases such as rough
surfaces (Reshotko 1984; Morkovin 1990; Denissen & White 2008; von Deyn et al. 2020)
and high free-stream turbulence levels, above around 1 % (Morkovin 1985; Suder, Obrien
& Reshotko 1988; Matsubara & Alfredsson 2001), where linear theory predictions fail and
receptivity mechanisms are still not well understood.

Initially, bypass transition was thought to be mainly a result of nonlinear phenomena,
a notion that was later challenged by the concept of transient growth (Reshotko
2001), developed in the early 1990s and formalised in Schmid et al. (1993). Due
to the non-orthogonality of the OSS operator, the superposition of eigenfunctions
can lead to a transient algebraic growth, even in cases where the boundary layer
is linearly stable, i.e. below the critical Reynolds number for the occurrence of TS
waves.

Transient growth theory, often referred to as non-modal stability theory, is based on the
lift-up effect first demonstrated by Ellingsen & Palm (1975) and later developed by Landahl
(1980), where three-dimensional infinitesimal disturbances can grow algebraically in
parallel inviscid shear flows, regardless of the modal stability conditions. Moreover,
Landahl (1980) formally connected this behaviour with the low frequency longitudinal
streaky structures first identified in transitional and turbulent boundary layers by Klebanoff
(1971), later found to be important in all transitional and turbulent shear flows (Brandt
2014). The magnitude of the transient growth is an important parameter that defines the
path to turbulence. Weaker streaks may simply decay, giving space to primary mode
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Linear and nonlinear receptivity mechanisms

growth, or lead to secondary instabilities. Stronger streaks, however, might degenerate
directly into turbulent spots.

In the specific case of bypass transition in boundary layers due to free-stream turbulence
(FST), two distinct receptivity mechanisms have been proposed (Brandt, Schlatter &
Henningson 2004): a linear mechanism caused by perturbations at the leading edge and a
nonlinear one, caused by interactions between oblique waves above the boundary layer.

When vortical disturbances are present at the leading edge, low-frequency perturbations
induce streamwise vortices of alternating direction that, in turn, cause the linear transient
growth of streaky structures inside the laminar boundary layer (Butler & Farrell 1992;
Andersson, Berggren & Henningson 1999; Luchini 2000). These streaks are characterised
by alternating regions of fast and slow longitudinal flow. In locations where the streamwise
vortices carry matter downwards to the wall, a fast (positive) streak is generated, while
the outflow from the wall generates slow (negative) streaks. The profiles for the optimal
response of streaks induced by this mechanism consistently match experiments (Kendall
1998; Matsubara & Alfredsson 2001), as discussed by Luchini (2000).

On the other hand, when disturbances are found above the boundary layer, the transition
can be triggered by pairs of oblique waves propagating at the same frequency, ω, and
opposite spanwise wavenumbers, ±β, generating structures in the boundary layer, through
quadratic nonlinear interactions, which are associated with double the initial wavenumber,
i.e. (±β, ω) → (2β, 0). This mechanism is also known to generate streamwise vortices
and streaks (Schmid, Reddy & Henningson 1996), a process verified both numerically and
experimentally (Berlin, Wiegel & Henningson 1999) and modelled via weakly nonlinear
analysis (Brandt, Henningson & Ponziani 2002).

In this work, a set of numerical simulations of a boundary layer subject to different
levels of FST is considered, to study in detail the process of receptivity to external
vorticity. Modal analysis, namely spectral proper orthogonal decomposition (POD)
(Towne, Schmidt & Colonius 2018), and resolvent analysis (Jovanović & Bamieh 2005;
McKeon & Sharma 2010) are employed, in combination with the ideas developed in
Morra et al. (2021) and Nogueira et al. (2021) which, in turn, arise from the realisation
that accurate predictions from linear models require accurate knowledge of the nonlinear
forcing statistics (Chevalier et al. 2006), which would otherwise be modelled as incoherent
(white) noise (Hæpffner et al. 2005). The coloured statistics of the nonlinear forcing term
are computed directly from the simulated data and, instead of computing spectral POD
modes of the forcing, we obtain, via the resolvent-based extended spectral POD method
(Karban et al. 2022), response and forcing modes which are related by the resolvent
operator. This set-up allows for the identification of coherent structures that are more
affected by either linear or nonlinear interactions with vortical free-stream disturbances
of a complex nature. In the latter case, the nonlinear forcing capable of generating said
coherent structures is characterised.

The separated consideration of linear and nonlinear mechanisms in the resolvent
framework allows us to explore how streaks present in the data can be connected to
upstream disturbances through a linear receptivity, or to triadic interactions in a nonlinear
receptivity. The dominance of each mechanism in different regions of the boundary layer
may thus be quantified using simulation data.

This manuscript is divided in the following manner: § 2 describes in detail the
numerical set-up employed in the study; § 3 exposes the mathematical formulation capable
of separating linear and nonlinear receptivity mechanisms and the spectral analysis
procedures; §§ 4–8.3 present and discuss the results, discussing the differences found
between linearly and nonlinearly induced structures inside and outside the boundary layer.
The manuscript is completed with conclusions in § 9.
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Figure 1. Snapshot of a simulation with Tu = 3.5 % incoming FST level, where streaky structures can be
identified. Slice at y = 0.8, inside the boundary layer.

2. Boundary-layer simulations

We performed multiple simulations of boundary-layer flows subject to different levels of
FST Tu, varying from Tu = 0.5 % to 3.5 %, in steps of 0.5 %, for a total of seven different
cases. The databases were obtained using the SIMSON pseudo-spectral solver (Chevalier,
Lundbladh & Henningson 2007). These are large-eddy simulations (LES) of transitional
regimes in a Blasius-type boundary layer over a flat plate without a leading edge and zero
pressure gradient, performed using an approximate deconvolution model with relaxation
terms (Stolz, Adams & Kleiser 2001; Schlatter, Stolz & Kleiser 2006).

2.1. Numerical set-up
Each simulation was set according to Sasaki et al. (2020), based on the work of Brandt
et al. (2004), and consists of a 231 × 121 × 108(x × y × z) Cartesian grid constructed with
Chebyshev nodes in the y direction, perpendicular to the wall, and homogeneously spaced
nodes in the streamwise and spanwise directions, x and z. The boundary layer is started
with a finite thickness. All variables are non-dimensionalised by the reference length δ∗

0 ,
the boundary-layer displacement thickness at the intake, and a time scale t = δ∗

0/U∞,
where U∞ is the free-stream velocity. The numerical domain is a box of size x ∈ [0, 1000],
y ∈ [0, 60] and z ∈ [−25, 25]. Both the x and z directions are periodic and decomposed in
Fourier modes, while the y direction uses a Chebyshev polynomial basis. Periodicity in
the streamwise direction is achieved by the introduction of a fringe region contained in the
range x ∈ [910, 1000].

At the intake, Reδ∗
0

= U∞δ∗
0/ν = 300, with ν being the kinematic viscosity of the fluid.

At this Reynolds number, the boundary layer is linearly stable and, thus, TS waves are
not expected to be significant over the relatively short extent of the domain. Instead,
streamwise elongated (streaky) structures are observed in the simulations at the highest
FST levels investigated, as shown in figure 1.

The no-slip condition
u′(x, 0, z, t) = 0, (2.1)

is imposed on the wall and the Neumann condition

∂

∂y
u′(x, 60, z, t) = 0, (2.2)

is applied on the upper boundary, with u′(x, y, z, t) representing velocity fluctuations with
respect to the two-dimensional Blasius base flow, UBL(x, y) (figure 2). For all performed
simulations, the physical domain ends before the development of turbulent spots in the
boundary layer, i.e. before the transition to the turbulent regime. The use of a short
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Figure 2. Diagram of the boundary-layer set-up, showing boundary conditions. The x and z directions are
periodic and δ0 is the initial boundary-layer thickness. Here, UBL(x, y) is the Blasius base flow and u′(x, y, z)
are velocity fluctuations. Legend: (dotted line) forcing modes from the continuous branch of the OSS operator.

spatial domain reduces the computational cost of the present study, which involves detailed
post-processing of several numerical simulations. Moreover, by restricting the domain to
the initial development of streaks we can focus on the receptivity stage, before the actual
transition to turbulence that would occur at larger values of x.

Concerning the time evolution, linear terms of the Navier–Stokes (NS) equations
are implicitly marched with a second-order Crank–Nicolson scheme, while an explicit
third-order, four-stage, Runge–Kutta scheme is applied over nonlinear terms. For each
simulation, we compute a total of 2000 snapshots, taken in time steps of �t = 10, of fully
developed, statistically stationary, flow.

2.2. Fringe region forcing
Some assumptions are made to synthesise valid inflow conditions at x = 0 and circumvent
the need to compute a turbulent field upstream of the flat plate or the flow around a leading
edge. Isotropic and homogeneous FST is introduced in the simulations by forcing several
modes in the continuous branch of the linearised OSS operator within the fringe region,
as illustrated in figure 2.

The FST generation procedure is referred to in Schlatter (2001) and Brandt et al. (2004),
based on the methods presented in Grosch & Salwen (1978) and Jacobs & Durbin (2001).
Considering the linearised NS (LNS) momentum equations in perturbation form around
a base flow and nonlinear fluctuation terms gathered into the function f (u′), we force a
desired velocity vector ζ (x, y, z, t) inside the fringe following the formulation

∂u′

∂t
= LNS(u′, UBL) + f (u′) + σ(x)(ζ − u′),

∇ · u′ = 0,

}
(2.3)

where σ(x) is a gain function, which is positive inside the fringe region and null
everywhere else (figure 3). The term σ(x)(ζ − u′) is thus responsible for smoothly
changing the fluctuation field entering the left side of the fringe region towards the desired
reference forcing vector ζ introduced in the fringe.

Isotropic homogeneous turbulence can be represented as a sum of Fourier modes with
random amplitude (Rogallo 1981). In the boundary-layer case, however, this approach is
not capable of modelling the presence of the wall, as the y direction is non-homogeneous.
For this application, a basis composed of modes in the continuous spectrum of the OSS
operator is assumed to be a reasonable choice to satisfy all the necessary boundary
conditions. These modes tend to Fourier modes far from the wall and decay to zero near
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Figure 3. Fringe gain function, the same as that described in Chevalier et al. (2007). The maximum gain

inside the fringe is set to 0.8.

it, generating a perturbation field mainly localised outside the boundary layer, as shown in
Appendix A. On the other hand, modes of the discrete spectrum are only significant inside
the boundary layer and decay exponentially farther from the wall, not being suitable in this
application (Grosch & Salwen 1978).

By computing eigenfunctions in the continuous branch of the OSS spectrum, u′
OSS ,

normalised to unit energy, we can write the expansion for an arbitrary perturbation vector

ζ (x, y, z, t) = Re

⎧⎨⎩∑
ω

∑
γ

∑
β

Φ(ω, γ, β)u′
OSS(ω, y, β) ei(Re{α(ω,γ,β)}x+βz−ωt)

⎫⎬⎭ , (2.4)

where ω, γ and β are real parameters and α(ω, γ, β) is the complex eigenvalue of u′
OSS

computed via spatial stability (Jacobs & Durbin 2001). Here, α, γ, β are respectively the
wavenumbers in the x, y, z directions and ω the frequency. The factor Φ is the energy
scaling applied to match the von Kármán spectrum, discussed in the following paragraphs.
Only the real part of α is taken inside the exponent to maintain the forcing fluctuation at
a fixed magnitude throughout the fringe zone’s streamwise extension, ignoring in practice
the effects of viscous attenuation (Brandt et al. 2004).

We consider wavenumbers κ =
√

Re{α}2 + γ 2 + β2 equally spaced within the range
limited by the numerical resolution of the simulations, κ ∈ [κl, κu]. In general, κl is a
function of the domain size, while κu is bounded by the resolution of the grid. For
simplification, we replace ω = αU∞, considering that modes of the continuous spectrum
have phase speed equal to U∞, to define a tridimensional space of parameters (ω, γ, β)

for which a given value κ is represented by a spherical shell (Brandt et al. 2004). We
select Ns shells, within which we include Nκ combinations of the (ω, γ, β) parameters of
constant κ , filling the surface with equally spaced points (Schlatter 2001). The value γ = 0
is avoided. A random rotation is applied to each shell at every time step to further improve
isotropy. In this work, we adopt the values κl = 0.23, κu = 3.0, Ns = 20 and Nκ = 10, in
a total of NsNκ = 200 eigenfunctions, the same as in Sasaki et al. (2020).

Once the suitable modes are chosen, the energy scale needs to be applied. Considering
the von Kármán spectrum for isotropic homogeneous turbulence and following the
three-dimensional spectrum construction in Tennekes & Lumley (1972), we have the
formula for turbulent energy as a function of wavenumber

E(κ) = 2
3

a(κL)4

(b + (κL)2)17/6 L · Tu2, L = 1.8
κmax

, (2.5)
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where a = 1.606, b = 1.35 and Tu is the turbulence intensity level defined as

Tu =
√

(u′2
rms + v′2

rms + w′2
rms)

3
. (2.6)

In this equation, the integral length scale L = 7.5δ∗
0 is set to the same value considered in

Sasaki et al. (2020), yielding a wavenumber of maximum energy, κmax, near the minimum
allowed value of κl. According to the results shown in Brandt et al. (2004), the increase
of the turbulence integral length reduces the turbulence intensity decay at the free stream
and promotes transition in positions further upstream. Therefore, this choice of integral
length scale consists of a worst case scenario, which allows a shorter domain size in the
streamwise direction.

Concerning the energy scaling, it is demonstrated in Schlatter (2001) that the factor Φ

in (2.4) can be then expressed as

Φ(κ) =
√

E(κ)�κ

Ns
, (2.7)

where �κ is the difference between consecutive values of κ .
Finally, the amplitudes of OSS modes in the continuous branch of the spectrum must

be addressed at the top boundary of the domain. To prevent numerical instabilities, we
multiply the eigenfunctions by a smooth step function S(y) (Brandt et al. 2004) to dampen
forcing perturbations above the position yd = 0.8ymax.

A more detailed discussion concerning the properties of the inflow perturbations
generated using OSS modes in the continuous branch is presented in Appendix A.

3. Analysis techniques

3.1. Input–output formulation
To apply the resolvent analysis framework over NS equations, we separate the velocity
field into a two-dimensional, time-invariant, laminar solution (Jovanović & Bamieh 2005)
or ensemble average flow (McKeon & Sharma 2010)

U = [U(x, y), V(x, y), 0]T , (3.1)

and fluctuations
u′ = [u′(x, y, z, t), v′(x, y, z, t), w′(x, y, z, t)]T , (3.2)

in order to write the linearised equations around U , as described in (2.3). Using tensor
formulation, the system can be written as

∂u′
i

∂t
+ Uj

∂u′
i

∂xj
+ u′

j
∂Ui

∂xj
= −∂p′

∂xi
+ 1

Re
∂2u′

i
∂xj∂xj

+ fi + σ(ζi − u′
i),

∂u′
j

∂xj
= 0,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (3.3)

with nonlinear terms grouped in fi = −u′
j(∂u′

i/∂xj), considered in the resolvent framework
as a forcing that drives the linear dynamics. The term ζi is the forcing vector defined in
(2.3), which guarantees that inlet conditions in the model statistically match those observed
in the boundary-layer simulations. The function σ(x) is the same as presented in figure 3.
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Next, we apply the normal mode ansatz u′ = û(x, y) ei(βz−ωt) over the velocity, pressure
and forcing fields to expand (3.3) as

−iωû + U
∂ û
∂x

+ V
∂ û
∂y

+ û
∂U
∂x

+ v̂
∂U
∂y

+ ∂ p̂
∂x

− 1
Re

(
∂2

∂x2 − β2 + ∂2

∂y2

)
û = f̂x + σ(ζ̂x − û),

−iωv̂ + U
∂v̂

∂x
+ V

∂v̂

∂y
+ û

∂V
∂x

+ v̂
∂V
∂y

+ ∂ p̂
∂y

− 1
Re

(
∂2

∂x2 − β2 + ∂2

∂y2

)
v̂ = f̂y + σ(ζ̂y − v̂),

−iωŵ + U
∂ŵ
∂x

+ V
∂ŵ
∂y

+ iβp̂ + 1
Re

(
∂2

∂x2 − β2 + ∂2

∂y2

)
ŵ = f̂z + σ(ζ̂z − ŵ),

∂ û
∂x

+ ∂v̂

∂y
+ iβŵ = 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(3.4)

where the nonlinear term f̂i can be written as a convolution of the Fourier transform of
velocity components

f̂i(β, ω) = −ûj ∗ ∂ ûi

∂xj
= −

∫ ∞

−∞

∫ ∞

−∞
ûj(β0, ω0)

∂

∂xj
ûi(β − β0, ω − ω0) dβ0 dω0. (3.5)

This implies that f̂i are the only terms responsible for energy transfers between different
wavenumbers (β, β0, β − β0) and frequencies (ω, ω0, ω − ω0), in triads related to the
turbulent energy cascade (Cheung & Zaki 2014; Moffatt 2014).

In practice, the fringe perturbation vector in Fourier space, ζ̂ , is approximated by
the velocity fluctuation field computed from the simulations, denoted as ûr, which is
substituted in (3.4) for all three spatial components. Next, this equation is discretised
reproducing the same grid of the LES and equivalent boundary conditions to write the
system in state-space form

(Ω + L)q̂ = Buûr + Bf f̂ ,

ŷ = H q̂,

}
, (3.6)

and obtain
R = H(Ω + L)−1 =⇒ ŷ = R(Buûr + Bf f̂ ), (3.7)

where R is the resolvent operator and q̂ = [û, v̂, ŵ, p̂]T , ŷ = [û, v̂, ŵ]T , ûr = [ûr, v̂r, ŵr]T ,
f̂ = [ f̂ x, f̂ y, f̂ z]

T are vectors composed of row-wise stacked components. Operators Ω ,
LBu , Bf , H and the boundary conditions are defined in Appendix B. The operator H
simply removes p̂ from the output while the operator Bu restricts the application of the
respective input to the region displayed in figure 4. It should be noted that the inclusion
of the pressure, p, in the state q̂ removes the need to explicitly project the nonlinear
forcing, fˆ , into a solenoidal space since the incompressible LNS system will redirect any
non-solenoidal component in the nonlinear forcing to the pressure field, as described in
Rosenberg & McKeon (2019). This formulation allows for the separation of contributions
from external forcing, ŷL, and nonlinear forcing, ŷN , as

ŷL = RBuûr,

ŷN = RBf f̂ ,

}
(3.8)

while still considering a single resolvent operator, such that ŷ = ŷL + ŷN ≈ ûr. Even
though the full response, ŷ, is a superposition of linear and nonlinear components, it is not
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Physical domain Fringe

Figure 4. Diagram of the geometric distribution of input terms. While the nonlinear term acts everywhere,
the linear term is only present inside the fringe region. Legend: (light grey) Bf f̂ ; (grey) Bu ûr + Bf fˆ .

the case that ŷL and ŷN evolve in a dynamically independent way, since fˆ is a function
of the field fluctuations and needs to be computed beforehand from NS simulations in the
context of the resolvent framework. The component Buûr (linear input) accounts for the
external flow perturbations coming through the domain upstream boundary and acts only
in the fringe region, within a given pair (β, ω). On the other hand, Bf fˆ (nonlinear input)
acts everywhere and accounts for the energy transfers between different wavenumbers and
frequencies, due to the convolutional nature fˆ , as described by (3.5).

3.2. Spectral estimation

Both ûr and f̂ are computed directly from velocity fluctuations u′
r from the simulation.

Given the velocity fluctuation field u′(x, y, z, t) at each snapshot, we compute nonlinear
terms f (x, y, z, t) = −(u′

r · ∇)u′
r. Next, we apply the fast Fourier transform (FFT) in the

periodic direction, z, to obtain ūr(x, y, β, t) and f̄ (x, y, β, t). These are organised in data
matrices

Ūr =
⎡⎣ | | |

ū(1)
r ū(2)

r · · · ū(Nt)
r

| | |

⎤⎦ , F̄ =
⎡⎣ | | |

f̄ (1) f̄ (2) · · · f̄ (Nt)

| | |

⎤⎦ , (3.9a,b)

each containing Nt time-ordered snapshot column vectors. The spectral estimation
in frequency is performed using the Welch method (Welch 1967) via the algorithm
presented in Towne et al. (2018). This procedure returns the quantities ûr(x, y, β, ω) and
f̂ (x, y, β, ω), which are assembled in the final spectral data matrices

Ûr =
⎡⎣ | | |

û(1)
r û(2)

r · · · û(Nb)
r

| | |

⎤⎦ , F̂ =
⎡⎣ | | |

f̂ (1) f̂ (2) · · · f̂ (Nb)

| | |

⎤⎦ , (3.10a,b)

for each pair wavenumber and frequency (β, ω), containing Nb columns which correspond
to the number of blocks used in the windowing procedure.

3.3. Spectral correction due to windowing
The presence of the windowing function in the spectral estimation adds new terms to the
response of the LNS equations written in (3.3), as pointed out by Martini et al. (2020a).
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Considering the operators defined in Appendix B and the matrices in (3.9a,b), we write
equation (3.6) in the time domain as

By
∂y
∂t

+ Lq = Buūr + Bf f̄ ,

y = Hq,

}
, By = Bf . (3.11)

Applying the Welch method for spectral estimation implies that each data block is
multiplied by a windowing function w(t) so that (3.11) becomes

wBy
∂y
∂t

+ wLq = wBuūr + wBf f̄

wy = wHq

}
. (3.12)

The windowing function w(t) commutes with all time-invariant operators, for instance,

wLq = L(wq), (3.13)

but not with the time derivative, which obeys the identity

w
∂y
∂t

= ∂

∂t
(wy) − dw

dt
y. (3.14)

These relations imply that (3.12) can be rewritten in the form

By
∂

∂t
(wy) + L(wq) = Bu(wūr) + Bf (wf̄ ) + By

(
dw
dt

y
)

,

wy = H(wq),

⎫⎬⎭ (3.15)

and transformed into frequency space, as

(Ω + L)q̂ = Buûr + Bf f̂ + q̂c,
ŷ = H q̂,

}
(3.16)

which contains a windowing correction term

q̂c = ByF
{

dw
dt

y
}

, (3.17)

where F denotes the Fourier transform in time. In practice, q̂c is constructed using
available simulation data

q̂c ≡ ByF
{

dw
dt

ūr

}
, (3.18)

with ūr representing the column vectors of Ūr, in (3.9a,b). The term dw/dt is computed
directly from the analytical formula of the windowing function used in the Welch method.

Physically, q̂c is related to transients that are inevitably introduced when the signal is
windowed (i.e. inputs necessary to match initial and final conditions of each data block)
and implies that windowed spectral estimations create a mismatch between inputs and
outputs, even in the case of perfectly converged statistics. Even though the windowing
procedure cannot be avoided when dealing with large datasets, due to computer memory
constraints, the magnitude of the correction term q̂c can be reduced by increasing the size
of the data block, which tends to proportionally decrease the value of dw/dt since longer
blocks imply wider windows with smaller derivatives.
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3.4. Response reconstruction from inputs
From (3.7) and the spectral data matrices in (3.10a,b), we can compute the reconstructed
response in Fourier space

Ŷ = Ŷ L + Ŷ N + Ŷ C = RBuÛr + RBf F̂ + RQ̂c, (3.19)

where Q̂C is the correction due to windowing, discussed in § 3.3, in order to obtain Ŷ ≈ Ûr
by construction. In other words, the sum of all inputs with the proper correction of the
distortions generated by the windowing procedure leads, in principle, to the recovery of
the simulated velocity fluctuation fields, by means of the resolvent operator. This allows
us to calculate separate contributions of linear mechanisms resulting from the upstream
fluctuations, related to Ûr , and nonlinear receptivity due to triadic interactions, related to
F̂ .

The cross-spectral density (CSD) matrix of Ŷ , can be estimated from the ensemble as

ĈYY = 1
Nb

Ŷ Ŷ H = 1
Nb

Ŷ (Ŷ L + Ŷ N + Ŷ C)H, (3.20)

with the superscript {·}H representing the conjugate transpose, and can be rewritten as

ĈYY L = ĈY LY L + ĈY NLY L + ĈY C Y L

ĈYY NL = ĈY LY NL + ĈY NLY NL + ĈY C Y NL

ĈYY C = ĈY LY C + ĈY NLY C + ĈY C Y C

⎫⎬⎭ , (3.21)

ĈYY = ĈYY L + ĈYY N + ĈYY C . (3.22)

Each one of the three factors in (3.22) computes the coherence between the respective
response component and the reconstructed signal. Even though these are not independent
quantities, since factors contain cross-products between components, this formulation
constitutes a budget measure of how each component contributes to the spectrum of the
reconstructed signal.

In practice, the CSD matrix, ĈYY , is never fully assembled due to its huge size. Since
we are interested in the kinetic energies at each pair (β, ω), we only effectively compute
the power spectral density (PSD), defined as the diagonal of the CSD matrix. Considering
that the PSD is always positive and real, we obtain the relations

PU = Re{diag(ĈUr Ur )}, (3.23)

PY = Re{diag(ĈYY L)} + Re{diag(ĈYY N )} + Re{diag(ĈYY C )}
= ΠL + ΠN + ΠC , (3.24)

where PU ≈ PY by construction. The term PU , computed directly from the velocity
fluctuation fields of the simulation, data matrix Ûr in (3.10a,b), is called statistical PSD.
Then, PY , computed through the sum of components of the input–output model is called
reconstructed PSD. Because of the cross-products, Π components are not PSDs and can
assume either positive or negative values, which are interpreted, respectively, as inflows or
outflows of energy at a given pair (β, ω), i.e. energy exchanges between linear, nonlinear
and correction components.
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The equivalence between PU and PY is verified numerically by the reconstruction
coefficient defined as

γ (β, ω) = PU
TPY

PU
TPU

. (3.25)

Within this metric, a coefficient γ ≈ 1 indicates that the reconstruction PY has the correct
magnitude and shape, implying that the input–output model is accurate. Thus, linear
and nonlinear components, ΠL and ΠN respectively, are representative in the system’s
response, assuming they are individually more significant than the windowing correction
term, ΠC . We may thus assess, using simulation data and resolvent analysis, the relative
contribution of linear and nonlinear mechanisms in disturbance growth.

To reduce the quantity of data presented, only ΠL and ΠN components of PY will
be displayed in corresponding results. Proof that conditions exposed in the previous
paragraph are met is given by presenting the associated coefficient γ and the magnitude
of the correction component, defined as max |ΠC |, for each spatial direction. A more
complete comparison between statistical and reconstructed PSDs for selected pairs (β, ω)

is exposed in Appendix C.

3.5. Resolvent-based extended spectral POD
The resolvent-based extended spectral POD (RESPOD) presented in Karban et al. (2022)
is a form of extended POD (Borée 2003) which exploits the dynamical properties of
spectral POD (Towne et al. 2018) to statistically correlate inputs and outputs of a linear
system in frequency space. The method can be viewed as a procedure to obtain forcing
modes, ranked by their effect on the most energetic flow structures. These can be
employed, for instance, in turbulence control models, as in Chevalier et al. (2006).

Given input and output spectral data matrices, respectively F̂ and Û , related linearly in
the resolvent framework by

Û = RF̂ , (3.26)

we define an augmented state

Q̂ =
[

Û
F̂

]
, (3.27)

over which we apply the spectral POD method using the snapshot algorithm (Sirovich
1987). By computing the weighted CSD matrix M̂Q in the row space of Q̂, we have

M̂Q = 1
Nb

Q̂H
[

W 0
0 0

]
Q̂ = 1

Nb
ÛHW Û, (3.28)

where matrix W represents the grid quadrature weights. Next, we arrive at the
eigenproblem

M̂QΘ = ΘΛ, (3.29)

where Θ and Λ are, respectively, spectral POD expansion coefficients and energies of Û .
The respective eigenvectors in the column space of Q̂ are then given by

Ψ̃ =
[
Ψ
Φ

]
= 1√

Nb
Q̂ΘΛ−1/2, (3.30)

showing that the augmented eigenvector Ψ̃ is composed of spectral POD modes Ψ and
forcing modes Φ, which are both directly computed from the expansion coefficients Θ and
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energies/eigenvalues Λ. Finally, by substituting equations (3.26) and (3.27) into (3.30), we
get the RESPOD relation

Ψ = RΦ, (3.31)

which shows that response and forcing modes are related by the resolvent operator.
If R is non-singular, Φ is simply the application of the inverse operator R−1

over Ψ . However, if R is singular, Φ can be shown to contain both minimal-norm
forcing components, the same computed by resolvent-based estimation from Towne,
Lozano-Durán & Yang (2020) and Martini et al. (2020b), and dynamically unobservable
components, which are correlated to the minimal-norm forcing in the subspace spanned by
the input signal (Karban et al. 2022). One thus obtains forcing modes Φ, taken from data,
which drive the observed response spectral POD modes Ψ . This yields a ranked modal
decomposition of nonlinear forcing data statistics, which is a particularly useful modelling
tool in cases where the response results predominantly from the nonlinear dynamics.

3.6. Spectral parameters
Spectral estimation via the Welch method is performed using blocks of NFFT = 192
realisations, a value defined via the cross-correlation procedure detailed in Blanco et al.
(2022). In all the following analyses, we employ a windowing function

w(t) = sin
(πt

T

)
, t ∈ [0, T], (3.32)

and overlap of OFFT = 3/4 between consecutive blocks, based on the guidance given in
the work of Antoni & Schoukens (2009).

4. Statistical power spectrum

In the first analysis, we compute the statistical PSD, PU , at each pair (β, ω), for all
the available FST levels, and subsequently integrate over all N spatial points within the
physical domain (excluding the fringe), in the x and y directions

E(β, ω) =
N∑

i=1

(W PU )i, (4.1)

and over resolved wavenumbers

Eω =
∑
β

E(β, ω)�β, (4.2)

to compute the corresponding kinetic energy spectrum. Here, the matrix W , which is also
present in (3.28), absorbs the terms �x and �y of the Riemann sum. The resulting data,
presented in figure 5, clarify that the amplification generated by the increase of FST levels
is concentrated around the near-zero frequencies, as expected for streaks (Brandt et al.
2004), following the optimal growth theory (Luchini 2000). However, one interesting
observation is that the peak in the energy spectrum for the case of Tu = 3.5 % does not
coincide with the spectrum of the FST applied at the fringe. This is the first indication of
the existence of nonlinear mechanisms promoting the growth of perturbations.

Next, we sort the four most energetic pairs (β, ω) for each available Tu. By plotting
the evolution of the identified pairs (figure 6a), we observe two distinct behaviours. For
higher frequencies, energies grow at a rate closely proportional to Tu2, implying linear
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Figure 5. Energy spectra computed from snapshots. (Top) Energy E(β, ω) distributed over all wavenumbers
and frequencies. Black dots indicate the spectrum of the FST applied at the fringe; (bottom) energy spectrum
in frequency, with summation considering positive and negative wavenumbers β; (a) Tu = 0.5 % and (b) Tu =
3.5 %.
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Figure 6. Energy as a function of FST level, Tu. (a) Evolution of most energetic pairs (β, ω). Legend: (×)
linear behaviour; (◦) nonlinear behaviour. (b) Normalised energy spectrum. Higher frequencies grow with a
Tu2 dependency, while lower frequencies scale with a factor closer to Tu4. Darker lines indicate higher FST
levels. The vertical line, drawn at ω = 0.026, separates higher- and lower-frequency ranges.

dependency concerning the incoming turbulent energy. On the other hand, near-zero
frequencies display a faster energy growth, suggesting nonlinear dependence on the
incoming FST.

These same conclusions can be drawn by normalising the energy Eω by powers of Tu, as
shown in figure 6(b). We see that, indeed, higher frequencies, |ω| > 0.026, collapse when
normalised by Tu2 while lower frequencies, |ω| < 0.026, require larger exponents, closer
to the expected Tu4 resulting from the quadratic nature of the nonlinear term.

979 A31-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
35

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.1035


Linear and nonlinear receptivity mechanisms

0

60

20

40

200 400 600
x

y

800

1.0

0

0.5

Figure 7. Spatial distribution of the boundary-layer mask, W BL.

5. Reconstructed power spectrum

In a subsequent investigation, we focus on the case Tu = 3.5 % and seek to understand
which of the pairs is more related to linearly/nonlinearly generated structures near the
wall. For this, we compute the components ΠL and ΠN of the reconstructed PSD,
which are then integrated into two separated regions in space, divided at the Blasius
boundary-layer δ99 thickness position. Therefore, we obtain inside and outside linear
contribution components

EL,in(β, ω) =
N∑

i=1

(W BLWΠL)i, (5.1)

EL,out(β, ω) =
N∑

i=1

((I − W BL)WΠL)i, (5.2)

and, analogously, nonlinear contribution components

EN,in(β, ω) =
N∑

i=1

(W BLWΠN )i, (5.3)

EN,out(β, ω) =
N∑

i=1

((I − W BL)WΠN )i, (5.4)

where the term W BL is the boundary-layer mask, a diagonal weight matrix constructed
with the same ordering as W , whose spatial distribution is displayed in figure 7. The data
resulting from this procedure are exposed in figure 8. Since Π components can assume
both positive and negative values, the spectrum is plotted in the symmetric log scale
(Webber 2012).

Outside the boundary layer, from the superposition with the introduced FST spectrum
(OSS modes), we perceive that the EL,out spectrum is heavily influenced by the
perturbations introduced in the fringe zone. Overall, the energy distribution in EL,out is
discrete and reflects the finite set of modes superposed to create the incoming FST. Every
OSS mode matches with an energy peak, even though peaks without a corresponding OSS
mode exist (see Appendix A). Indeed, the most energetic peaks in the higher-frequency
range generally fall over the FST spectrum.

Moreover, it is noteworthy that peaks in the EL,out spectrum often coincide with negative
energy contributions in the EN,out spectrum. This implies that the turbulent energy
introduced to a given wavenumber–frequency combination via linear mechanisms is
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Figure 8. Energy spectra of the reconstructed PSD components, inside and outside the boundary layer. Colours
in the symmetric logarithmic (symlog) scale. Pairs (β, ω) are listed in descending order of energy magnitude,
excluding the mean. Black dots indicate the incoming FST spectrum. Vertical lines drawn at |ω| = 0.026
separate higher- and lower-frequency ranges.

transferred to other wavenumbers and frequencies via triadic interactions, in a mechanism
characteristic of the turbulent energy cascade. This nonlinear mechanism also explains the
broad distribution in frequency and wavenumber in the EN spectrum contrasting with the
more discrete peaks featured in the EL spectrum.

Inside the boundary layer, the most energetic pairs are identified within the
lower-frequency range, in both linear and nonlinear spectra. This feature is consistent with
the optimal growth theory devised in Andersson et al. (1999) and Luchini (2000), which
states that boundary-layer disturbances are optimally amplified for nearly zero frequencies
by the LNS operator. On the other hand, the boundary layer acts as a barrier to the
penetration of rapidly changing perturbations (Jacobs & Durbin 1998), an effect that is
noticeable in the spectrum through the lower energy content in the high-frequency range
of Ein when compared with Eout.

Since the linear dynamics is decoupled in wavenumber and frequency, the energy peaks
inside of EL,in must match the peaks in EL,out. If the energy peak in EL,in is the predominant
component of the energy inside the boundary layer, we conclude that near-wall structures
were induced by linear interactions with the incoming FST and, therefore, are subject
to linear receptivity mechanisms. However, if the energy peak in EN,in is predominant,
the energy to excite near-wall structures inevitably comes from the interaction with other
wavenumbers and frequencies through the nonlinear forcing term, and thus there exists a
nonlinear receptivity mechanism. For the case presented, EN,in spectrum has a strong peak
at (β, ω) = (0.377, −0.003), which contains an order of magnitude more energy than all
surrounding pairs, while the EL,in has two distinct zero-frequency peaks at (0.503, 0.000)

and (1.131, 0.000).
The next sections in this work will analyse specific wavenumbers and frequencies, found

to be relevant for the transition dynamics. Using the energy criteria, we focus on the
pairs (β, ω) = (0.126, −0.124), which is most important at FST levels below 2.0 %, and
(0.377, −0.003), most important from Tu = 2.0 % and above, excluding the mean. To this
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Figure 9. Components of PY , for (β, ω) = (0.126, −0.124) and Tu = 0.5 %. The linear response is dominant
while the nonlinear one is negligible. Parameters: γ = 0.951; max(|ΠC |) = [7.2 × 10−8, 2.0 × 10−7, 5.3 ×
10−8]. (a) Linear component, ΠL and (b) nonlinear component, ΠN .

list, we add the zero-frequency pairs (0.503, 0.000) and (1.131, 0.000), identified in the
spectrum of EL,in, whose roles will be further discussed.

6. Free-stream structures

The analysis of the PSD and its components for (β, ω) = (0.126, −0.124) and Tu = 0.5 %,
shown in figure 9, brings interesting insights into the dynamics at higher frequencies.
In this case, the structures are placed in the free stream, while little energy is present
inside the boundary layer. Besides, the linear component, ΠL, is more significant than the
nonlinear contribution, ΠN , corroborating the behaviour described in § 4.

These characteristics hold even when this same pair is considered for higher turbulent
levels, as seen in figure 10. At Tu = 3.5 %, however, ΠN is proportionally stronger,
rising above the magnitude of the correction component, ΠC , and transfers energy out to
other wavenumbers and/or frequencies. This explains the deviation from the purely linear
growth, observed in figure 6, and displays the mechanism of the turbulent energy cascade
acting on the free stream.

7. Boundary-layer structures

Linear and nonlinear components of the PSD for (β, ω) = (0.377, −0.003) and Tu =
3.5 % are shown in figure 11. Excluding the mean flow, this is the most energetic pair
for all high FST levels, from 2.0 % and above. Contrary to the higher-frequency pairs
described in the previous section, here, the energy is concentrated mainly in the boundary
layer. The amplitude of structures is larger in the streamwise direction and the wavenumber
β matches the size of the streaky structures at the end of the physical domain, clearly
observed in the snapshot of figure 1.

The prominence of the nonlinear component, ΠN , over the other two, ΠL and ΠC ,
agrees with the behaviour shown in figure 6. It implies that most energetic structures of the
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Figure 10. Components of PY , for (β, ω) = (0.126, −0.124) and Tu = 3.5 %. Parameters: γ = 0.929;
max(|ΠC |) = [1.3 × 10−6, 2.6 × 10−6, 6.2 × 10−7]. (a) Linear component, ΠL and (b) nonlinear component,
ΠN .
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Figure 11. Components of PY , for (β, ω) = (0.377, −0.003) and Tu = 3.5 % (see Appendix C). Note the
difference in scales: the nonlinear response is dominant while the linear one is negligible, having the same
magnitude of the correction component. Parameters: γ = 1.018; max(|ΠC |) = [6.4 × 10−5, 4.3 × 10−8, 1.3 ×
10−7]. (a) Linear component, ΠL and (b) nonlinear component, ΠN .

flow, in higher FST levels, are mainly the product of the continuous nonlinear forcing while
displaying very little sensitivity to the linear interaction with the incoming turbulence via
an initial condition at the intake.

Indeed, the streamwise elongated structures near the intake have a smaller spacing
in z, suggesting a higher characteristic wavenumber β. In the EL,in spectrum of the
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Figure 12. Components of PY , for (β, ω) = (1.131, 0.000) and Tu = 3.5 %, (see Appendix C). The linear
response is the most important but the nonlinear is non-negligible when compared to the correction component.
Parameters: γ = 0.989; max(|ΠC |) = [2.0 × 10−6, 1.3 × 10−9, 5.8 × 10−10]. (a) Linear component, ΠL and
(b) nonlinear component, ΠN .

Tu = 3.5 % case (figure 8), this description is met by a peak at (β, ω) = (1.131, 0.000).
The reconstructed PSD components for this pair, shown in figure 12, indicate a quite
different dynamics from the previous analysis: linear excitation is predominant. For these
structures, the nonlinear response, smaller in magnitude, is still significant when compared
with the correction, indicating a relevant outwards nonlinear energy transfer flow, an
effect that is especially strong for the u component. Linear structures are most energetic
in the streamwise direction and grow primarily in the upstream region of the domain,
x ∈ [0, 300].

There exists still a third peak in the EL,in spectrum with intermediate wavenumber at
(β, ω) = (0.503, 0.000). In figure 13 we observe that, as previously noted, the dynamics
at this pair is dominated by structures inside the boundary layer. Nevertheless, in contrast
to the other two cases, linear and nonlinear energy components have similar magnitudes.
The linear component in the streamwise direction reaches its maximum in the middle
range or the domain x ∈ [400, 600], while the nonlinear component is most important
in more downstream positions. This constitutes a hybrid between the last two described
cases, even though conclusions are not as robust since the correction component has
comparable magnitude to the other two in the u direction, violating the restrictions defined
in § 3.4.

Thus, in summary, we evaluate three wavenumber–frequency pairs related to
boundary-layer streaks. For higher β we observe mostly linear receptivity in the upstream
part of the domain, as the linear component dominates the reconstructed PSD. Lower β

is characterised by a predominant nonlinear receptivity, leading to downstream streaks
of high energy. Intermediate wavenumbers display a transitional behaviour, with similar
contributions of linear and nonlinear receptivity mechanisms.
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Figure 13. Components of PY , for (β, ω) = (0.503, 0.000) and Tu = 3.5 %. Linear and nonlinear responses
have approximately the same order of magnitude. Parameters: γ = 1.052; max(|ΠC |) = [8.0 × 10−5, 4.3 ×
10−8, 2.2 × 10−8]. (a) Linear component, ΠL and (b) nonlinear component, ΠN .

8. Modal decomposition

Up to this point, the available data were analysed from the energy point of view. Now,
using modal decomposition techniques over the results of the spectral analysis performed
in §§ 6 and 7, we are able to characterise, in terms of actual velocity fields, the most
energetic structures and their related nonlinear forcing, if relevant.

8.1. Coherent structures generated by a linear mechanism
First, we focus on the pair (β, ω) = (1.131, 0.000) at Tu = 3.5 % and compute spectral
POD modes of the data matrix Ŷ L, defined in (3.19). The resulting leading mode, displayed
in figure 14, features elongated streaky structures, with alternating regions of positive
and negative streamwise velocity inside the boundary layer, in between counter-rotating
vortices bringing high-speed flow towards the boundary layer and ejecting low-speed flow
from it, in a clear instance of the lift-up effect.

Spatial transient growth is clear in figure 15, which displays the maximum magnitudes
of each velocity component at each streamwise position. While both spanwise and vertical
components only decay, the streamwise component grows before exponentially decaying.
Since these structures are spatially stable and only active in upstream positions, they cannot
trigger the transition to turbulence in the present simulations, even though they might
contribute to it through nonlinear energy transfers.

This spatial stability can be explained through transient growth theory. When the
spanwise wavenumber, β = 1.131, at zero frequency, is introduced in the formulation
presented in Andersson et al. (1999), we conclude that optimal perturbations reach a
maximum amplification before decaying in the streamwise direction. In a more complete
analysis, we confirm that this is the case for all spanwise wavenumbers present in the FST
spectrum at near-zero frequencies, as seen in figure 16(a). The largest linear amplification

979 A31-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
35

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.1035


Linear and nonlinear receptivity mechanisms

0 0.01

10

20

30

40

50

60

10

20

30

40

50

60

0
0

0

0
0

20

–10

5

10

15

10

0

0.01

–0.01

0

û
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Figure 14. First spectral POD mode for (β, ω) = (1.131, 0.000) at Tu = 3.5 %, scaled by the respective
eigenvalue. (a) Velocity profile of leading spectral POD mode at inlet and peak amplitude positions.
(b) Real part of the leading spectral POD mode; (top) cross-section at x = 80; (bottom) slice at y = 1, inside
the boundary layer.
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Tu = 3.5 %. Transient growth of streaks generated by the linear mechanism (streamwise velocity component
u), with streamwise vortices (spanwise and vertical components v and w) that spatially decay.

is found to be at the parameter corresponding to the structures previously shown in
figure 13, which are, nevertheless, still less energetic than the ones presented in figure 11.

It is worth noting that, since we can only introduce weak perturbations inside the
boundary layer at the intake, which are not optimal in generating streaks through the
linear amplification mechanism, the actual observed amplifications, shown in figure 16(b),
are weaker than those predicted by the optimal growth theory for cases displaying linear
receptivity, but larger for cases where nonlinear interactions are important, such as β =
0.503 (figure 13) and β = 0.377 (figure 11, wavenumber not present in the OSS spectrum
and weak in the FST energy spectrum at the intake, as seen in Appendix A).
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Figure 16. Amplification of incoming perturbations. Amplitude is defined as the square root of the kinetic
energy at a given position x. (a) Optimal growth according to Andersson et al. (1999) at spanwise wavenumbers
corresponding incoming FST perturbations, computed for ω = 0; (b) Amplifications measured for Tu = 3.5 %.
For β = 0.377, not present in the OSS spectrum, the maximum optimal growth amplification is around 25,
while the maximum measured amplification reaches 120.

8.2. Nonlinear coherent structures
Next, we focus on the pair (β, ω) = (0.377, −0.003) at Tu = 3.5 % and follow the
procedure described in § 3.5, to define an augmented state Q̂, composed only by the
nonlinear contributions of the model, which were identified to be the most important in
this case. According to the notation of (3.19), we have

Q̂ =
[

Ŷ N

F̂

]
, (8.1)

and, thus, spectral POD and forcing modes are linked by the relation Ψ = RBf Φ.
The leading spectral POD mode, shown in figure 17, has the same overall shape found in

streaks generated through linear receptivity: elongated structures, alternating streamwise
velocity and counter-rotating vortices. However, significant velocity amplitudes are only
present near the wall, below the position y = 15. Besides, the characteristic wavenumber
β is smaller, such that the spacing between alternating regions is larger. As the frequency
of this mode is not zero, the streaks appear inclined due to the perceived phase velocity;
a similar mode is obtained for negative wavenumber, with mirrored inclination. These
structures are the most energetic in cases where Tu ≥ 2 %.

The streamwise evolution of streaks generated by the nonlinear mechanism is not
as steep as the one generated by linear growth. Streamwise velocity amplitudes are
lower and quasi-streamwise vortices are weaker than those found at the intake for linear
streaks. Contrary to their linear counterpart, the amplification is sustained over the whole
length of the domain. Streamwise perturbations fit an algebraic growth pattern, while
quasi-streamwise vortices scale proportionally to

√
Rex as seen in figure 18. In practice,

the nonlinear interactions promote the necessary conditions to counteract the dampening
effect of viscosity via a continuous forcing originating from the FST outside the boundary
layer.

As previously noted by Sasaki et al. (2020), the velocity profile of streaks generated by
the nonlinear mechanism closely matches the optimal response of the linear amplification
theory, computed for (β, ω) = (0.377, 0.000) according to the procedure described in
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Figure 17. First spectral POD mode for (β, ω) = (0.377, −0.003) at Tu = 3.5 %, scaled by the respective
eigenvalue. (a) Velocity profile of leading spectral POD mode at inlet and position x ≈ 700. (b) Real part of
the leading spectral POD mode; (top) cross-section at x = 700; (bottom) slice at y = 1, inside the boundary
layer.
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Andersson et al. (1999). Especially good agreement is achieved around Re∗ = 600, based
on the boundary-layer displacement thickness (see figure 19). The fact that these streaks
tend to conform to the same overall shape predicted by an optimal linear mechanism
and, in turn, match the experimental profiles in Westin et al. (1994) and Matsubara
& Alfredsson (2001), corroborates the conjecture concerning the existence of a strong
dynamical attractor capable of ‘bringing near to itself the velocity profile under most initial
conditions’, as mentioned in Luchini (2000). In practice, it indicates the impossibility
of asserting the linear or nonlinear nature of streaky perturbations based solely on
measurements of the corresponding velocity profiles at a given position.

In a last analysis, the shape of nonlinear interactions can be analysed by looking at the
first forcing mode, shown in figure 20(b). From the RESPOD formulation, spectral POD
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Figure 20. Forcing mode for (β, ω) = (0.377, −0.003) at Tu = 3.5 %, scaled by respective eigenvalue. (a)
Forcing profile of leading mode at the inlet and at x ≈ 700. (b) Real part of the leading forcing mode; (top)
cross-section at x ≈ 700; (bottom) slice at y = 3, inside the boundary layer.

and forcing modes are phase synchronised, such that by superposing the spectral POD
mode shown in figure 17, we observe that the nonlinear forcing acts by feeding streamwise
vortices just outside the edge of the boundary layer, while directly weakening the streaks
inside of it.

This effect can be better described by first decomposing the nonlinear forcing data into
their components in each spatial direction and then reapplying the RESPOD analysis.
Following the notation adopted in (8.1), we construct

F̂ 1 =
⎡⎣F̂ x

∅
∅

⎤⎦ , F̂ 2 =
⎡⎣ ∅

F̂ y
∅

⎤⎦ , F̂ 3 =
⎡⎣ ∅

∅
F̂ z

⎤⎦ , (8.2a–c)
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Figure 21. Component-wise RESPOD analysis. (a) Maximum amplitudes of the forcing components along
the streamwise direction. (b) Phase-synchronised responses due to the nonlinear forcing at x = 700. Horizontal
line indicates δ99 thickness. (Top) Response generated by f̂ x. (Bottom) Response generated by the composition
of f̂ y + f̂ z.

such that ⎧⎨⎩
Ŷ 1 = RBf F̂ 1

Ŷ 2 = RBf F̂ 2

Ŷ 3 = RBf F̂ 3

, Ŷ N = Ŷ 1 + Ŷ 2 + Ŷ 3, (8.3)

in order to obtain the component-wise augmented state Q̂a, for which (3.30) gives the
component-wise response and forcing modes,

Q̂a =

⎡⎢⎢⎢⎢⎢⎢⎣

Ŷ 1

Ŷ 2

Ŷ 3

F̂ 1

F̂ 2

F̂ 3

⎤⎥⎥⎥⎥⎥⎥⎦
(3.30)−−−→ Ψ̃ =

⎡⎢⎢⎢⎢⎢⎣
Ψ1
Ψ2
Ψ3
Φ1
Φ2
Φ3

⎤⎥⎥⎥⎥⎥⎦ =⇒
⎧⎨⎩Ψ1 = RBf Φ1

Ψ2 = RBf Φ2
Ψ3 = RBf Φ3

. (8.4)

In (8.4), the vectors Φ1, Φ2 and Φ3, are respectively the separated components in x,
y and z of the forcing mode presented in figure 20. Therefore, the vectors Ψ1, Ψ2 and
Ψ3, displayed in figure 21, are the corresponding phase-synchronised responses to each
forcing component. Indeed, the results imply that the action of f̂ x generates streamwise
structures acting in opposition of phase concerning the streaks that are mainly generated
by f̂ y + f̂ z. This streamwise dampening effect is not enough to counteract streak growth,
even though f̂ x steadily grows, reaching larger amplitudes than the other two components.
This observation is supported by results from optimal growth theory, which indicate linear
amplification from vortical, f̂ y and f̂ z, forcing is stronger than from pure streamwise, f̂ x,
forcing.

Besides, the feature of opposing effects acting in a non-optimal manner to form
the most energetic structures in the flow has already been observed in previous works
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(Morra et al. 2021; Nogueira et al. 2021), where it was found that forcing fields computed
from the nonlinear terms of the NS equations tend to project poorly into the optimal
input mode computed using resolvent analysis. In the present context, the results indicate
that the streaks lose energy, through the f̂ x component, to other wavenumbers, in what
could potentially be an initial stage of streak instability and breakdown (Hamilton, Kim &
Waleffe 1995).

8.3. Nonlinear receptivity mechanism
Given the spanwise length of the domain, Lz, and β0 = 2π/Lz, streaks generated by the
nonlinear mechanism appear at approximately (β, ω) = (3β0, 0). This seems to suggest,
at least for the flow case considered here, a different receptivity mechanism than the
classical oblique wave set-up described in § 1, since the wavenumber in question cannot
be reached by triadic interaction of the type (±β, ω) → (2β, 0) (Berlin et al. 1999; Brandt
et al. 2002). This could, however, imply an interaction between oblique waves of different
wavenumbers, such as [(β, ω), (−2β, ω)] → (3β, 0).

A meaningful analysis of this mechanism would require a decomposition of the
nonlinear convection term into its triadic components in both spanwise wavenumber and
frequency, as described in (3.5). The identification of a set of triads linking a nonlinear pair
(β, ω) localised inside the boundary layer to two linear pairs predominantly present in the
free stream would constitute a useful data-driven approach to identify nonlinear receptivity
mechanisms induced by FST in a statistically stationary set-up. Moreover, the ranked
nonlinear forcing modes could be employed to characterise perturbation–perturbation
interactions neglected in restricted nonlinear models (Farrell et al. 2016).

This is not accomplished in the present work for two main reasons: (i) the databases
were set up to resolve mainly the low-frequency dynamics, only a small part of the full
frequency spectrum of the incoming FST perturbations, as shown in Appendix A; (ii)
the spectral decomposition of less energetic pairs (β, ω) inevitably encounters significant
windowing correction components ΠC , violating the rule established in § 3.4. Arguably, a
triadic analysis could be performed with a properly time-resolved database.

9. Conclusions

In the present study, we combined spectral estimation with the POD method and the
resolvent analysis framework to distinguish linear and nonlinear coherent structures
present in simulations of transitional boundary layers over flat plates without a leading
edge, subject to multiple levels of FST. This was accomplished with the employment of
an input–output (state-space) formulation that segregates external turbulent forcing, acting
in the fringe zone, from volumetric inputs computed directly from simulated fluctuation
fields using the nonlinear convection term, fi = −u′

j(∂u′
i/∂xj).

At first, the analysis of the simulation’s statistical power spectra showed that structures
are amplified by the increased FST levels, Tu, mainly in the lower-frequency range,
defined at |ω| < 0.026, a value found to be related to the incoming FST spectrum. In
sequence, two main trends were identified by tracking the behaviour of the most energetic
pairs (β, ω) at each Tu level: while higher frequencies evolve with a scale closer to
Tu2, indicating a linear interaction with the incoming turbulent energy, lower frequencies
display a steeper amplification, characteristic of nonlinear mechanisms. These trends were
once more verified by superposing all available power spectra in frequency. Again, higher
frequencies collapse when normalised by Tu2. Concurrently, lower frequencies scale with
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a factor closer to Tu4 for the present numerical database. These scalings are consistent with
linear and nonlinear receptivity mechanisms, respectively.

Once we computed the reconstructed spectral response of the system through the
input–output formulation, we integrated the energies of linear and nonlinear response
components in two distinct regions, inside and outside the Blasius boundary layer.
With this, lower-frequency energy peaks were linked to boundary-layer structures, while
higher-frequency peaks were established to be the result of the incoming turbulent flow.

In the free stream, the peaks in the linear component spectrum often translate to negative
nonlinear contributions, a feature attributed to the mixing and redistributing properties,
between triads of wavenumbers and frequencies, of the turbulent energy cascade. On the
other hand, the kinetic energy inside the boundary layer is found primarily in the nonlinear
component spectrum, at (β, ω) = (0.377, −0.003), with less energetic peaks present in the
lower-frequency range of the linear component spectrum, especially at (1.131, 0.000).

The application of the spectral POD method over the data at (β, ω) = (1.131, 0.000)

for Tu = 3.5 % reveals a dynamics dominated by streaky structures upstream, near the
intake of the numerical domain. These are largely a result of the linear response of the
system and display spatially stable spanwise and vertical velocity components, with strong
amplification of the streamwise component, readily followed by an exponential decay,
characteristics of transient growth. Thus, streaks generated by the linear mechanism do
not contribute directly to transition in the present case.

When the RESPOD method is applied to the data at (β, ω) = (0.377, −0.003), however,
a quite different dynamics is unveiled: streaks are solely the result of the continuous
nonlinear forcing and, contrary to the transient dynamics observed before, are steadily
amplified throughout the whole domain, along with vortices that grow proportionally
to

√
Rex. The velocity profile of the leading mode, computed using only the nonlinear

component of the system’s response, matches the optimal amplification profile from
transient growth theory (Luchini 2000), supporting the conjecture of a strong dynamical
attractor within the boundary layer. The computed leading forcing mode for streaks
generated by the nonlinear mechanism reveals non-optimal amplification mechanisms, in
the sense that the forcing acts both dampening and feeding streaks, a feature which could
potentially indicate the beginning of streak breakdown (Hamilton et al. 1995). Also, the
presence of streaks generated by the nonlinear mechanism at (β, ω) = (0.377, −0.003) ≈
(3β0, 0) suggests a different mechanism from the classical oblique wave set-up (Berlin
et al. 1999; Brandt et al. 2002), at least in the considered flow case.

Arguably, the simulation set-up studied is idealised and strong assumptions are made
when constructing an incoming turbulent field with OSS modes on the continuous
spectrum. In the presence of a leading edge, turbulence could be introduced inside the
boundary layer near the stagnation point, greatly favouring the linear mechanism, which
would result in an overall energy dependency of E ∝ Tu2, as measured by Fransson,
Matsubara & Alfredsson (2005). Moreover, the identified nonlinear mechanism could be
important even in the case of a turbulent boundary layer, contributing to the regeneration
cycle of turbulent streaks described in Hamilton et al. (1995) and Brandt (2014). These
considerations are, however, left open to future works.

The numerical methods devised in this manuscript allowed the identification of both
linear and nonlinear receptivity mechanisms in the early stages of transition and the
description of the nonlinear forcing capable of generating the identified most energetic
structures in the flow. Other than simulation data, in the form of flow snapshots, the
methodology requires the knowledge of the linear operators involved, as well as boundary
conditions. In the presented workflow, the geometry and size of the numerical mesh
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made possible the construction of the linear operators and computation of the nonlinear
forcing term outside a numerical solver. This might not be the case for larger simulations
and more complex geometries, for which the computation of the convective nonlinear
term and resulting linear and nonlinear components of the full system response must be
done employing the same operators implemented by the specific solver used to perform
the simulations. In particular, one natural future development of the present work is the
inclusion of a leading edge, which requires curvilinear meshes with corresponding spatial
derivative operators, and different FST generation schemes to introduce perturbations
upstream of the stagnation point, far from no-slip surfaces. Therefore, we stress that
the approach is general and could potentially be extended to any simulation for which
receptivity to incoming perturbations needs to be assessed, contributing, in that sense, not
only to the advancement of the research concerning the transition to turbulence but also to
the field of nonlinear dynamics as a whole.
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Appendix A. Properties of inflow perturbations

As described in § 2.2, we introduce synthetic homogeneous FST into the simulation
domain by forcing a set of OSS modes in the continuous spectrum branch inside the fringe
region. In this section, the spectrum of OSS modes is presented and the homogeneity
property of the FST is discussed.

Figure 22 shows the spectrum of perturbations introduced in the fringe zone, as a
function of spanwise wavenumber, β and frequency, ω. Since it is known that modes in
the continuous branch have phase speed approximately equal to the free-stream velocity,
U∞, we apply Taylor’s hypothesis, ω = αU∞, to compute ω as a function of the computed
streamwise wavenumber, α, given by spatial stability. It should be noted in figure 22(a) that
the snapshots taken from the simulations, spaced by time steps of �t = 10 to capture the
low-frequency dynamics of streaks in bypass transition, do not resolve the full perturbation
spectrum in frequency.

Methods to synthetically generate FST via OSS modes have found some criticism
in the fluid mechanics community. Particularly in the work of Dong & Wu (2013), it
is argued that continuous OSS spectra might be unsuitable to characterise free-stream
disturbances and their interaction with the boundary layer because of two main factors:
the phenomenon labelled entanglement of Fourier modes and the observation that
low-frequency disturbances appear to force preferentially the streamwise component of the
fluctuations in the free stream, in detriment to the transverse ones. Here, these concerns
are addressed based on the statistical data from the inlet perturbations of the simulations
considered in this work.
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Figure 22. Spectrum of perturbations introduced in the fringe zone. (a) Full spectrum of OSS modes where
the grey band represents the frequencies resolved by the snapshots of simulations; (b) measured spectrum at
the inlet for the Tu = 3.5 % case, superposed by the OSS modes spectrum, with colours representing turbulent
kinetic energy.

First, the entanglement of Fourier modes is a non-physical property arising from
the parallel flow approximation of OSS equations, which potentially generates spurious
perturbations if such modes are introduced as inlet conditions. There is, however, a
distinction between this description and the approach employed in the present work, based
on Brandt et al. (2004). Considering the momentum equations written in (2.3),

∂u′

∂t
= LNS(u′, UBL) + f (u′) + σ(x)(ζ − u′),

∇ · u′ = 0,

}
(A1)

the fringe where the σ(x)(ζ − u′) term acts as a proportional controller that imposes a
body force capable of bringing the flow near to the desired state introduced by the forcing
term ζ composed of a superposition of OSS modes. Therefore, ζ is not imposed directly
and the state inside the fringe is always a solution of an externally forced incompressible
NS system, for which no parallel flow assumptions are made, rather than the solution of
the OSS equations. This effect can be observed in figure 22(b), where the energy spectrum
at the inlet is superposed by the OSS modes spectrum. Through careful design of the
fringe region, we can match energy peaks with the location of OSS modes, even though
peaks are also present in different locations due to the influence of the NS system. For a
more detailed description of the effects of the fringe parameters, the reader is referred to
Chevalier et al. (2007).

Second, the preferential amplification of streamwise the fluctuations in the free stream
observed by Dong & Wu (2013) in the context of OSS equations is not present in the
simulations considered in this work. As shown in figure 23(a), the root-mean-squared
(r.m.s.) values for all three perturbation components have roughly the same magnitude at
the inlet and are mainly located outside the boundary layer. The fringe region is capable of
homogenising the streamwise-dominated perturbations present upstream of it, generated
by the streaky dynamics of bypass transition, as seen in figure 23(b).

Finally, one should note that, since we deal with input–output analysis in this work,
the methods presented are agnostic to the type of perturbations introduced. In other words,
even though some results might be influenced by the way synthetic turbulence is generated,
the formulation is general enough and does not limit the application of different techniques
for the generation of incoming perturbations, given that adequate adaptations are applied
to the input–output system.
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Figure 23. The r.m.s. value of the velocity fluctuations, averaged over span and time directions, for the case
of Tu = 3.5 %. Panels show (a) r.m.s. values at the intake (x = 0); (b) r.m.s. values before the fringe (x = 910).

Appendix B. Linear operators, sparsity and boundary conditions

The state-space formulation presented in (3.6) is directly derived from (3.4). For a model
discretised in N spatial points and a base-flow vector

U =
⎡⎣U
V
∅

⎤⎦ , U ,V, ∅ ∈ R
N×1, (B1)

composed of row-wise stacked components, the LNS operator, L, is defined as

L =

⎡⎢⎣K + (DxU)T I (DyU)T I Z Dx
(DxV)T I K + (DyV)T I Z Dy

Z Z K iβI
Dx Dy iβI Z

⎤⎥⎦ , (B2)

where

K = UTDx + VTDy + 1
Re

(Dxx + Dyy − β2I) + σ T I, (B3)

and σ ∈ R
N×1 is the fringe gain from figure 3. Matrices I and Z are identity and zero,

respectively. Matrices Dx, Dy are first and Dxx, Dyy are second spatial derivatives in the
respective directions. The superscript {·}T indicates transpose. All specified matrices have
dimension N × N.

Depending on the size of the model, matrices can be costly to store and manipulate. In
this work, for instance, the two-dimensional grid has a total of N = 256 × 121 = 30, 976
points. If values are stored in 16 bytes (real and imaginary parts as 8 bytes double precision
floats each), L should amount to approximately 240 gigabytes of data. The storage cost is
avoided with the employment of sixth-order, centred, finite difference schemes for Dx and
Dy, which improves the sparsity of L and lowers memory requirements from gigabytes to
megabytes.
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Figure 24. Computed PSDs at (β, ω) = (1.131, 0.000) and Tu = 3.5 %. (a) Statistical PSD, PU and
(b) reconstructed PSD, PY .
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Figure 25. Comparison between mean-squared velocities computed from LES statistics, U , and reconstructed
statistics, Y , at (β, ω) = (1.131, 0.000), Tu = 3.5 % and x = 113. Respectively, 〈·〉, |·| and {·}∗ are averages
over blocks, absolute value and conjugate.

0

10

y
20

30

5

(×10–6)

0

10

20

30
|〈ûv̂∗〉| |〈ûŵ∗〉| |〈v̂ŵ∗〉|
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Figure 26. Comparison between cross-terms computed from LES statistics, U , and reconstructed statistics, Y ,
at (β, ω) = (1.131, 0.000), Tu = 3.5 % and x = 113. Respectively, 〈·〉, |·| and {·}∗ are averages over blocks,
absolute value and conjugate.
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Figure 27. Computed PSDs at (β, ω) = (0.377, −0.003) and Tu = 3.5 %. (a) Statistical PSD, PU and
(b) reconstructed PSD, PY .
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Other operators are constructed as follows:

Ω = −iω

⎡⎢⎣ I Z Z Z
Z I Z Z
Z Z I Z
Z Z Z Z

⎤⎥⎦ , H =
⎡⎣ I Z Z Z

Z I Z Z
Z Z I Z

⎤⎦ , (B4a,b)

Bu =

⎡⎢⎢⎣
σ T I Z Z
Z σ T I Z
Z Z σ T I
Z Z Z

⎤⎥⎥⎦ , Bf =

⎡⎢⎣ I Z Z
Z I Z
Z Z I
Z Z Z

⎤⎥⎦ . (B5a,b)

Boundary conditions are inserted in L, Bu and Bf by substituting the momentum
equations in lines corresponding to positions at the boundaries. In other words, for the
lower wall, (2.1) gives

Li = Bi
u = Bi

f = 0, ∀ i : y = 0, (B6)

and, for the upper limit,

∂

∂y
UBL(x, 60) ≈ 0 =⇒ Li =

⎡⎢⎣Dy Z Z Z
Z Dy Z Z
Z Z Dy Z
Z Z Z Z

⎤⎥⎦
i

Bi
u = Bi

f = 0

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ , ∀ i : y = 60, (B7)

according to (2.2). The superscript {·}i refers to the ith line of the corresponding matrix.

Appendix C. Comparison between LES and reconstructed statistics

In the manuscript’s text, only the linear and nonlinear components of PY , namely ΠL and
ΠN , were shown. For the sake of completeness, we display the computed statistics for the
specific case of the streaks generated by the linear mechanism (figures 24–26) and those
resulting from nonlinear mechanisms (figures 27–29).
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