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Abstract. Galaxy number or luminosity density serves as a basis for many structure classifica-
tion algorithms. Several methods are used to estimate this density. Among them kernel methods
have probably the best statistical properties and allow also to estimate the local sample errors of
the estimate. We introduce a kernel density estimator with an adaptive data-driven anisotropic
kernel, describe its properties and demonstrate the wealth of additional information it gives us
about the local properties of the galaxy distribution.

Keywords. Cosmology: large-scale structure of universe, surveys, galaxies: statistics

1. Introduction

Galaxy position (redshift) surveys give us maps of the universe, formed by the mutual
positions of many galaxies. Such maps can be studied as they are, but in many cases
the first processed product of the survey would be the continuous (matter or luminosity)
density map for the survey volume. Such a map gives us an understanding of the cos-
mography of the survey, forms a basis for finding and classifying the constituents of the
large-scale structure, and is probably useful for many other applications.

Density estimation has become an art in itself in recent years, especially with appli-
cation of Bayesian methods. One of the most impressive cosmological papers in recent
years (Jasche & Wandelt (2012)) demonstrated how one can find the density distribu-
tion for a galaxy catalog with photometric redshifts. The errors of photometric redshifts
are usually so large that they smear up all the large-scale structure. Jasche & Wandelt
showed that using an isotropic covariance matrix as a natural prior one can recover the
real structure. Think about it — the only additional requirement is a very natural and
simple requirement of local statistical isotropy, and it does practically all the work.

Another long-reaching effort along similar lines is the work by Kitaura et al. (2012)
who reconstruct the density distribution in the local universe by guessing the initial
conditions compatible with the present galaxy distribution, taking them to the present
by numerical simulations, and comparing them with real galaxy positions. All this work
is one step in a MCMC chain, so the total work is enormous. But the result is certainly
the best picture of the local universe for that moment.

Both groups are continuing their work and improving their methods, I recommend to
check the literature, searching by the authors. But although this approach is solid and the
results are impressive, it is very expensive in terms of computer time. The observational
data is represented by numbers of galaxies in spatial cells that cover the survey volume,
and every number is an independent variable. The typical number of the cells is about
109 to 107, and this is the dimension of the space where the MCMC has to work. This
demands huge computing power, sophisticated methods, and it is difficult to imagine
that it would be possible to sample the posterior distribution uniformly.
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As future survey volumes are growing fast, we need to also use fast (simple) methods
of density estimation, both as an alternative methods or better inputs for the Bayesian
methods.

2. Density estimation

The simplest way to estimate the density is to use histograms, that for a 3-D world
translate to disjoint volume elements, usually cubic cells, and to count galaxies in these
cells. Although such approach is frequently used, it is not the best way to get the density.
The most evident drawback is that the galaxy numbers in adjacent cells may crucially
depend on the arbitrary location of cell boundaries — we may as well find a whole galaxy
cluster in a cell, as to break it into two halves by a happy boundary. Statisticians have
long known that there is a much better way, the kernel density estimation (see, e.g.,
citeSilverman86).

For a 1-D case, the density p(x) for a discrete sample of n points with the positions x;
can be found in any point = as

o) = nthK(hx) (2.1)

where x; are the coordinates of the sample points, summation extends over all these
points, K (x;h) is the kernel, and & is the kernel scale. Kernels may be quite arbitrary,
there are only four conditions that they must satisfy:

K(z) > 0, (2.2)
/K(x)da: = 1, (2.3)
/xK(x)de’ = 0, (2.4)
/x2K(x)dw < oo. (2.5)

In other words, the kernel must be a symmetric probability distribution of finite variance.

Practice has shown that the exact functional form of a kernel does not matter much,
but the scale does — choosing the right scale we can minimize the goodness measure of
our density estimate, its MISE (mean integrated squared error):

MISE(H) = E [ (3aif) - p(@))” d

where p(x;h) is the estimate of the density found using the scale h, p(z) is the true
density, and F denotes the expectation value. The MISE is, in fact, the only number
that is used to compare how effective the density estimators are.

The formula 2.1 is referred to as a fixed kernel estimate. In practice, the density
distributions are frequently non-uniform, and we could get a better estimate by varying
the scale h. These estimates are called adaptive estimates, and there are two kinds of
them: the sandbox estimate where the kernel size depends on the data points:

11 T — T;
p(x)—ngjmK( ).
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and the balloon estimate where the kernel size depends on the position where we estimate
the density:
1 " T — x;
)= 2K ()
i
There are several empirical rules and iterative methods to find better h; or h(x).
In a multidimensional case, the kernel k(x) is also multidimensional:

p(x)z%iK(X;Xi). (2.6)

It is usually constructed as a spherical kernel or a direct product of one-dimensional ker-
nels (for Gaussian kernels, this is the same). As for adaptive kernels, the one-dimensional
thinking has carried over to the multidimensional case, and for adaptive density esti-
mates, people usually try to construct adaptive kernels as spherical kernels of different
scale. This is not good, as it smears up the local galaxy distribution. Another possibil-
ity is to use products of one-dimensional kernels of different scale; these scales have to
be prescribed, somehow. But there is more freedom in the multidimensional case. For
example, a (balloon) density estimate using a Gaussian kernel is

00 = G e gl S | e

Here the scaling is fixed by the covariance matrix > (x), and this is, in general, not
diagonal.
We propose to use a local estimate for this matrix:
1 n
Y(x) = - Zw(x, x;, R)(x; —x)(x; — X)T,
1
that is similar to the usual covariance matrix estimate, but is restricted to a region near
the point x by the weight function w(x;,x;, R). We choose it to be also Gaussian of rms
R:
1 1 ( )2

EmprRD P | o %)
It is easy to see that in the case of a locally constant density, our covariance matrix will
be diagonal,

w(x;, X, R) =

> = R’I,

where I is the unit matrix of dimension D. In a general case, the density distribution is
described not only by the scalar p(x), but, in addition, by the eigenvalues Sy, k € [1, D]
of the covariance matrix, and by the eigenvectors vy, the axes of the covariance ellipsoid.
This describes the local anisotropy of the galaxy distribution.

Solving for eigensystems is usually a delicate iterative process. But for three-dimensional
maps there are direct analytical algoritms giving both the eigenvalues and eigenvectors
(see, e.g., Kopp (2008)). The necessary libraries are freely availablef. And analytical for-
mulae exist also for two-dimensional matrices. So for the usual 3D and 2D maps the
algorithm is fast.

1 See http://www.mpi-hd.mpg.de/personalhomes/globes/3x3/
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Figure 1. The 2D projection of galaxies for the thin Sloan sample slice used.

3. Examples

For data, we use the SDSS DRS8 galaxies, where we have found the groups and spheri-
sized their velocity space fingers (Tempel et al. (2012)). To see better how the algorithm
works, we show a 2-D example, and select for that galaxies from the equatorial slice,
where the SDSS survey coordinate n € [—2, 2] degrees. Fig. 1 shows the projected galaxy
distribution in this slice. We compare the Gaussian and adaptive densities for a sensible
R = 10Mpch~'. As expected, adaptive kernels restore the density better than the stan-
dard Gaussian one. For the 2D case, we get also the axes ratio that describes the local
anisotropy of the galaxy distribution.

4. Summary

The main advantage of the present approach is that it allows us to use the local
anisotropy on the galaxy distribution. There are many ways to describe the galaxy maps
and to classify the elements of the large-scale structure that rely on the local properties
of the smooth density field. It is clear that density maps obtained by counting galaxy
numbers in cells or by using isotropic kernels smooth out this information to a very large
extent.

The local adaptive estimates of the kernel width are also useful, but not to such extent.
We know that galaxy distribution is of a multiscale nature — there are clusters, groups,
and filaments of different scale. For one smoothing scale, we get filaments, for another
scale, these filaments may form a wall. So there probably is no unique density distribution.
These advices us that we should not use our algorithm in an iterative way, although it
may be tempting.

The computer code for the algorithm can be found on GitHubf. It is written in C,
and includes several tricks to speed up the algorithm — arranging the data for a fast
neighbour search, using a compact kernel for the final density estimation, etc.

i https://github.com/esaar/andens.
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Figure 2. Sloan slice densities for Gaussian smoothing (R = 10Mpch™!), upper panel, and for
adaptive smoothing for the same initial o, and axes ratios for the adaptive kernels.
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