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IMAGES OF HANKEL OPERATORS ON THE POLYDISK

Boo RIM CHOE AND YOUNG JOO LEE

We study images of Hankel operators on the Bergman or Hardy space of the poly-
disk. We give characterisations of pairs of antiholomorphic symbols inducing Hankel
operators whose images are mutually orthogonal.

1. RESULTS

Let D be the unit disk in the complex plane C. The unit polydisk Dn is the

cartesian product of n copies of D. The Bergman space A2 is the closed subspace of

L2(Dn) = L2(Dn,V) consisting of all holomorphic functions on Dn. Here, the measure

V is the normalised volume measure on Dn. Let P be the orthogonal projection from

L2{Dn) onto A2. For a function / 6 L°°(Dn), the Hankel operator Hf with symbol / is

defined by

Hfu = uf - P{uf)

for u € A2. Then, it is clear that Hf : A2 —> L2(Dn) is a bounded linear operator and

Hf(A2) is contained in A2L, the orthogonal complement of A2 in L?(Dn). Here,

Hf(A
2) = {Hfu : u £ A2}

denotes the image of Hf.

On the setting of the unit disk, Wang and Wu [3] have recently studied the images

of Hankel operators with certain antiholomorphic symbols. As a consequence of their

result, we have: for a pair of bounded holomorphic functions / and g on D, the images

Hj(A2) and Hg(A2) are mutually orthogonal if and only if either / or g is constant.

In this note, we first show that there are lots of pairs of nonconstant antiholomorphic

symbols on the polydisk inducing Hankel operators whose images are mutually orthogo-

nal. This follows from the following characterisation which can be viewed as an extension

of the result of Wang and Wu. In what follows, we let H°° denote the space of all bounded

holomorphic functions on Dn and dj =
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THEOREM 1 . Letf,geH°°. Then Hj(A2) and HV(A2) are mutually orthogonal

if and only if either djf or djg is zero for each j where 1 ^ j ^ n.

Our next result is that the same is true for the Hardy space. To be more explicit,
let T be the boundary of D and let T n denote the cartesian product of n copies of T.
Let a denote the usual normalised Haar measure on T" and L^T") = VCT1^). The
Hardy space H2 is the closed subspace of L?(Tn) consisting of all functions u € L2(T")
whose Poisson integrals are holomorphic on Dn. For / € L°°(Tn), the Hankel operator
hf with symbol / is defined by

hfU = uf - Q(uf)

for u G H2. Here, Q denotes the orthogonal projection from L2(Tn) onto H2. Then,
hj : H2 —» L2(T") is a bounded linear operator and hj{H2) is contained in H2±, the
orthogonal complement of H2 in L2(Tn). Here,

hf(H
2) = {hju :ueH2}

denotes the image of hj. On the hardy space H2, we have the following.

THEOREM 2 . Let f,g E H°°. Then hj(H2) and hg{H2) are mutually orthogonal
if and only if either djf or djg is zero for each j where 1 $J j ' ^ n.

2. PROOFS

Since every point evaluation is a bounded linear functional on A2, there corresponds
to every a € Dn a unique function Ka in A2 which has following reproducing property:

f(a) = (f,Ka) for all / e A2, (1)

where the notation ( , ) denotes the inner product in L2(Dn) with respect to the measure
V. The function Ka is the well known Bergman kernel which has the explicit formula

Here and elsewhere, we use the notation z = (z\, • • • , zn) for a point z € Dn. We let ka

denote the normalised kernel, namely,

ka(z) = ^d$= (a,zeD»).

For each a = (ai, • • • , an) 6 D", we let (pa — (<pai, • • • , <pan) where each ipai is the usual
Mobius map on D given by
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Then ipa is an automorphism of Dn and (pa o <pa is the identity on Dn. Since the real
Jacobian of <pa is given by |&Q|2, we have

/ ho<padV= f h\ka\
2dV

JDn JD"
whenever the integrals make sense. In particular, we have

f h\ka\
2 dV = h(a) (a€Dn) (2)

JD"

for functions h integrable and holomorphic on Dn.

We say that a function u is n-harmonic on Dn if u is harmonic in each variable
separately. It turns out that n-harmonic functions can be characterised by a certain
mean value property.

LEMMA 3 . Let u € L°°(Dn). Then u is n-harmonic on Dn if and only if

/ (no ipa) dV = u(a)
J D"

for every a e Dn.

P R O O F : See [1, Theorem 3.1]. D

LEMMA 4 . For f S H°°, we have

Hjka=(7~7(a))ka

for all a £ Dn.

P R O O F : Let / e H°° and fix z, a € Dn. By the reproducing property (1), we see

P(fka){z) = (P(7ka),Kz) = (fka,Kz) = (kaJKz).

On the other hand, we have

The proof is complete D

We now prove Theorem 1.

P R O O F OF T H E O R E M 1: First, assume Hj(A2) and Hg(A2) are mutually orthogonal.
It follows from (2) and Lemma 4 that

{ 7 )
= ((f-7(a))ka,gka)

- / 79\ka?dV-7{a) f g\ka\
2dV

J Dn JD"

= f (79)°ipadV-7(a)g(a)
J D"
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for every a e Dn. Since
(H7ka, Hgka) = 0 (a € Dn)

by assumption, it follows from Lemma 3 that fg is n-harmonic on Dn. Now, the desired
result follows from the fact

0 = djdjQg) = d~fdj9 (1 ^ j < n).

Conversely, assume either djf or djg is zero for each j . Then, by changing the
coordinate system if needed, we may write the functions / , g in the form

/ ( * ) = f(zU ••• , Zr), g(z) = g{Zr+l, ' • • , *»)

for some 1 ^ r ^ n. Then, it is not hard to see that

(gKa, f K b ) = J ( a u • • • , a r ) g ( b T + 1 , •••, b n ) K a ( b )

for every a, b e Dn. This, together with (1) and Lemma 4, yields

(H7Ka,H?Kb) = (H7Ka,gKb)

= (gKa, fKb) - f(au • • • , ar)(gKa, Kb)

= (gKa, fKb) - 7(t t l , • • • , ar)g(br+u •••, bn)Ka(b)

= 0

for every a, b € Dn. Now, since the set {Ka : a 6 £>"} spans a dense subset of A2, we see
that Hj(A2) and //j(^42) are mutually orthogonal. The proof is complete. D

We now turn to the case of Hardy space. As is well known, we can identify u € H2

with its holomorphic extension u on Dn. With this identification, the reproducing kernel
for H2 is the Cauchy kernel Rz whose explicit formula is given by

R*(Q = TT i \ , (C € Tn, z € Dn)

and thus we can write the projection Q as

Q<p(z)={<p,R.)

for (p € L2(Tn). Note that we still use the same notation ( , ) for the inner product on
L2(Tn). See [2, Chapter 3] for details.

Let ra denote the normalised kernel defined by

https://doi.org/10.1017/S0004972700033074 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700033074


[5] Hankel operators 407

Note that |ra |2 is the Poisson kernel on Dn and thus we have

f f\ra\
2da = f(a) (a € Dn) (3)

JT"

for every / e H2. We also have the following whose proof is a trivial modification of that
of Lemma 4 and thus omitted.

LEMMA 5 . For f e H°°, we have

hjra=(f-7(a))ra

for all ae Dn.

We now prove Theorem 2.

PROOF OF THEOREM 2: First, assume hj{H2) and hg(H2) are mutually orthogonal.
By (3) and Lemma 5 we have

(hjra,hgra) = (hjra,gra)

= ((7-7(a))ra,gra)

= I 79K\2da-7(a) [ g\ra\
2da

JT" JTn

= f 79\ra\
2da-7(a)g(a)[

JTn

for every a e Dn. Since

by the assumption, we have

7(a)g{a)= [ Jg\ra\
2da

JT"

for all a e Dn. That is, the function fg is the Poisson integral of its boundary function
7g 6 L'(Tn) and therefore is n-harmonic on Dn. See [2, Chapter 2]. Now, the result
holds as in the proof of Theorem 1.

Conversely, assume either djf or djg is zero for each j . By exactly the same argument
as in the proof of Theorem 1, together with the fact the set {Ra : a 6 Dn} spans a dense
subset of H2, we see that hj(H2) and h^(H2) are mutually orthogonal. The proof is
complete. D
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