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IMAGES OF HANKEL OPERATORS ON THE POLYDISK

Boo RiM CHOE AND YOUNG JOO LEE

We study images of Hankel operators on the Bergman or Hardy space of the poly-
disk. We give characterisations of pairs of antiholomorphic symbols inducing Hankel
operators whose images are mutually orthogonal.

1. RESULTS

Let D be the unit disk in the complex plane C. The unit polydisk D" is the
cartesian product of n copies of D. The Bergman space A? is the closed subspace of
L*(D™) = L*(D™, V) consisting of all holomorphic functions on D". Here, the measure
V is the normalised volume measure on D". Let P be the orthogonal projection from
L*(D") onto A%, For a function f € L*(D"), the Hankel operator H; with symbol f is
defined by

Hpu=uf — P(uf)

for u € A% Then, it is clear that H; : A2 — L?(D™) is a bounded linear operator and
H;(A?) is contained in A%", the orthogonal complement of A? in L}(D"). Here,

Hf(A2) = {Hfu ru € Az}

denotes the image of Hy.

On the setting of the unit disk, Wang and Wu [3] have recently studied the images
of Hankel operators with certain antiholomorphic symbols. As a consequence of their
result, we have: for a pair of bounded holomorphic functions f and g on D, the images
H7(A?) and Hg(A?) are mutually orthogonal if and only if either f or g is constant.

In this note, we first show that there are lots of pairs of nonconstant antiholomorphic
symbols on the polydisk inducing Hankel operators whose images are mutually orthogo-
nal. This follows from the following characterisation which can be viewed as an extension
of the result of Wang and Wu. In what follows, we let H* denote the space of all bounded
holomorphic functions on D and 9; = 0/0z;.
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THEOREM 1. Let f, g € H*. Then Hy(A?) and Hz(A?) are mutually orthogonal
if and only if either 0;f or 0,9 is zero for each j where 1 < j < n.

Our next result is that the same is true for the Hardy space. To be more explicit,
let T be the boundary of D and let T™ denote the cartesian product of n copies of T.
Let o denote the usual normalised Haar measure on T™ and L?(T™) = LP(T™,0). The
Hardy space H? is the closed subspace of L*(T™) consisting of all functions u € L*(T")
whose Poisson integrals are holomorphic on D®. For f € L*®°(T"), the Hankel operator
hy with symbol f is defined by

hyu = uf — Q(uf)

for u € H?. Here, Q denotes the orthogonal projection from L?(T™) onto H?. Then,
ks : H* — L*(T") is a bounded linear operator and hy(H?) is contained in H2", the
orthogonal complement of H? in L2(T™). Here,

hf(H2) = {h,u rue HZ}

denotes the image of hy. On the hardy space H?, we have the following.

THEOREM 2. Let f,g € H®. Then hy(H?) and hz(H?) are mutually orthogonal
if and only if either 8; f or 0;g is zero for each j where1 < j < n.

2. PRrROOFs

Since every point evaluation is a bounded linear functional on A2, there corresponds
to every a € D™ a unique function K, in A? which has following reproducing property:

fla) = {f,K,) forall fe A% (1)

where the notation (, ) denotes the inner product in L?(D™) with respect to the measure
V. The function K, is the well known Bergman kernel which has the explicit formula

n

1
K. (2) = —_ (z € D).
]1;11 (1-1az)?
Here and elsewhere, we use the notation z = (z;,- -, 2,) for a point z € D*. We let k,

denote the normalised kernel, namely,

K
ha() = =28 (4 e D),
v Ka(a)
For each a = (a1, -+ ,a,) € D", we let ¢, = (@qa,, " , ¥a,) Where each @,, is the usual
Mobius map on D given by
a; — z;

T—ax (z,- € D)

(pﬂi(zi) =

https://doi.org/10.1017/50004972700033074 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700033074

[3] Hankel operators 405

Then ¢, is an automorphism of D" and ¢, o ¢, is the identity on D®. Since the real
Jacobian of ¢, is given by |k,|?, we have

hopedV = / hlka? aV
Dn n
whenever the integrals make sense. In particular, we have

/ hkPdV = h(a) (a€ DY) @)
.

for functions h integrable and holomorphic on D™.

We say that a function v is n-harmonic on D" if u is harmonic in each variable
separately. It turns out that n-harmonic functions can be characterised by a certain
mean value property.

LEMMA 3. Letu € L®°(D"™). Then u is n-harmonic on D" if and only if
(uo ) dV = u(a)
Dﬂ

for every a € D™.
PROOF: See [1, Theorem 3.1]. 0
LEMMA 4. For f € H®, we have
kaa = (7 - ?(a))ka
for all a € D".
PRrROOF: Let f € H* and fix z,a € D". By the reproducing property (1), we see
P(Fka)(2) = (P(fka), K.) = (fka, K,) = (ka, fK.).

On the other hand, we have

(ka, fK;) = —F === —f_(a)ka(‘z)-

The proof is complete 1]

We now prove Theorem 1.
PROOF OF THEOREM 1: First, assume Hy(A?) and Hy(A?) are mutually orthogonal.
1t follows from (2) and Lemma 4 that

(kaa; H’g‘ka) = (kam gka)
= <(7 - T(G))ka) gka>
= [ ToltPav -7 [ glkav
Dn Dn

=/, (f9) o wadV — f(a)g(a)
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for every a € D™. Since
(Hgkq, Hgk,) = 0 (a € D)

by assumption, it follows from Lemma 3 that fg is n-harmonic on D". Now, the desired
result follows from the fact

0=29;0;(fg)=0;70,9 (1<j<n).

Conversely, assume either J;f or 0;g is zero for each j. Then, by changing the
coordinate system if needed, we may write the functions f, g in the form

f(z) =f(zl"" :ZT): g(z)=g(z,+1,--- ’zn)

for some 1 € r < n. Then, it is not hard to see that

(gKaa be> - (0.1, et :ar)g(br+1a ot ;bn)Ka(b)
for every a,b € D". This, together with (1) and Lemma 4, yields

( 01 gKb)
<(f f ay, - ar)) a:gKb>
= (9Ka, fKb) — (ala"' s ar)(9Kq, Ky)

= (9K, fKy) — —(ala o, ar)g(brgr, 1 02) Ko (b)
=0

(HsKq, HyKy) =

for every a,b € D". Now, since the set {K, :a € D"} spans a dense subset of A2, we see
that Hy(A?) and H3(A?) are mutually orthogonal. The proof is complete. 0

We now turn to the case of Hardy space. As is well known, we can identify u € H?
with its holomorphic extension u on D". With this identification, the reproducing kernel
for H? is the Cauchy kernel R, whose explicit formula is given by

i 1
RO =]]1= e (€T zeD
j=1 757

and thus we can write the projection @ as
Qv(2) ={p, R.)

for ¢ € L?(T™). Note that we still use the same notation {, ) for the inner product on
L%(T™). See [2, Chapter 3] for details.
Let 7, denote the normalised kernel defined by

=[] V1-la:lRa.
j=1 '
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Note that |r4|? is the Poisson kernel on D™ and thus we have

[ frPir=1@ (@eDr) ®)

for every f € H?. We also have the following whose proof is a trivial modification of that
of Lemma 4 and thus omitted.

LEMMA 5. For f € H®, we have
hfra = (? - 7(0’))7'0

for all a € D™.

We now prove Theorem 2.
PROOF OF THEOREM 2: First, assume h7(H?) and hz(H?) are mutually orthogonal.
By (3) and Lemma 5 we have

I
——~—

(hTa, hgra) = (hyra, Gra)

((F ~F(@)ra,7ra)
= [ TalruP o ~F(@ [ _olraf do

Tn

= /. falral*do — f(a)g(a)

for every a € D™. Since
(Hf'raa Hﬁ"‘a) =0

by the assumption, we have
T(e)ota) = [ Folrap do

for all @ € D™. That is, the function fg is the Poisson integral of its boundary function
fg € L'(T™) and therefore is n-harmonic on D". See (2, Chapter 2]. Now, the result
holds as in the proof of Theorem 1.

Conversely, assume either 9; f or 0;¢ is zero for each j. By exactly the same argument
as in the proof of Theorem 1, together with the fact the set {R, : a € D™} spans a dense
subset of H?, we see that hy(H?) and hz(H?) are mutually orthogonal. The proof is
complete. 0
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