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Abstract
We study two continuous-time Stackelberg games between a life insurance buyer and seller over a random time
horizon. The buyer invests in a risky asset and purchases life insurance, and she maximizes a mean-variance criterion
applied to her wealth at death. The seller chooses the insurance premium rate to maximize its expected wealth at the
buyer’s random time of death. We consider two life insurance games: one with term life insurance and the other with
whole life insurance—the latter with pre-commitment of the constant investment strategy. In the term life insurance
game, the buyer chooses her life insurance death benefit and investment strategy continuously from a time-consistent
perspective. We find the buyer’s equilibrium control strategy explicitly, along with her value function, for the term
life insurance game by solving the extended Hamilton–Jacobi–Bellman equations. By contrast, in the whole life
insurance game, the buyer pre-commits to a constant life insurance death benefit and a constant amount to invest in
the risky asset. To solve the whole life insurance problem, we first obtain the buyer’s objective function and then
we maximize that objective function over constant controls. Under both models, the seller maximizes its expected
wealth at the buyer’s time of death, and we use the resulting optimal life insurance premia to find the Stackelberg
equilibria of the two life insurance games. We also analyze the effects of the parameters on the Stackelberg equilibria,
and we present some numerical examples to illustrate our results.

1. Introduction
Life insurance is a financial product that provides bequests to dependents, beloved ones, or charita-
ble organizations after the policyholder’s death. Since the 1960s, researchers have constructed various
quantitative models to analyze life insurance acquisition and consumption/investment decision prob-
lems under uncertainty. Yaari (1965) is a starting point for modern research in this field. Richard (1975)
combined Yaari’s model with the optimization model in Merton (1969, 1971) to analyze an individual’s
portfolio choice and demand for life insurance, in which the individual’s lifetime was assumed to be ran-
dom but bounded. Researchers have extended these early papers of Yaari and Richard. In his dissertation,
Ye (2006) augmented Richard’s work by considering a more general random lifetime. Kwak et al. (2011)
studied an optimal investment, consumption, and life insurance problem for a family with two genera-
tions. Bruhn and Steffensen (2011) found the optimal life insurance purchasing strategy to maximize the
utility of consumption for a household within a continuous-time, finite-state Markov chain framework.
De-Paz et al. (2014) studied the optimal life insurance decision problem with heterogeneous discount-
ing. Wei et al. (2020) considered a life insurance and investment/consumption optimization problem for
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couples with correlated lifetimes. Liang and Young (2020) investigated the bequest goal problem with
life insurance acquisition and model uncertainty. Maggistro et al. (2024) explored a two-agent portfolio
optimization problem with life insurance under dynamic non-cooperative and cooperative game scenar-
ios. See also Huang et al. (2008), Kraft and Steffensen (2008), Nielsen and Steffensen (2008), Bayraktar
and Young (2013), Bayraktar et al. (2014, 2016), Zhang et al. (2021), Wang et al. (2021), Park et al.
(2023), and Li et al. (2023) for other extensions.

Research on Stackelberg games in insurance has received much attention in the recent actuarial sci-
ence literature. These leader–follower games enable us to have a deeper understanding of the interactions
between buyers and sellers of insurance. Current research mainly focuses on two models. One is the one-
period static model, and the corresponding Stackelberg equilibrium is called a Bowley solution. Chan
and Gerber (1985) first proposed such a Stackelberg game in reinsurance by maximizing each player’s
expected utility of final wealth. Cheung et al. (2019) incorporated distortion risk measures into the rein-
surance problem. Chi et al. (2020) considered the limited ceded risks for the reinsurer. Boonen et al.
(2021) explored the effects of asymmetric information between the insurer and reinsurer on the Bowley
solution. Li and Young (2021) computed the Bowley solution for a mean-variance Stackelberg game.

The other model is the continuous-time model, which leads to a so-called Stackelberg differential
game. Chen and Shen (2018) applied Stackelberg game theory to the study of dynamic optimal rein-
surance problems with proportional reinsurance and a diffusion surplus process. Chen and Shen (2019)
extended their previous problem to a time-consistent mean-variance framework. Wang and Siu (2020)
investigated a robust reinsurance contract under a principle-agent model with VaR constraints. Gu et al.
(2020) studied an optimal excess-of-loss reinsurance contract with ambiguity, in which the insurer’s sur-
plus is described by a classical Cramér–Lundberg model. Cao et al. (2022) considered the Stackelberg
differential game in a general spectrally negative Lévy framework incorporating model ambiguity con-
cerning both the intensity and severity of insurable loss. Li and Young (2022) studied a mean-variance
Stackelberg differential game with a mean-variance premium principle over a random time horizon.
Guan et al. (2024) investigated a Stackelberg game between an insurer and a reinsurer under the α-
maxmin mean-variance criterion and stochastic volatility. For related work, please see Hu et al. (2018),
Bai et al. (2022), Cao et al. (2023), Cao and Young (2023), Zhang et al. (2024a), Zhang et al. (2024b),
and Han et al. (2024).

To the best of our knowledge, ours is the first paper to analyze life insurance demand, along with
the insurance premium, via a Stackelberg differential game. Moreover, we propose two continuous-time
Stackelberg life insurance games: one with term life insurance and the other with whole life insurance.
The buyer invests in a risky asset and purchases life insurance, and she maximizes a mean-variance
criterion applied to her wealth at death. The seller chooses the insurance premium rate to maximize its
expected wealth at the buyer’s random time of death.

For the term life insurance game, we solve the buyer’s problem from a time-consistent perspective
(see Björk and Murgoci (2010) and Björk et al. (2014)), that is, the buyer continuously decides how
much life insurance to purchase and how much money to invest into the risky asset. By solving the
extended Hamilton–Jacobi–Bellman (HJB) equations, we find the explicit expressions of the equilibrium
life insurance and investment strategy and of the corresponding value function. Given the time-consistent
equilibrium strategy of the buyer, the seller maximizes its expected terminal wealth at the buyer’s time
of death. Then, using the optimal premium rate, we derive explicit expressions of the Stackelberg equi-
librium controls and value functions. We show that a constant amount of term life insurance and constant
investment in the risky asset form the equilibrium strategy.

In the whole life insurance game, we assume that the buyer pre-commits to buying a constant amount
of whole life insurance and investing a constant amount in the risky asset.1 To find the optimal constant
strategy for the buyer of whole life insurance, we first find an expression for her objective function and

1Note that our use of “pre-commitment” differs from that of Zhou and Li (2000). Their pre-commitment strategy allows the
control to depend on the state variables wealth and time. By contrast, we assume that the pre-commitment strategy is constant
from the outset, and we call it a constant pre-commitment strategy.
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then we maximize the objective function over all amounts of whole life death benefit and investment in
the risky asset. As in the term life insurance game, we then solve the seller’s problem to find the optimal
insurance premium rate. Finally, we obtain explicit expressions of the Stackelberg equilibria of this life
insurance game.

For both games, we analyze the effects of the parameters on the equilibria. Moreover, we show
that the properties of the equilibrium controls for the term life insurance game are more intuitively
pleasing than those for the whole life insurance game. Also, we find that whole life insurance is more
attractable to the buyer, as expected from a pre-commitment model versus a dynamic time-consistent
model.

The rest of this paper is organized as follows. In Section 2, we solve a continuoue-time Stackelberg
term life insurance game with investment. In Section 2.1, we describe the market for term life insurance
and investment and define the buyer’s problem, the seller’s problem, and the Stackelberg equilibrium
of the game. In Section 2.2, we solve the buyer’s problem from a time-consistent perspective. Given
the equilibrium choice of the buyer, we solve the seller’s problem in Section 2.3. In Section 2.4, we
present and analyze the Stackelberg equilibrium of the term life insurance game. In Section 3, we solve
a continuous-time Stackelberg whole life insurance game with investment. We apply the same objective
functions as those in Section 2. In Section 3.1, we solve the buyer’s (constant) pre-commitment problem.
Parallel to Sections 2.3 and 2.4, respectively, we solve the seller’s problem in Section 3.2, and we present
the Stackelberg equilibrium of the whole life insurance game in Section 3.3. Finally, in Section 4, we
provide numerical examples to compare the equilibrium controls and the corresponding value functions
between the term life insurance and whole life insurance games.

2. Term life insurance game
In this section, we consider a continuous-time Stackelberg game between a seller of (instantaneous) term
life insurance and a buyer who purchases that life insurance. We also assume that the buyer invests her
wealth in a risky asset. In Section 2.1, we describe the market for term life insurance and investment,
we define the buyer’s problem (namely, choosing her death benefit and dollar amount to invest in the
risky asset), and we define the seller’s problem (namely, choosing the optimal price for the term life
insurance). In that section, we also define the Stackelberg equilibrium of the game.

In Section 2.2, we obtain the time-consistent equilibrium term life insurance and investment strategy
for the buyer. Given the equilibrium choice of the buyer, we solve the seller’s problem in Section 2.3.
Finally, in Section 2.4, we present and analyze the Stackelberg equilibrium of the term life insurance
game.

2.1 Background
We refer to the individual and the life insurance company as the “buyer” and “seller,” respectively. Let
τ denote the random time of death of the buyer, which is a stopping time with respect to a filtered prob-
ability space

(
�, F , F= {F(t)}t≥0, P

)
. We assume τ follows an exponential distribution with constant

hazard rate λ > 0, that is,

P(τ > t) = e−λt, t ≥ 0.

Moreover, we assume that the individual can purchase term life insurance via a premium payable con-
tinuously at the rate of h ≥ 0 per dollar of insurance.2 Let D(x, t) ≥ 0 represent the death benefit that the
buyer purchases at time t− (when her wealth at that time equals x). This means that if the individual
spends h D(x, t) at time t− for this term life insurance, her beneficiaries will receive D(x,t) if she dies
at time t. If she survives, there is no payout and the term ends. We also assume that the individual has
constant net income at the rate of c, that is, c is her income net of consumption.

2Because our model is (essentially) time-homogeneous, we assume that h is a non-negative constant from the start.

https://doi.org/10.1017/asb.2024.36 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2024.36


4 Xiaoqing Liang and Virginia R. Young

Furthermore, we assume that the individual can invest her wealth in a risky asset whose price process
S = {St}t≥0 follows geometric Brownian motion:

dSt = μStdt + σStdBt,

in which μ > 0, σ > 0, and B = {Bt}t≥0 is a standard Brownian motion defined on the probability space(
�, F , F= {F(t)}t≥0, P

)
. Let π (x, t) ∈R denote the amount of wealth invested in the risky asset at time t

when her wealth at that time equals x. The buyer’s controlled wealth process X = {Xt}t∈[0,τ ), thus, follows:

{
dXt =

(
c − hD(Xt, t) + μπ (Xt, t)

)
dt + σπ (Xt, t)dBt, 0 ≤ t < τ ,

Xτ = Xτ− + D(Xτ− , τ ),
(2.1)

and the seller’s controlled wealth process Y = {Yt}t∈[0,τ ) in relation to the risk and reward arising from
the single buyer follows: {

dYt = hD(Xt, t) dt, 0 ≤ t < τ ,

Yτ = Yτ− − D(Xτ− , τ ).
(2.2)

Next, we define admissible life insurance and investment strategies for the buyer.

Definition 2.1 (Admissible life insurance and investment strategies). A life insurance and investment
strategy (D, �) = ({D(Xt, t)}, {π (Xt, t)})

t∈[0,τ )
is called admissible if it satisfies the following properties:

1. Equation (2.1) has a unique strong solution for any X0 = x0 ∈R.
2. D is a non-negative Borel measurable function, and π is a real-valued Borel measurable

function.
3.

∫ t

0
π 2(Xs, s)ds < ∞ with probability 1, for all t ∈ [0, τ ).

Let A denote the collection of admissible strategies, and note that admissible strategies are feedback
strategies.

The individual has mean-variance preferences and optimizes over her lifetime [0, τ ). In consequence,
given a life insurance and investment strategy (D, �), the buyer’s objective function equals

J(x, t; D, �, h) =Ex,t(Xτ ) − γ

2
Vx,t(Xτ ), (2.3)

in which Ex,t and Vx,t denote expectation and variance, respectively, conditional on Xt = x ∈R and τ >

t. In (2.3), the parameter γ > 0 represents her risk aversion toward variance. The individual seeks to
maximize J in (2.3); however, the mean-variance objective can lead to a time-inconsistent problem
because variance does not satisfy the property of iterated expectations. To handle this difficulty, we
assume that the buyer essentially plays against future versions of herself and seeks to maximize her
criterion, given her future choices and given the premium rate. In the following, we define the time-
consistent Stackelberg follower action D̂ and �̂ of the buyer’s game.

Definition 2.2 (Buyer’s time-consistent Stackelberg follower action). Suppose we are given a non-
negative premium rate for life insurance h. For a given admissible strategy (D̂(h), �̂(h)), fix an arbitrary
initial time t ∈ [0, τ ), a positive number ε, a non-negative number D, and a real number π . Then, define
the strategy (Dε(h), �ε(h)) by:

Dε(Xs, s;h) =
{

D, t ≤ s < ε ∧ τ ,

D̂(Xs, s; h), ε ∧ τ ≤ s < τ ,

and

πε(Xs, s;h) =
{

π , t ≤ s < ε ∧ τ ,

π̂ (Xs, s; h), ε ∧ τ ≤ s < τ .

https://doi.org/10.1017/asb.2024.36 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2024.36


ASTIN Bulletin 5

The strategy (D̂(h), �̂(h)) is said to be a time-consistent Stackelberg follower action if, for all (x, t) ∈
R× [0, τ ), D ≥ 0 and π ∈R,

lim inf
ε→0+

J(x, t; D̂(h), �̂(h), h) − J(x, t; Dε(h), �ε(h), h)

ε
≥ 0,

and the equilibrium value function V equals

V(x, t; h) = J(x, t; D̂(h), �̂(h), h). (2.4)

Next, we define the insurance company’s (the leader’s) optimal action.

Definition 2.3 (Seller’s optimal Stackelberg leader action). The price ĥ is the optimal Stackelberg leader
action if, for (y, t) ∈R× [0, τ ),

ĥ = arg sup
h≥0

Ey,t(Yτ ), (2.5)

in which Y follows the process in (2.2) with (D, �) = (D̂(h), �̂(h)), and Ey,t denotes expectation
conditional on Yt = y ∈R and τ > t.3

Finally, we are ready to define the Stackelberg equilibrium of this term life insurance game.

Definition 2.4 (Stackelberg equilibrium of the term life insurance game). The Stackelberg equilibrium
of the term life insurance game is the following collection of strategies: ĥ ≥ 0 from (2.5) in Definition 2.3
and (D̂, �̂) = (D̂(ĥ), �̂(ĥ)) from Definition 2.2.

2.2 Buyer’s problem
Before we find the equilibrium follower action for the buyer, we present a verification lemma for solv-
ing the buyer’s problem. For the statement of the verification lemma, we define a differential operator
corresponding to our problem L(D,π ), for all φ ∈ C2,1(R× [0, τ )), D ≥ 0, and π ∈R, by:

L(D,π ) φ(x, t) = φt(x, t) + (c − hD + μπ )φx(x, t) + 1

2
σ 2π 2φxx(x, t). (2.6)

We omit the proof of the following verification lemma for V(·, · ;h) because it is similar to the proof of
Theorem 3.1 in Landriault et al. (2018).

Lemma 2.1 (Verification lemma). Fix a value of the premium rate h ≥ 0. Suppose there exist two real-
valued functions Ṽ(·, · ; h) ∈ C2,1(R× [0, τ )) and G(·, · ; h) ∈ C2,1(R× [0, τ )) that satisfy the following
conditions:

1. For all (x, t) ∈R× [0, τ ),

sup
D≥0, π∈R

{
L(D,π ) Ṽ(x, t; h) − γ

2
L(D,π ) G2(x, t; h) + γ G(x, t; h) L(D,π ) G(x, t; h)

− λ
(

Ṽ(x, t; h) − (x + D) + γ

2

(
G(x, t; h) − (x + D)

)2
) }

= 0. (2.7)

Let D̂(x, t; h) and π̂ (x, t; h) denote the maximizers of the above HJB equation. Suppose the
induced strategy (D̂(h), �̂(h)) is admissible.

2. For all (x, t) ∈R× [0, τ ),

L(D̂,π̂ )G(x, t; h) = λ
(
G(x, t; h) − (x + D̂(x, t; h))

)
. (2.8)

3As noted in an earlier footnote, ĥ will be a constant, so we assume that from the outset.
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3. For all (x, t) ∈R× [0, τ ), the following transversality condition holds:

lim
s→∞

e−λ(s−t)
Ex,t

(
φ
(
Xs, s; h

))= 0,

for φ = Ṽ , G, and G2.

Then, Ṽ(·, · ; h) equals the individual’s equilibrium value function V(·, · ;h) defined in (2.4), and
(D̂(h), �̂(h)) is an equilibrium strategy. Moreover, G(x, t; h) =Ex,t(Xτ ) under this equilibrium strategy.

In the following theorem, we use Lemma 2.1 to obtain the buyer’s equilibrium strategy and
corresponding value function.

Theorem 2.2. For a given value of the premium rate h ≥ 0, the equilibrium strategy (D̂(h), �̂(h)) =({D̂(Xt, t; h)}, {π̂ (Xt, t; h)})
t∈[0,τ )

equals the constant strategy:

D̂(Xt, t; h) ≡ D̂(h) = 1

γ h

(
γ c −

(
(h − λ) − μ2

σ 2

))
+

, (2.9)

π̂ (Xt, t; h) ≡ π̂ = μ

γσ 2
, (2.10)

and the corresponding value function equals

V(x, t; h) = x + B(h),

in which

B(h) = 1

γ λ

{
γ c − γ (h − λ)D̂(h) − (h − λ)2

2λ
+ μ2

2σ 2

}
. (2.11)

Moreover,

G(x, t; h) =Ex,t(Xτ ) = x + b(h),

in which

b(h) = D̂(h) + h − λ

γλ
.

Proof. Because the problem is time-homogeneous, the value function is time-independent.
Moreover, from the mean-variance criterion and from the dynamics of X in (2.1), we deduce that the
value function equals x + B for some value of B that depends on h. Through this reasoning, we obtain

V(t, x; h) = x + B(h), and G(t, x; h) = x + b(h),

in which b is another value that depends on h. By substituting the above expressions and their derivatives
into (2.7), the HJB equation becomes

sup
D≥0,π

{
(μπ + c − hD) − γ

2
σ 2π 2 − λ(B − D + γ

2
(b − D)2)

}
= 0. (2.12)

Note that the expression in curly brackets is concave with respect to π and D; graphically, it is a down-
ward opening paraboloid. Thus, the critical points yield the maximizers. In particular, the first-order
condition for π gives us the optimal investment amount in (2.10). Similarly, from (2.12), the first-order
condition for D̂ gives us

λ − h + γ λ(b − D̂) = 0. (2.13)

Moreover, by substituting G(t, x; h) = x + b(h) into (2.8), we derive another equation for D̂:
μπ̂ + c − hD̂ = λ(b − D̂). (2.14)

By eliminating b(h) from (2.13) and (2.14) and by solving for D̂ (truncated to lie in R+), we obtain D̂ as
in (2.9). Furthermore, by substituting D̂ and π̂ into the HJB equation, we derive the expression for B(h)
in (2.11). The expression for b(h) follows from (2.13).
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To check that the proposed value function is, indeed, the value function as defined in (2.4) and that
the corresponding strategy is the equilibrium strategy, we verify the conditions given in Lemma 2.1.
Conditions (i) and (ii) hold by construction. For the transversality condition, note that, under the can-
didate constant investment and life insurance strategy, the buyer’s wealth process X = {Xt}t∈[0,τ ) in (2.1)
reduces to a diffusion process with constant coefficients. Thus, Condition (iii) holds. Hence, we complete
the proof. �

Theorem 2.2 shows that the time-consistent equilibrium life insurance and investment strategy is a
constant strategy, as expected from the form of the problem.

Remark 2.1. It makes sense that D̂(h) = 0 when h is large, specifically, greater than or equal to γ c +
λ + μ2

σ 2 . When h < γ c + λ + μ2

σ 2 , D̂(h) equals the sum of three interesting terms:

1. c
h
, which equals the present value of a perpetuity of c per year under a “force of discount”

equal to h. Alternatively, if we were to ignore the second and third terms, then we would
have D̂ = c/h or c = hD̂; in other words, the income c would exactly cover the death benefit
of D̂.

2. − h−λ

γ h
, which equals the negative of the proportional risk loading in h relative to λ, adjusted for

the buyer’s risk aversion. Thus, when the proportional risk loading in the premium is larger
or when the individual is less risk-averse, then the buyer’s death benefit will be reduced by a
larger amount. Conversely, when the proportional risk loading is smaller or when the individual
is more risk-averse, then the death benefit will be reduced by a smaller amount. In the unlikely
case that insurance is a “good deal,” that is, h ≤ λ, then D̂ is greater than c/h.

3. μ2

γ hσ 2 , which equals the square of the Sharpe ratio, adjusted for the buyer’s risk aversion and for
the premium rate. Thus, when the return of the risky asset is large relative to its volatility, then
individual will buy more life insurance.

2.3 Seller’s problem
In this section, we solve the seller’s problem, namely, to choose a value of h ≥ 0 to maximize its expected
wealth at time τ . To that end, we compute from (2.2) and (2.9)

U(y, t) := sup
h≥0

Ey,t(Yτ ) = sup
h≥0

Ey,t(Yτ− − D̂(h))

= sup
h≥0

∫ ∞

0

λe−λt(Yt − D̂(h))dt = sup
h≥0

∫ ∞

0

λe−λt(y + hD̂(h) · t − D̂(h))dt

= y + sup
h≥0

(
h

λ
− 1

)
D̂(h).

U is independent of time t, so we write U(y) in place of U(y, t).

Theorem 2.3. The optimal premium rate equals

ĥ = λ

√
1 + γ c + μ2

σ 2

λ
. (2.15)

Proof. If D̂(h) = 0, then U(y) = y, and the seller can achieve average wealth strictly greater than y by
choosing h ∈ (λ, γ c + λ + μ2/σ 2) to guarantee D̂(h) > 0. Thus, without loss of generality, we assume
that h is such that D̂(h) > 0. (In Theorem 2.4, we confirm that D̂(ĥ) > 0.)

Because D̂(h) in (2.9) is strictly positive, we have

Ey(Yτ ) = y + h − λ

γλh

(
γ c − (h − λ) + μ2

σ 2

)
.
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Let f denote the second term in the above expression modulo a factor of 1/(γ λ), that is,

f (h) = h − λ

h

(
γ c − (h − λ) + μ2

σ 2

)
,

so arg suph≥0Ey(Yτ ) = arg suph≥0f (h). Simple calculus yields

f ′(h) = λ2 − h2

h2
+ λ

h2

(
γ c + μ2

σ 2

)
∝ (λ2 − h2) + λ

(
γ c + μ2

σ 2

)
=: g (h),

and
g ′(h) = −2h,

which implies that the critical point equals the maximizer. By solving f ′(h) = 0, we obtain ĥ as given in
(2.15). �

2.4 Stackelberg equilibrium
From Theorems 2.2 and 2.3, we obtain the following theorem, which presents the Stackelberg equilib-
rium for the term life insurance game (with investment).

Theorem 2.4. The Stackelberg equilibrium strategy and value functions of the term life insurance game
with investment are given by the following:

1. The equilibrium premium rate (per dollar of death benefit) for the term life insurance equals

ĥ = λ

√
1 + γ c + μ2

σ 2

λ
, (2.16)

and the seller’s expected wealth at time τ equals

U(y) = y + 1

γ

⎛
⎝
√

1 + γ c + μ2

σ 2

λ
− 1

⎞
⎠

2

. (2.17)

2. In response to the seller offering the premium rate ĥ in (2.16), the buyer’s time-consistent
equilibrium death benefit equals the constant

D̂(ĥ) = 1

γ

⎛
⎝
√

1 + γ c + μ2

σ 2

λ
− 1

⎞
⎠ . (2.18)

3. Independent of the seller’s actions, the buyer’s time-consistent equilibrium amount to invest in
the risky asset equals the constant

π̂ = μ

γσ 2
, (2.19)

and her value function equals

V(x) = x + 1

γ λ

⎧⎪⎨
⎪⎩γ c − 3λ

2

⎛
⎝
√

1 + γ c + μ2

σ 2

λ
− 1

⎞
⎠

2

+ μ2

2σ 2

⎫⎪⎬
⎪⎭ . (2.20)

Proof. The expressions in (2.16) and (2.19) come directly from (2.15) and (2.10), respectively. To
obtain (2.18), substitute the expression for ĥ in (2.16) into D̂(h) in (2.9) and simplify the result. We
obtain (2.17) and (2.20) similarly. �

In the following corollary, we analyze properties of the Stackelberg equilibrium strategy.
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Corollary 2.5.

1. The equilibrium premium rate for term life insurance ĥ increases with respect to λ, γ , c, and
μ, and it decreases with respect to σ .

2. The equilibrium death benefit for term life insurance D̂(ĥ) increases with respect to c and μ,
and it decreases with respect to λ, γ , and σ .

3. The equilibrium amount to invest in the risky asset π̂ increases with respect to μ, decreases
with respect to γ and σ , and is independent of λ and c.

Proof. These properties are easy to see from the forms of ĥ in (2.16), D̂(ĥ) in (2.18), and π̂ (ĥ) in
(2.16), except for the relationship between the death benefit and the risk aversion parameter. To complete
the proof of this corollary, we show that D̂(ĥ) decreases with respect to γ :

∂D̂(ĥ)

∂γ
= − 1

γ 2

⎛
⎝
√

1 + γ c + μ2

σ 2

λ
− 1

⎞
⎠+ 1

γ
·

c
λ

2

√
1 + γ c+ μ2

σ2

λ

∝ −2

⎛
⎝1 + γ c + μ2

σ 2

λ
−
√

1 + γ c + μ2

σ 2

λ

⎞
⎠+ γ c

λ

= 2

√
1 + γ c + μ2

σ 2

λ
− 2 − γ c + 2μ2

σ 2

λ
.

Thus, ∂D̂(ĥ)
∂γ

< 0 if and only if

2

√
1 + γ c + μ2

σ 2

λ
< 2 + γ c + 2μ2

σ 2

λ

⇐⇒ 4

(
1 + γ c + μ2

σ 2

λ

)
< 4 + 4

γ c + 2μ2

σ 2

λ
+
(

γ c + 2μ2

σ 2

λ

)2

⇐⇒ 0 <
4μ2

λσ 2
+
(

γ c + 2μ2

σ 2

λ

)2

,

which is true. �
Note that ĥ > λ and D̂(ĥ) > 0; therefore, the seller’s expected wealth at time τ is strictly greater than

y, as expected. It makes sense that ĥ increases with increasing λ because as the individual’s mortality
hazard rate increases, she is more likely to die, which means life insurance should be more expensive.
It is intuitively pleasing that ĥ increases with increasing c because as the individual’s income increases,
she is able to spend more for life insurance. The death benefit D̂(ĥ) also increases with increasing c; thus,
we see that the death benefit acts as a type of income replacement, which matches actuarial wisdom.
Moreover, as the financial market becomes more favorable, that is, as μ increases or σ decreases, the
individual invests more in the risky asset and uses some of those expected earnings to purchase more
life insurance.

We are somewhat surprised that the equilibrium death benefit decreases with respect to γ because
we expected the death benefit to increase with increasing risk aversion toward variance. However, there
is variability associated with the effect of the death benefit upon Xτ through the time of death τ , which
is the length of time the individual will have to pay premium. Thus, because increasing γ leads to an
increase in premium, this increased premium decreases the value of Xτ and might add to the variance.
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That said, the amount invested in the risky asset behaves as one expects with respect to γ ; that is, π̂

decreases with increasing γ .
Note that D̂(ĥ) and �̂ are independent of both Xt and t; that is, even though the buyer continually

decides how much life insurance to purchase and how much money to invest in the risky asset (as she
plays the mean-variance “game” against future versions of herself), she purchases a constant amount
of life insurance and invests a constant amount. In other words, she effectively buys whole life insur-
ance via a continuous premium ĥ, payable for life, and continually rebalances her stock portfolio to
keep its balance constant. Thus, in the following section, we consider a Stackelberg game similar to the
one in this section, except that we assume the individual purchases whole life insurance and invests a
constant amount in the risky asset, choosing both at time 0 to maximize her mean-variance criterion
at her time of death. In other words, we assume the buyer “pre-commits” to her constant strategy at
time 0.

3. Whole life insurance game
In this section, we compute the Stackelberg equilibrium of a whole life insurance game with investment.
We apply the same objective functions as those in Section 2, that is, the buyer maximizes her termi-
nal wealth under the mean-variance criterion, and the seller maximizes the expectation of its wealth at
time τ . The buyer’s and seller’s controlled wealth processes satisfy the stochastic differential equations
given in (2.1) and (2.2), respectively. In Section 3.1, we solve the buyer’s problem assuming constant
pre-commitment on her part. Parallel to Sections 2.3 and 2.4, respectively, we solve the seller’s prob-
lem in Section 3.2, and we present the Stackelberg equilibrium of the whole life insurance game in
Section 3.3.

3.1 Buyer’s problem
By contrast with Section 2, in which we solve the buyer’s problem from a time-consistent perspective,
in this section, we maximize the mean-variance objective J in (2.3) assuming the individual commits to
buying a constant amount of whole life insurance and to investing a constant amount in the risky asset.
Under a slight abuse of notation, we write J(x; D, π , h) in place of J(x, t; D, �, h) because Dt = D and
πt = π for all t ∈ [0, τ ), for some constants D ≥ 0 and π ∈R.4

We begin with a verification lemma that we use to obtain an explicit expression for the objective
function J. Afterward computing J, we maximize it directly over all-non-negative D and π to obtain the
optimal life insurance and investment strategy and the corresponding value function.

Lemma 3.1. (Verification lemma). Fix a value of the premium rate h ≥ 0 and values of the death benefit
and investment amount (D, π ) ∈R+ ×R. Suppose there exist two real-valued functions J̃( · ; D, π , h) ∈
C2(R) and g( · ; D, π , h) ∈ C2(R) that satisfy the following conditions:

1. For all x ∈R,

L(D,π ) J̃(x; D, π , h) − γ

2
L(D,π ) g2(x; D, π , h) + γ g(x; D, π , h) L(D,π ) g(x; D, π , h)

= λ
(

J̃(x; D, π , h) − (x + D) + γ

2

(
g(x; D, π , h) − (x + D)

)2
)

, (3.1)

in which L(D,π ) is given in (2.6).
2. For all x ∈R,

L(D,π )g(x; D, π , h) = λ
(
g(x; D, π , h) − (x + D)

)
. (3.2)

4Under a constant strategy, the model considered in this Section is time-homogenous, so we remove the t variable in the
expressions for the objective function J.
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3. For all x ∈R, the following transversality condition holds:

lim
t→∞

e−λt
Ex

(
φ
(
Xt; D, π , h

))= 0, (3.3)

for φ = J̃, g, and g2.

Then, J̃(· ; D, π , h) equals the individual’s objective function J(· ; D, π , h) defined in (2.3) for a
constant strategy. Moreover, g(x; D, π , h) =Ex(Xτ ).

Proof. Suppose J̃ and g satisfy equations (3.1) and (3.2).
Step 1. We first show that g(x; D, π , h) =Ex(Xτ ) =Ex

( ∫ ∞
0

λ e−λt
(
Xt + D) dt

)
. Let k > 0 be a fixed

number. By applying Itô’s formula to e−λk g
(
Xk; D, π , h

)
, we obtain

e−λk g(Xk; D, π , h) = g(x; D, π , h) +
∫ k

0

e−λt
(L(D,π )g(Xt; D, π , h) − λg(Xt; D, π , h)

)
dt

+
∫ k

0

e−λtσπgx(Xt; D, π , h)dBt.

By taking the expectation of the above expression, conditional on X0 = x, we obtain

Ex

[
e−λk g(Xk; D, π , h)

]
= g(x; D, π , h) +Ex

[ ∫ k

0

e−λt
(L(D,π )g(Xt; D, π , h) − λg(Xt; D, π , h)

)
dt

]

= g(x; D, π , h) −Ex

[ ∫ k

0

λ e−λt (Xt + D) dt

]
,

in which the second equality follows from (3.2), and in which the arguments of the integrals are
interpreted via their left limits.

By letting k → ∞ and using (3.3), we obtain

g(x; D, π , h) =Ex

[ ∫ ∞

0

λ e−λt
(
Xt + D

)
dt

]
=Ex(Xτ ).

Here, we applied Lebesgue’s dominated convergence theorem:

Ex

[ ∫ k

0

λ e−λt |Xt + D| dt

]
=Ex

[ ∫ ∞

0

λ e−λt |Xt + D|1{t<k} dt

]
<Ex

[ ∫ ∞

0

λ e−λt |Xt + D| dt

]
< ∞.

Step 2. In this step, we show that, if J̃ solves (2.7), then J(x; D, π , h) = J̃(x; D, π , h). From equa-
tion (3.2), we rewrite (2.7) as follows:

L(D,π )
(

J̃(x; D, π , h) − γ

2
g2(x; D, π , h)

)
+ γ g(x; D, π , h)λ

(
g(x; D, π , h) − (x + D)

)

= λ
(

J̃(x; D, π , h) − (x + D) + γ

2

(
g(x; D, π , h) − (x + D)

)2
)

,

or equivalently,

L(D,π )
(

J̃(x; D, π , h) − γ

2
g2(x; D, π , h)

)
(3.4)

= λ
(

J̃(x; D, π , h) − (x + D) − γ

2

(
g2(x; D, π , h) − (x + D)2

))
.

By following the proof of Step 1, we obtain both

J̃(x; D, π , h) =Ex

[ ∫ ∞

0

e−λt
(
λJ̃
(
Xt; D, π , h

)−L(D,π )J̃
(
Xt; D, π , h

))
dt

]
, (3.5)
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and

g2(x; D, π , h) =Ex

[ ∫ ∞

0

e−λt
(
λg2

(
Xt; D, π , h

)−L(D,π )g2
(
Xt; D, π , h

))
dt

]
. (3.6)

By linearly combining (3.5) and (3.6) to form J̃ − γ g2/2, and by using (3.4), we obtain the following
expression:

J̃(x; D, π , h) − γ

2
g2(x; D, π , h)

=Ex

[ ∫ ∞

0

e−λt
(
λ
(

J̃
(
Xt; D, π , h

)− γ

2
g2(Xt; D, π , h)

)

−L(D,π )
(

J̃
(
Xt; D, π , h

)− γ

2
g2(Xt; D, π , h)

))
dt

]

=Ex

[ ∫ ∞

0

λe−λt
((

Xt + D
)− γ

2

(
Xt + D

)2
)

dt

]

=Ex

(
Xτ

)− γ

2
Ex

((
Xτ )2

)
,

which implies

J̃(x; D, π , h) =Ex(Xτ ) − γ

2
Vx(Xτ ) = J(x; D, π , h),

and completes the proof of this lemma. �
By using Lemma 3.1, we obtain the objective function in the following theorem.

Theorem 3.2 Under a constant pre-commitment strategy, the objective function J in (2.3) equals

J(x; D, π , h) = x + A(D, π ; h),

for all (x, D, π ) ∈R×R+ ×R, in which

A(D, π ; h) = a(D, π ; h) − γ

2
ν(D, π ; h), (3.7)

with

a(D, π ; h) = D + c − hD + μπ

λ
, (3.8)

and

ν(D, π ; h) = σ 2π 2

λ
+
(

c − hD + μπ

λ

)2

. (3.9)

Moreover,

g(x; D, π , h) =Ex(Xτ ) = x + a(D, π ; h),

for all (x, D, π ) ∈R×R+ ×R, in which a is given in (3.8).

Proof. Because the dynamics for X in (2.1) are independent of initial wealth, and because we
are considering the mean-variance criterion, we hypothesize that J(x; D, π , h) = x + A(D, π ; h) and
g(x; D, π , h) = x + a(D, π ; h) for some functions A and a on R+ ×R. By substituting g(x; D, π , h) =
x + a(D, π ; h) into (3.2) (and by omitting the dependence of a on D and π for simplicity), we obtain

c − hD + μπ = λ(a − D), (3.10)

which leads to the expression for a(D, π ; h) in (3.8).
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Next, consider the equation in (3.1). Under our ansatz J(x; D, π , h) = x + A(D, π ; h) and
g(x; D, π , h) = x + a(D, π ; h), we obtain

L(D,π ) J(x; D, π , h) =L(D,π ) g(x; D, π , h) = c − hD + μπ , (3.11)

and

L(D,π ) g2(x; D, π , h) = 2(c − hD + μπ )(x + a) + σ 2π 2. (3.12)

By substituting (3.11) and (3.12) into (3.1) and by using (3.10), we get

A = a − γ

2

(
σ 2π 2

λ
+ (a − D)2

)
,

which implies the expressions for A(D, π ; h) in (3.7) and ν(D, π ; h) in (3.9).
By construction J(x; D, π ; h) = x + A(D, π ; h) and g(x; D, π ; h) = x + a(D, π ; h) satisfy (2.7) and

(3.2). Thus, it remains to prove the transversality condition in (3.3) for φ = J, g, and g2. First, note
that

Xt = x + (μπ + c − hD)t + σπBt.

Thus,

lim
t→∞

e−λt (Ex(Xt) + A(D, π ; h)) = 0 = lim
t→∞

e−λt (Ex(Xt) + a(D, π ; h)) ,

thereby proving (3.3) for φ = J and g. Similarly, Ex

(
g2(Xt;D, π , h)

)
behaves like t2 as t approaches infin-

ity, which is dominated by e−λt; thus, (3.3) also holds for φ = g2. It follows from Lemma 3.1 that J and
g are as stated. �

In the following theorem, we present the optimal amount of investment and life insurance that the
individual will buy.

Theorem 3.3. For a given value of the premium rate h ≥ 0, the optimal constant pre-commitment
amount of life insurance equals

D∗(h) = 1

γ h

(
γ c − λ

h

(
(h − λ) − μ2

σ 2

))
+

, (3.13)

and the optimal constant pre-commitment amount to invest in the risky asset equals

π ∗(h) =

⎧⎪⎪⎨
⎪⎪⎩

λ

h
· μ

γσ 2
, if γ c >

λ

h

(
(h − λ) − μ2

σ 2

)
⇐⇒ D∗(h) > 0,

μ

μ2 + λσ 2

(
λ

γ
− c

)
, if γ c ≤ λ

h

(
(h − λ) − μ2

σ 2

)
⇐⇒ D∗(h) = 0.

(3.14)

Proof. First, we maximize J(x; D, π , h) (or equivalently, A(D, π ; h)) with respect to π ∈R to obtain
the maximizer π ∗(h; D); then, we maximize A(D, π ∗(h; D); h) with respect to D ∈R+. To that end, define
j by:

j (D, π ) = λA(D, π ; h) = λD + (c − hD + μπ ) − γ

2

(
σ 2π 2 + (c − hD + μπ )2

λ

)
, (3.15)

in which we omit the dependence on h for simplicity.
By differentiating j (D, π ) in (3.15) with respect to π , we obtain

∂ j (D, π )

∂π
= −γ

(
σ 2 + μ2

λ

)
π + μ

(
1 − γ (c − hD)

λ

)
,

with the second derivative strictly negative. Thus, the maximizer π ∗(h; D) equals the critical point, that
is,

π ∗(h; D) = μ

μ2 + λσ 2
· λ − γ c + γ hD

γ
.

https://doi.org/10.1017/asb.2024.36 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2024.36


14 Xiaoqing Liang and Virginia R. Young

Next, define k by

k (D) = j (D, π ∗(h; D)).

By differentiating k , we obtain

k ′(D) = ∂ j (D, π ∗(h; D))

∂D
+ ∂ j (D, π ∗(h; D))

∂π
· ∂π ∗(h; D)

∂D

= ∂ j (D, π ∗(h; D))

∂D

= (λ − h) + γ h

λ

(
c − hD + μπ ∗(h; D)

)
,

and the second derivative is strictly negative. Indeed, the second derivative equals

k ′′(D) = −γ h2

λ
+ γ hμ

λ
· μh

μ2 + λσ 2
= − γ h2σ 2

μ2 + λσ 2
< 0.

Thus, the maximizer D∗(h) equals the critical point truncated to lie in R+. By substituting for
π ∗(h; D) in k ′(D) = 0 and solving for D, we get (3.13). Finally, we compute π ∗(h) = π ∗(h; D∗(h)) and
obtain (3.14). �
Remark 3.1. Compare the two expressions for the time-consistent equilibrium and optimal constant
pre-commitment life insurance, respectively, D̂(h) in (2.9) and D∗(h) in (3.13):

D̂(h) = 1

γ h

(
γ c −

(
(h − λ) − μ2

σ 2

))
+

,

and

D∗(h) = 1

γ h

(
γ c − λ

h

(
(h − λ) − μ2

σ 2

))
+

.

Both begin with the term c/h, which we discuss in Remark 2.1, and they both adjust c/h by
1
γ h

(
(h − λ) − μ2

σ 2

)
, except that D∗ applies an additional factor of λ/h to this adjustment term. We gen-

erally expect h > λ; if so, in the pre-commitment setting, the buyer adjusts c/h by a smaller absolute
amount than in the time-consistent setting. When 0 < h − λ < μ2

σ 2 , then D̂(h) > D∗(h); in other words,
when the premium loading for life insurance is less than the square of the Sharpe ratio, then the buyer
purchases more term life insurance than whole life insurance. Also, in this case, the death benefits D̂(h)
and D∗(h) are both greater than c/h because life insurance is a good deal, as measured by a relatively
small value of the premium loading h − λ. On the other hand, when the premium loading is greater than
the square of the Sharpe ratio, the buyer purchases less term life insurance than whole life insurance,
and in this case, both death benefits are less than c/h because life insurance is not as good a deal due to
the larger premium loading.

Similarly, compare the investment in the risky asset for the time-consistent equilibrium and for the
optimal constant pre-commitment setting, respectively, π̂ (h) in (2.10) and π ∗(h) in (3.14):

π̂ (h) = μ

γσ 2
,

and, when γ c > λ

h

(
(h − λ) − μ2

σ 2

)
,

π ∗(h) = λ

h
· μ

γσ 2
.

Again, in the pre-commitment setting, we see this additional factor of λ/h, and if h > λ (as we expect in
equilibrium), then π ∗(h) < π̂ (h). In other words, when h > λ, the buyer will invest more in the risky asset
when buying term life insurance than when buying whole life insurance. Because investment is risky
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and a life insurance death benefit will be paid upon death with probability 1, under the pre-commitment
setting, the individual is less willing to commit to investing a larger amount in the risky asset than under
the time-consistent setting.

3.2 Seller’s problem
For the seller’s problem, recall the computations in Section 2.3, and define K by:

K(y) := sup
h≥0

Ey(Yτ ) = y + sup
h≥0

(
h

λ
− 1

)
D∗(h). (3.16)

Theorem 3.4. When γ c < 2λ + μ2

σ 2 , the optimal premium rate equals

h∗ =
2λ

(
λ + μ2

σ 2

)
2λ + μ2

σ 2 − γ c
. (3.17)

When γ c ≥ 2λ + μ2

σ 2 , the supremum in (3.16) is attained at h∗ = ∞.

Proof. If D∗(h) = 0, then K(y) = y, and the seller can achieve average wealth strictly greater than
y by choosing h = λ + ε (for some ε > 0 small enough) to guarantee D∗(h) > 0. Thus, without loss
of generality, we assume that h is such that D∗(h) > 0. (In Theorem 3.5 below, we confirm that
D∗(h∗) > 0.)

Because D∗(h) in (3.13) is strictly positive, we have

Ey(Yτ ) = y + h − λ

γλh

(
γ c − λ(h − λ)

h
+ λ

h
· μ2

σ 2

)
. (3.18)

Let � denote the second term in the above expression modulo a factor of 1/(γ λ), that is,

� (h) = h − λ

h

(
γ c − λ(h − λ)

h
+ λ

h
· μ2

σ 2

)
.

By differentiating � , we obtain

� ′(h) = λ

h2

(
γ c − λ(h − λ)

h
+ λ

h
· μ2

σ 2

)
+ h − λ

h

(
−λ2

h2
− λ

h2
· μ2

σ 2

)

∝ γ c − 2
λ(h − λ)

h
− h − 2λ

h
· μ2

σ 2
=: �(h),

and

�′(h) = −2
λ2

h2
− 2λ

h2
· μ2

σ 2
< 0,

which implies that the critical point in R+ equals the maximizer, if it exists. The critical point in R+
exists if and only if γ c < 2λ + μ2

σ 2 . In this case, � ′(h) = 0 has a solution in R+, which is given in (3.17).
On the other hand, when γ c ≥ 2λ + μ2

σ 2 , the function � (h) is strictly increasing for h ∈R+, so the
supremum is achieved at h∗ = ∞. �

3.3 Stackelberg equilibrium
From Theorems 3.3 and 3.4, we obtain the following theorem, which presents the Stackelberg equilib-
rium for the whole life insurance game (with investment).

Theorem 3.5. The Stackelberg equilibrium of the whole life insurance game with investment is given
as follows:
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1. If γ c < 2λ + μ2/σ 2, then

a. The equilibrium premium rate (per dollar of death benefit) for the whole life insurance equals

h∗ =
2λ

(
λ + μ2

σ 2

)
2λ + μ2

σ 2 − γ c
, (3.19)

and the seller’s expected wealth at time τ equals

K(y) = y +
(
γ c + μ2

σ 2

)2

4γ λ
(
λ + μ2

σ 2

) .

b. In response to the seller offering the premium rate h∗ in (3.19), the buyer pre-commits to
purchasing the following constant amount of whole life insurance:

D∗(h∗) = 2λ + μ2

σ 2 − γ c

4γ λ
· γ c + μ2

σ 2

λ + μ2

σ 2

,

and pre-commits to investing the following constant amount in the risky asset:

π ∗(h∗) = 2λ + μ2

σ 2 − γ c

2
(
λ + μ2

σ 2

) · μ

γσ 2
.

In this case, the buyer’s value function equals
J(x;D∗(h∗), π ∗(h∗), h∗) = x + G,

in which G equals

G = c

h∗ + 1

2γ

(
h∗ − λ

h∗

)2

+ λ

2γ (h∗)2
· μ2

σ 2

= 1

8γ λ

⎧⎨
⎩4γ c · 2λ + μ2

σ 2 − γ c

λ + μ2

σ 2

+ λ

(
γ c + μ2

σ 2

λ + μ2

σ 2

)2

+
(

2λ + μ2

σ 2 − γ c

λ + μ2

σ 2

)2
μ2

σ 2

⎫⎬
⎭ .

2. If γ c ≥ 2λ + μ2/σ 2, then the insurance market collapses as follows:

a. The equilibrium premium rate (per dollar of death benefit) for the whole life insurance is
arbitrarily large. Indeed, the supremum in (3.16) occurs at

h∗ = ∞,

and, in the limit, the seller’s expected wealth at time τ equals

K(y) = y + γ c − λ

γλ
.

b. In response to the seller offering an arbitrarily large premium rate, the buyer purchases
an infinitesimally small amount of whole life insurance and invests an infinitesimally small
amount in the risky asset. In the limit, the buyer’s value function equals

J(x;D∗(h∗), π ∗(h∗), h∗) = x + 1

2γ
.

We acknowledge that the premium rate of h∗ = ∞ when γ c ≥ 2λ + μ2/σ 2 is not realistic, and in the
following corollary, we offer an ε-optimal strategy.
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Corollary 3.6. Suppose γ c ≥ 2λ + μ2/σ 2, and let ε > 0 be arbitrary. Then, there exists M(ε) > 0 such
that, if h > M(ε), then (

h

λ
− 1

)
D∗(h) + ε >

γ c − λ

γλ
,

that is, the expected wealth of the seller at time τ when offering the premium h is within ε of the optimal
expected wealth.

Proof. When γ c ≥ 2λ + μ2/σ 2, the expectation of Yτ in (3.18) increases with respect to h on R+ and
approaches y + (γ c − λ)/γ λ as h approaches infinity. Thus, the statement of the corollary holds when
M(ε) solves (

M(ε)

λ
− 1

)
D∗(M(ε)) + ε = γ c − λ

γλ
,

specifically,

M(ε) = 1

2γ ε

⎡
⎣(γ c − 2λ − μ2

σ 2

)
+
√(

γ c − 2λ − μ2

σ 2

)2

+ 4γ λε

(
λ + μ2

σ 2

)⎤⎦ .

�
Remark 3.2. Alternatively, suppose the premium rate h is constrained to lie in [0, h̄], in which h̄ is an
upper bound for h and h̄ > λ. Then, when γ c ≥ 2λ + μ2/σ 2, the equilibrium premium rate h∗ = h̄, and
the seller’s expected wealth at time τ equals

K(y) = y + h̄ − λ

γλh̄

(
γ c − λ(h̄ − λ)

h̄
+ λ

h̄
· μ2

σ 2

)
.

In response, the buyer pre-commits to purchasing the following constant amount of whole life insurance:

D∗(h∗) = 1

γ h̄

(
γ c − λ

h̄

(
(h̄ − λ) − μ2

σ 2

))
> 0,

and pre-commits to investing the following constant amount in the risky asset:

π ∗(h∗) = λ

h̄
· μ

γσ 2
.

In this case, the buyer’s value function equals

J(x;D∗(h∗), π ∗(h∗), h∗) = x + c

h̄
+ 1

2γ

(
h̄ − λ

h̄

)2

+ λ

2γ (h̄)2
· μ2

σ 2
.

In the following corollary, we show how the Stackelberg equilibrium varies with some of the param-
eters. We omit the proof because the properties are straightforward to demonstrate from the expressions
in Theorem 3.5.

Corollary 3.7. Suppose γ c < 2λ + μ2/σ 2.

1. The equilibrium premium rate for whole life insurance h∗ increases with respect to γ and c.
Moreover, if λ − γ c > 0 ( < 0), then h∗ increases (decreases) with respect to μ and decreases
(increases) with respect to σ . Also, if λ − γ c > 0, then h∗ increases with respect to λ, but if γ c
is close enough to 2λ + μ2/σ 2, then h∗ decreases with respect to λ.

2. The equilibrium death benefit of whole life insurance D∗(h∗) increases with respect to μ, and
it decreases with respect to γ and σ . Moreover, if λ − γ c > 0 ( < 0), then D∗(h∗) increases
(decreases) with respect to c.
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3. The equilibrium amount invested in the risky asset π ∗(h∗) decreases to 0 as γ c increases to
2λ + μ2/σ 2. Moreover, π ∗(h∗) increases with respect to μ, and it decreases with respect to γ

and σ .

As for the Stackelberg equilibrium for term life insurance, the equilibrium premium rate increases
with increasing risk aversion, as measured by γ , and with increasing income rate c. However, the behav-
ior of the premium rate with respect to μ/σ depends on whether γ c < λ or γ c > λ. If γ c is small enough,
then h∗ increases with more favorable financial markets, as measured by increasing values of μ/σ , and
vice versa if γ c is large enough. Also, the behavior of the premium rate with respect to λ also depends
on the magnitude of γ c; if γ c is small enough, then h∗ increases with increasing λ.

Similarly to the equilibrium death benefit for term life insurance, D∗(h∗) increases with more favorable
financial markets and decreases with increasing risk aversion. As we discuss following Corollary 2.5,
an increase in γ allows for an increase in h∗, which leads to a decrease in the death benefit. But, the
equilibrium amount invested in the risky asset decreases with increasing risk aversion or decreasing
financial markets, which one expects.

In the next section, we perform numerical experiments to compare the time-consistent equilibrium
controls (for term life insurance plus investment) with the constant pre-commitment equilibrium controls
(for whole life insurance plus investment).

4. Numerical examples
Let D̂ = D̂(ĥ) denote the term life insurance amount for the time-consistent equilibrium, and let D∗ =
D∗(h∗) denote the whole life insurance amount for the constant pre-commitment equilibrium when γ c <

2λ + μ2/σ 2, that is,

D̂ = 1

γ

⎛
⎝
√

1 + γ c + μ2

σ 2

λ
− 1

⎞
⎠ and D∗ = 2λ + μ2

σ 2 − γ c

4γ λ
· γ c + μ2

σ 2

λ + μ2

σ 2

.

Also, the corresponding equilibrium premium rates equal

ĥ = λ

√
1 + γ c + μ2

σ 2

λ
and h∗ =

2λ
(
λ + μ2

σ 2

)
2λ + μ2

σ 2 − γ c
,

and the corresponding equilibrium investments in the risky asset equal

π̂ = μ

γσ 2
and π ∗ = 2λ + μ2

σ 2 − γ c

2
(
λ + μ2

σ 2

) · μ

γσ 2
.

Note that π ∗ < π̂ , but one cannot order either D̂ and D∗ or ĥ and h∗, as we discovered in our numerical
work.

For our graphs, we use as a base case the following parameter values: λ = 0.04, μ = 0.08, σ = 0.20,
c = 2, and γ = 0.04; and we allow γ or λ to vary such that 0 ≤ γ c < 2λ + μ2/σ 2. In Figure 1, we plot the
graph of the premium rates ĥ for term life insurance and h∗ for whole life insurance over different values
of γ . The graph shows that the premium rate h∗ is first less than ĥ and then greater as γ increases, which
implies that as the buyer becomes much more risk-averse, the equilibrium price of term life insurance
becomes cheaper than that of whole life insurance. In Figure 2, we plot the premium rates by varying
λ between 0 and 0.2. We observe that when λ is small, the equilibrium price of the term life insurance
is more expensive than that of the whole life insurance. However, when λ is larger, that is, the buyer is
less healthy, the price of the whole life is greater than the price for term life. Note that both h∗ and ĥ are
greater than λ, as expected.

https://doi.org/10.1017/asb.2024.36 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2024.36


ASTIN Bulletin 19

0 0.02 0.04 0.06 0.08 0.1 0.12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

γ

h

ĥ
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Figure 1. ĥ versus h∗ over γ .
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Figure 2. ĥ versus h∗ over λ.

In Figures 3 and 4, we plot the graphs of the term life insurance amount D̂ and the whole insurance
amount D∗ over different values of γ and λ, respectively. The graphs show that the equilibrium life
insurance amounts D̂ and D∗ are both decreasing and convex with respect to γ and λ. We are unable to
demonstrate analytically that D∗ decreases with respect to λ, but we see that it holds for this numerical
example. Under the particular parameter values, from Figure 3, we observe that the term life insurance
amount D̂ is larger than the whole life insurance amount D∗. However, in Figure 4, the value of D∗ is
larger than D̂ when λ is small, which demonstrates that we cannot order D∗ and D̂.
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Figure 3. D̂ versus D∗ over γ .
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Figure 4. D̂ versus D∗ over λ.

In Figure 5, we plot the equilibrium investment amounts π̂ and π ∗ over different values of γ . As
expected from Corollaries 2.5 and 3.7, the equilibrium investment amounts decrease as the risk aversion
γ increases.

In Figures 6 and 7, we plot the graphs of the seller’s value function U(0) for the term life insurance
game and K(0) for the whole life insurance game, with initial wealth 0, over γ and λ, respectively.
We observe that the expected wealth U(0) for the term life insurance game is always greater than the
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Figure 5. π̂ versus π ∗ over γ .
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Figure 6. U(0) versus K(0) over γ .

expected wealth K(0) for the whole life insurance game. Moreover, both U(0) and K(0) are decreasing
with respect to γ and λ, respectively.

In Figures 8 and 9, we plot the graphs of the buyer’s value function V (0) for the term life insurance
game and J(0) for the whole life insurance game over γ and λ, respectively. In contrast to the seller’s
scenarios, the buyer’s value function J(0) for the whole life insurance game is greater than her value
function V (0) for the term life insurance game. For the whole life insurance game, the buyer pre-commits
to using the constant strategy and thereby gains value. It is not surprising, then, that the seller loses
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Figure 7. U(0) versus K(0) over λ.

value for the whole life insurance game (versus the term life game). The game is not zero-sum because
of the additional variance term in the buyer’s objective function, but in general a gain in value for the
buyer will correspond to some sort of loss for the seller. In Figure 2, for the parameters, we always
have γ c = 0.08 is (strictly) less than 2λ + μ2/σ 2 = 2λ + 0.16, and h∗ increases with respect to λ, as
we expect from Item 1 in Corollary 3.7. For Figure 10, we set c = 4.1 and vary the values of λ from
0.0021 to 0.2. In this case, γ c = 0.1640 and the minimum value of 2λ + μ2/σ 2 equals 0.1642; thus, γ c
is close enough to 2λ + μ2/σ 2 for h∗ to first decrease, and then increase with respect to λ, as we show in
Corollary 3.7.

5. Concluding remarks
In this paper, we considered two continuous-time Stackelberg equilibrium life insurance games: one
involving term life insurance and the other, whole life insurance. In both games, the buyer receives a
fix income, invests in a risky asset, and purchases life insurance. We assumed that the buyer applies the
mean-variance criterion to her wealth at her time of death, namely, at time τ . We solved the buyer’s
problem in the term life insurance game from a time-consistent perspective (as in, e.g., Landriault
et al. (2018)), that is, the buyer continuously decides how much life insurance to purchase and how
much money to invest into the risky asset. By solving the extended HJB equations, we found the
explicit equilibrium control strategy and the value functions for the buyer in the term life insurance
game.

We showed that the buyer purchases a constant amount of term life insurance and invests a constant
amount in the risky asset. In light of this result, for the whole life insurance game, we assumed that the
buyer always purchases a constant amount of life insurance and invests a constant amount in the risky
asset. To find the optimal constant pre-commitment strategy for the buyer in the whole life insurance
game, we modified the extended HJB equations for the term life game to this problem and found an
explicit expression for the buyer’s objective function J and, then, maximized J over all amounts of
whole life death benefit and investment in the risky asset.
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Figure 8. V(0) versus J(0) over γ .
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Figure 9. V(0) versus J(0) over λ.

Given the strategy of the buyer for either game, the seller chooses the premium rate to maximize its
expected terminal wealth at time τ . Then, we used optimal premium rate to obtain explicit expressions of
the Stackelberg equilibria of both life insurance games and analyzed the effects of the parameters on the
equilibria. Our results showed that the properties of the equilibrium controls for the term life insurance
game are more intuitively pleasing than those for the whole life insurance game. For example, ĥ is always
finite, and we do not need conditions of the relationship between γ c and λ to prove monotonicity of ĥ
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Figure 10. h∗ over λ when γ c is close to 2λ + μ2/σ 2.

and D̂ with respect to some of the parameters, as we do for h∗ and D∗. We also found that whole life
insurance is more attractable to the buyer, as we expected.

In future research, we will consider the Stackelberg equilibrium games in life annuities under a mean-
variance criterion from both the time-consistent and pre-commitment perspectives and will investigate
the properties of the equilibrium strategies for the optimization problems. Furthermore, we acknowledge
that incorporating time-dependent mortality and insurance premium rates are more realistic than the con-
stant rates we use in this paper. However, allowing for time dependence leads to a time-inhomogeneous
model, making the resulting solutions more complex and less explicit. Moreover, a positive interest rate
is essential for pricing life insurance products. However, incorporating a risk-free asset into our model
leads to equilibrium investment and life insurance strategies for term life insurance that are not con-
stants; indeed, they become linear functions of current wealth x, and the corresponding value function
is quadratic. This complexity affects the seller’s problem and the Stackelberg equilibrium discussed in
Sections 2.3 and 2.4, as well as the optimal problem for the whole life insurance game in Section 3. We
plan to address these issues in future work.
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