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Abstract. We construct an invariant measure for a piecewise analytic interval map whose
Lyapunov exponent is not defined. Moreover, for a set of full measure, the pointwise
Lyapunov exponent is not defined. This map has a Lorenz-like singularity and non-flat
critical points.
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1. Introduction
Lyapunov exponents play an important role in the study of the ergodic behavior of
dynamical systems. In particular, in the seminal work of Pesin (referred to as the ‘Pesin
theory’), the existence and positivity of Lyapunov exponents were used to study the
dynamics of non-uniformly hyperbolic systems, see for example [KH95, Supplement].
Using these ideas, Ledrappier [Led81] studied ergodic properties of absolutely continuous
invariant measures for regular maps of the interval under the assumption that the Lyapunov
exponent exists and is positive. Recently, Dobbs [Dob14, Dob15] developed the Pesin
theory for non-invertible interval maps with Lorenz-like singularities and non-flat critical
points. Lima [Lim20] constructed a symbolic extension for these maps that code the
measures with positive Lyapunov exponents.

In the case of continuously differentiable interval maps, Przytycki proved that ergodic
invariant measures have non-negative Lyapunov exponent or they are supported on a
strictly attracting periodic orbit of the system. Moreover, there exists a set of full measure
for which the pointwise Lyapunov exponent exists and is non-negative, see [Prz93] and
[RL20, Appendix A].
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In this paper, we show that the result above cannot be extended to continuous piecewise
differentiable interval maps with a finite number of non-flat critical points and Lorenz-like
singularities. In particular, we construct a measure for a unimodal map with a Lorenz-like
singularity and two non-flat critical points for which the Lyapunov exponent does not
exist. Moreover, for this map, the pointwise Lyapunov exponent does not exist for a
set of full measure. Thus, our example shows that the techniques developed by Dobbs
[Dob14, Dob15] and Lima [Lim20] cannot be extended to all maps with critical points
and Lorenz-like singularities.

Maps with Lorenz-like singularities are of interest as they appear in the study of the
Lorenz attractor, see [GW79, LT99] and references therein. Apart from these motivations,
these types of maps are of interest on their own because the presence of these types of
singularities create expansion and hence enforce the chaotic behavior of the system, see
[ALV09, Dob14, LM13] and references therein.

Additionally, the unimodal map that we consider has Fibonacci recurrence of the turning
point (or just Fibonacci recurrence). Maps with Fibonacci recurrence first appeared in the
work of Hofbauer and Keller [HK90] as possible interval maps having a wild attractor.
Lyubich and Milnor [LM93] proved that unimodal maps with a quadratic critical point and
Fibonacci recurrence not only have any Cantor attractor but also have a finite absolutely
continuous invariant measure, see also [KN95]. Finally, Bruin et al [BKNvS96] proved
that a C2−unimodal interval map with a critical point of order big enough and with
Fibonacci recurrence has a wild Cantor attractor. However, in the work of Branner and
Hubbard [BH92], in the case of complex cubic polynomials, and the work of Yoccoz, in
the case of complex quadratic polynomials, Fibonacci recurrence appeared as the worst
pattern of recurrence, see for example [Hub93, Mil00]. Maps with Fibonacci recurrence
also play an important role in the renormalization theory, see for example [GS18, LS12,
Sma07] and references therein.

1.1. Statement of results. To state our main result, we need to recall some definitions.
A continuous map f : [−1, 1] → [−1, 1] is unimodal if there is c ∈ (−1, 1) such that
f |[−1,c) is increasing and f |(c,1] is decreasing. We call c the turning point of f. For every
A ⊂ [−1, 1] and every x ∈ [−1, 1], we denote the distance from x to A by

dist(x, A) := inf{|x − y| : y ∈ A}.
We will use f ′ to denote the derivative of f. We will say that the point c ∈ [−1, 1] is a
Lorenz-like singularity if there exists �+ and �− in (0, 1), L > 0, and δ > 0 such that the
following holds: for every x ∈ (c, c + δ),

1
L|x − c|�+ ≤ |f ′(x)| ≤ L

|x − c|�+ , (1.1)

and for every x ∈ (c − δ, c),

1
L|x − c|�− ≤ |f ′(x)| ≤ L

|x − c|�− . (1.2)

We call �+ and �− the right and left order of c, respectively. For an interval map f, a point
ĉ ∈ [−1, 1] is called a critical point if f ′(ĉ) = 0. We will say that a critical point ĉ is
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non-flat if there exist α+ > 0, α− > 0, M > 0, and δ > 0 such that the following holds:
for every x ∈ (ĉ, ĉ + δ), ∣∣∣∣ log

|f ′(x)|
|x − ĉ|α+

∣∣∣∣ ≤ M , (1.3)

and for every x ∈ (ĉ − δ, ĉ), ∣∣∣∣ log
|f ′(x)|

|x − ĉ|α−

∣∣∣∣ ≤ M . (1.4)

We call α+ and α− the right and left order of ĉ, respectively. Let us denote by Crit(f )

the set of critical points of f. If f is a unimodal map with turning point c, we will use the
notation S(f ) := Crit(f ) ∪ {c}. Let us denote by Cω the class of analytic maps. Here we
will say that f is a Cω-unimodal map if it is of class Cω outside S(f ).

We denote the orbit of x ∈ [−1, 1] under f by

Of (x) := {f n(x) : n ≥ 0}.
For a probability measure μ on [−1, 1] that is invariant by f, we define the pushforward of
μ by f as

f∗μ := μ ◦ f −1.

Denote by

χμ(f ) :=
∫

log |f ′| dμ,

its Lyapunov exponent, if the integral exists. Similarly, for every x ∈ [−1, 1] such that
Of (x) ∩ S(f ) = ∅, denote by

χf (x) := lim
n→∞

1
n

log |(f n)′(x)|,

the pointwise Lyapunov exponent of f at x, if the limit exists.
Let λF ∈ (0, 2] be so that the map TλF

: [−1, 1] → [−1, 1], defined by

TλF
(x) := λF (1 − |x|) − 1, (1.5)

for every x ∈ [−1, 1], has Fibonacci recurrence and let μP be the unique measure that is
ergodic, invariant by TλF

, and supported on OTλF
(0), see §2.2.

THEOREM 1. Let h : [−1, 1] → [−1, 1] be a homeomorphism of class Cω on [−1, 1] \ {0}
with a unique non-flat critical point at 0, and put μ̃P := h∗μP . Then the Cω-unimodal
map f := h ◦ TλF

◦ h−1 has a Lorenz-like singularity at c̃ := h(0) and is so that the
following hold.
(1) χμ̃P

(f ) is not defined.
(2) For x ∈ Of (c̃), the pointwise Lyapunov exponent of f at x does not exist if Of (x) ∩

S(f ) = ∅, and it is not defined if Of (x) ∩ S(f ) �= ∅.
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(3) log(dist(·, S(f ))) /∈ L1(μ̃P ).
(4) f has exponential recurrence of the Lorenz-like singularity orbit, and thus,

lim sup
n→∞

− log |f n(c̃) − c̃|
n

∈ (0, +∞).

The map f in Theorem 1 has a Lorenz-like singularity at c̃ and two non-flat critical
points, given by the preimages by f of the Lorenz-like singularity c̃, see Proposition 1.1.
Because h is a homeomorphism of class Cω on [−1, 1] \ {0}, these are non-flat critical
points of inflection type.

Dobbs constructed an example of a unimodal map with a flat critical point and
singularities at the boundary, for which the Lyapunov exponent of an invariant measure
does not exist, see [Dob14, Proposition 43]. For interval maps with infinite Lyapunov
exponent, see [Ped20, Theorem A] and references therein.

The negation of item (3) in Theorem 1 is considered in several works as a regularity
condition to study ergodic invariant measures. In [Lim20], Lima studied measures
satisfying this condition for interval maps with critical points and discontinuities, he
called measures satisfying this condition f-adapted. By the Birkhoff ergodic theorem, if
log(dist(·, S(f ))) ∈ L1(μ), then for an ergodic invariant measure μ, we have

lim
n→∞

1
n

log(dist(f n(x), S(f ))) = 0,

μ-almost everywhere (a.e.). Ledrappier called measures satisfying this last condition
non-degenerated. For interval maps with a finite number of critical points, see [Led81].
The measure μ̃P does not satisfy the non-degenerated condition. For more results related
to this condition see [Lim20] and references therein.

For continuously differentiable interval maps with a finite number of critical points,
every ergodic invariant measure that is not supported on an attracting periodic point satis-
fies limn→∞(1/n) log(dist(f n(x), S(f ))) = 0, a.e., see [Prz93] and [RL20, Appendix].
Item (3) in Theorem 1 tells us that we cannot extend this to piecewise differentiable maps
with a finite number of critical points and Lorenz-like singularities.

Item (4) in Theorem 1 stresses important information relative to the recurrence of the
Lorenz-like singularity. This item represents a crucial difference between smooth interval
maps, and the case of interval maps with critical points and Lorenz-like singularities. In
the smooth case, certain conditions on the growth of the derivative restrict the recurrence
to the critical set, see for example [CE83, GS14, Tsu93] and references therein. Using the
terminology in [DPU96], item (4) shows that rule I is sharp for the map f in Theorem 1.
Finally, we have that the map f in Theorem 1 satisfies Tsuji’s weak regularity condition,
owing to the interaction between the critical points and the Lorenz-like singularity.

1.2. Example. Now we will provide an example of a map f as in Theorem 1. Fix �+ and
�− in (0, 1). Put α+ := 1/(1 − �+) and α− := 1/(1 − �−). Define

hα+,α− : [−1, 1] −→ [−1, 1]
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FIGURE 1. Graphs of the functions TλF
(x): hα(x) for α+ = 2 (a); α− = 1.2 (b); and (c) f (x).

as

hα+,α−(x) =
{

|x|α+
if x ≥ 0,

−|x|α−
if x < 0.

(1.6)

So

h−1
α+,α−(x) =

{
|x|1/α+

if x ≥ 0,

−|x|1/α−
if x < 0.

(1.7)

Then by (1.5), (1.6), (1.7), and the chain rule, we have

f ′(x) = λF

h′
α+,α−(TλF

(h−1
α+,α−(x)))

h′
α+,α−(h−1

α+,α−(x))

for every x ∈ [−1, 1] \ {hα+,α−(0)}. The function h′
α+,α−(TλF

(h−1
α+,α−(x))) is bounded for

x close enough to 0, see §5. Then, by (1.6) and (1.7), there exists L > 0 such that for every
x ∈ (h(0), h(δ)),

1
L|x|�+ ≤ |f ′(x)| ≤ L

|x|�+ ,

and for every x ∈ (h(0), h(−δ)),

1
L|x|�− ≤ |f ′(x)| ≤ L

|x|�− .

Thus, h(0) is a Lorenz-like singularity of f, see Figure 1. Also, by (1.6) and (1.7), if δ is
small enough so that T −1

λF
(0) ∩ (−δ, δ) = ∅, the two critical points of f are non-flat. The

one to the left of h(0) has right-order α+ and left-order α−, and the one to the right of
h(0) has right-order α− and left-order α+.

1.3. Strategy and organization. We now describe the strategy of the proof of Theorem 1
and the organization of the paper.
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In §2, we review some general theory and results concerning the kneading sequence
for unimodal maps and unimodal maps with Fibonacci recurrence. In particular, in §2.1,
we will describe the relationship between the kneading map and the kneading sequence,
and in §2.2, we define the Fibonacci recurrence. These two elements will be of importance
to describe the combinatorics of the critical orbit.

In §3.1, we make a detailed description of the set OTλF
(0), and following [LM93], we

construct a partition of it that will allow us to estimate close return times to the turning
point and lower bounds for the distances of these close returns. In §3.2, we estimate
how fast the orbit of the turning point return to itself in terms of the return time (see
Lemma 3.5). This estimation is of importance because it gives us an exact estimation of
the growth of the geometry near the turning point for our map f.

In §4, we describe the unique ergodic invariant measure μP supported on OTλF
(0),

restricted to the partition constructed in §3.1. We need this estimation to prove part (1) in
Theorem 1.

In §5, we prove the following proposition that will give us a key bound on the
derivative of f in terms of h−1. Without loss of generality, we will assume that h preserves
orientation.

PROPOSITION 1.1. Let h and f be as in Theorem 1. Then f has a Lorenz-like singularity
at c̃. Moreover, there exist α+ > 1, α− > 1, K > 0, and δ > 0 such that the following
property holds: for every x ∈ (c̃, h(δ)),

K−1|h−1(x)|−α+ ≤ |f ′(x)| ≤ K|h−1(x)|−α+
, (1.8)

and for every x ∈ (h(−δ), c̃),

K−1|h−1(x)|−α− ≤ |f ′(x)| ≤ K|h−1(x)|−α−
. (1.9)

In §6, we prove the following proposition that implies items (1) and (3) in Theorem 1.
Let

log+ |f ′| := max{0, log |f ′|} and log− |f ′| := {0, − log |f ′|},
on [−1, 1] \ {c̃}.
PROPOSITION 1.2. Let h and f be as in Theorem 1. Then:

(i)
∫

log+ |f ′| dμ̃P = +∞;
(ii)

∫
log− |f ′| dμ̃P = −∞; and

(iii)
∫ |log(dist(·, S(f )))| μ̃P = +∞.

To prove the first part of Proposition 1.2, we use the fact that around the Lorenz-like
singularity, the geometry of f grows at the same rate as the measure decreases. This implies
that in a sequence of disjoint intervals that converges to the critical point, the integral of
log |f ′| is bounded from below by a positive constant. For the second part, we use the fact
that the two preimages of the turning point of f are critical points and both belong to the
set Of (c̃). The third part of the proposition is a consequence of the estimation that we get
in the proof of the first part.
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In §7, we prove the following proposition that, along with the fact that f is transitive on
Of (c̃), will imply item (2) in Theorem 1. Recall that for x ∈ Of (c̃) such that c̃ ∈ Of (x),
we have that the pointwise Lyapunov exponent is not defined, because for n large enough,
log |(f n)′(x)| is not defined.

PROPOSITION 1.3. Let h and f be as in Theorem 1. Then, there exists a positive number α

such that for every x ∈ Of (c̃) with c̃ /∈ Of (x), we have that

lim inf
n→∞

1
n

log |(f n)′(x)| ≤
(

1 − α

ϕ

)
log λ < log λ ≤ lim sup

n→∞
1
n

log |(f n)′(x)|, (1.10)

where ϕ := (1 + √
5)/2.

To prove Proposition 1.3, we use the fact that f restricted to the set Of (c̃) is minimal,
so the orbit of every point accumulates points far from the turning point. In that case, the
derivative is bounded so the limit of that subsequence must be the same as the one in TλF

.
However, if we look at a subsequence that accumulates at the Lorenz-like singularity, the
growth of the derivative is exponential with respect to the return time, so the limit of this
subsequence will be bounded away from zero.

In §8, we will prove the following proposition that implies item (4) in Theorem 1.
Because f is topologically conjugated to the Fibonacci tent map, we know that h(0) is
recurrent and that the recurrence times are given by the Fibonacci numbers. Then, to have
an estimate on the recurrence of the turning point, it is enough to estimate the decay of the
distances |f S(k)(c̃) − c̃|, where

S(0) = 1, S(1) = 2, S(2) = 3, S(3) = 5, . . . ,

are the Fibonacci numbers.

PROPOSITION 1.4. There exist 	, α′, α′′ positive numbers, such that

λ−S(k)α′′
	−1 ≤ |f S(k)(c̃) − c̃| ≤ λ−S(k)α′

	, (1.11)

for every k ≥ 1.

To prove Proposition 1.4, we estimate the diameter of certain symmetric intervals,
whose closures are disjoint from the Lorenz-like singularity, and whose lengths approxi-
mate the left and right distance of the closest returns to the Lorenz-like singularity. To do
this, we use the mean value theorem, the fact that h has a non-flat critical point at 0, and
Lemma 3.5 that give us an estimate on the diameter of the preimage of these intervals.
The reason to use these intervals is because when we try to make a direct estimation of the
distance |f S(k)(c̃) − c̃|, we do not have control on how close to zero is the derivative of h.

2. Preliminaries
Throughout the rest of this work, we will denote by I the closed interval [−1, 1] ⊂ R. We
use N to denote the set of integers that are greater than or equal to 1 and put N0 := N ∪ {0}.

We endow I with the distance induced by the absolute value | · | on R. For x ∈ R and
r > 0, we denote by B(x, r) the open ball of I with center at x and radius r. For an interval
J ⊂ I , we denote by |J | its length.
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For real numbers a, b, we put [a, b] := [min{a, b}, max{a, b}] in the same way
(a, b) := (min{a, b}, max{a, b}).

2.1. The kneading sequence. Following [dMvS93], we will introduce the kneading
invariant of a unimodal map and related properties. Let f : I → I be a unimodal
with turning point c ∈ (0, 1). We will use the notation ci := f i(c) for i ≥ 1. Suppose
f (−1) = f (1) = −1 and c2 < c < c1. Let 
 := {0, 1, c}N0 be the space of sequences
x = (x0, x1, x2, . . .). In 
, we consider the topology generated by the cylinders

[a0a1 · · · an−1]k := {x ∈ 
 : xk+i = ai for all i = 0, 1, . . . , n − 1}.
With this topology, 
 is a compact space. Let us define

i : I −→ 


x �−→ (i0(x), i1(x), . . .)

where

in(x) =

⎧⎪⎪⎨⎪⎪⎩
0 if f n(x) ∈ [−1, c),

1 if f n(x) ∈ (c, 1],

c if f n(x) = c.

The sequence i(x) is called the itinerary of x under f. Given n ∈ N and x ∈ I , there exists
δ > 0 such that in(y) ∈ {0, 1} and is constant for every y ∈ (x, x + δ). Observe that this
value is not the same as in(x) if x is the turning point. It follows that

i(x+) := lim
y↓x

i(y) and i(x−) := lim
y↑x

i(y)

always exist. Notice that i(x−) and i(x+) belong to {0, 1}N0 . The sequence e1, e2, e3, . . .

defined by ej := ij (c
+
0 ) is called the kneading invariant of f. A sequence a ∈ {0, 1}N is

admissible if there exists a unimodal map f : I → I with kneading invariant a.
We say that Q : N → N0 defines a kneading map if Q(k) < k for all k ∈ N and

(Q(j))k<j<∞ ≥ (Q(Q(Q(k)) + j − k))k<j<∞

for all k with Q(k) > 0 (≥ is the lexicographical order). A kneading map leads to an
admissible kneading sequence in the following way: define the sequence S : N0 → N

by S(0) = 1 and S(k) = S(k − 1) + S(Q(k)) for k ≥ 1. The kneading sequence {ej }j≥1

associated to Q is given by e1 = 1 and the relation

eS(k−1)+1eS(k−1)+2 . . . eS(k)−1eS(k) = e1e2 . . . eS(Q(k))−1(1 − eS(Q(k))), (2.1)

for k ≥ 1. The length of each string in (2.1) is S(Q(k)), and thus at the kth step of the
process, we can construct S(Q(k)) symbols of the sequence. Because for every k ≥ 1 we
have Q(k) < k, we get that Q(1) = 0. So, for k = 1, each string in (2.1) has the 1 symbol.
Then

e2 = eS(0)+1 = 1 − eS(0) = 0.
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Hence,

c2 < c < c1.

2.2. The Fibonacci tent map. We will say that a unimodal map f has Fibonacci
recurrence or it is a Fibonacci unimodal map if the kneading map associated to it is given
by Q(1) = 0 and Q(k) = k − 2 for k > 1. So the sequence {S(n)}n≥0 is given by the
Fibonacci numbers

S(0) = 1, S(1) = 2, S(2) = 3, S(3) = 5, . . . .

For a Fibonacci unimodal map f, we have that

|cS(0) − c| > |cS(1) − c| > · · · |cS(n) − c| > |cS(n+1) − c| > · · · , (2.2)

and

|c3 − c| < |c4 − c|. (2.3)

See [LM93, Lemma 2.1] and references therein. The set Of (c) is a Cantor set and the
restriction of f to this set is minimal and uniquely ergodic, see [Bru03, Proposition 1] or
[CRL10, Proposition 4] and references therein. The kneading invariant for a Fibonacci
unimodal map starts like

100111011001010011100 . . .

Let us consider the tent family TS : I → I defined by Ts(x) = s(1 − |x|) − 1 for every
x ∈ I and every s ∈ (0, 2]. This family is full, and thus for every kneading map Q, there
is a parameter s ∈ (0, 2] so that the kneading map of Ts is Q, see [MT88] and [dMvS93,
Ch. 2]. So there exists λF ∈ (0, 2] such that the kneading map associated to TλF

is given
by Q(k) = max{0, k − 2}.

From now on, we use the notation T := TλF
, λ := λF , c := 0, and ci := T i(c).

3. The set OT (c)

3.1. The combinatorics of the set OT (c). In this section, we will give an explicit
description of the set OT (c) following [LM93].

Put S(−2) = 0 and S(−1) = 1. From (2.1), we obtain that for every k ≥ 0, the points
cS(k) and cS(k+2) are on opposite sides of c. Because

cS(1) = c2 < c < c1 = cS(0),

we conclude that for k ≡ 0 (mod 4), cS(k) is to the right of c and if k ≡ 2 (mod 4), cS(k)

is to the left of c. Because we also know that cS(1) is to the left of c, we can conclude that
for k ≡ 1 (mod 4), cS(k) is to the left of c, and for k ≡ 3 (mod 4), cS(k) is to the right of c.
From this, we can conclude that if k is even, the points cS(k) and cS(k+1) are on opposite
sides of c, and therefore,

[cS(k+1), cS(k)] ⊇ [cS(k+2), cS(k)].
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In the case where k is odd, cS(k) and cS(k+1) are on the same side with respect to c, and
therefore,

[cS(k+1), cS(k)] ⊆ [cS(k+2), cS(k)].

For each k ≥ 0, let Ik be the smallest closed interval containing all of the points cS(l)

for every l ≥ k. For each n ≥ 0, define In
k := T n(Ik). By the above discussion,

Ik =
{

[cS(k), cS(k+1)] if k is even,

[cS(k), cS(k+2)] if k is odd.
(3.1)

LEMMA 3.1. For every k ≥ 1, we have that T j is injective on [c1, cS(k)+1]. In particular,
I

j+1
k = [cj+1, cS(k)+1+j ] for every j ∈ {1, . . . , S(k − 1) − 1}.

Proof. Because |c − cS(k)| > |c − cS(m)| and |T ([cS(k), c])| = λ|c − cS(k)|, for every 0 ≤
k < m, we get that cS(k)+1 < cS(m)+1 < c1, in particular, I 1

k = [c1, cS(k)+1]. In the case
k ≥ 1, by (2.1) with k replaced by k + 1, for every j ∈ {1, . . . , S(k − 1) − 1}, we have
that cS(k)+j and cj are on the same side with respect to c. Thus, c /∈ [cS(k)+j , cj ] =
T j−1[cS(k)+1, c1], and then the map T j is injective on [c1, cS(k)+1]. In particular, for
1 < j ≤ S(k − 1),

I
j
k = T j−1([c1, cS(k)+1])

= [cj , cS(k)+j ] (3.2)

Note that for k ≥ 1, by Lemma 3.1, with j = S(k − 1) − 1,

I
S(k−1)
k = [cS(k−1), cS(k)+S(k−1)] = [cS(k−1), cS(k+1)]. (3.3)

Then, by (2.1), c ∈ I
S(k−1)
k and c /∈ In

k for every 0 < n < S(k − 1).

LEMMA 3.2. For all k ≥ 0, we have that

|ci − c| > |cS(k−1) − c|,
for all 0 < i < S(k), with i �= S(k − 1).

Proof. We will use induction on k. The cases k = 0 and 1 are vacuously true, and the cases
k = 2 and 3 are true by the definition of Fibonacci map and (2.3). Suppose now that it is
true for k. We will prove that is true for k + 1.

Case 1: Because

|cS(k−1) − c| > |cS(k) − c|,
we have that

|ci − c| > |cS(k) − c|
for all 0 < i < S(k).

Case 2: Because

cS(k−1)+1 < cS(k)+1 < c1
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and T i is injective on [cS(k−1)+1, c1] for 0 < i < S(k − 2) by Lemma 3.1, we have that
cS(k)+i ∈ (cS(k−1)+i , ci), for 0 < i < S(k − 2). By the induction hypothesis,

|ci − c| > |cS(k−1) − c| > |cS(k) − c|
and

|cS(k−1)+i − c| > |cS(k−1) − c| > |cS(k) − c|
for 0 < i < S(k − 2). By (2.1), ci and cS(k−1)+i lie on the same side of c for 0 < i <

S(k − 2). The above implies that

|cS(k)+i − c| > |cS(k) − c|
for all 0 < i < S(k − 2).

Case 3: Because T S(k−2)−1 is injective on [cS(k−1)+1, c1], we get that cS(k)+S(k−2) ∈
(cS(k), cS(k−2)). Also, by (2.1), cS(k)+S(k−2) and cS(k−2) lie on the same side of c, and
opposite to cS(k). Then,

|cS(k)+S(k−2) − c| < |cS(k−2) − c|.
Hence,

cS(k−2)+1 < cS(k)+S(k−2)+1 < c1.

So by Lemma 3.1, cS(k)+S(k−2)+i ∈ (cS(k−2)+i , ci) for 0 < i < S(k − 3). By the induction
hypothesis,

|ci − c| > |cS(k) − c| and |cS(k−2)+i − c| > |cS(k) − c|
for 0 < i < S(k − 3). Because, by (2.1), cS(k−2)+i and ci lie on the same side of c for
0 < i < S(k − 3), we get

|cS(k)+S(k−2)+i − c| > |cS(k) − c|
for all 0 < i < S(k − 3).

Case 4: It remains to prove that

|cS(k)+S(k−2) − c| > |cS(k) − c|.
Suppose by contradiction that

|cS(k)+S(k−2) − c| < |cS(k) − c|.
Then, cS(k)+1 < cS(k)+S(k−2)+1 < c1. Because T S(k−3)−1 is injective on [cS(k)+1, c1], we
get that cS(k+1) ∈ (cS(k−3), cS(k)+S(k−3)). Noting that by (2.1), cS(k−3) and cS(k)+S(k−3) are
on the same side with respect to c, we have either

|cS(k+1) − c| > |cS(k)+S(k−3) − c| > |cS(k) − c|
or

|cS(k+1) − c| > |cS(k−3) − c| > |cS(k) − c|,
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FIGURE 2. First five Ik (solid line) and Dk (dashed line) intervals.

a contradiction. So we must have

|cS(k)+S(k−2) − c| > |cS(k) − c|,
and this concludes the proof.

Let us denote

Jk := I
S(k−1)
k+1 = [cS(k−1), cS(k+1)+S(k−1)],

and put

Dk := [c, cS(k)]

for every k ≥ 1. For every n ≥ 0, we use the notation:

J n
k := T n(Jk) = I

S(k−1)+n
k+1 . (3.4)

Note that by definition, Dk′ ⊂ [cS(k), cS(k+2)] for every k′ ≥ k ≥ 1. See Figure 2.

LEMMA 3.3. For all 0 < k < k′, we have Jk′ ⊂ Dk′−1 ⊂ Ik and Jk ∩ Jk′ = ∅.

Proof. First we will prove that Jk+1 is contained in Dk and c /∈ Jk+1 for every k ≥ 0. Fix
k ≥ 0. By (2.1) with k replaced by k + 3, we have that cS(k) and cS(k+2)+S(k) are on the
same side of c. Because

|cS(k+2) − c| < |cS(k+1) − c|,
we have

cS(k+1)+1 < cS(k+2)+1 < c1.

By Lemma 3.1, T S(k)−1 is injective on I 1
k+1. Then, cS(k+2)+S(k) ∈ (cS(k+2), cS(k)). By (2.1)

with k replaced by k + 3, we thus conclude cS(k+2)+S(k) ∈ (cS(k), c). Then,

Jk+1 = [cS(k), cS(k)+S(k+2)] ⊂ [c, cS(k)] = Dk ⊂ [cS(k), cS(k+2)] ⊆ Ik
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and c /∈ Jk+1. Because, by definition, for every k′ > k, we have Dk′−1 ⊂ Ik′−1 ⊂ Ik , we get

Jk′ ⊂ Dk′−1 ⊂ Ik .

Now we will prove that Jk+1 and Ik+1 are disjoint. If k is even, then Ik+1 =
[cS(k+1), cS(k+3)]. Because cS(k) and cS(k+1) lie on opposite sides with respect to c,
we have that cS(k), cS(k)+S(k+2), and cS(k+3) lie on the same side of c. By (3.2) with k
replaced by k + 4, we get

|cS(k) − c| > |cS(k)+Sk+2 − c| > |cS(k+3) − c|.
So, Jk+1 ∩ Ik+1 = ∅. Now, if k is odd, Ik+1 = [cS(k+1), cS(k+2)] and cS(k), cs(k+1), and
cS(k)+S(k+2) lie on the same side of c. Suppose that |cS(k+1) − c| > |cS(k)+S(k+2) − c|,
then

[cS(k+1), cS(k)+S(k+2)] ⊂ [cS(k), cS(k)+S(k+2)].

Because T S(k−1) is injective on [cS(k), cS(k)+S(k+2)], then T S(k−1) is injective on
[cS(k+1), cS(k)+S(k+2)]. So we get

T S(k−1)([cS(k+1), cS(k)+S(k+2)]) = [cS(k+1)+S(k−1), cS(k+3)].

Because S(k + 1) + S(k − 1) < S(k + 4), by Lemma 3.2 with k replaced by k + 4, we get

|cS(k+1)+S(k−1) − c| > |cS(k+3) − c|.
However, T S(k−1)(Jk+1) = [cS(k+1), cS(k+3)], then

T S(k−1)(cS(k+1)) = cS(k+1)+S(k−1) ∈ (cS(k+1), cS(k+3)),

and by (2.1) with k replaced by k + 1, we have that cS(k+1)+S(k−1) and cS(k−1) are on the
same side of c. Because k − 1 ≡ k + 3 (mod 4), we have that cS(k−1) and cS(k+3) are on
the same side of c, so cS(k+1)+S(k−1) ∈ (c, cS(k+3)). Thus,

|cS(k+1)+S(k−1) − c| < |cS(k+3) − c|,
a contradiction. So we must have cS(k)+S(k+2) ∈ (cS(k), cS(k+1)) and

Jk+1 ∩ Ik+1 = ∅. (3.5)

This conclude the proof of the lemma.

Taking k′ = k + 1 in Lemma 3.3, we get Jk+1 ⊂ Ik , and then

Jk+1 ∪ Ik+1 ⊂ Ik ⊆ I
S(k−1)
k , (3.6)

for every k ≥ 1.

Definition 3.4. For k ≥ 0, let Mk be the S(k)-fold union

Mk =
⋃

0≤n<S(k−1)

I n
k ∪

⋃
0≤n<S(k−2)

J n
k .
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FIGURE 3. First five levels of Mk .

Some examples of Mk are

M0 = I0

= [c1, c2],

M1 = I1 ∪ J1

= [c2, c5] ∪ [c4, c1],

M2 = I2 ∪ I 1
2 ∪ J2

= [c3, c5] ∪ [c4, c1] ∪ [c2, c7],

M3 = I3 ∪ I 1
3 ∪ I 2

3 ∪ J3 ∪ J 1
3

= [c13, c5] ∪ [c6, c1] ∪ [c2, c7] ∪ [c3, c11] ∪ [c4, c12],

M4 = I4 ∪ I 1
4 ∪ I 2

4 ∪ I 3
4 ∪ I 4

4 ∪ J4 ∪ J 1
4 ∪ J 2

4

= [c13, c8] ∪ [c9, c1] ∪ [c2, c10] ∪ [c3, c11] ∪ [c4, c12]

∪ [c14, c5] ∪ [c6, c19] ∪ [c20, c7],

and so on (see Figure 3).
From the definition, for every k ≥ 0, the S(k) closed intervals

Ik , I 1
k , . . . , I

S(k−1)−1
k , Jk , J 1

k , . . . , J
S(k−2)−1
k ,

are pairwise disjoint, each Mk contains the set OT (c) and they form a nested sequence of
closed sets M1 ⊃ M2 ⊃ M3 ⊃ · · · with intersection equal to the Cantor set OT (c). For a
proof of these statements, see [LM93, Lemma 3.5]. Now by (3.6), we have that for every
1 ≤ m < S(k − 1),

Im
k+1 ∪ Jm

k+1 ⊂ Im
k .

Also, by (3.4) for every 0 ≤ n < S(k − 2),

I
S(k−1)+n
k+1 = J n

k .
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Because the sets in Mk are disjoint, we get that⋃
A∈Mk+1

(A ∩ Ik) = Ik+1 ∪ Jk+1. (3.7)

3.2. Diameter estimates. In this section, we will give an estimate on how the distances
|cS(k) − c| decrease as k → ∞.

LEMMA 3.5. The limit

lim
k→∞ λS(k+1)|Dk|

exists and is strictly positive.

Proof. Because

T (Dk) = T ([c, cS(k)]) = I 1
k ,

by (3.3), we have that

T S(k−1)(Dk) = [cS(k−1), cS(k+1)].

By (2.1), cS(k−1) and cS(k+1) are on opposite sides of c. Then Dk−1 ∩ Dk+1 = {c}, so

T S(k−1)(Dk) = Dk−1 ∪ Dk+1.

Because, by Lemma 3.1, T S(k−1) is injective on Ik and Dk ⊂ Ik , we get that

|T S(k−1)(Dk)| = λS(k−1)|Dk| = |Dk−1| + |Dk+1|.
For k ≥ 0, put νk := |Dk|/|Dk+1|. By the above, we get

λS(k−1) = νk−1 + 1
νk

.

By (2.2), νk > 1, so 0 < ν−1
k < 1. Because λ > 1, we have λS(k−1) −→ ∞ as k −→ ∞.

Then, νk −→ ∞ as k −→ ∞. So, λS(k−1) − νk−1 −→ 0 as k −→ ∞. Then, if we define
Ck := νkλ

−S(k), we have 0 < Ck < 1 and Ck ↗ 1 exponentially fast as n −→ ∞. By
definition of νk , we have that

|D0|
|Dk+1| =

k∏
i=0

νi =
k∏

i=0

λS(i)Ci = λS(k+2)−S(1)
k∏

i=0

Ci .

Then,

|Dk+1|λS(k+2)−S(1) = |D0|
[ k∏

i=0

Ci

]−1

. (3.8)

Because
∏k

i=0 Ci converge to a strictly positive number as k −→ ∞, the proof is
complete.
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4. The invariant measure
Let us denote by μP the unique ergodic invariant measure of T restricted to OT (c). As in
the previous section, put

S(−2) = 0, S(−1) = 1, S(0) = 1, S(1) = 2, . . .

and recall that ϕ := ((1 + √
5)/2). In this section, we will estimate the value of μP over

the elements of Mk for every k ≥ 1.
As mentioned in §3, we know that the set OT (c) is contained in Mk for every k ≥ 1 and

the sets

Ik , I 1
k , . . . I

S(k−1)−1
k , Jk , J 1

k , . . . , J
S(k−2)−1
k

are disjoint. Then,

S(k−1)−1∑
i=0

μP (I i
k) +

S(k−2)−1∑
j=0

μP (J
j
k ) = 1. (4.1)

Because T restricted to OT (c) is injective, except at the critical point that has two
preimages, we have that

μP (I i
k) = μP (I

j
k ), (4.2)

μP (J
p
k ) = μP (J

q
k ), (4.3)

for every 0 ≤ i, j < S(k − 1) and 0 ≤ p, q < S(k − 2). Then we can write (4.1) as

S(k − 1)μP (Ik) + S(k − 2)μP (Jk) = 1. (4.4)

Because

Ik � Jk ⊂ Ik−1,

we have that

μP (Ik) + μP (Jk) = μP (Ik−1). (4.5)

And because

Jk−1 = I
S(k−1)
k ,

using (4.2) with k replaced by k = 1, we have that

μP (Jk−1) = μP (Ik). (4.6)

Combining (4.5) and (4.6), we can write[
1 1
1 0

] [
μP (Ik)

μP (Jk)

]
=

[
μP (Ik−1)

μP (Jk−1)

]
. (4.7)

LEMMA 4.1. For every m ≥ 1, we have

μP (Im) = 1
ϕm

and μP (Jm) = 1
ϕm+1 .
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Proof. We will use induction to prove the lemma. For m = 1. We can apply k − 2 times
the equation (4.7) to [

μP (Ik−1)

μP (Jk−1)

]
,

and we can write (4.7) as [
1 1
1 0

]k−1 [
μP (Ik)

μP (Jk)

]
=

[
μP (I1)

μP (J1)

]
. (4.8)

Using that [
1 1
1 0

]k−1

=
[
S(k − 2) S(k − 3)

S(k − 3) S(k − 4)

]
,

for k ≥ 2, we can write[
μP (I1)

μP (J1)

]
=

[
S(k − 2)μP (Ik) + S(k − 3)μP (Jk)

S(k − 3)μP (Ik) + S(k − 4)μP (Jk)

]
. (4.9)

Multiplying the first equation in (4.9) by S(k)/S(k − 1), we get

S(k)

S(k − 1)
μP (I1) = S(k − 2)

S(k − 1)
S(k)μP (Ik) + S(k − 3)

S(k − 2)

S(k)

S(k − 1)
S(k − 2)μP (Jk). (4.10)

Using (4.4), we can write (4.10) as

S(k)

S(k − 1)
μP (I1) = S(k)μP (Ik)

[
S(k − 2)

S(k − 1)
− S(k − 3)

S(k − 2)

]
+ S(k − 3)

S(k − 2)

S(k)

S(k − 1)
. (4.11)

Because S(k)/S(k − 1) −→ ϕ as k −→ ∞, taking limit on (4.11) over k, we get

ϕμP (I1) = 1,

and then

μP (I1) = 1
ϕ

.

Using (4.4) with k replaced by 1, we get that

μP (J1) = 1
ϕ2 .

So the lemma holds for m = 1.
Suppose now that the result is true for m. By (4.6), we have that

μP (Im+1) = μP (Jm) = 1
ϕm+1 .
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By (4.5), we have that

μP (Jm+1) = μP (Im) − μP (Im+1)

= 1
ϕm

− 1
ϕm+1

= 1
ϕm

(
1 − 1

ϕ

)
= 1

ϕm

1
ϕ2

= 1
ϕm+2 ,

and we get the result.

5. Proof of Proposition 1.1
In this section, we will give the proof of Proposition 1.1. We use the same notation as in the
previous section. Let h : [−1, 1] → [−1, 1] be as in Proposition 1.1 and f = h ◦ T ◦ h−1.
As in Theorem 1, put c̃ := h(0).

Because h has a non-flat critical point at 0, by (1.3) and (1.4), there are α+ > 0, α− > 0,
and δ > 0 such that

e−M |x̂|α+ ≤ |h′(x̂)| ≤ eM |x̂|α+
, (5.1)

for every x̂ ∈ (0, δ) and

e−M |x̂|α− ≤ |h′(x̂)| ≤ eM |x̂|α−
, (5.2)

for every x̂ ∈ (−δ, 0). Because c = 0 and c /∈ I 1
k = [ccS(k)+1 , c1], we have that there exist

positive real numbers W1 and W2 such that for every x ∈ Ik ,

W1 ≤ |h′(T (x))| ≤ W2. (5.3)

Proof of Proposition 1.1. By the chain rule, we have

f ′(x) = λ
h′(T (h−1(x)))

h′(h−1(x))
, (5.4)

for every x ∈ (h(−δ), h(δ)) \ {c̃}. Let K := max{λ−1eMW−1
1 , λeMW2}. Then by (5.3)

and (5.4), we have that for every x ∈ (c̃, h(δ)),

1
K|h−1(x)|α+ ≤ |f ′(x)| ≤ K

|h−1(x)|α+ , (5.5)

and for every x ∈ (h(−δ), c̃),

1
K|h−1(x)|α− ≤ |f ′(x)| ≤ K

|h−1(x)|α− . (5.6)

Now, from (5.1) and (5.2), there exist M1 > 0 and M2 > 0 such that for every x ∈ (0, δ),

M−1
1 |x|α++1 ≤ |h(x)| ≤ M1|x|α++1,
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and for every x ∈ (−δ, 0),

M−1
2 |x|α−+1 ≤ |h(x)| ≤ M2|x|α−+1.

Because h is a homeomorphism, there exist constants M3 > 0 and M4 > 0 such that for
every x ∈ (c̃, h(δ)),

M−1
3 |x − c̃|1/(α++1) ≤ |h−1(x)| ≤ M3|x − c̃|1/(α++1), (5.7)

and for every x ∈ (h(−δ), c̃),

M−1
4 |x − c̃|1/(α−+1) ≤ |h−1(x)| ≤ M4|x − c̃|1/(α−+1). (5.8)

Then, by (5.5)–(5.8), we have that for every x ∈ (c̃, h(δ)),

1
M3|x − c̃|(α+)/(α++1)

≤ |f ′(x)| M3

|x − c̃|(α+)/(α++1)
,

and for every x ∈ (c̃, h(−δ)),

1
M4|x − c̃|(α−)/(α−+1)

≤ |f ′(x)| ≤ M4

|x − c̃|(α−)/(α−+1)
.

Thus, f has a Lorenz-like singularity at c̃.

6. Proof of Proposition 1.2
In this section, we will give the proof of Proposition 1.2. We will use the same notation as
in the previous sections.

First, take α := max{α+, α−}, where α+ and α− are given in Proposition 1.1. From
(1.8) and (1.9), we get that for every x ∈ (h(−δ), h(δ)) \ {c̃},

1
K|h−1(x)|α ≤ |f ′(x)|. (6.1)

Proof of Proposition 1.2. First we prove (i). Let 0 < δ̂ < δ be such that |f ′| > 1 on
(h(−δ̂), h(δ̂)) \ {c̃} (such δ̂ exists because c̃ is a Lorenz-like singularity). By Lemma 3.5,
we have that cS(k) −→ c, as k −→ ∞, then there exists k ≥ 2 so that Ik ⊂ (−δ̂, δ̂). Thus,
(6.1) holds on h(Ik) \ {c̃} and |f ′| > 1 on h(Ik) \ {c̃}. For n > k, put Ln := λS(n+1)|Dn|.
Recall that

log+ |f ′| := max{0, log |f ′|} and log− |f ′| := {0, − log |f ′|},
on I \ {c̃}. By Lemma 3.3, for every n > k, we have Jn ⊂ Ik and for every k < n < n′, we
have Jn ∩ Jn′ = ∅. So, because μ̃P ({c̃}) = 0,∫

log+ |f ′| dμ̃P ≥
∫

h(Ik)

log |f ′| dμ̃P ≥
∑
n>k

∫
h(Jn)

log |f ′| dμ̃P .

Recall that ϕ := ((1 + √
5)/2). Then for each n > k and x ∈ Jn, we have, by Lemma 3.3

and (6.1),

|f ′(h(x))| ≥ K−1 1
|Dn−1|α = K−1λαS(n)L−α

n−1. (6.2)
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By the above together with Lemma 4.1 and the fact that S(n) ≥ 1
3ϕn+2,∫

h(Jn)

log |f ′| dμ̃P ≥ μ̃P (h(Jn)) log
∣∣∣∣K−1λαS(n)L−α

n−1

∣∣∣∣
≥

(
1
ϕ

)n+1

[αS(n) log(λ) + α log(K1/αLn−1)
−1]

≥ ϕα

3
log(λ) + α

(
1
ϕ

)n+1

log(K1/αLn−1)
−1. (6.3)

By Lemma 3.5, (1/ϕ)n+1 log(K1/αLn−1)
−1 −→ 0 as n −→ ∞. We get that∫

log+ |f ′| dμ̃P = +∞. (6.4)

Now we prove (ii). Suppose by contradiction that∫
log− |f ′| dμ̃P < +∞. (6.5)

By the chain rule,

log |f ′(x)| = log(λ) + log |h′(T (h−1(x)))| − log |h′(h−1(x))|, (6.6)

on I \ {c̃}. Because h′ has a unique critical point, log |h′| is bounded away from the critical
point. In particular, log |h′| is bounded from above in all I. Then, − log |h′| is bounded
from below in I. In particular, because μ̃P ({c̃}) = 0, the integral∫

log |h′ ◦ h−1| dμ̃P

is defined. Because the only critical points of f are the points in f −1({c̃}), we have that
log |f ′| is bounded away from {c̃} ∪ f −1{c̃}. Let Ṽ ⊂ I \ {c̃} be a neighborhood of f −1{c̃}
such that log |f ′(x)| < 0 for x ∈ Ṽ , then by (6.5) and (6.6),

−∞ <

∫
Ṽ

log |f ′| dμ̃P = log(λ)μ̃P (Ṽ ) +
∫

Ṽ

(log |h′ ◦ T ◦ h−1| − log |h′ ◦ h−1|) dμ̃P .

Because h−1(Ṽ ) is a neighborhood of T −1(c), the function − log |h′ ◦ h−1| is bounded
on Ṽ . However, because

h−1 ◦ f (x) = T ◦ h−1(x) = c,

we have h′ ◦ T ◦ h−1(x) = 0 if x ∈ f −1(c̃). Thus, h′ ◦ T ◦ h−1(x) �= 0 for x ∈ I \ Ṽ .
Then log |h′ ◦ T ◦ h−1| is bounded in I \ Ṽ . So,∫

I\Ṽ
log |h′ ◦ T ◦ h−1| dμ̃P > −∞. (6.7)

Now,

−∞ <

∫
Ṽ

log |f ′| dμ̃P

≤
(

log(λ) + max
x∈Ṽ

{− log |h′ ◦ h−1(x)|}
)
μ̃P (Ṽ ) +

∫
Ṽ

(log |h′ ◦ T ◦ h−1|) dμ̃P .
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So, ∫
Ṽ

log |h′ ◦ T ◦ h−1| dμ̃P > −∞. (6.8)

Together with (6.7), this implies that∫
log |h′ ◦ T ◦ h−1| dμ̃P ,

is finite. Because the integral ∫
− log |h′ ◦ h−1| dμ̃P ,

is defined, we have∫
log |f ′| dμ̃P = log(λ) +

∫
log |h′ ◦ T ◦ h−1| dμ̃P +

∫
− log |h′ ◦ h−1| dμ̃P

= log(λ) +
∫

log |h′ ◦ h−1 ◦ f | dμ̃P +
∫

− log |h′ ◦ h−1| dμ̃P ,

and because μ̃P is f invariant, we get∫
log |f ′| dμ̃P = log(λ),

which contradicts (6.4). This contradiction completes the proof of part (ii).
Finally we prove (iii). By Proposition 1.1, f has a Lorenz-like singularity at c̃, then there

exist δ > 0, �+ > 0, �− > 0 and L > 0 such that (1.1) holds for every x ∈ (c̃, c̃ + δ) and
(1.2) holds for every x ∈ (c̃ − δ, c̃). Let � := max{�+, �−}, and choose 0 < δ̂ ≤ δ so that
log |f ′(x)| > 0 and dist(x, S(f )) = |x − c̃| for every x ∈ (c̃ − δ̂, c̃ + δ̂) \ {c̃}. Let m ≥ 2
be so that Im ⊂ (c̃ − δ̂, c̃ + δ̂). Then, for every x ∈ Im \ {c̃}, we have

log |f ′(x)| ≤ log(L) − � log(dist(x, S(f ))).

So, for every n ≥ m∫
h(Jn)

log |f ′| dμ̃P ≤ log(L)μ̃P (Jn) + �

∫
h(Jn)

| log |x − c̃|| dμ̃P (x).

By (6.3) and Lemma 3.5, we get that

+∞ =
∫

h(Im)

| log(dist(x, S(f )))| dμ̃P (x),

so log(dist(x, S(f ))) /∈ L1(μ̃P ). This concludes the proof of the proposition.

7. Proof of Proposition 1.3
In this section, we will prove Proposition 1.3. We will use the same notation as in the
previous sections. Recall that f ′ is not defined at c̃, so for x in I whose orbit contains c̃, the
derivative (f n)′ at x does not exist for large n.

Let α+ and α− be the right and left critical orders of 0 as the critical point of h, and let
α := max{α+, α−}. Let M > 0 be as in (5.1) and (5.2). Fix k > 2 big enough so that (6.1)
holds on h(Ik), and (5.1) and (5.2) hold on Ik .
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For every x ∈ I such that c̃ /∈ Of (x), we put

χ+
f (x) := lim sup

n→∞
1
n

log |(f n)′(x)|, (7.1)

and

χ−
f (x) := lim inf

n→∞
1
n

log |(f n)′(x)|. (7.2)

For every x ∈ h(Ik), we put x̂ := h−1(x) ∈ Ik . The proof of Proposition 1.3 is given
after the following lemma.

LEMMA 7.1. For every x̂ ∈ Ik ∩ OT (c), there exists an increasing sequence of positive
integers {ni}i≥1 such that

T ni (x̂) ∈ Ik+i and T m(x̂) /∈ Ik+i+1,

for all i ≥ 1 and all ni + 1 ≤ m < ni+1. Moreover,

S(k + i) − S(k) ≤ ni ≤ S(k + i + 2) − S(k + 2), (7.3)

for all i > 1.

Proof. We will prove the lemma by induction. Let x̂ ∈ Ik ∩ OT (c). Recall that for any
integer k′ ≥ 1, we have that

Ik′ , I 1
k′ , . . . I

S(k′−1)−1
k′ , Jk′ , J 1

k′ , . . . , J
S(k′−2)−1
k′

are pairwise disjoint. Now, by (3.7),

x̂ ∈ Ik+1 or x̂ ∈ Jk+1.

If x̂ ∈ Jk+1, for every 1 ≤ m < S(k − 1),

T m(x̂) ∈ Jm
k+1,

and thus

T m(x̂) /∈ Ik+1

and

T S(k−1)(x̂) ∈ Ik+1.

In this case, n1 = S(k − 1) satisfies the desired properties. If x̂ ∈ Ik+1, for every 1 ≤ m <

S(k),

T m(x̂) ∈ Im
k+1,

and thus

T m(x̂) /∈ Ik+1,

and

T S(k)(x̂) ∈ Ik+1 or T S(k)(x̂) ∈ Jk+1.
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In the former case, n1 = S(k) satisfies the desired properties. In the latter case, we have
that for 1 ≤ m < S(k) + S(k − 1) = S(k + 1),

T m(x̂) /∈ Ik+1

and

T S(k+1)(x̂) ∈ Ik+1.

So n1 = S(k + 1) satisfies the desired properties. So we have

S(k − 1) ≤ n1 ≤ S(k + 1).

Now suppose that for some i ≥ 1, there is ni satisfying the conclusions of the lemma.
Thus,

T ni (x̂) ∈ Ik+i

and

S(k + i) − S(k) ≤ ni ≤ S(k + i + 2) − S(k + 2).

By (3.7),

T ni (x̂) ∈ Ik+i+1 or T ni (x̂) ∈ Jk+i+1.

If T ni (x̂) ∈ Jk+i+1, for every 1 ≤ m < S(k + i − 1),

T m+ni (x̂) ∈ Jm
k+i+1,

and thus,

T m+ni (x̂) /∈ Ik+i+1

and

T S(k+i−1)+ni (x̂) ∈ Ik+i+1.

In this case, ni+1 = S(k + i − 1) + ni satisfies the desired properties. If T ni (x̂) ∈ Ik+i+1,
for every 1 ≤ m < S(k + i),

T m+ni (x̂) ∈ Im
k+i+1,

and thus,

T m+ni (x̂) /∈ Ik+i+1,

and

T S(k+i)+ni (x̂) ∈ Ik+i+1 or T S(k+i)+ni (x̂) ∈ Jk+i+1.

In the former case, ni+1 = S(k + i) + ni satisfies the desired properties. In the latter case,
we have that for 1 ≤ m < S(k + i) + S(k + i − 1) = S(k + i + 1),

T m+ni (x̂) /∈ Ik+i+1

and

T S(k+i+1)+ni (x̂) ∈ Ik+i+1.
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So ni+1 = S(k + i + 1) + ni satisfies the desired properties. So we have

S(k + i − 1) ≤ nni+1 ≤ S(k + i + 1) + ni .

Because ni satisfies (7.3),

S(k + i + 1) − S(k) ≤ ni+1 ≤ S(k + i + 3) − S(k + 2).

This concludes the proof of the lemma.

Proof of Proposition 1.3. Let x ∈ Of (c̃), with c̃ /∈ Of (x). Then, x̂ = h−1(x) ∈ OT (c) and
c /∈ OT (x̂). By the chain rule, we have that for every n ≥ 1,

(f n)′(x) =
n−1∏
i=0

λ
h′(T (T i(x̂)))

h′(T i(x̂))
= λn h′(T n(x̂))

h′(x̂)
. (7.4)

Then,

1
n

log |(f n)′(x)| = log λ + 1
n

log |h′(T n(x̂))| − 1
n

log |h′(x̂)|, (7.5)

for every n ≥ 1. So, using (7.1) and (7.2), we get

χ+
f (x) = log λ + lim sup

n→∞
1
n

log |h′(T n(x̂))|, (7.6)

and

χ−
f (x) = log λ + lim inf

n→∞
1
n

log |h′(T n(x̂))|. (7.7)

Now, because x̂ ∈ OT (c), we have that x̂ belongs to one of the following sets:

Ik , I 1
k , . . . , I

S(k−1)−1
k , Jk , . . . , J

S(k−2)−1
k .

So there exists 0 ≤ lk(x) < S(k) such that T lk(x)(x̂) ∈ Ik . Let {ni}i≥1 be as in Lemma 7.1
for T lk(x)(x). Note that for every i ≥ 1,

T ni+lk(x)+1(x̂) ∈ I 1
k+i ⊂ [cS(k)+1, c1].

Then by (5.3) and (7.6), we have that

log λ ≤ χ+
f (x).

Now by (7.3), we have that

1
S(k + i + 2)

≤ 1
ni

. (7.8)

Also, because for every i ≥ 1,

T ni+lk(x)(x̂) ∈ Ik+i ,

by (2.2) and (3.1), we get

|T ni+lk(x)(x̂)| ≤ |cS(k+i)| = |Dk+i |. (7.9)
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By (6.1), we have

1
λK|T ni+lk(x)(x̂)|α ≤ |h′(T ni+lk(x)+1(x̂))|

|h′(T ni+lk(x)(x̂))| . (7.10)

Combining (5.3), (7.9), and (7.10), we get

|h′(T ni+lk(x)(x̂))| ≤ λKW2|Dk+i |α . (7.11)

Because |Dk+i | −→ 0 as i −→ ∞, there exists i′ ≥ 1 such that for every i ≥ i′,

|Dk+i | <

(
1

λKW2

)1/α

.

Then for every i ≥ i′, from (7.11), we get

log |h′(T ni+lk(x)(x̂))| ≤ log(λKW2|Dk+i |α) < 0.

By the above and (7.8),

1
ni

log |h′(T ni+lk(x)(x̂))| ≤ 1
S(k + i + 2)

log(λKW2|Dk+i |α).

Taking the limit as i −→ ∞,

lim
i→∞

1
ni

log |h′(T ni+lk(x)(x̂))| ≤ lim
i→∞

1
S(k + i + 2)

log |Dk+i |α .

Using Lemma 3.5,

lim
i→∞

1
S(k + i + 2)

log |Dk+i |α = lim
i→∞

1
S(k + i + 2)

log λ−αS(k+i+1)

= −α log λ lim
i→∞

S(k + i + 1)

S(k + i + 2)

= −α

ϕ
log λ.

Then by (7.7),

χ−
f (x) ≤

(
1 − α

ϕ

)
log λ < log λ.

This concludes the proof of the proposition.

8. Proof of Proposition 1.4
In this section, we will give the proof of Proposition 1.4. We will use the same notation as
in the previous sections.

For every k ≥ 1, put

D+
k := (|cS(k)|, c) and D−

k := (−|cS(k)|, c)

A+
k := D+

k \ D+
k+1 and A−

k := D−
k \ D−

k+1.

Observe that

|A+
k | = |Dk| − |Dk+1| = |A−

k |. (8.1)
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LEMMA 8.1. There exist α′′+, α′′−, α′+, α′−, K, and Q positive real numbers such that

λ−S(k)α′′+Q−1 ≤ |h(A+
k )| ≤ λ−S(k)α′+Q, (8.2)

and

λ−S(k)α′′−Q−1 ≤ |h(A−
k )| ≤ λ−S(k)α′−Q, (8.3)

for every k ≥ K .

Proof. By Lemma 3.5, there exists β > 0 such that

lim
n→∞ λS(k+1)|Dk| = β.

Let ε > 0 be small enough so that (β − ε)/(β + ε) ≥ 1/2. Let M > 0 be as in (5.1) and
(5.2). Fix K > 0 big enough so that for every k ≥ K , (5.1), (5.2) hold on Ak , and the
following holds:

λ−S(k+1)(β − ε) ≤ |Dk| ≤ λ−S(k+1)(β + ε), (8.4)

λ−S(k) ≤ 1
4 , (8.5)

and
S(k + 1)

S(k)
< ϕ + ε. (8.6)

By (8.4) with k replaced by k + 1, we get

λS(k+2) 1
β + ε

≤ 1
|Dk+1| ≤ λS(k+2) 1

β − ε
. (8.7)

Combining (8.4) and (8.7), we get

λS(k) β − ε

β + ε
≤ |Dk|

|Dk+1| ≤ λS(k) β + ε

β − ε
. (8.8)

For k ≥ K , using the mean value theorem on the function h : A+
k −→ h(A+

k ), there exists
γ + ∈ A+

k such that

|h(A+
k )|

|A+
k | = |h′(γ +)|. (8.9)

Let α+ be the right order of 0 as a critical point of h. By (5.1), we have

e−M |γ +|α+ ≤ |h′(γ +)| ≤ eM |γ +|α+
. (8.10)

Because γ + ∈ A+
k , we have that

|Dk+1| ≤ |γ +| ≤ |Dk|.
Then, by (8.4), (8.5), (8.9), and (8.10), we have that

e−M |Dk+1|α++1
( |Dk|

|Dk+1| − 1
)

≤ |h(A+
k )| ≤ eM |Dk|α++1

(
1 − |Dk+1|

|Dk|
)

. (8.11)
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Using (8.8) in (8.11), we obtain

e−M(β − ε)α
++1λ−S(k+2)(α++1)

(
λS(k) β − ε

β + ε
− 1

)
≤ |h(A+

k )| ≤

eM(β + ε)α
++1λ−S(k+1)(α++1)

(
1 − λ−S(k) β − ε

β + ε

)
. (8.12)

Put

Q1 := e−M

(
β

3

)α++1 1
4

and Q2 := eM2β.

By (8.5) and because (β − ε)/(β + ε) ≥ 1/2, we have that

Q1 ≤ e−M(β − ε)α
++1

(
β − ε

β + ε
− λ−S(k)

)
,

and

eM(β + ε)α
++1

(
1 − λ−S(k) β − ε

β + ε

)
≤ Q2,

for every k ≥ K . Then,

λ−S(k+2)(α++1)λS(k)Q1 ≤ |h(A+
k )| ≤ λ−S(k+1)(α++1)Q2. (8.13)

Finally, put

α′+ := α+ + 1 and α′′+ := (ϕ + ε)2(α+ + 1) − 1.

Because S(k) = S(k + 2) − S(k − 1), by (8.6), we have

−S(k + 2)(α+ + 1) + S(k) = −S(k)

(
S(k + 2)

S(k)
(α+ + 1) − 1

)
≥ −S(k)α′′+.

Then, taking Q := max{Q−1
1 , Q2}, we have

λ−S(k)α′′+Q−1 ≤ |h(A+
k )| ≤ λS(k)α′+Q.

In the same way, we can prove (8.3).

Proof of Proposition 1.4. Let α′′+, α′′−, α′+, α′−, K, and Q, be as in Lemma 8.1. By (8.1), we
have that

n∑
m=0

|h(A+
k+m)| = |h(D+

k )| − |h(D+
k+n+1)|, (8.14)

for every n ≥ 0. Then by (8.2) and (8.14), we get

Q−1
n∑

m=0

λ−S(k+m)α′′+ ≤ |h(D+
k )| − |h(D+

k+n+1)| ≤ Q

n∑
m=0

λ−S(k+m)α′+ , (8.15)
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for every n ≥ 0. Now, for m ≥ 0, we have that

S(k + m) = S(k) +
m−1∑
j=0

S(k + j − 1). (8.16)

Put

Fk+m :=
m−1∑
j=0

S(k + j − 1), and σ ′(k) := 1 +
∞∑
i=0

λ−α′+Fk+i .

Then, combining (8.15) and (8.16), we obtain

λ−S(k)α′′+Q−1 ≤ |h(D+
k )| − |h(D+

k+n+1)| ≤ λ−S(k)α′+Qσ ′(k). (8.17)

If we put

	 := Q

(
1 +

∞∑
i=0

λ−α′′+S(i)

)
,

then for every k ≥ K and every m ≥ 0, we have

Qσ ′(k) ≤ 	, and 	−1 ≤ Q−1.

Then

λ−S(k)α′′+	−1 ≤ |h(D+
k )| − |h(D+

k+n+1)| ≤ λ−S(k)α′+	. (8.18)

Because |Dk+n+1| −→ 0 as n −→ ∞, and h is continuous, taking the limit in (8.18) as
n −→ ∞, we obtain

λ−S(k)α′′+	−1 ≤ |h(D+
k )| ≤ λ−S(k)α′+	. (8.19)

In the same way, we can prove that

λ−S(k)α′′−	−1 ≤ |h(D−
k )| ≤ λ−S(k)α′−	. (8.20)

Finally, put α′′ := max{α′′−, α′′+} and α′ := min{α′−, α′+}. For any k ≥ K , we have that

|f S(k)(c̃) − c̃| = |h(D+
k )| or |f S(k)(c̃) − c̃| = |h(D−

k )|.
In any case, by (8.19) and (8.20), the result follows.
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