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SUMMARY

This paper demonstrates that a simple stochastic model can capture the features of an epidemic

of equine influenza in unvaccinated horses. When the model is modified to consider vaccinated

horses, we find that vaccination dramatically reduces the incidence and size of epidemics.

Although occasional larger outbreaks can still occur, these are exceptional. We then look at

the effects of vaccination on a yard of horses, and in particular at the relationship between pre-

challenge antibody level and quantity of virus shed when challenged with the virus. While on

average, a high antibody level implies that less virus will be shed during the infectious period,

we identify a high degree of heterogeneity in the response of horses with similar pre-challenge

antibody levels. We develop a modified model that incorporates some heterogeneity in levels of

infectivity, and compare this with the simpler model.

INTRODUCTION

Equine influenza virus causes a serious clinical disease

of equidae with a nearly worldwide distribution. The

disease is common in most countries apart from

Australia, New Zealand, Iceland and Japan, which

enforce strict quarantine on incoming animals [1].

Clinical signs in fully susceptible horses infected

with equine influenza virus include a high temperature

and depression, a harsh cough and a serous and

subsequently muco-purulent nasal discharge. These

signs usually become evident between 1 and 2 days

post infection and can last several days. If they are

rested, recovery in most animals is uneventful and

occurs within 2 weeks of the infection (see [1, 2]).

Equine influenza is highly contagious, and serious

epidemics have been reported. These epidemics occur

particularly in unvaccinated populations, but also

sometimes in fully vaccinated populations. In most

* Author for correspondence: Department of Zoology, University
of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.

outbreaks, mortality tends to be extremely low,

although morbidity is high.

Equine influenza viruses belong to the family

orthomyxoviridae. All viruses isolated from horses to

date have been type A and there are two recognized

subtypes referred to as A}equine 1 (H7N7) and

A}equine 2 (H3N8). Although all reported outbreaks

since 1980 have been subtype 2 [3], there has been

some serological evidence of subtype 1 circulating in

Eastern Europe [4]. The prototype for A}equine 2 was

isolated from a major pandemic, which started in

Miami in 1963 (see [5, 6]) and then spread over North

America throughout 1963 [7] and through Europe

during 1965 [2].

Antigenic drift and shift

Equine influenza viruses are similar to other mam-

malian influenza viruses in that they undergo con-

tinuous genetic and antigenic drift, which improves

the ability of the viruses to transmit in semi-immune
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populations and reduces vaccine efficacy [3, 8]. Both

sub-types of virus are thought to be able to persist in

equine populations, and do not require wildlife or

other reservoirs. Detailed experimental and epidemio-

logical studies have demonstrated that antigenic drift

in the A}equine 2 strain has, progressively, had a

substantial impact on vaccine efficacy [8].

As in man, completely new strains of virus do

appear sporadically, derived from recombination or

adaptation of avian or other influenza viruses to the

new mammalian host. This sudden appearance of a

new strain of the virus is termed antigenic shift. The

A}equine 2 virus was thought to have thus appeared

in 1963. In March 1989, an equine influenza epidemic

occurred in China, with morbidity of 81% and

mortality of up to 20% in some herds [9]. Although

the virus was identified as being of the same surface

antigenic types (H3N8) as the Miami virus, it was

found to be antigenically distinct from other equine

viruses and molecular analysis suggested that it was of

avian origin [9]. This avian derived virus does not

appear to have persisted in the horse population since

1990 [3].

Vaccination

An ideal vaccine will prevent both clinical disease and

transmission of infection over long periods of time

after vaccination. An important feature of current

equine influenza vaccines is that the protection they

afford diminishes with time, and horses must be

repeatedly vaccinated to maintain the required level of

protection [1, 10]. Horses with levels of immunity that

have declined so that they are insufficient to protect

against infection, will frequently still be protected

against severe clinical disease. If such horses do

become infected, they will experience a reduced

infectious period and shed less virus than a naive

animal [10, 11]. These effects occur against a back-

ground of antigenic drift of virus away from vaccine

strains. Experimental studies have demonstrated that

drift has a greater impact on failure to prevent

transmission than on clinical protection [8]. Thus,

commercially available equine influenza vaccines have

achieved greater success in preventing clinical signs of

disease than in preventing transmission. Despite being

moderated, many vaccines have failed even to prevent

clinical signs during outbreaks [8, 12, 13]. A sub-

stantial proportion of horses are sub-clinically affected

during outbreaks in vaccinated populations, this being

as much as 50% in one outbreak [2].

As an alternative to challenging vaccinated horses

with the influenza virus, vaccines can be tested by

measuring the levels of antibody to the virus that they

induce in vaccinated horses. A clear relationship has

been demonstrated between the level of antibody

measured by single radial haemolysis (SRH), and the

degree of protection against experimental [11, 14, 15]

and field [16, J. A. Mumford and D. M. Jesset, data

on file] infection. There have been a number of studies

that have attempted to identify the level of antibody

(as measured by SRH) that corresponds to protection

from infection (see [11, 14, 15, 17]) with results

ranging from 65 mm# [17] to 154 mm# [11], depending

on the challenge route and dose used. Unfortunately,

not all horses react in the same way to the vaccines,

with some ‘poor responders ’ showing low levels of

antibody after vaccination [1]. In general, a yard of

horses that have been identically vaccinated will

manifest a range of antibody levels when measured by

SRH.

This is the first in a series of papers in which we aim

to capture the spatio temporal dynamics of epidemics

of equine influenza. The following questions need to

be addressed.

1. What effect does vaccination have on the immunity

of horses to infection, and what implications does

this have for a yard of horses?

2. What are the characteristics of a vaccine that will

imply that it has a high probability of preventing

large-scale outbreaks of EI?

3. How does a horse’s immunity change with time

from the last vaccination, and how is this affected

by antigenic drift?

4. How does the size and physical structure of the

yard (that is, the number and distribution of barns

or stables) influence the risk of an epidemic?

5. What effect does the age structure of a yard (that is,

the number of horses of different ages) have on the

probability of epidemics?

We explore these issues using mathematical models of

epidemic spread and its control by vaccination.

Mathematical models have a long history in the

study of epidemics, particularly in human health

[18–20], but also more recently in diseases of domesti-

cated animals and wildlife [21]. Deterministic models

[19] can be used to describe epidemics in a large

population, but in small systems, such as a yard of

horses, stochastic models [22, 23] should be used to

take account of the effects of demographic stochas-

ticity. A number of models have been constructed for

describing influenza in humans (for example [24]),
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Fig. 1. The transitions between categories in the model of equine influenza in a homogenous population, where 1}a is the

latent period for the disease, 1}g is the infectious period, and β is the transmission parameter.

many of which take into account the effects of co-

circulating strains [25]. All cases of equine influenza

recorded since 1980 have been of the same subtype,

and while there is evidence both of antigenic shift [9]

and of antigenic drift [8], this is not as extreme as that

seen in human influenza viruses. In this paper, we

refine the basic SEIR model for microparasitic

infection [19], assuming that the horse population is

being infected by a single strain of equine influenza.

Although different strains of virus have been isolated

from single outbreaks on occasion, these are most

unusual.

In this paper, we focus on questions 1 and 2, above,

and briefly consider 4. We begin by developing and

testing a basic framework for within-yard trans-

mission.

We demonstrate that a simple (stochastic) SEIR

model can capture the features of an epidemic of

equine influenza, and then consider the case where the

yard of horses has been vaccinated using a partially

effective vaccine. A simple homogeneous vaccination

model is constructed, assuming that all horses react in

the same way to the vaccine.

Rather than consisting of identical individuals, a

vaccinated population generally contains horses with

different levels of antibody to the influenza virus and

circulating antibody levels induced by conventional

vaccines correlate with protection [17]. The hetero-

geneities present in a data set of experimentally

infected ponies are examined, and a model of equine

influenza that incorporates some of this heterogeneity

is derived. Finally, we compare simulations of the

homogeneous and heterogeneous models of a vacci-

nated population, and discuss the implications for

vaccination programmes and future modelling of

equine influenza.

METHODS

Model of equine influenza

A stochastic SEIR model [26] is used to simulate a

single epidemic of equine influenza [EI] in a yard of

horses. We assume that there is only one strain of

influenza circulating at any time and thus a fixed

population of size N is divided into four categories :

those susceptible to the disease, those exposed to the

disease, those infected, and those recovered from

infection. As the period considered is the length of a

single epidemic, the horses in the recovered class are

assumed to be completely immune. Figure 1 describes

the transitions between categories in the model, where

1}a is the latent period for the disease, 1}g is the

infectious period, and β is the transmission parameter.

Following de Jong et al. [27], we assume a true mass-

action transmission term. This model allows us to

investigate the variability in epidemics for fixed

parameters, but does not model variation attributable

to uncertainty in these parameters.

Table 1 gives the transition rates and probabilities

for the model. Following [26], the next event to occur

is selected according to these probabilities, and the

time to the event is an exponentially distributed

random variable with mean 1}P. The deterministic

analogue of these equations is given in the Appendix.

The basic reproduction ratio [19], R
!
, is a key

parameter that represents the expected number of

secondary cases caused by a single infective in a

wholly susceptible population. The equation for R
!

for this model can be calculated to be

R
!
¯

β

g
.

In this model, if R
!
¯ 1, the probability of a single

primary case causing any secondary cases in a fully

susceptible population is approximately "

#
, and if

R
!
! 1, we would expect the disease to die out more

often than not.

Data set for unvaccinated horses

The above model is fitted to data from an epidemic

that occurred at a racetrack in New York State in

1963 [6]. The epidemic of A}equine 2 that passed

through the United States in this year is believed to be

the first contact that these horses had had with this

subtype of the virus, and thus it is reasonable to model

the outbreak as beginning with one infected horse in

a group of susceptibles.

Figure 2(a) reproduces the observed epidemic curve

given in [6]. The graph shows the number of new

clinical cases diagnosed on each day. Assuming that
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Table 1. Transition rates and probabilities for the

homogeneous model represented in Figure 1

Transition

rate

Transition

probability

S!E
βSI

N

βSI

NP

E! I aE
aE

P

I!R gI
gI

P

Sum P¯
βSI

N
­aE­gI 1

the gap between onset of infectivity and onset of

symptoms is constant, this graph should be identical

to that giving the number of new infectives per day

(subject to a horizontal shift of 1 or 2 days), and thus

can be compared to output from our model in order

to fit the parameters in the model.

Once the parameters have been estimated, the

model is validated on an independent data set from

another racetrack in New York in the same year [6].

The data set gives the ‘scratches ’ or number of horses

out of a group of 600 that failed to race per day over

a 37-day period.

Estimating parameters for an unvaccinated population

In order to use the stochastic SEIR model to simulate

epidemics of EI, the values of the parameters a, g and

β must be estimated. Both a and g can be readily

estimated from experimental data measuring the

quantity of virus shed after exposure to the virus, as

1}a is the average latent period between contact with

infection and the onset of infectivity and 1}g is the

average infectious period [19].

Estimating the parameter β is more difficult, as it

does not represent an easily measured biological

feature of EI, but rather is a combination of the

infectivity of the disease and the contact rate between

horses. Standard estimates of β based on serology

(such as in [28]) cannot be used since EI is not endemic

at the yard level. Instead, we estimate β by comparing

observed and expected epidemic curves.

A complication arises in reconciling the size of the

recorded epidemic with the epidemic size predicted by

the model. The data set records 275 cases among 450

horses. In order to reproduce this level of morbidity
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Fig. 2. (a) The number of new cases per day in an outbreak

of EI at a racetrack in New York in 1963, reproduced from

[6]. (b) Sum of squares of the difference between the

epidemic curve in an (a) and the average epidemic curve

from the model for a range of β values. (c) The average

epidemic curve from the model with estimated value

β¯ 1.85 super-imposed over the data. (d) The curve

produced by the deterministic equations, with the stochastic

average shown as a dashed line for comparison. (e), (f )

Example realizations from the model with β¯ 1.85.

for realistic values of a and g, the model would require

the value of β to be in the order of 0±3. However, for

low values of β such as this, realizations of the model

are highly stochastic and many outbreaks last for over

100 days. For values of β large enough to produce a

genuine epidemic, similar to that seen in the data, the

model predicts that outbreaks of influenza that take

off will result in between 85% and 100% morbidity.

We reconcile this discrepancy by assuming that not all

cases of influenza are reported, and scale down the

output of our model (with a population of 450) to give

an epidemic size of 275 cases. This under-reporting

assumption is not unrealistic – as commented in [6] :

‘… there was considerable reluctance by some officials to

recognise or make known the fact that the horses quartered

https://doi.org/10.1017/S0950268802006829 Published online by Cambridge University Press

https://doi.org/10.1017/S0950268802006829


495Modelling equine influenza

at their tracks were experiencing an outbreak of the disease.

These factors tended to minimize the severity of the recorded

epidemic. ’

Since the model is stochastic, the size and shape of

realizations vary, and we use average curves to fit β.

Even for relatively high transmission rates there is a

non-zero probability that the index case will not lead

to an epidemic [22]. We identify these realizations as

those where fewer than five horses became infected.

We performed 100000 realizations for given values of

the parameters, and then averaged and scaled the

output of realizations where more than five horses

become infected to give a smooth epidemic curve with

the correct epidemic size. We then compared our data

set to the average curves for a range of values of β,

taking our estimate of β to be the value for which the

sum of squares of the difference between the observed

data and the simulated epidemic was minimal. Other

objective functions (for example log least squares)

give similar results to those reported here.

Homogeneous model of EI in a vaccinated population

After a yard of horses has been vaccinated, the

effective reproductive rate, R*

!
is given by R*

!
¯

R
!
(S}N ), where S is the number of susceptible horses

in the population [19, 27]. Given a vaccine that entirely

prevents infection, N(1®(1}R
!
)) of the population

would need to be immunized to reduce R*

!
to 1.

Vaccinating all the horses within a yard is not an

unreasonable aim. Of course, if the vaccine was ideal,

this would be sufficient to prevent any of the horses in

the yard from becoming infected. It is more likely,

however, that the vaccine will not prevent infection in

all vaccinated animals, but will reduce the average

infectivity and infectious period of the vaccinated

horses that do become infected.

One method for determining the effects of partially

effective vaccines such as these is to calculate the

efficacy of the vaccine and then compute from this the

critical vaccine coverage required to reduce R*

!
to 1. A

good example of this approach in estimating the

probability of eradicating HIV in San Francisco is

given in [29].

An alternative approach is to calculate values of the

parameters in the SEIR model such that they are

consistent with a population where all horses have

been vaccinated, but are susceptible to infection at a

reduced level. Epidemic sizes can then be estimated

from simulations of the model with these modified

parameter values, a
V
, g

V
and β

V
. We will refer to the

model as the homogeneous vaccination model, as it

assumes that all horses react in the same way to the

vaccine.

Estimating parameters for the homogeneous

vaccination model

We estimate the parameters in the homogeneous

vaccination model using a data set (J. A. Mumford

and D. M. Jesset, ‘Three experimental studies of

efficacy of conventional equine influenza vaccines ’,

data on file) compiled for 88 ponies (28 controls and

60 vaccinates) giving the pre-challenge antibody level

(measured by SRH) and virus titres measured on each

of 7 days for every pony. We would expect the

transmission parameter, β to depend on the similarity

of challenge and vaccine strains. To better model the

situation in the field, where challenge virus is never

identical to vaccine strain, we included trials where

vaccine and challenge strains differed. Further work

will consider more explicitly the effect of strain

variation.

As titre is measured on a logarithmic scale, the total

measured titre of virus excreted by a given pony is

calculated as follows:

Total titre¯ log
"!

(10t
"­10t

#­10t
$­10t

%

­10t
&­10t

'­10t
(®6),

where t
"
,…, t

(
are the titres of virus detected on each

day. We assume that this sum of measured titre is

proportional to the total quantity of virus shed by the

horses over the period of 7 days. We subtract 6 from

the sum of terms within the logarithm to ensure that

a pony for which no virus was detected is calculated to

have a total of zero, and so that a pony with only one

day of detected virus will have a total equal to the titre

on that day. Similarly, in calculating average total

titre over a group of M ponies we have

Average titre

¯ log
"!

E

F

10T
"­10T

#­I­10TM®M­1

M

G

H

where T
i
is the total titre of pony i.

The values of the parameters a
V

and g
V

can be

estimated directly from the data. We assume that the

reproduction ratio, R
!
¯β}g is proportional to the

average titre excreted by the horses, and estimate β
V

by comparing the average titre excreted by the
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vaccinated horses with the average excreted by the

controls (whose transmission parameter, β, is known).

That is,

β
V
¯ g

V

β

g

(average titre of vaccinates)

(average titre of controls)
.

RESULTS

Fitting the unvaccinated model

The latent and infectious periods of equine influenza

are easily derived from experimental data. Following

[30] the parameters are set at 1}a¯ 1±25 days and

1}g¯ 5±5 days. These figures agree with those calcu-

lated for naive unvaccinated control ponies in [11].

The parameter β is calculated using data in [6]. In

Figure 2(b) we show the curve giving the sum of

squares of the difference between the observed time

series and the average epidemic curve of the model,

for β in the range 1±0 to 2±5. The curve suggests that

the optimal β is 1±85. Using the asymptotic properties

of the likelihood ratio, the 95% confidence boundary

for the sum of squares is calculated to be 751 which

implies a confidence interval for β of 1±74%β% 1±98.

In Figure 2(c) the epidemic curve corresponding to

β¯ 1±85 is superimposed on the data. This epidemic

curve, which is the averaged and scaled output of a

stochastic model, gives a better fit to the data for these

parameter values than the deterministic analogue (see

Fig. 2(d) for a comparison), which gives a more

pronounced epidemic peak. For comparison, the

transmission parameter of the deterministic model is

estimated to be 1±6 by least squares. The stochastic

model is, however, more appropriate for describing

epidemics in small communities, such as those

discussed here.

Figures 2(e) and (f) give example (scaled) realiz-

ations for the stochastic model with β¯ 1±85, g¯
0±1818 and a¯ 0±8. As our method of estimating β is

somewhat simplistic, we tested the bias and precision

of the estimator by performing a similar estimation of

β for epidemic realizations of the model with β set to

its estimated value of 1±85. We repeated this for each

realization where the disease took off over 5000

simulations, and then calculated the mean and

standard deviation of the re-estimated values of β.

The mean of these estimations was 1±91 and the

standard deviation 0±34 suggesting that the estimator

tends to slightly overestimate β. For comparison, we

re-estimated β from the data by minimizing the sum of
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Fig. 3. Figure shows ‘scratches ’ at a racetrack in New

York in 1963 (see [6]) and the epidemic curve obtained for

the racetrack using the estimate value, β¯ 1.85. The curves

corresponding to either side of the 95% confidence interval

are also shown.

square of the difference between the data and the

simulations after they had been log transformed. We

again estimated β to be 1±85. However tests showed

this estimator to be more highly biased with an

identical test to the one above having mean 1±99 and

standard deviation 0±34.

The estimated value of β implies that R
!
¯ 10±18;

that is, an infected horse in a susceptible population

should, on average, infect 10±18 other horses. Trans-

lating the confidence interval for β gives a 95%

confidence interval for R
!

of 9±57%R
!
% 10±89.

Validation of the model

The model is validated using a second (independent)

data set from the same New York epidemic. The data

set gives the ‘scratches ’ (horses that did not race) at a

race-course for weekdays and Saturdays. The model is

simulated with the parameters estimated above, and

N¯ 600, and is then scaled to give an epidemic size (on

non Sundays) of 180. Figure 3(b) gives the epidemic

curve superimposed on the data for this racetrack,

showing a good overall fit to the data. For com-

parison, Figure 3(a) and (c) gives the curves cor-

responding to the values of β at either side of the

confidence interval (that is, β¯ 1±74 and β¯ 1±98).

Fitting the homogeneous model of vaccinated horses

No horses with pre-challenge antibody level above

180 mm# (measured by SRH) excreted any virus when
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Fig. 4. Results of 50000 realizations of the homogenous

model of vaccinated horses for a population size of 100, and

parameter values 1}g�¯ 1.5 days and β�¯ 0.47. Figure (a)

gives the distribution of epidemic sizes using a logarithmic

scale. (b) gives the averaged epidemic curve over the

epidemics that infected more than five individuals, and (c)

and (d) are example realizations from the trials.

challenged (J. A. Mumford and D. M. Jesset, data on

file), so for comparison with the heterogeneous model

discussed later, we have omitted these animals in

estimating parameters for our homogeneous model

of partially vaccinated horses. We set a
V
¯ a and

estimate 1}g
V
¯ 1±5 and β

V
¯ 0±47, giving an R

!
of

0±72. This represents a big reduction from the

unvaccinated horses.

Experimental simulations of the homogeneous

vaccination model

Figure 4(a) shows the distribution of epidemic sizes

after 50000 realizations of the SEIR model with the

above parameter values, setting the population size to

be 100. Figure 4(b) shows the epidemic curve averaged

over those realizations where more than five horses

became infected, and Figure 4(c) and (d) gives example

realizations from the simulations. As we would expect

for a model with R
!
less than 1, the simulations show

much more stochasticity, with a relatively low prob-

ability of a large epidemic occurring.

Comparison of different yard sizes

Repeating the above simulations with identical par-

ameter values, but setting N to each of the values 20,

50 and 200, we find that for this low value of R
!
, yard

size has little effect on the epidemic size.

Analysis of homogeneity assumption

The previous model assumes that all horses react

identically to vaccination. We test the validity of this

assumption using experimental infection data (J. A.

Mumford and D. M. Jesset, data on file). Figure 5

gives a bar chart showing the total titre excreted

against pre-challenge antibody level for all vaccinated

ponies in this data set. Gaps in the chart correspond

to ponies that excreted no measurable virus on any of

the 7 days.

The average total titre excreted by the control

ponies of 4±52 which is significantly more than that

excreted by the vaccinates. The total titre excreted by

an infected pony does, on average, decrease with

increasing pre-challenge antibody level. However, it is

important to note the high level of heterogeneity in

the total titre excreted by ponies of similar pre-

challenge antibody level. It is clear from Figure 5 that

ponies with high pre-challenge antibody can still

excrete a high titre of virus, although they are less

likely to do so.

The most distinctive change that occurs with

increasing pre-challenge antibody is an increase in the

number of ponies that excreted little or no virus. For

each antibody level of 0, 20, … , 200, the 20 ponies

with pre-challenge antibody closest to this are found,

and we calculate the percentage of these with a low

total titre (in this case, titre ! 1±2). A plot of this is

given in Figure 6, confirming that the percentage

increases as the pre-challenge antibody level increases.

If we exclude the ponies with titre less than 1±2 from

the calculation, the total titre of ponies with pre-

challenge antibody level between 1 mm# and 80 mm# is

not significantly different from the total titre of ponies

with prechallenge between 80 mm# and 180 mm# (P¯
0±68, t test).
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challenge antibody closest to this value are considered. The

plot shows the percentage of these ponies with an total sum

of titre less than 1.2.

A heterogeneous model of vaccinated horses

To incorporate the heterogeneities found in the above

analysis, the horse population is divided into three

groups:

(1) S
"
: horses with low pre-challenge antibody level

(for example: 1–80 mm# as measured by SRH);

(2) S
#
: horses with medium pre-challenge antibody

level (for example: 80–180 mm#, as measured by

SRH);

(3) R : horses with high pre-challenge antibody level

that are considered to be immune,

where we assume that all antibody results from

vaccination, and do not take into account past

infection. Figure 7 shows the transitions between

categories in this new model with new parameters β!
V
,

g!
V

and f. We assume that the latent period, 1}a is

unchanged.

The initial state of the model is determined by the

distribution of horses in the three states S
"
, S

#
and R.

Horses in set S
#
that are exposed to infection, undergo

infection as horses in group S
"
with probability f, and

pass straight to group R with probability (1®f ),

where 0! f! 1. This latter case corresponds to the

‘ low titre ’ ponies in Figure 5 discussed above. The

probability f is estimated from the data for horses

with pre-challenge antibody of 80–180 mm#, and β!
V

and 1}g!
V

are estimated as for the homogeneous

model.

Fitting and simulating the heterogeneous model

The values of the parameters are estimated to be

β!
V
¯ 0±5 f¯ 0±5

1

g!
V

¯ 3±1 days

maintaining the latent period, 1}a, at 1±25 days. The

initial distribution of horses in each of the categories

S
"
, S

#
and R is determined from data concerning

serological responses to a new vaccine [16]. These

horses have had regular vaccinations, and for a
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Fig. 8. The distribution of epidemic sizes after 50000

realizations of the new model, with initial conditions

representing the distribution of 100 horses before and after

vaccination. Figures (a) and (c) give the distribution of the

number of horses infected, while Figs. (b) and (d) give the

distribution of the number of infectious horses.

population size of 100, the distribution before a

booster dose is given as S
"
¯ 19, S

#
¯ 77, R¯ 4 and

the distribution after this booster is S
"
¯ 1, S

#
¯ 75,

R¯ 24. Figure 8 shows the distribution of epidemic

sizes before and after the vaccination, determined

from 50000 realizations of the model with the above

parameter values and the two different initial con-

ditions. In calculating the distribution of epidemic

sizes, there is some ambiguity over whether horses that

pass directly from group S
#
to R (having been infected

without becoming infectious) should be considered as

part of the epidemic. Compared with horses in S
"
,

these ‘ low titre ’ horses are much less likely to be noted

as among the cases in a yard, unless blood samples are

taken, as they are less likely to show symptoms [16, 2].

Figure 8 shows the distribution of epidemic sizes

before and after vaccination counting infected and

then infectious horses. In both cases, the distribution

of epidemics before vaccination has a longer tail than

that after vaccination, with the probability that an

epidemic will infect more than 10 horses (of the 100)

dropping from 0±18 to 0±08 after vaccination. The

probability that more than 10 horses will become

infectious drops from 0±12 before vaccination to 0±03

after vaccination.

DISCUSSION

Modelling epidemic in unvaccinated horses

This paper demonstrates that an epidemic of equine

influenza can be described by a simple stochastic

model. While the parameters a and g in the model can

be calculated directly from experimental data, it was

necessary to estimate β by fitting the model to an

epidemic. In comparing the average epidemic curve

for β¯ 1±85 and the data, the biggest discrepancy lies

at the peak of the epidemic curve. This may be caused

by spatial heterogeneities at the racetrack (for ex-

ample, reduced transmission between, rather than

within, barns or stables) which tend to reduce the

epidemic peak and increase the epidemic duration.

Future work will investigate the effects of spatial

heterogeneity on the transmission of EI.

Our calculations resulted in an estimate of R
!

of

10±18 (95% CI 9±57–10±89). This is the first time that

R
!

has been estimated from real data for equine

influenza and is consistent with clinical observations
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that this infection is highly contagious in unvaccinated

populations.

Effects of vaccination

Our results underline that vaccination has dramati-

cally reduced the probability and size of epidemics of

equine influenza. It should be noted that, although

occasional larger epidemics are predicted by both

models of vaccinated horses, in over 80% of realiz-

ations, fewer than 5% of the horse population became

infectious. As discussed in [31, 32], disproportionate

attention is often paid to large epidemics while small

outbreaks may go undetected. This bias should be

taken into account when vaccine efficacy is computed

from field data.

Variability in titre of vaccinated horses

The degree of variability in titre excreted by horses of

similar pre-challenge antibody level is surprising. This

variability in response to challenge may have resulted

from variabilities in the experimental procedure, from

measurement errors, or may be a genuine feature of

influenza in horses.

Variability in the experimental challenge could be

due to variations caused by the vaccination procedure,

or variations in the quantity of virus inhaled during

challenge. In the experiments under consideration,

ponies were placed in a small box, two ponies at a

time, over a period of 80 min and subjected to an

aerosol challenge [33]. The potential variability in

virus inhaled has not been quantified. The suggestion

that the variation is caused by vaccination can be

largely eliminated by considering the control ponies.

The total titres of unvaccinated horses range from

1±85–5±2, with .. 1±1 (as compared to .. 1±6 and a

range of 0–4±5 for the vaccinates). Although vac-

cination has increased the number of ponies that do

not excrete any measurable virus, the variation in

those that do excrete virus (.. 1±05) is not markedly

different from the controls.

There is a very real possibility that measurement

error could be contributing to the variability seen in

the titre calculations for each horse. The calculations

are made by taking a nasal swab from each horse

every day over a 7 day period, and then calculating the

virus titre from two eggs per dilution, from neat to

10−$ per swab. Little is known about the dynamics of

virus excretion – for example, whether it occurs

continuously or in pulses – and thus it is hard to

determine how representative an individual swab is of

the quantity of virus the horse has excreted that day.

Further measurement errors may then occur in the

process of calculating titre, especially for swabs with a

low virus titre. An experiment that involved taking

two (or more) swabs from the same horse (at a small

time interval) would allow us to quantify the effects of

the above two factors.

Although the uncertainties discussed above are

likely to lead to some errors in the data, it seems very

unlikely that these effects could contribute to produce

the vast range of titre sums calculated for this data set

– from no virus excreted, to a sum of 4±5 logEID50

excreted over 3 days. Thus it appears that at least

some of the variation in the data is a product of

heterogeneities in the behaviour of horses infected

with EI, either due to the virus itself, or to genetic

variability in horses.

The heterogeneous model

We incorporate some variability in the levels of

infectivity of vaccinated horses exposed to EI into the

model by dividing the susceptible vaccinates into two

classes, S
"
and S

#
, according to antibody level. While

retaining the assumption that the process of exposure

to equine influenza is homogeneous (all susceptible

horses in groups S
"
and S

#
have the same probability

of infection), we introduce heterogeneity by assuming

that a proportion of horses in S
#

(the so-called ‘ low

titre ’ ponies in Fig. 5) will pass directly to the

recovered class without becoming infectious. This is a

simplification of a real process by which such horses

do excrete some virus. However, if the logarithmic

scale of titre measurement is taken into account, the

low titre ponies in Figure 5 excreted at most 0±3% of

the average total titre of the ponies in group S
"
, and

0±05% of the average of the control ponies, implying

that an R
!

for these ponies would be less than 0±005.

It should also be noted that ponies in Figure 5 with

a measured total titre of zero may have excreted some

virus. Of the 42 ponies in group S
#
, 17 had a measured

total titre of zero, but of these 17, 11 seroconverted.

Only 14 ponies in group S
#

did not seroconvert, and

8 of these were measured to have excreted virus. It is

quite conceivable that the ponies measured to have

excreted no virus did in fact excrete virus, but that

virus excretion did not coincide with a daily measure-

ment, or was at too low a level to be detected. Thus it

is acceptable to group horses that excreted no detected

virus with those that excreted virus at a very low level.
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Comparison of homogeneous and heterogeneous

vaccination models

The heterogeneous model of vaccinated horses allows

us to isolate the horses that excrete virus at a very low

level from other infectious horses. Clearly, this model

captures only one of the many forms of heterogeneity

present in the dynamics of EI, but by comparing it

with the basic homogeneous model, we can determine

the impact that this form of heterogeneity has on the

dynamics. Simulations suggest that the two models

give similar results. Indeed, under a transformation

R
new

¯R­(1®f )S
#

S
new

¯S
"
­fS

#

we can translate the heterogeneous model into the

form of the homogeneous model, with susceptibles

S
new

and recovered animals R
new

. However, in this

form, we cannot identify the number of horses that

have experienced low level infection, and can only

calculate the size of the epidemic in terms of infectious

horses.

Translating the form for the reproductive ratio

from the homogeneous model we can deduce that the

average number of infectious secondary cases caused

by a single infected is given by

R{
!
¯

β!
V

g!
V

(S
"
­fS

#
)

N
.

To ensure RG
!
% 1, the distribution of horses must

satisfy S
"
­fS

#
% 0±65¬N.

While both vaccination models give comparable

results, initial conditions are more easily calculated

for the heterogeneous model, as these are classified

from antibody levels. In addition, the heterogeneous

model provides more information on levels of in-

fection and infectivity in an epidemic.

CONCLUSION

This paper successfully derives a simple model for the

dynamics of equine influenza. Future work will

consider the spatio-temporal dynamics of infection

and how the explicit strain dynamics of equine

influenza interacts with vaccination history [34].
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APPENDIX

Deterministic equations

The deterministic analogue of the SEIR model is

given by the following equations:

S~ ¯®
βSI

N

E~ ¯
βSI

N
®aE

I~ ¯ aE®gI

R~ ¯ gI.

The deterministic analogue of the heterogeneous

model for vaccinated horses is given by:

S~
"
¯®

β«S
"
I

N

S~
#
¯®

β«S
#
I

N

E~ ¯
β«(S

"
­fS

#
)I

N
®aE

I~ ¯ aE®g«I

R~ ¯ g«I­
(1®f )β«S

#
I

N
.
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