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ABSTRACT. This paper presents a model of snow structure (model of regular grain
packing) that is based on experimental determination of various geometrical character-
istics of fine-, medium- and large-grained granular snow. Data analysis supports the pos-
sibility of approximating the ice-matrix configuration as a regular lattice of nearly
spherical ice grains connected by rigid ice bonds. The model was successfully used for
relating microstructural parameters of snow to snow density, compaction behavior and
evolution of mechanical properties.

INTRODUCTION

Characterization of physical properties of snow, in addition
to temperature and snow density, requires parameterization
of the configuration of the ice matrix of snow� ‘‘snow
structure’’. The characteristics representing a rock (snow)
structure are: (1) size, form and characteristics of surface of
the particles constituting the matrix; (2) positioning of the
particles relative to each other and their interdependence;
(3) type of bonding between the particles. In addition, it
had been found that in granular snow the arrangement of
particles corresponds to fragmental units (10^102 grains per
unit), with structural properties of these fragments depart-
ing quite far from the mean properties of the corresponding
snow layer (Golubev,1987;Takeuchi and others,1998).Thus,
the normally required information about averaged proper-
ties for the snow horizon (layer) is only possible when em-
pirical analysis involves about 104 snow grains.

Detailed study of such a large system is possible
(Schneebeli, 2002), but is complicated and cannot avoid cer-
tain generalizations about the ice-matrix arrangement
(Lundy and others, 2002). Such generalization can be made
in the form of a model that adequately represents necessary
observable mean structural parameters. This then allows
analytical estimation of the main properties of snow and
their evolution as a result of snow metamorphism.

Themodel of regular grain packing of snow presented in
this paper is based on the results of microphotographic and
cold-room microscopic analysis of natural fine-, medium-
and large-grained granular snow. The data obtained sup-
port the possibility that the model can approximate the
ice-matrix configuration as a regular lattice of near-spher-
ical ice grains connected by rigid ice bonds (necks). Charac-
terization of certain ice-matrix parameters, such as the
specific surface area of snow, would require other ways of
generalizing the ice matrix (Grenfell and Warren, 1999).
However, the possibility of using the present model to esti-
mate a number of other physical^mechanical characteris-
tics of snow has been checked and reported previously
(Golubev and Frolov,1998, 2000).

MODELOF THE SNOW STRUCTURE

The model of regular grain packing assumes that grains
with mean diameter Dm are uniformly distributed in space
and are connected by bonds with length l and diameter d.
The distance between centers of the contacting grains is
L ¼ Dm þ l, and the coordination number (the mean
quantity of bonds per a grain) is j (Fig.1).

For such a construction, the density of snow, �sn (kgm
^3),

can be represented as:

�sn ¼ �i VgNg þ VbNg
j

2

� �
; ð1Þ

where �i is the ice density (kgm^3), Vg and Vb are the vol-
umes of an average grain and of an average bond
respectively (m3Þ and Ng is the number of grains per unit
of volume (m^3).

Number of grains per unit of volume

For a known snow density the number of grains per unit of
volume can be related to the grains’ sizes and form.
Approximating the snowgrains as equal ice spheres of mean
diameter D ¼ Dm, and assuming the bonds to be of
cylindrical formwith diameter d, where the grain and bond
volumes are given by Vg ¼ �D3=6 and Vb ¼ �d2l=4 respect-
ively, the number of grains per unit of volume becomes:

Ng ¼
�sn
�i

�D3

6
þ �ld2

4

j

2

� ��1

; ð2Þ

or, introducing the dimensionless parameters of
rigidity b ¼ d=DÞð and of looseness k ¼ L=DÞð of the snow
structure:

Ng ¼
�sn
�i

6

�D3
1þ j

2
1:5kb2 þ ð1� b2Þ � 1
� �� ��1

; ð3Þ

where the term in square brackets characterizes the relative
volume of the bonds.
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Mean grain-size and the size of an average grain

Since the actual form of the snow grains is not spherical, the
diameters of grains estimated in different directions may
vary up to 2.5^3 times. Statistical analysis of the results of
the authors’measurements shows that for natural granular
snow for most grains the ratio of maximal diameter Dmaxð Þ
to minimal Dminð Þ is not more than 2 and has an average
value of 1.5 (Fig. 2). Mean grain-size for the ith grain Dið Þ
was determined from Di ¼ Dmax þDminð Þ=2 and in most
cases could be approximated by Di ¼ 1:25Dmin. When
other methods of estimation are used, such as measuring
the size of a grain along x=y axes in a randomly oriented
rectangular system of coordinates, Di ¼ Dx þDy

� �
=2 for

a grain can differ by 15^25% from those based on Dmax

and Dmin. However, the mean diameter for an assembly of
grains was practically the same regardless of the
method (Fig. 3).

The size of an average grain of the assembly can be de-
termined by:

Dm ¼ �D3
i

n

� �1
3

; ð4Þ

where Di is the mean diameter of an ith grain and n is the
number of grains. In granular snow the values ofDm can be
estimated with 3% confidence for n �150.

Form of grains

Comparison of the grain-sizes determined by measure-
ments in a randomly oriented rectangular coordinate

system with measurements of the areas and perimeters of
the two-dimensional (2-D) projections of the grains con-
firms the similarity of the snow grains’ forms to spheres.
Figure 4a shows the histogram of the values of the normal-
izing factor �1 for measured areas Sið Þ of the grains’ 2-D
projections and Di in fine-, medium- and large-grained
snow: Si ¼ �1 Di=2ð Þ2, whereDi was estimated as the aver-
age of Dmax and Dmin. The estimated values of �1 varied
from1.8 to 4, with an average of 3.05 (Fig. 4).

The normalizing factor �2ð Þ for the relation between
perimeters Pið Þ of the 2-D projections of grains and Di

Pi ¼ �2Dið Þ varied between 2.8 and 3.8, with an average of
3.25 (Fig. 4b).

The deviation of �1 and �2 from � is related to faceting of
the crystals in snow and to contingency in values of Dx and
Dy.The estimated values (Fig. 5) are close to those of a recti-
linear hexagonal polygon. Thus, the 2-D projections of the
grains can also be interpreted as hexagons. However, since
the statistical-mean deviation of �1 and �2 from � is relative-
ly small, for a large assembly of grains the grains may legiti-
mately be treated as spheres.

Distances between the grain centers

Loose packing of grains in snowmay correspond to different
relative positioning of the grains.Themain factor determin-
ing the grain packing is the distance L Lmð Þ between the

Fig. 1. Grain-packing schemes with j ¼ 3 (a), j ¼ 4 (b) and j ¼ 6 (c).

Fig. 2. Relationship between Dmax and Dmin in granular

snow.

Fig. 3. Relationship between the mean grain-sizes Di deter-

mined fromDmax andDmin and fromDx andDy.
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grains or the looseness parameter k km ¼ Lm=DmÞð . Bonds
are present in snow when km41. For km51, the prolonged
bonds have to be absent and the spherical grains must be
deformed at their contacts.

According to our observations, bonds, as a formation
having certain dimensions, do not have specific crystal lat-
tice orientation different from both the connected grains.
There is a real contact (point or area) between neighboring
grains (Fig. 6).The phase-change processes, as well as volu-
metric and surface diffusion, result in a form characteristic
of so-called necks.Thus, in estimating the distance between
the snowgrains, their non-spherical formmust be taken into
account, and use of l as a part of the distance between cen-
ters of neighboring grains L should be avoided.

Themost problematic part of measurements andmodel-
ing is the position of the center of a grain. If an axis x is dir-
ected along a bond, while axis y lies in the area of a contact
between grains, the measurements of the dimensions of the
contacting grains (i and iþ 1Þ in the direction of the
bond (Dx

i , D
x
iþ1Þ and perpendicular to that (Dy

i , D
y
iþ1Þ

would provide Li;iþ1 ¼ Dx
i þDx

iþ1

� �
=2, Lm ¼ �Dx

i

� �
=n,

and km ¼ Lm=Dm ¼ 2= 1þ �ð Þ, where � ¼ Dx
m=D

y
m. The

observed values for � in snow lie between 0.7 and 1.4, with
the average value equal to 1.1. This corresponds to
km ¼ 0:95.

Since the snow grains are not exact spheres, the depart-
ure of km from 1 is related not to deformation of spherical
grains or to large external forces (the latter are very rare in
nature), but to different types of contacts between polyhe-
dral (faceted) grains: plane^plane, plane^vertex, plane^
edge, etc. The looseness parameter k for hexagonal prisms
and rhombododecahedrons varies, depending upon pack-
ing, from 0.85^0.90 for dense packing to1.12 for equally pos-
sible point, line and area contacts, and up to 1.3 for allowed
vertex^vertex or vertex^edge contacts only (Fig. 7). This is
the same range of values as observed in snow.

The geometry of the contacting faceted figures allows a
value of L in the range from the contact type vertex^vertex
to the contact type plane^plane (from k > 1 to k < 1Þ cor-
responding to a particular area Sð Þ and diameter dð Þ of a
contact. Laboratory observation has proved that it was pos-
sible to estimate Lm based on either dm orDx

m andDy
m.

Cordination number

The observation of the coordination number in natural
snow is not only difficult because of uncertainties in the ac-
curacy of transforming 2-D images into a three-dimen-
sional (3-D) structure, but is also complicated by high
structural variability among the fragment units construct-
ing the snow. Thus, a more reasonable way of estimating
the coordination number of snow involves the modeling of

Fig. 4. Histograms of the experimentally determined values of

�1 ¼ Si ðDi=2= Þ2 (a) and �2 ¼ Pi=Di (b) in granular

snow.

Fig. 5.Values of �1 and �2 for rectilinear polygons.

Fig. 6. Grains-contact scheme.

Fig.7. Relationship between the looseness (k) and the rigidity
of structure (b) for spheres (I), rhombododecahedrons (II),

rectilinear hexagonal prisms (III) and cubes (IV).
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grain packing based on the snow density, Lm and Ng. This
approach was previously used in the form of relationships
between the coordination number and either snow density
or the void fraction (Arons and Colbeck,1998). In the model
of regular packing of grains, each coordination number cor-
responds to a certain type of relative grain positioning in the
space and type of packing, thus allowing incorporation of the
dependence of the coordination number on grain dimensions.

For the close packing of equal spheres j ¼ 12ð Þ, the dis-
tances between the neighboring rows of spheres in a 3-D co-
ordinate system (a, b, cÞ are equal to: a ¼ L, b ¼ L

ffiffiffi
33

p
=2,

c ¼ L
ffiffiffiffiffiffiffiffi
2=33

p
. The number of spheres in the unit of volume is:

Ng ¼ abcð Þ�1 ¼ L�3
ffiffiffi
2

p
. For the non-dense cubic packing

j ¼ 6ð Þ: a ¼ b ¼ c ¼ L, Ng ¼ L�3. For tetrahedral
packing j ¼ 4ð Þ: a ¼ L

ffiffiffiffiffiffiffiffi
8=3

p
, b ¼ L

ffiffiffi
2

p
, c ¼ L2=3,

Ng ¼ L�3
ffiffiffi
3

p
=2

� �3
. The minimal possible coordination

number for a symmetric 3-D construction from grains con-
nected by rigid bonds is j ¼ 3. For such packing:
a ¼ L 5

ffiffiffi
3

p� �
=2, b ¼ L15=4, c ¼ L

ffiffiffi
3

p
=2,Ng ¼ L�3ð8=15Þ3.

The general form of the relationship between Ng and L
can be expressed as:

Ng ¼ AL�3 ; ð5Þ
where the parameterA depends on the type of packing. Fig-
ure 8 presents the relationship between the parameter A
and the coordination number j. The fastest increase of A
with increasing j corresponds to 3 < j < 5, and in this
range the increase in the number of spheres per unit of
volume is maximal, with a relatively small increase in the
coordination number. If equal spheres are assumed for the
snow grains, the mass of a sphere is m ¼ �i�D

3=6, and the
snow density, depending upon the grain packing, can be de-
termined as:

�sn ¼ mgNg ; ð6Þ

�sn ¼ �iA
D

L

� �3
�

6
¼ �iAk�3 �

6
: ð7Þ

Since the parameter A is a function of the coordination
number, data on snow density and on looseness parameter k
allow unique characterization of the coordination number
j. Figure 9 shows the densities formedby spherical ice grains
with different values of k and different types of regular pack-
ing. For k ¼ 1 (contacting spheres) the maximal possible
snow density is expected to be 680 kgm^3 j ¼ 12ð Þ. How-
ever, when the bonds are accounted for, the same density

can be reached with a much lower coordination
number (Fig. 9). This result is in much better agreement
with the coordination numbers observed in natural snow
by the authors (Fig.10). For the most common case of natur-
al snow 3 < j < 4ð Þ the snow density is not more than 310^
320 kgm�3. The density of ice can only be reached under
large deformation of the spheres.

CONCLUSIONS

Snow structure can be rather accurately represented by the
following parameters: (1) the mean grain-size and the histo-
gram of the grain sizes; (2) the mean bond size and the his-
togram of the bond sizes; (3) coordination number and the
histogram of the quantity of bonds per grain; (4) number of
grains per unit of volume; (5) the dominant crystal form and
the histogram of the crystal forms; (6) stereograms of the
snow-crystal optical-axes orientation.

The presented model allows a structural parameter of
snow that is one of the most complex to determine, the co-
ordination number jð Þ, to be related relatively easily to
measured characteristics such as snow density �snð Þ, mean
grain diameter Dmð Þ and the sizes of contacting grains in

Fig. 8. Relationship between the packing parameterAand the

coordination number j.

Fig. 9. Density of the modeled packing of spherical ice grains

for various looseness factors k and coordination numbers j.
Solid lines: not counting parameter b (based on Equation

(7) and approximation of Fig. 8); dashed lines: by combin-

ation of Equations (3) and (5), with relationship between k
and b taken for spheres (Fig. 7).

Fig. 10.The experimentally observed coordination number in

granular snow with different snow density.
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the direction of bonds Dxð Þ andperpendicular to that Dy

� �
.

The relationship is shown schematically in Figure 9. The
logic of the estimation can also be as follows:

(a) the snow density and the mean grain diameter allow the
number of grains per unit volume to be estimated
(Equation (6));

(b)themean value of the looseness parameter canbe calculated
as km ¼ 2= 1þ �ð Þ, � ¼ Dx

m



Dy

m, i.e from the mean grain-
sizes perpendicular and parallel to bonds;

(c) the packing parameterA canbe found from Equation (7);

(d)the coordination number is then determined from A as
suggested by Figure 8:

j � exp 0:705 A2 þ 1:57
� �� �

: ð8Þ
The snow-structure studies aremainly directed to the es-

timation of the quantitative relations between the snow
structure and the physical^mechanical properties of snow
and their change as a result of metamorphism. Physical^
mechanical properties of snow can be characterized by few-
er parameters of the snow structure.

The bonds are the weakest components of the ice matrix in
snow. That is why there must be a correlation between the
mechanical properties of snow and the areas of the contacts
between the grains in the unit of surface, i.e. the relative contact
area s (Golubev,1982; Golubev and Frolov,1998, 2000):

s ¼ N
2
3
gd

2
mj

�

24
: ð9Þ

That is why the rigidity of snow structure b ¼ dm=Dm,
based on the mean diameter of contact and the mean diam-
eter of grains, is linked to themechanical properties and also
can serve for controlling the values of looseness parameter k,
as shown in Figure 7. For contacting hexagonal prisms or
rhombododecahedrons:

k � 0:45 2:91� b 2:1� bð Þ� :½ ð10Þ
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