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Abstract
With the increase of air transportation, some crossing waypoints (CWPs) are becoming bottlenecks in the operation
of air traffic networks. This paper presents a CWP operation optimisation framework based on a two-stage optimi-
sation method. First, we considered the interests of airlines and air traffic controllers and established a flight-level
dynamic allocation model for the CWP to minimise the flight-level deviation and the number of flight conflicts. A
multi-objective, self-adaptive differential evolution-local search hybrid algorithm was used to solve the model in
a parallel computing manner. Subsequently, a flight conflict resolution algorithm based on the Monte-Carlo tree
search was designed for flight conflicts that existed after the optimisation. Finally, based on real operation data, four
experimental scenarios were constructed, and the air traffic operation simulation system was used for experimental
validation. For daily traffic and 1.2 times peak traffic scenarios, the average flight-level deviation reduction rates
after optimisation were 53% and 39%, and the successful flight conflict resolution rates reached 89% and 75%,
respectively. The experimental results showed that this optimisation framework can effectively balance the number
of flight conflicts with the efficiency of flight-level usage and directly improve the capacity of the CWP, which can
be used as a reference for air traffic control auxiliary decision support systems.

Nomenclature
AFLmin

i the lowest available flight-level for flight i
AFLmax

i the highest available flight-level for flight i
C1 the number of flight conflicts in the CWP core airspace
C2 the number of flight conflicts in the CWP altitude-adjustment airspace
D the flight-level deviation for all flights
FLi the flight-level allocated to flight i, i = 1, 2, 3, . . . , N
FPLi the flight plan of flight i, i = 1, 2, 3, . . . , N
N number of flights in the scenario to be optimised
OFLi the optimal flight-level for flight i, i = 1, 2, 3, . . . , N
RFLi the flight-level of flight i before optimisation
Ri the flight path of flight i, i = 1, 2, 3, . . . , N
T(h) the start time of the time horizon h, h = 1, 2, 3, . . . , Nhorizon

�Thorizon the length of each time horizon
�Tinterval the length of each time interval
τi the flight path of flight i, i = 1, 2, 3, . . . , N
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Abbreviations
ATCO air traffic controller
ATOSS air traffic operation simulation system
BCWP busy crossing waypoint
COOF CWP operation optimisation framework
CWP crossing waypoint
DE differential evolution
DOCM dynamic optimisation control module
FCRM flight conflict resolution module
FLAM flight-level allocation module
MCT Monte-Carlo tree
MCTS Monte-Carlo tree search
MILP mixed integer linear programming
MINLP mixed-integer nonlinear programming
MOEAs multi-objective evolutionary algorithms
RHC receding horizontal control
SDEMO self-adaptive differential evolution multi-objective optimisation
SDELS self-adaptive differential evolution-local search hybrid algorithm
UCT upper confidence bound apply to tree

1.0 Introduction
The scale of civil aviation traffic has shown a rapidly increasing trend in recent years, with a report
from Eurocontrol [1] indicating that daily flights in Europe increased by 8% in 2019 compared to 2018.
In 2019, US and foreign airlines serving the United States set a new record by carrying 1.053 billion
scheduled service passengers, representing a 3.9% increase from the previous annual record of 1.014
billion passengers in 2018 [2]. China’s civil aviation completed 4.96 million flight operations during
the same period, with an increase of 5.8% every year [3]. As traffic volumes continue to increase, con-
gestions at crossing waypoints (CWPs) due to the convergence of traffic flow have become increasingly
severe, and some busy crossing waypoints (BCWPs) have become bottlenecks in the operation of the
routes network [4]. Although congestion has eased during the Coronavirus outbreak, the alleviation due
to this crisis is temporary, and improving the efficiency of the traffic at route intersections remains an
issue that must be addressed urgently. At BCWPs, owing to the convergence of traffic flow in multiple
directions, the surrounding airspace has a high-traffic density and a high frequency of flight conflicts. To
meet the required vertical and horizontal separation and to ensure safety due to work pressure, air traffic
controllers (ATCOs) are often forced to adopt control strategies that sacrifice efficiency. Therefore, the
International Civil Aviation Organization (ICAO) has put forward the optimisation goal of reducing con-
gestion and flight fuel consumption at BCWPs in the Aviation System Block Upgrade (ASBU) and has
developed modules, namely, B0-FRTO, B0-OPFL and B1-FRTO, with the core of trajectory planning
and flight-level optimisation to achieve the above optimisation objectives.

Current research mainly uses trajectory planning to optimise air traffic resources at the level of supply
and demand. However, it is to improve the operational efficiency of the air traffic networks by control-
ling the traffic volume at the bottlenecks, which essentially does not improve the capacity of CWPs.
Furthermore, controllers at busy CWPs often prioritise safety over efficiency, which can significantly
increase flight operation costs. Given the continuous growth of air traffic, operational bottlenecks will
always affect the operational efficiency and safety of the network. As such, it is imperative to investi-
gate optimisation methods that can improve the capacity of CWPs, thereby mitigating congestion and
reducing operational costs.

The primary contribution of this paper is developing a simulation-based optimisation approach to
propose a CWP operational optimisation framework (COOF). The COOF provides an economic flight-
level allocation strategy that considers the frequency of flight conflicts and also provides flight conflict
resolution strategies to ensure the safe crossing of BCWPs airspace. The main objective of the COOF is
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to provide decision support to air traffic controllers for improving the current inefficient flight operation
patterns at BCWPs, reducing congestion and minimising flight fuel consumption.

The structure of the paper is as follows: Section 2.0 presents a review of relevant research work.
Section 3.0 outlines the current status of BCWPs operation, followed by an analysis of the prob-
lem of CWP operational optimisation. Next, we present the COOF developed in this paper. Technical
approaches and details adopted for the flight-level allocation module and the flight conflict resolution
module in COOF are discussed in Sections 4.0 and 5.0, respectively. In Section 6.0, we evaluate the
effectiveness of the COOF using various examples. Finally, Section 7.0 summarises the research and
discusses future research directions.

2.0 Literature review
There is not much research on improving CWP operational efficiency. Mostly, it is improved indirectly
through flight trajectory planning. The few studies focused on improving CWP efficiency by planning
conflict-free flight paths or combining flight conflict resolution with advanced trajectory planning. This
paper will review past research on flight trajectory planning and conflict resolution to find the best ways
to optimise CWP operational efficiency.

2.1 Flight trajectory planning
The related research can be divided into strategic planning (pre-departure planning) and tactical planning
(in-flight planning) according to the flight phase. Strategic planning is more concerned with the overall
operation of the air traffic network, and its core research focus is to use multiple means to pre-separate
flight trajectories, thereby reducing the interactions between flights.

In pre-departure planning, flight trajectory separation can be achieved by adjusting the departure time
[5, 6]. Although the implementation of ground delay programs can reduce the additional fuel consump-
tion while separating flight trajectories, this will lead to longer ground waiting times and significantly
increased delay levels as the flight volume increases; there are also studies that achieve trajectory separa-
tion by adjusting the flight speed [7], which essentially separates the flight trajectories in time. However,
the limitation of this method is that the adjustable time-range is small.

Reassigning flight paths to flights can also separate flight trajectories. Two heuristic algorithms were
used in Ref. (8) to reassign flight paths to flights, which could balance the distribution of traffic flows at
the sector level but did not manage flight conflicts. Trajectory separation can also be achieved by opti-
mising the flight altitude. In Ref. (9), Barnier et al. applied graph colouring techniques to reallocate the
flight-levels for flights. In Ref. (10), time uncertainty was considered, and the Tabucol graph colouring
algorithm was used to achieve flight-level allocation for large-scale flights. In Ref. (11), based on the
spectral graph colouring model, a flight-level assignment method was proposed that can balance flight
safety and operational costs.

Recent pre-departure trajectory planning studies typically combine multiple trajectory separation
means and are evolving into robust trajectory planning methods. For example, Chaimatanan [12] con-
sidered aircraft uncertainty in the horizontal position and designed a hybrid meta-heuristic algorithm to
reallocate takeoff times and flight paths for flights to find planning solutions with minimal interaction
between trajectories. In Ref. (13), Chaimatanan extended the work in Ref. (12) by considering uncer-
tainty in horizontal and vertical aircraft positions and enhancing the hybrid metaheuristic optimisation
algorithm proposed in Ref. (12) for solving large-scale mixed-variable optimisation problems. A novel
trajectory planning method is proposed in Ref. (14) to optimise flight costs, which divides the trajectory
planning process into two flight plan determination processes: horizontal flight planning (determining
the waypoints of the flight plan path) and vertical flight planning (determining the flight profile and
the altitude/speed change position of the flight). Furthermore, a method was introduced to consider the
uncertainty in the time domain. The Ref. (15) presents a mixed-variable optimisation model for the
robust trajectory planning problem, which considers uncertainty and unpredictable events in trajectory
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prediction. This model integrates ground delay, flight path adjustment, and flight altitude adjustment as
means of adjustment.

Strategic-level trajectory planning can reduce the number of flight conflicts, reduce the workload
of ATCOs, and realise the overall operational planning of the air traffic network, but its actual imple-
mentation effect is vulnerable to uncertainties and is very likely deviate from the planning objectives.
For CWPs, pre-departure trajectory planning reduces the operational stress and controls the amount of
traffic passing through CWPs; however, it suppresses the demand for flights (e.g., by making them fly
away from their optimal cruising altitude or making them wait on the ground) and does not improve the
capacity of the CWPs.

In-flight planning uses flight-level, speed and heading adjustments to achieve local optimisation of
flight trajectories. Because in-flight planning focuses more on the operation of the local area in the route
network, the planning objectives are different from the pre-departure planning. Reference (16) prioritises
the safety of flight trajectories and proposes a stochastic storm model coupled with an optimal control
algorithm. The model maximises the probability of the flight reaching the designated waypoint while
avoiding hazardous weather areas. Part of the research focuses on the conflict resolution problem in the
local area, and in Ref. (17), a generic solution framework is developed for the problem of chain-of-flight-
conflicts that may arise from the cross convergence of multi-directional traffic flows in a two-dimensional
airspace by reserving conflict zones for traffic flows. Ref. (18) uses spatial discretisation technology to
flexibly adjust the airspace entry point of flights, and combined with flight speed adjustment can avoid
flight conflicts in real-time. It effectively reduces the monitoring time of ATCOs. There are also studies
that focus on the target trajectory control of flights, such as the research in Ref. (19), in which a real-time
4D trajectory guidance method for flights to reduce the deviation between the actual flight trajectory and
the planned 4D trajectory, with the expected arrival time of the flight as a constraint, was investigated.
Pasini [20] proposed a CWP-optimisation operation, in which as many straight flight paths as possible
are provided for the aircraft to cross the CWP while allowing flights to follow the original flight path. The
flight-level and speed are adjusted to avoid flight conflicts, and a conflict-free trajectory with minimal
flight-level and speed adjustments is planned for all flights expected to pass through the CWP.

Tactical-level trajectory planning usually treats flight conflicts as hard constraints or optimisation
objectives, and for flight conflicts that cannot be completely avoided, the model resolves them by fine-
tuning the flight profiles of the affected flights or directly handing them over to the ATCO. For direct
CWP operation optimisation studies, Ref. (20) is used to solve the congestion problem by generating
flight trajectories that avoid the CWP; however, the model has limitations in its application due to the
airspace restrictions that usually exist around a CWP.

2.2 Flight conflict resolution
For the conflict resolution problem, the current leading solutions include optimal control methods, math-
ematical planning methods, swarm intelligence optimisation or search methods, geometric optimisation
methods, and machine learning methods.

Matsuno [21, 22] developed a stochastic optimal control method for aircraft conflict resolution based
on the polynomial chaos expansion and pseudo-spectral methods, considering the uncertainty of spa-
tially correlated winds. Tang [23] introduced a dynamic conflict resolution method that accounts for
wind vector perturbation. The method employs heading and ground speed adjustments as conflict reso-
lution strategies, incorporating a receding horizon control mechanism. Liu [24] proposes a new model
to describe the stochastic wind dynamic and the convergent weather areas with time-evolving size and
adopts the stochastic optimal control method to realise that the aircraft keeps collision-free and has the
best trajectory. Optimal control methods typically yield a conflict-free optimised trajectory consisting of
successive position points for the aircraft. This trajectory can guide flights to modify their flight plans at
conflict resolution’s strategic and tactical levels. However, at the pre-tactical level, the conflict resolution
scheme obtained differs substantially from the schemes employed by ATCOs in actual operations.

Mathematical planning methods generally use mixed-integer nonlinear programming (MINLP) [25–
29] or mixed integer linear programming (MILP) [30, 31] to build mathematical models. There are
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also studies that build a general nonlinear model [32] or follow a two-step optimisation approach to
solve the conflict resolution problem [33]. Means of flight conflict resolution include adjustment of air-
craft altitude, speed, heading, etc. Mathematical planning methods utilise dedicated solvers for efficient
computation, enabling them to meet real-time requirements for conflict resolution. However, the many
assumptions made in mathematical planning methods often lead to impractical solutions. As the number
of aircraft increases, the sharp increase in model complexity poses computational challenges.

The swarm intelligence optimisation or search method uses simulation to build the airspace operating
environment. Conflict resolution solutions are obtained in an iterative or search manner. The method can
consider multiple nonlinear constraints and easily migrate to different scenarios. Ma [34] abstracted the
conflict resolution environment as a grid and used a genetic algorithm to solve the conflict resolution
problem under free flight conditions. Emami [35] studied the conflict resolution problem based on a
multi-agent approach using the particle swarm optimisation algorithm. Sui [36] addressed the conflict
resolution problem in congested airspace by employing a Monte-Carlo tree search (MCTS) algorithm
with aircraft speed, altitude and heading adjustment as conflict resolution strategies.

The geometric optimisation method is simple and intuitive and hence, often applied in the engineer-
ing field for conflict resolution, such as in the NASA study [37–39]. Recent research has often used
machine learning methods to solve conflict resolution problems, such as supervised and deep reinforce-
ment learning methods. Supervised learning methods (e.g., convolutional neural network) use conflict
resolution datasets to build and train models to obtain a mapping between conflict scenarios and conflict
resolution solutions [40–42]. Deep reinforcement learning methods focus on making models self-learn,
so that they can be made to behave like humans [43, 44]. Although the machine learning method has a
fast solution speed and high intelligence level, its generality in different airspace operation environments
is not strong. Hence, it is less used in practical engineering applications.

3.0 CWP Operation optimisation
This section introduces the current operational status of CWP, specifies the CWP operational opti-
misation problem to be addressed in this paper, and proposes the COOF along with its relevant
implementation details.

3.1 Problem analysis
Owing to the convergence of a large number of flights, flight conflicts are highly likely to arise in
BCWPs. The resolution of a large number of flight conflicts leads to an increased workload for the ATCO
and congestions at the BCWPs. For example, the waypoint RESMI in Brest airspace, France, which is
a convergence node for 14 routes, is often congested at 37,000ft and requires traffic flow sequencing to
avoid conflicts [20]. At the waypoint HFE (Luogang VOR) in China, the ATCO reduces the workload
by specifying the flight-level used by each direction of traffic flow, as shown in Fig. 1. Although this
operation mode reduces flight conflicts, there are often large deviations between the flight-level used by
flights and the optimal cruise altitude, which increases the fuel consumption of flights.

An operational mode that allows flexible allocation of flight-levels could lead to a significant increase
in flight conflicts. The first core problem to be addressed is minimising the overall deviation between the
allocated and desired flight-levels while ensuring minimum conflicts. The second core issue is generat-
ing resolution recommendations for the remaining conflicts to reduce the controller’s workload from a
safety perspective. There is a temporal and interactive relationship between solving the first and second
problems for the same batch of flights in a given time period and an interaction between the optimisa-
tion of different batches of flights for consecutive flights spanning multiple periods. Therefore, a COOF
should be constructed to rationalise the various interactions and influences. The two core issues are then
examined in detail.
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Figure 1. The operation mode of waypoint HFE.

3.2 CWP operation optimisation framework
Due to the convergence of multiple routes in CWP, there are complex configurations and high traffic vol-
umes, which can result in severe operational knock-on effects if the optimisation solution is unrealistic.
Traditional mathematical models require necessary assumptions about the execution process, leading
to less practical optimisation results. On the other hand, although simulation-based optimisation meth-
ods take longer to solve than mathematical modelling methods, simulation-based optimisation methods
can recreate optimisation scenarios, simulate flight operating conditions and consider uncertainties in
flight operations. Therefore, this paper uses the Air Traffic Operation Simulation System (ATOSS) as a
simulation tool and adopts a simulation-based optimisation method to construct the CWP operational
optimisation framework.

COOF provides ATCOs with a continuous flight-level allocation and conflict resolution strategy. It
comprises three functional modules, namely the dynamic optimisation control module (DOCM), flight-
level allocation module (FLAM) and flight conflict resolution module (FCRM), combined based on the
application sequence to form the COOF, as shown in Fig. 2.

• DOCM: The RHC strategy is a finite-time horizon optimisation control strategy that utilises
rolling optimisation of time horizons to achieve dynamic optimisation. The optimisation time is
divided into Nhorizon time horizons of length �Thorizon, with each time horizon comprising Ninterval

time intervals of length �Tinterval. The start time of the time horizon h is T(h). Figure 3 employs
Ninterval = 3 as an illustrative example. Only a time horizon is optimised at each optimisation.
However, the optimisation outcomes are executed solely during the initial time interval of the
optimised horizon, with the optimised time interval serving as an environmental variable for

https://doi.org/10.1017/aer.2023.45 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2023.45


The Aeronautical Journal 251

Flight Conflict Resolution Module
Handle flight conflicts that cannot be completely avoided

5 B

Flight-Level Allocation Module

2

Enter airspace according to 

flight-level allocation strategy

4
Enter airspace according to 

original flight-level

3

Dynamic Optimization Control Module

1

A

1 6 Optimize with air traffic operation simulation system.

Use hybrid algorithm and parallel computing mechanism 
to shorten computing time.A

Use Monte-Carlo tree search algorithm to solve.B

6

Output flight-level allocation strategy and flight conflict resolution strategy

Figure 2. CWP operation optimisation framework.
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Figure 3. Dynamic optimisation process based on RHC strategy.

subsequent optimisations. The optimisation computation commences earlier than the intended
optimisation time horizon to enable a continuous optimisation process. For instance, the opti-
misation of time horizon h is completed during [T(h − 1) , T(h)). Consequently, the maximum
optimisation computation time for each time horizon is �Tnterval.

• FLAM: The module calculates a flight-level allocation strategy for upcoming flights passing
through the CWP, allowing them to approach their optimal cruise flight-level while minimising
potential conflicts. This simulation-based optimisation approach is described in technical detail
in Section 4.0.
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Figure 4. Strategy extraction and update process for global strategy pool.

• FCRM: The module manages potential conflicts arising from the flight-level allocation strategy
by providing a resolution strategy. If a resolution strategy is not computed within the expected
timeframe, the controller takes over and provides a resolution strategy, which is documented.
The module utilises the MCTS algorithm and real-time scenario simulation to search for flight
conflict resolution strategies, detailed in Section 5.0.

The flight-level allocation and flight conflict resolution processes within an optimised time hori-
zon are sequential, with the former influencing the latter. Optimisation strategies implemented in the
optimised time horizon will impact the results in the un-optimised time horizon. Given that COOF
employs a simulation-based optimisation approach to implement module functions, a global strategy
pool is constructed to recreate optimisation scenarios accurately and rationalise timing and mod-
ule interaction across different optimisation time horizons. The global policy pool is a memory for
optimisation strategies based on time horizon updates. As depicted in Fig. 4, optimisation strategies
are first extracted from the global strategy pool before different modules commence optimisation to
recreate optimisation scenarios. The global strategy pool is further divided into flight-level allocation
and flight conflict resolution strategy pools, facilitating storage and timely updating of optimisation
strategies.

To prevent flight conflicts resulting from arbitrary adjustments to flight operations in the complex
operational situation at the CWP, the airspace at CWP has been partitioned into distinct functional areas.
A circular area with a radius of 80km is designated as the CWP airspace, with the CWP as the centre
of the circle. A circular area with a radius of 30km is defined as the CWP core airspace, in which the
flight-status should be adjusted as little as possible; a toroid area with a width of 50km between the
CWP airspace and its core airspace is the altitude-adjustment airspace.

Figure 5 depicts the optimisation process of COOF. The start time of the optimised time horizon,
Th, is determined by the DOCM based on the earliest time flights enter CWP airspace. Aircraft 1 is
expected to enter the CWP airspace during the first time interval of the current optimised time horizon.
Therefore, it will perform the optimisation results from that time horizon. The flight-level allocation and
flight conflict resolution strategies are then calculated by the FLAM and FCRM modules, respectively.
The calculation process is completed within the time range [Th − �Tinterval, Th). Aircraft 1 executes the
flight-level allocation and flight conflict resolution strategies as soon as it enters the altitude-adjustment
airspace. Suppose the flight-level allocation strategy is unavailable in time. In that case, the flight fol-
lows the original flight plan, and the flight conflict resolution module handles any potential conflicts, as
illustrated by Aircraft 2 in Fig. 5.
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Figure 5. The optimisation process of COOF.

4.0 Flight-level allocation at CWP
This section presents the technical details of the flight-level allocation module in COOF, covering the
flight-level allocation model and the hybrid optimisation algorithm employed for its solution.

4.1 Flight-level allocation model
The flight-level allocation module in COOF aims to keep flights as close to their optimal cruising altitude
as possible while reducing the number of flight conflicts. Simulation is used to evaluate the objective
function, constraints and flight motion state. The subsequent section presents a detailed description of
the flight-level allocation model developed in this paper.

4.1.1 Assumption
BCWPs are generally composed of multiple cross-routes. A small number of BCWPs in the air traffic
network are often scattered in different busy areas, hence, the optimisation scenario of the model is set to
a single representative BCWP. The optimised environment does not consider the effects of bad weather,
and the aircraft follows the route and crosses the BCWP airspace at the flight-level allocated for it.

4.1.2 Decision variables
In the optimisation model, the decision variable denoted as FLi represents the flight-level allocated to
flight i. FLi is selected from the flight-level provisioning table, and the total number of flights optimised
is denoted as N , i = 1, 2, . . . , N. The flight-level provisioning table is shown in Table 1.

4.1.3 Optimisation objectives
(i) Minimise the number of flight conflicts generated by the flight in the CWP core airspace.

min C1 =
N∑

j=i+1

N∑
i=1

conflict1

(
FLi, FLj, FPLi, FPLj

)
(1)
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Table 1. Flight-level provisioning table and its code

Flight-level (m) 6000 . . . 6000 + 300 × 8 (8400) 8900 . . . 8900 + 300 × 12 (12, 500)

Flight-level (ft) 19,700 . . . 19, 700 + 1000 × 8 (27, 700) 29,100 . . . 29, 100 + 1000 × 12 (41, 100)

Serial number 0 . . . 8 9 . . . 21
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where C1 denotes the number of flight conflicts in the CWP core airspace. The flight plan of flight
i, denoted as FPLi = {RFLi, Ri, τi}, comprises of its planned flight-level RFLi, flight path Ri, and
expected arrival time τi in the CWP airspace. A binary variable conflict1

(
FLi, FLj, FPLi, FPLj

)
is

employed to identify potential conflicts between flight i and flight j when adjusting their flight-
level to FLi and FLj, respectively, based on their original flight plan, within the core airspace
of the CWP. A value of 1 is assigned to conflict1

(
FLi, FLj, FPLi, FPLj

)
if a conflict is detected.

Otherwise, conflict1

(
FLi, FLj, FPLi, FPLj

)
is assigned a value of 0.

The simulation system assesses potential flight conflicts using a simulation-based optimisation
method in the model calculation. According to CCAR-93TM-R5 guidelines for aircraft safety
intervals, the simulation system establishes a horizontal safety interval of 10km and a vertical
safety interval of 300m. Any horizontal or vertical Euclidean distance between two aircraft that
falls below these safety intervals is flagged as a flight conflict.

(ii) Minimising the deviation of the actual flight-level from the optimal cruise altitude.

min D =
N∑

i=1

|FLi − OFLi| i = 1, 2, . . . , N (2)

D is the flight-level deviation for all flights. OFLi represents the optimal flight-level for flight
i based on the aircraft type and flight distance. Meanwhile, the flight-level allocated to flight i
within the CWP airspace is denoted by FLi.

4.1.4 Constraints
(i) Flight-level adjustment constraint: the amount of flight-level adjustment is limited by the

adjustment space and aircraft performance

AFLi
min ≤ FLi ≤ AFLmax

i i = 1, 2, . . . , N (3)

AFLmin
i and AFLmax

i denote the lowest and highest available flight-levels, respectively, for flight
i. These values are determined by the climb and descent performance of the aircraft within
the limited space of the CWP altitude-adjustment airspace. After calculation, the flight altitude
adjustment space is established between the upper and lower three available flight-levels in the
same direction as the planned flight-level RFLi (where two flight altitude layers separated by one
flight altitude layer are referred to as flight altitude layers in the same direction). By combining
the lowest and highest flight altitude layers of the CWP flight, the adjustment boundaries AFLmin

i

and AFLmax
i for FLi can finally be determined.

(ii) Conflict number constraint in the altitude-adjustment airspace: flights should not create flight
conflicts with other flights while implementing the flight-level allocation strategy.

C2 =
N∑

j=i+1

N∑
i=1

conflict2

(
FLi, Fj, FPLi, FPLj

) = 0 (4)

where C2 denotes the number of flight conflicts in the CWP altitude-adjustment airspace.
conflict2

(
FLi, FLj, FPLi, FPLj

)
is a binary variable used to determine the existence of a flight

conflict between flight i and flight i with altitude adjustment to FLi and FLj under the original
flight plan in the CWP altitude-adjustment airspace. The value of conflict2

(
FLi, FLj, FPLi, FPLj

)
is 1 if there is a conflict and 0 if there is none. The criteria for determining a flight conflict are
the same as mentioned above.

(iii) Constraint on the number of conflicts in the core airspace: to ensure that the calculation of the
flight-level allocation and flight conflict resolution strategies is completed within the specified
time, the number of flight conflicts in the core airspace is limited to at most 2.

C1 ≤ 2 (5)
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4.2 Self-adaptive differential evolution-local search hybrid multi-objective optimisation algorithm
Because there is no apparent linear relationship between the two objective functions established in this
study, it is difficult to transform them into a single-objective form, and the evaluation of the optimisation
objectives and the constraints is done by simulation; therefore, an intelligent algorithm is chosen to solve
the model. The evolutionary algorithm-based algorithm is the most widely used intelligent algorithm
for solving multi-objective optimisation problems, and research shows that multi-objective evolutionary
algorithms (MOEAs) that use differential evolution (DE) algorithms as the evolutionary strategy have
better results than those based on other search strategies [45]. In this study, an improved multi-objective
self-adaptive differential evolution multi-objective optimisation (SDEMO) algorithm based on an elite
selection strategy is chosen to solve the flight-level allocation model. To enhance the convergence speed,
a local search algorithm is also introduced in this paper. It has been demonstrated in several studies that
the hybrid algorithm produced by combining the evolutionary algorithm with the local search algorithm
not only has a strong global search capability, but also has a good neighbourhood search capability, both
in terms of solution accuracy and computation time relative to individual algorithms [46, 47].

4.2.1 SDEMO algorithm
The SDEMO algorithm proposes a new DE algorithm variation strategy and parameter adaptive control
strategy according to the characteristics of multi-objective optimisation problems. The experimental
study shows that the second-generation multi-objective evolutionary algorithm represented by Non-
dominated Sorting Genetic Algorithm-II (NSGA-II), whose local density estimation method is based
on Euclidean distance, cannot accurately reflect the crowding degree of individuals. Therefore, the
SDEMO algorithm improves the individual density estimation method and elite selection strategy. After
the improvement, the algorithm improves the performance of the DE algorithm based MOEAs in solv-
ing optimisation problems with —two to three objectives in an overall way. The improvements in the
SDEMO algorithm are described in detail below.

• Individual density estimation method:
To enhance population diversity and the uniformity of the non-dominated solution set distribu-
tion, SDEMO adopted an improved individual density estimation method that utilises harmonic
mean distance to estimate population density.

For an individual i in a population of Np, assume that the k individuals in the target space
with the closest Euclidean distance to i are at distances of di,1, di,2, . . . di,k. The harmonic mean
distance di of individual i is calculated as shown in Equation (6), where the value of k is set
to Np − 1. This approach determines individual crowding degree based on the influence of all
individuals in the population except itself.

di = k
1

di,1
+ 1

di,2
+ · · · + 1

di,k

(6)

• Elite selection strategy:
To apply the elite selection strategy, individuals in the population are ranked based on non-
dominance sorting, which compares the fitness values of multiple objective functions in a two-
by-two manner. The Pareto-optimal solution among all solutions is assigned dominance rank
1. After eliminating the solutions in dominance rank 1, the Pareto-optimal solution is selected
from the remaining population and assigned dominance rank 2. This process continues until all
individuals in the population are ranked. The improved elite selection strategy in the SDEMO
algorithm considers both the convergence and distribution metrics to enhance the diversity of the
elite population. Based on the crowding density information, the strategy proceeds as follows: if
the number of non-dominated solutions is less than Np, all non-dominated solutions are retained
to ensure population convergence, and 50% of individuals with smaller crowding density are
drawn from each remaining Pareto class, from high to low, until the population size reaches Np.
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If the number of non-dominated solutions exceeds Np, the pruning strategy in the Ref. (48) is
employed to reduce the non-dominated solution individuals to N.

• DE algorithm variation strategy:
A new DE algorithm variation strategy is proposed in the SDEMO algorithm, and its effective-
ness has been verified experimentally. The specific method is as follows:

p′
m = r · pbest + (1 − r) · pm + F ·

K∑
k=1

(
pmk

f
− pmk

b

)
(7)

where pbest represents the current best individual, pm represents the target individual, and p′
m rep-

resents the post-variation individual. pbest is determined based on the dominance of pm in relation
to other individuals and the crowding density. If pm is the dominant solution, pbest is chosen ran-
domly from the solutions that dominate pm. If pm is the non-dominant solution, pbest is chosen
randomly from the top five individuals with the lowest crowding density among all non-dominant
solutions in the current population. r is the greed factor; K is the number of difference vectors; F
is the variation factor, and pmk

f
and pmk

b
are solutions that are selected from the population, which

are unidentical to pm.
• Parameter adaptive control strategy:

In multi-objective optimisation, more non-dominated individuals at the early stage indicate
poorer population diversity and convergence. To ensure diversity and distributivity of the final
solutions, the SDEMO algorithm adapts by increasing individual variability at the early stage to
control non-dominated individuals in the population. The adaptive parameter adjustment strat-
egy aims to maintain diversity early and increase the diffusion rate of non-dominated individuals
to the sparse region later. The adjustment method is as follows:⎧⎨

⎩
F(t) = Fmin + (Fmax − Fmin) ∗ e−2× t

Gen

CR(t) = CRmin + (CRmax − CRmin) ∗ e−2× t
Gen

r(t) = rmin + (rmax − rmin) ∗ e−2× Gen−t
Gen

(8)

where t is the number of population evolutionary generations, Gen is the maximum number of
evolutionary generations, CR is the crossover factor, F is the variance factor and r is the greed
factor.

Combining the above algorithm improvements, the process of the SDEMO algorithm is as follows.
The SDEMO algorithm randomly generates multiple individuals to form the initial population, calcu-
lates the fitness value of each individual in the population on multiple objectives, generates new child
populations using variation and crossover operations, merges the child-parent populations, performs
non-dominance ranking and crowding calculations on them, applies the elite selection strategy to form
new populations and iterates through this cycle until the end condition is satisfied.

4.2.2 Hybrid algorithm design
To improve the algorithm’s search capability and shorten its convergence time, we combine the SDEMO
algorithm with the local search algorithm to design a hybrid algorithm for solving the flight-level
allocation model.

Since the model is calculated by the simulation-based optimisation method, there are no special
requirements for encoding the flight-level, so the relevant calculations involving the flight-level and the
chromosome encoding of the hybrid algorithm are encoded in real numbers in the paper. The available
flight levels are transformed into real numbers starting from 0, as shown in Table 1, with 19,700ft coded
as 0, 20,700ft coded as 1, and so on. Because flights enter the CWP airspace in a sequential order, the
order of flights arriving in the CWP airspace is used as the order of chromosome coding in terms of flight-
levels. For example, if the flight-levels of four flights are listed as 26,600ft–27,600ft–29,100ft–37,100ft
in the order they enter the CWP airspace, the chromosome codes are 7-8-9-17.
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To improve the algorithm’s search capability and shorten its convergence time, we combine the
SDEMO algorithm with the local search algorithm to design a self-adaptive differential evolution-local
search hybrid algorithm (SDELS) for solving the flight-level allocation model. The hybrid algorithm
procedure is as follows:

Step 1: Initialisation settings: set the population size (Np), iteration times (Gen), current itera-
tion (t), crossover factor (CR), mutation factor (F), greedy factor (r) and difference vector
number (K).

Step 2: Generate the initial population (P) with Np individuals, simulate and calculate the fitness
value, and perform the non-dominated sorting and congestion calculation.

Step 3: Select, cross and mutate P to generate an offspring population (O) containing Np individuals.
Step 4: Combine the parent population P and offspring population O, that is R = P ∪ O.
Step 5: Non-dominated sorting and crowding degree calculations are carried out on the merged popu-

lation (R), and a new parent population (P) containing N individuals is generated by applying
an elite selection strategy.

Step 6: When t mod 3 = 0, select the solution with the highest Pareto level from P, generate a local
population (L) with Np individuals, and calculate its fitness value. Apply the elite selection
strategy to P ∪ L and update to produce a new parent population P with Np individuals.

Step 7: t = t + 1,and calculate F, CR, r according to the parameter update method.
Step 8: if t ≤ Gen,then go to Step 3.
Step 9: Output the best individual and decode it to get the flight-level allocation strategy.

5.0 Conflict resolution based on MCTS
The flight conflict resolution module in COOF uses the MCTS method to resolve flight conflicts that
cannot be avoided during flight-level allocation. This section details the technical aspects of the module,
including the selection of resolution actions and the design of the MCTS algorithm.

Flight conflict resolution refers to the process of avoiding conflict by changing the flight speed, flight
altitude and heading after flight conflict is detected, which is essentially a decision-making process. The
MCTS algorithm can address the issue of being trapped in a local solution in a vast search space and
produce effective solution strategies quickly. As it is an asymmetric decision tree construction process
that can be terminated at any point, we employ it in combination with real-time scenario simulation to
explore in-flight conflict resolution strategies and ensure the reliability of the resulting strategies in this
study.

The MCTS-based conflict resolution algorithm derives the conflict resolution strategy by performing
a large number of resolution action simulations for the current state. In this study, we mainly focus on
the two-plane conflict resolution problem, considering the characteristics of a real-time and restricted
resolution space, and choose three basic conflict resolution action types, namely, altitude adjustment,
speed adjustment and offset (dog-leg), as shown in Fig. 6, in terms of resolution action design, and the
action magnitude are designed according to the CWP airspace characteristics, as listed in Table 2.

Considering the execution time of the conflict resolution action, the execution time of the height
adjustment and speed adjustment actions is not more than 120s according to simulation experiments,
and it is stipulated that at most two resolution actions can be selected for each conflict resolution, but
no two offset actions can be selected consecutively. The start execution times is set as 240s and 120s
before the conflict occurs. When a pair of aircraft is expected to have a flight conflict, one aircraft is
randomly selected to execute the conflict resolution action. If there are multiple flight conflicts to be
resolved simultaneously, one aircraft from each pair is selected to perform the conflict resolution action;
however, the aircraft selected to perform the conflict resolution actions must be different. When the
number of aircraft involved in flight conflicts is less than the number of conflicts, selecting a different

https://doi.org/10.1017/aer.2023.45 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2023.45


The Aeronautical Journal 259

Figure 6. Flight conflict resolution action types.

aircraft for each conflict pair to resolve the conflicts is not possible. This paper limits the number of
conflicts to two during flight-level allocation in CWP airspace to address this issue. Suppose no flight-
level allocation strategy is found and the number of conflicts generated by the original flight plan upon
entering CWP airspace exceeds two. In that case, the controller will handle the conflicts.

The specific conflict resolution algorithm is designed as follows.
Step 1 Define the Monte-Carlo tree (MCT) structure
The MCT contains a root node and multiple layers of child nodes. The root node is the airspace

situation when the flight conflict resolution is initiated, and the child nodes are all the flight states after
the conflict resolution action is executed. As shown in Fig. 7, if there is only one flight conflict, the first
layer of child nodes represents all flight states after the execution of the first resolution action, and the
second layer of child nodes represents all flight states after the execution of the second resolution action,
with its parent node as the initial state. If there are two flight conflicts to be resolved, the first level
sub-node indicates the status of all flights after the execution of the two resolution actions to resolve the
first flight conflict, and the second level sub-node indicates the status of all flights after the execution
of the two resolution actions to resolve the second flight conflict. The numbers on each node in Fig. 7
correspond to the release action numbers in Table 2.

Step 2 Selection process
The selection process starts from the root node of the MCT and finds a child node that is most

appropriate for exploration according to the selection strategy, usually using the upper confidence bound
apply to tree (UCT ) algorithm as the evaluation function, prioritising the unexplored child nodes and
selecting the child node with the largest UCT value if all the children have been explored.

UCT = X̄v + 2Cp

√
2lnN(v)

N(v′)
(9)

where X̄v is the expectation of the reward value obtained from all simulations on a node, N(v) is the
number of times the node (V ) has been selected, and N(v′) is the number of times a child node has been
visited. when a child node has never been visited, the UCT of this node tends to positive infinity, ensuring
that all children in this layer are traversed before the next layer is expanded. Cp is a constant greater than
0. The former term of the evaluation function, X̄v, is called the exploitation term (Exploitation), and the
latter term is the exploration term (Exploration). The evaluation function uses Cp to adjust the balance
between the two terms.

Step 3 Expansion process
The selected node is used as the root node to create a new child node. In this study, we set the max-

imum number of flight conflicts that need to be resolved simultaneously to 2. Therefore, the expansion
node can only be the first layer child node, and the search result must be generated when the second
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Table 2. Flight conflict resolution action

Action type Adjust direction Action range Action number
Altitude adjustment Climb 600m (2000ft) 1

1200m (4000ft) 2
Descent 600m (2000ft) 3

1200m (4000ft) 4
Acceleration 10kn 5

Speed adjustment Deceleration 20kn 6
10kn 7
20kn 8

Offset Left offset 45◦ outbound, off-airways 6nm 9
Right offset 45◦ outbound, off-airways 6nm 10

Selection Expansion Simulation Backpropagation

root

1 2 9 10

root

1 2 9 10

root

1 2 9 10

root

1 2 9 10

1 1

Simulation result

1

root

1+1 1+2 10+9 10+10

root

1+1 1+2 10+9 10+10

root

1+1 1+2 10+9 10+10

root

1+1 1+2 10+9 10+10

1+1 1+1

Simulation result

1+1

End the search process when the stop condition is met 

(search time or search times limit)

MCTS structure for single flight conflict resolution

MCTS structure for multiple flight conflicts resolution 

(Take the resolution of two flight conflicts as an example)

Figure 7. MCTS-based flight conflict resolution process.

layer child node is searched so that the expansion operation is not performed on the second layer child
node.

Step 4 Simulation process
Starting from the expanded child node, the simulation is carried out using the random selection strat-

egy to the state where all conflict resolution actions are completed and the conflict resolution result
is obtained. When there is only one flight conflict, the simulation process ends if the execution of the

https://doi.org/10.1017/aer.2023.45 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2023.45


The Aeronautical Journal 261

Table 3. Reference table of the best cruising altitude for common aircraft types

Itinerary (nm)

Type of aircraft 300 400 500 600 700 800 ≥ 850
B737 10,100 10,100 10,700 11,300 11,300 11,300 11,900
A320 10,100 10,100 10,700 10,700 10,700 10,700 10,700
A321 10,100 10,100 10,700 10,700 10,700 10,700 10,700
CRJ9 9500 10,100 10,100 10,100 10,100 10,100 10,100
The optimum cruise altitude in the table is in meters (m), and its corresponding feet altitude can be obtained from the Chinese flight-level configuration table.
This table is only the flight altitude in one direction, the optimal cruise altitude for flight in the opposite direction must be increased by 300m (1000ft).

selected first-level child node causes a new conflict to appear and the resolution result is a failure; oth-
erwise, the resolution result is unresolved and the execution of the selected second-level child node
continues. If the original conflict is resolved and no new flight conflict is created, the simulation process
ends and the resolution result is a success; otherwise, the resolution result is a failure.

When there are two flight conflicts, after executing the action of the selected first-level child node,
if one of the flight conflicts is not successfully resolved or a new flight conflict is created, the result of
conflict resolution is a failure and the simulation ends. When one of the flight conflicts is successfully
resolved and no new flight conflict is generated, the resolution result is not completely resolved, the
selected second layer of child node actions is executed, and after the first and second layer of the child
node actions are all executed, if both flight conflicts are successfully resolved and no new flight conflict
is generated, the conflict resolution result is a success; otherwise, it is a failure.

Step 5 Backpropagation process
The result of the conflict resolution simulation is fed back to the parent node layer by layer, and the

number of successes, number of visited nodes, and reward value of all selected nodes are updated and
recorded. The reward values for successful and failed deconflictions are 1 and 0, respectively.

After the search starts, the node selection, expansion, simulation, and backpropagation processes are
continuously performed until the number of searches reaches the preset number. At the end of the search,
the action corresponding to the child node with the largest UCT value at each layer is selected as the
conflict resolution strategy obtained from the search.

6.0 Simulation and discussion
In this section, we evaluate and validate the optimisation performance of COOF by designing various
experimental scenarios.

6.1 Simulation design
Before evaluating the optimisation effect of COOF, we introduce the experimental data, environment,
procedure, parameter settings and evaluation index.

6.1.1 Experimental data
Based on the results of a study by the MITRE corporation [49] on the optimal cruise altitude for flights
and referring to the optimal cruise altitude curves provided by airlines for each aircraft type, we deter-
mined the optimal cruise altitude for commonly used aircraft types, which are listed in Table 3.

The relevant parameters of the DOCM are set as follows: time horizon size, �Thorizon = 10min; time
interval size, �Tinterval = 5min; number of time intervals, Ninterval = 2; the total number of optimised time
horizons, Nhorizon = 3; current time horizon, h = 1; optimisation start time, T(h), h = 1, 2, 3 · · · Nhorizon.
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Table 4. Number of flights in the four experimental scenarios

Horizon Horizon Number of flights Number of flights Number of flights Number of flights
start time end time in Scenario A in Scenario B in Scenario C in Scenario D
8:15 8:20 6 9 9 11
8:20 8:25 6 8 10 10
8:25 8:30 6 9 10 11
8:30 8:35 7 9 9 10

The 2019 Civil Aviation Airspace Development Report indicates that HFE, the busiest waypoint in
China, has a peak traffic volume of 106 vehicles/h [4]. Using radar track data and flight plan data from the
13th of August, 2019, a time slice (8:15∼8:35) containing three time horizons was randomly intercepted,
and a total of 25 flights flew through this time slice. The flight plan (arrival time, flight path, flight altitude
level, flight speed, etc.) of the flights crossing the HFE airspace was collected to construct experimental
Scenario A, which represents the daily traffic level. To explore the optimisation performance of the
COOF in a high flight traffic environment, experimental Scenario B, with a flight volume that reached
peak traffic, and experimental Scenarios C and D, with the flight volumes that reached 1.1 and 1.2
times higher than the peak traffic were constructed by adjusting the flight information, and the specific
experimental scenario information is listed in Table 4.

Owing to the randomness of the simulation experimental results of a single scenario, 200 simulation
inputs were generated for each of the four experimental scenarios for the COOF simulation verification
before the simulation experiments.

6.1.2 Experimental environment
• Simulation platform: An ATOSS developed by our team is used to cooperate with the opti-

misation process. The system uses a simulation motion engine based on the BADA database to
deduce the state transfer of the environment and aircraft during the simulation, which in turn
enables the trajectory projection and prediction, and the predicted trajectory can be used for
conflict detection and deconfliction, as shown in Fig. 8.

• Hardware environment: HP Z8 G4 Workstation, Intel Xeon(R) Gold 6242 CPU @ 2.8GHz,
RAM 64GB.

• Software environment: The development tool is IntelliJ PyCharm, and the algorithms were
written using Python 3.7.

• Parallel computing setup: The multiprocessing module in Python was used to perform mul-
tiprocess parallel computing in the hybrid algorithm to calculate the population fitness. Based
on the simulated experimental environment and algorithm parameter settings, it was determined
that the best acceleration was achieved when the number of concurrent processes was 25, and
the average individual computation time was reduced by 68%.

6.1.3 Simulation experiment process
The procedure of the joint simulation experiment is as follows:

Step 1: Initialise the receding horizon window and set h = 1;
Step 2: Update the receding horizon information to obtain all flights that are expected to arrive

in the HFE airspace within
[
T(h) , T(h) + �Thorizon

]
. Flights with expected arrival time in

[T(h) , T(h) + �Tinterval] constitute the set of flights to be optimised, that is, A(h). Flights with
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Figure 8. ATOSS simulation operating environment.

expected arrival time in (T(h) + �Tinterval, T(h) + �Thorizon

]
and flights that have completed

altitude assignment but are still in the HFE airspace constitute the set of environmental flights,
that is, E(h).

Step 3: Solve the flight-level allocation model, and if no feasible flight-level allocation strategy is
obtained, enter the HFE airspace according to the original flight plan. If there is a flight con-
flict (flight conflict between an aircraft in A(h) or A(h) with an aircraft in E(h) in the HFE
core airspace), the FCRM is enabled to solve the conflict resolution strategy. The criterion
for successful resolution is that the conflicting aircraft are no longer in conflict in the HFE
airspace.

Step 4: Issue flight-level adjustment commands and conflict resolution commands for flights in A(h).
Step 5: Execute the altitude adjustment command and conflict resolution command immediately after

the flight enters the HFE airspace.
Step 6: h = h + 1, determine whether the optimisation is completed; if not, return to Step 2.

6.1.4 Algorithm parameter setting
• Hybrid algorithm: Set the population size, Np = 300; number of iterations, Gen = 10; initial

crossover factor, CR ∈ [0.4, 0.8]; variation factor, F ∈ [0.3, 0.8]; greedy factor, r ∈ [0.4, 0.8]; and
number of difference vectors, K = 2.

• MCTS algorithm: Total number of searches Ls = 500, Cp = √
2/2.
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6.1.5 Evaluating indicator
• Flight-level deviation

�hori =
N∑

i=1

|FLi − OFLi| (10)

�hopt =
N∑

i=1

|FLi − OFLi| (11)

�hori =
∑

�hori

Ns

(12)

�hopt =
∑

�hopt

Ns

(13)

where �hori and �hopt denote the flight-level deviation of a single simulation before and after
optimisation, respectively, �hori and �hopt are the average flight-level deviations before optimi-
sation and the average flight-level deviation after optimisation for Ns simulations, respectively.

• Flight-level deviation reduction rate

R�h = �hori − �hopt

�hori

(14)

R�h =
∑

R�h

Ns

(15)

where R�h is the flight-level deviation reduction rate of a single simulation experiment and R�h

is the average flight-level deviation reduction rate of Ns simulation experiments.
• Percentage of economic flights

ROFL = Nopt

N
(16)

R′
OFL = N ′

opt

N
(17)

ROFL =
∑

ROFL

Ns

(18)

R′
OFL =

∑
R′

OFL

Ns

(19)

The economic flights are the flights flying at the optimal cruising altitude, Nopt and N ′
opt denote

the number of flights flying at the optimal altitude before and after optimisation, ROFL and R′
OFL

are the percentage of economic flights in a single simulation experiment before and after opti-
misation, ROFL and R′

OFL denote the average economic flight percentages before and after the
optimisations of Ns simulation experiments, respectively.

• Flight-level adjustment degree

Rdeg = �hopt

�H
(20)

Rdeg =
∑

Rdeg

Ns

(21)
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Table 5. Types of optimisation results for a single time horizon

The flight-level Have remaining The remaining Optimisation
allocation strategy flight flight conflicts were result
is obtained conflicts successfully resolved type√ √ √

AO-HS√ √ × AO-HF√ × AO-NC
× √ √

AN-HS
× √ × AN-HF
× × AN-NC

Table 6. Statistics of time horizons optimisation results for
Scenario A

Optimisation Number of time Proportion of total
results horizons time horizon number
AO-HS 295 49.2%
AO-HF 38 6.3%
AO-NC 212 35.3%
AN-HS 14 2.3%
AN-HF 2 0.3%
AN-NC 39 6.5%

where �H denotes the maximum flight-level adjustment of the experimental scenario, Rdeg

denotes the flight-level adjustment degree in a single simulation experiment, and Rdeg is the
average flight altitude layer adjustment degree of Ns simulation experiments. The adjustable
flight-level of the flight is limited by the performance of the aircraft and the range of the altitude-
adjustment airspace and cannot be adjusted indefinitely to reduce the flight-level deviation.

6.2 Result discussion
The optimisation results of COOF for a single time horizon can be classified into six categories.
Obtaining the flight-level allocation strategy is labelled as AO, while failing to obtain it is labelled
as AN. If there is a remaining flight conflict and the conflict resolution module successfully resolves it,
it is recorded as HS. If the resolution fails, it is recorded as HF. Finally, if there is no remaining flight
conflict, it is labelled as NC. These categories are determined based on the flight-level allocation results
and the conflict resolution situation. The detailed categories are presented in Table 5.

The results of 200 simulation experiments for Scenario A show that the percentage of time horizons
(AO-HS, AO-NC) that successfully planned flight-levels for flights and completed flight conflict reso-
lution reached 84.5%. Regardless of the completion of flight-level allocation, COOF can resolve flight
conflicts, and the percentage of time domains (AO-HS, AO-NC, AN-HS, AN-NC) that did not require
additional processing by ATCO reaches 93.4%, as shown in Table 6. This indicates that the COOF can
provide stable decision support to the ATCOs and effectively reduces their workload.

In each simulation experiment, flights in the optimised time horizon that do not fly out of the HFE
airspace are considered as environmental variables in the subsequent time horizon, which increases
the number of flights to be considered for optimisation in the subsequent time horizon. Because
the simulation system is called frequently during the optimisation process, the computation time of
the subsequent time horizon may increase; therefore, the computation time of each time horizon in
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Figure 10. Flight-level optimisation results for Scenario A.
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Table 7. Flight conflict resolution results for Scenario A

Evaluation indicators Experimental results
Number of flights 25
Percentage of simulation inputs with flight conflicts 91%
Average time for a single conflict resolution 24s
Successful conflict resolution rate 89%
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Figure 11. Statistics of time horizon optimisation results for incremental scenes.

Scenario A (the total computation time, including flight conflict resolution) shows a clear stratification
phenomenon, as shown in Fig. 9.

For the flight-level allocation, the 200 optimised inputs for Scenario A had 63 less flight-level devi-
ations on average after the COOF was applied, and the average flight-level deviation reduction rate was
53%, as can be observed from Fig. 10(a) and (b). After the optimisation was completed, the average
flight-level adjustment degree of Scenario A reached 83%, and the percentage of economic flights was
improved by 34% after the optimisation, as can be observed from Fig. 10(c) and (d). It is deduced that
the COOF has shown a strong optimisation performance in reducing flight-level deviation.

In terms of flight conflict resolution, 91% of the optimised inputs in Scenario A had flight conflicts,
and each flight conflict resolution took 24s. The COOF was able to successfully resolve most of the
flight conflicts, with a resolution rate of 89%, as shown in Table 7.

In Scenarios B, C and D, as the number of flights in the experimental scenarios increases, there is
a decreasing trend in the number of time horizons capable of generating flight-level allocation strate-
gies, as can be observed in Fig. 11. Because some flights have the same optimal flight cruise altitude,
with an increase in flight volume, there will inevitably be flight clustering at some flight altitude layers.
Therefore, the possibility of generating flight conflicts increases significantly, and it becomes more dif-
ficult to generate flight-level allocation strategies that satisfy the conflict number limit. However, even in
the highest traffic for Scenario D, the percentage of time horizons that successfully generate a flight-level
allocation strategy reached 77.8%.
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Figure 12. Computation time statistics for a single time horizon in four experimental scenarios.
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Figure 13. Flight-level optimisation results for incremental scenes.
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Table 8. Flight conflict resolution results for incremental scenarios

Evaluation indicators Scenario B Scenario C Scenario D
Number of flights 36 40 44
Percentage of simulation instances with flight conflicts 98.5% 99% 97%
Average time for a single conflict resolution 32s 36s 37s
Successful conflict resolution rate 81% 79% 75%

Figure 14. Distribution of conflict resolution actions selected for each scenario (obtained based on
200 experimental data from four types of experimental scenarios).

The computation time of an individual time horizon in a scenario is closely related to the number of
flights in that time horizon, and the phenomenon of the computation time of subsequent time horizon
gradually increasing as the optimised time horizon advances becomes more pronounced in the incre-
mental scenarios (the difference between the shortest and longest computation times of the time horizon
in Scenario D is 101 s), as can be observed from Fig. 12. However, the computation time of individ-
ual time horizons in each scenario does not exceed the set upper limit of computation time (as already
mentioned, the upper limit of the calculation time for each time horizon is a time interval length).

As the number of flights in the optimised scenario increases, the average flight-level deviation, aver-
age flight-level deviation reduction rate, average flight-level adjustment degree, and average economic
flight percentage data of each experimental scenario show a decreasing trend, as shown in Fig. 13.
However, even in the scenario with 1.2 times higher peak traffic, after the COOF was applied, its aver-
age flight-level adjustment degree reached 60%, the average flight-level deviation was reduced by 81,
the average flight-level deviation reduction rate reached 40%, and the number of economic flights was
improved by 24% after optimisation.

In the three incremental scenarios, the percentage of optimised instances with flight conflict after
flight-level allocation reached more than 97%, as shown in Table 8. Considering that the COOF adopts
a simulation-based MCTS algorithm to find the conflict resolution strategy, an increase in flight volume
leads to an increase in the conflict resolution time and a gradual decrease in the successful flight conflict
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resolution rate, but with the successful flight conflict resolution rate of the three incremental scenarios
maintained at above 75%. With an increase in traffic density, the solution space of the conflict resolution
strategy gradually becomes smaller, which is the main reason for the low success rate of flight conflict
resolution. In actual operation, when the traffic density in the airspace exceeds its carrying capacity,
controllers generally adopt flow control or air wait to reduce the traffic density and ensure flight safety.

The distribution of the conflict resolution actions selected for each scenario is shown in Fig. 14. As
can be seen in the figure, there is no significant difference in selecting the three conflict resolution actions
in the high-density environment. The proportion of choosing two actions, altitude adjustment and speed
adjustment, is slightly higher than that of choosing offset action, and the proportion of choosing altitude
adjustment action is the highest.

7.0 Conclusion
In this study, a CWP operation optimisation framework was proposed, and a two-stage combined opti-
misation method was designed to reduce flight conflicts while maximising the demand for flights to
fly at the optimal cruising altitude. Four experimental scenarios were constructed through a simulation
system using real flight plan data and radar trajectory data. The experimental results showed that among
the four experimental scenarios, the computation time of the two-stage optimisation meets the perfor-
mance requirements, the minimum average flight-level deviation reduction rate was 40%, and the lowest
successful flight conflict resolution rate was 75%. This operational optimisation framework is effective
in improving ATC operational safety and reducing flight operation costs and can be used as a reference
for the ATCO’s auxiliary decision support system. The limitation of this paper is that the optimisation
scenario does not consider aircraft diversions and detours affected by bad weather. Future work will con-
sider the impact of severe weather conditions and attempt to expand the optimisation environment from
a single CWP to a busy sector. Since the main focus of this paper is to improve the traffic efficiency
of BCWP, the preferences of different conflict resolution actions are not considered. The preference
for flight conflict resolution actions will be added to the future study of large-scale airspace operation
optimisation.
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