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1. Introduction

This article represents our attempt to improve the previous results on defining and
understanding overconvergent Eichler—Shimura maps in [5] and [6].

We fix a prime integer p > 2. We recall that an (overconvergent) Eichler—Shimura
morphism is a comparison map describing weight k overconvergent modular symbols,
seen as pro-Kummer étale cohomology classes of a sheaf of weight %k distributions Dy
(where k: Z,,— B* is a B-valued weight as in Definition 3.6) tensored some period ring,
in terms of overconvergent modular forms of weight &+ 2, tensored with the same period
ring. In [5] and in [6], we defined and studied Hodge-Tate Eichler-Shimura maps while in
this article we’ll have Hodge—Tate, de Rham and crystalline variants.

To really explain what the main issues are that we deal with in this article, let us observe
that there has been remarkable recent progress in p-adic Hodge theory and especially in
integral p-adic Hodge theory, and let us just mention [8], [9], [11], [14]. The articles
quoted here deal with various cohomology theories on formal schemes or adic spaces
with constant coefficients. On the other hand, it has been clear for some time that for
applications to p-adic automorphic forms one needs to work with cohomology with very
large coefficients. In this article, we try to understand p-adic Hodge theory (comparison
morphisms really) with large coefficients, and therefore, unfortunately, we cannot use the
recent results quoted above.

More precisely, let X := Xy(p™,N) be the log adic space defined by the modular curve
over Q, associated to the congruence subgroup I'g(p™)NI'1 (V). For any > 0, we have
open subspaces X (p/HapT), where Ha is a (any) local lift of the Hasse invariant. We
fix k,B as above and let h € N. We denote by wg the sheaf of invariant differentials of
the universal semiabelian scheme E over X and by Xk, the log adic space X equipped
with the pro-Kummer étale topology, see section §2.2. We let Dy denote the pro-Kummer
étale sheaf of weight k-modular symbols on this Xk, and we recall from [6] that both
the pro-Kummer étale cohomology and the sheaf cohomology groups H! (kae,ID)k(l))
and H (X (p/ Hapr),w?'Q) have finite slope decompositions for the action of the compact
operator Uy,. If h € N is a slope, we denote, for a Hecke module M by M ™) the submodule
of slope < h submodule of M.
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Then, Theorem 5.1 states that there is an r depending on k, and therefore a
neighbourhood X (p/ Ha? ) of a component of the ordinary locus in X', and a canonical
Cp-linear, Galois and Hecke equivariant map:

Ty B (e, Di(1)) W BC, — HO (X (p/Ha?"),wh2) M B C,.

In a slightly different way and only for analytic weights, the map Wy, was constructed
in [5]. There we also proved that the map is generically surjective. The new result in this
paper is:

Theorem 1.1. If H?;OI(uk —i) € (B[l/p})*, then Upr n is surjective, for all h > 1, and
it is surjective if h = 0.

Our next result in this article is a de Rham overconvergent Eichler—Shimura map. We
fix now, as in section §6, X := X'(N) the modular curve with full level N structure for
the remainder of this introduction. We construct modular sheaves with connections and
filtrations Wy, gg on X (p/ Haupr)7 for an r > 0 depending on k, which interpolate p-adically
the family of sheaves {Sym"H}y (E/X)}yen, with their filtrations and connections, and

we denote by Wy ar,e : Wi dr v, Wi t2.4ar the de Rham complex of (Wy qr,V). Here,
of course, we use the Kodaira—Spencer isomorphism in order to see the connection as
a morphism of abelian sheaves with values in Wy 2 qr. Assuming the hypothesis and
notations above we prove:

Theorem 1.2. a) There is a natural, Galois and Hecke equivariant B@BJR—semilmear
map

h - h) & ey —
(*) pr:H' (Xﬁpkeﬂk)( )®B r — Hig (X (p/Ha? )7Wk,dR,o)( '&Fil ' Bar,
b) If Hh 1(u;€ —i) € (B[1/p])" then the display () above becomes:

pr: HY( kae,]D)k)(h)®B — H(X (p/Hapr),wgrQ)(h)AFﬂ 'Bir
and it is surjective.

In order to make it clear what improvements we were able to produce in this article,
we now list the new ideas.

1) Neighbourhoods of the ordinary loci in modular curves.

Both in [5] and [6], we worked on the (log) adic modular curves X} (N) and Xy(p,N);
these are the (log) adic spaces associated to the modular curves over Q, of level I'; (V)
and, respectively I'1(N)NTy(p), which have a connected, respectively two connected,
components of ordinary loci. We worked with strict neighbourhoods of these ordinary
loci of depth n € N defined as the points z with the property v,(Ha) < 1/n. These
neighbourhoods are defined over Spa(L,0p) over which the point z is defined, where
L is some complete extension of @, and these neighbourhoods are also used in this very
article for the de Rham Eichler-Shimura maps.

For the Hodge—Tate comparison maps in this article, we use a better technology, inspired
by the work of [12]. Namely, let X'(p>°,N) be the perfectoid adic space over Spa(C,,Oc,)
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associated to the projective limit of adic modular curves lim X (p™,N) and the Hodge-
—,m

Tate period map
mur: X (p™,N) —HP’(%DP.

We define interesting opens Ug) C Pép, for n > 1 and the symbol # € {0,00}, which are
invariant under the action of the m-th Iwahori subgroup Iw,, C GL2(Z,) as follows: If
# =00, then m > n if # =0, then m > 1 and on which we understand the dynamic of
the U,-operator. Then by the properties of my, for every n > 1, there are: an m > 1 as
above and neighbourhoods of the ordinary loci in Xy(p™,N) denoted Zén),Zc(ﬁ ) such that
if T X(p™°,N) — Xo(p™,N) is the natural projection, then ﬂﬁ%(U;")) = ﬂ%l(Z;&n)),
where # € {0,00} such that we understand well the dynamic of the U,-operator on
sections of modular sheaves on Xy(p™,N). We remark that Xy (p™, N) has many connected
components of the ordinary locus if m is large and a complicated semistable integral
model; therefore, it would have been difficult to apply the previous method, that is,
defining neighbourhoods of the ordinary loci using Ha, in Xy(p™,N) for m > 1.

2) Payman Kassaei’s method for the cohomology of pro-Kummer étale sheaves.

Let us now explain our new take on the overconvergent Hodge—Tate Eichler—Shimura
morphism. We fix a slope h € N and a weight k: Z; — B* as in Definition 3.6.
This weight is N-analytic, for some N € N, that is, there is u, € B[1/p] such that
k(t) = exp(u;c log(t)) for all t €1 +pNZp. These data determine integers m,u,m such
that on X := Xy(p™,N) we have our neighbourhoods Zég) for u < m and Zon),ZénH).
We base-change X', 2%, 2{™ z{"*") over Spa(Q,,Z,) to Spa(B[1/p],B) and still denote
them X, 2" ),Zén)7Zé"+1). We let D9 be the integral sheaf of weight k-distributions, seen
as a pro-Kummer étale sheaf on X', and denote by Dy, := D ®z, Q).

First, let us recall that the map Wy 1 appears, after passing to the the open subspaces
defined in (1), as the following composition:

H (X, D (1)) M & C, (H1 (kae,m(l))[l/p])(h)

2y (1 (2 e De () 1/5) "

2 H(2,Wh2) Mae,,

where Dy, := Dy@@zpke, R is the restriction map and ® was defined in [6] and in 4.15,
and it was proved in loc. cit. that it is an isomorphism. Therefore, in order to prove
Theorem 5.1, we need to show that restriction from Zpy. to (Zég ))pke induces a surjective
map on the H’s if H?_fol(fuk —14) is a unit in B[1/p].

To do this, we use Payman Kassaei’s idea of proving classicity of overconvergent modu(lha)r
)

forms of integral weight and small slope. More precisely, given x € H! ((Zég ))pke,ka ,

we may see it as an element of H! ((Zg))pkc,Qg ) which is annihilated by Q(U,), where
Q(T) € (BROc,)[T] is a polynomial all of whose roots have valuations < h. We write
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Q(T) = P(T) — a, with P(0) =0, and denote by a the valuation of «. Then by applying
to x the operator (P(Up))m_u—|r1 we can see it as a class Z in Hl((X\ZénH))pke,@Z).
On the other hand, following Kassaei, we can define a new operator (P(Up)”)gOOd by
choosing all the isogenies defining the correspondence U;' which map Z(gn) to Zéé). Let
P(z) == (PU,)")* Y (P(U,)" (x)) € H' (Z{",D2). As the family {X\Z{"",2{} is
an open covering of X', one can use a Mayer—Vietoris sequence in order to glue p*z,p*P(x)
for a certain fixed power of p, s modulo p”, where r was chosen in the beginning large
enough so that r > 2(s+d+ 14 (u+n+1)a) for a certain constant d (see Section §5).
We obtain a class z € H! (Xpke,DY) annihilated by Q(U,) and such that its restriction to
2 is congruent to p*ta+1au+n+ly modulo p”, that is, there is 21 € Hl((Zég))pke,@Z)
annihilated by Q(U,) such that R(z) = p*T¢tlamtutl(z — p/22,). Now, we iterate

the process for z; and in the end obtain an element y € H! (kac,Dk)(h) such that

R(y) ==

3) On the de Rham comparison.

It is interesting to note, about the de Rham Eichler—Shimura map py in theorem 1.2,
the ‘decalage’ between the filtrations on Bgr that appear. This decalage is explained
as follows: On the pro-Kummer étale site of X (p/Hapr), we have the sheaves with
filtrations and connections: V’: Wk7dR®(’)BdR — Wk+2’dR®OBdR (see Section §6.4 for
the details), where V' = Vi®1+18Vqag and ‘W, 4r has an increasing, infinite filtration,
while OBgr has a decreasing, infinite filtration. Both Vi and Vgr satisfy the Griffith
transversality property with respect to the respective filtrations, but on the tensor
product, we don’t have a natural filtration. We have, however, the following fact:

V': Fil,, Wy, qr@FiIl’OBar — Filyyy 1 Wi g2 ar@Fil ™ OBgg.

This explains the decalage.

As an immediate consequence of the above theorem, we have a ‘big exponential map’.
More precisely, let K be the finite extension of Q,, over which & and X (p/ Ha? T) are both
defined, and let G denote the absolute Galois group of K for a fixed algebraic closure K
of K.

Then we have a Hecke equivariant, B-linear map

Bxpis B (G (A o D(1) ) — i (X (p/Ha") Wi an) "

which has the property that, for every classical weight kg-specialization, it is compatible
with the classical dual exponential map, as follows:

a) If kg > h—1, that is, ko is a noncritical weight for the slope h, then we have the
following commutative diagram with horizontal isomorphisms. Here, we denoted by expj
the Kato dual exponential map associated to weight kg modular forms.

(Expr) »
="

(Hl (G’Hl (X?,pkka(l)) (h)) ) k H(ljR (X (p/HapTv),Wk,dR’,) (h))
I * I
I (G (A o Sy (L) )W) ) =5 FiHL (A Sy (1)

ko
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b) If 0 < kg < h+1, that is, ko is critical with respect to b, we only have a commutative
diagram of the form

(Exp*)k .
(1! (GH (¥ e De(1) ™)) T (W (/) Wian) ™)
, . .
d T
H (GH (X e Sym™ (T, (B)) (1) ™) =2 FilOH}, (X, Sym* (Hp)) ",

where the right vertical arrow is induced by restriction.

2. Preliminaries

We will denote by X, Y, Z, ... log schemes and by caligraphic letters X, ), Z, ... log adic
spaces. We refer to [15] for generalities on those.

2.1. Pro-Kummer étale site

Given a finite saturated (for short ‘fs’) locally noetherian log scheme X (resp. an fs locally
noetherian log adic space X) we denote by Xyet, Xexet (reSp. Xket, Xfket) the Kummer
étale site, respectively the finite Kummer étale site (see [18, Def. 2.1], [15, Def. 4.1.2]).
Following Scholze [22], we denote by Xpke, resp. Xprotket (r€SP. Xpke;, Xprofket) the pro-
Kummer étale site, resp. the pro-finite Kummer étale site (see [15, Def. 5.1.2 & 5.1.9]) of
X, respectively X.

As a category, it is the full subcategory of pro-Xyet, resp. pro-Xget (resp. pro-Xiet, pro-
Xiket) of pro-objects that are pro-Kummer étale over X, resp. pro-finite Kummer étale
over X (resp. X), that is, objects that are equivalent to cofiltered systems liinZi such
that Z; — X is Kummer étale, resp. finite Kummer étale, for every ¢ and there exists an
index 7y such that Z; — Z; is finite Kummer étale and surjective for ¢ and j > iy (and
similarly for X"). For the covering families we refer to loc. cit.

We have a natural projection v: Xpke — Xket (resp. v: Xpke — Xiet) sending U € Xyt
(resp. in Xet) to the constant inverse system defined by U. Then, by [15, Prop. 5.1.6
& 5.1.7] for every sheaf of abelian groups F on Xy (resp. in Xget) and any quasi-
compact and quasi-separated object U = hint in Xpke (resp. in Xpke), we have natural

isomorphisms of d-functors

H' (Upke:v ™ (F)) 2 HmH (Uj et F),  F = Rusv ™ (F).

2.2. Sheaves on the pro-Kummer étale site

We then have the following sheaves on Apye defined in [15, Def. 5.4.1] and in [16, Def.
2.2.3] following [22, Def. 6.1]:

i. The structure sheaf Oy, := v~ !(Ou,,) and its subsheaf of integral elements
(’)j{,pke =yt ((’)}ket). It comes endowed with a morphism of sheaves of multiplicative

monoids a: M — Oy, defined by taking v~ of the morphism of sheaves of
multiplicative monoids defining the log structure on X.
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ii. The completed sheaf (”)\j{ L= lim (’)} . / p"@} .. and the completed structure sheaf
bxe co+n pke pke
%) — O+ 1
Okae T Okae [5] :
iii. Let K be a perfectoid field of characteristic 0 with an open and bounded subring
K. Assume that X is defined over Spa(K,K™). Then we have the tilted integral

5 . At + + ; . . —
structure sheaf O . = l(l_rg@ Xyre /pO X, and the tilted structure sheaf O a1
(9;,, Qv+ K°. It comes endowed with a morphism of monoids o”: M — (’)ka ,

pke pke

where M’ is the inverse limit limM indexed by N with transition maps given by
—

raising to the p-th power, o v 1s identified as a sheaf of mutiplicative monoids with
the inverse limit limOy,, . indexed by N with transition maps given by rasing to the
—

p-th power and the map o’ is the inverse limit of the maps a composed with the
natural maps Ox,, . — Ox,,.-

iv. The period sheaf A;,f := W(@L ) and the period map ¢: Ay — (/9\} .
pke pke
2.3. Log affinoid perfectoid opens
Consider a locally noetherian fs log adic space X over Spa(Q,,Z,). Following [15, Def.
5.3.1 & Rmk. 5.3.2], an object U = lim;¢; U;, with U; = (Spa(Ri,R;r),Mi) in Xpke is called
log affinoid perfectoid if:

a. There is an initial object 0 € I.

b. Each U; admits a global sharp finite saturated chart P; such that each transition
map U; — U; is modeled on the Kummer chart P; — Pj;

c. (Spa(Ri,Rj'))i is affinoid perfectoid, that is, the p-adic completion (R,RT) of
limi(Ri,R;r) is a perfectoid affinoid Q,-algebra;

d. The monoid P = lim; P; is n-divisible for all n.

Given a log affinoid perfectoid U as above, we denote by U= Spa(R, R+) the associated
perfectoid affinoid space. By [15, Lemma 5.3.6], it has the same underlying topological
space as U (which is defined as the inverse limit of topological spaces lim |U;|). Moreover,

— 1

by [15, Thm. 5.4.3] and [22, Thm. 6.5, we have that
O, () =R" Ox, (U)=R O}, (U)=R",

pke pke ke
Oxy (U)=R, Aui(U)=W(R'Y)
and the cohomology groups

i N+ i A+ i .
H (U,Oxpke) ~0, H (U,(’)nge) ~0, H'(U,Amg) ~0 Vi>1
(where ~ means almost 0).
Thanks to [15, Prop. 5.3.12 & Prop. 5.3.13], there exists a basis B for the site X,k given
by log affinoid perfectoid objects such that for every locally constant p-torsion sheaf I on
Xiet and every U € B we have H? (kae|U,L) =0fori>1.In case X is a fs log scheme over
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Qy, there is an analogous notion of log affinoid perfectoid opens of X ke, and it follows
from the arguments in loc. cit. that there exists a basis of Xy, with the same property.

We recall that K was defined in the previous section as a perfectoid field of characteristic
0 with an open and bounded subring K+. Assume that X is defined over Spa(K,K™).
In this case, Aj.f, resp. @;, is a sheaf of algebras over the classical period ring Aj,¢ :=
W (K bJr), resp. over K1, and given a generator ¢ € Ajy¢ for the kernel of the canonical
ring homomorphism Aj,s — K, it follows from [22, Lemma 6.3] that we have an exact
sequence

. 9 ~
0— Ajur _§> Ajur 1—) O;pke — 0.

2.4. Comparison results

Assume that X is a finite saturated locally noetherian log adic space over a perfectoid
field Spa(K,K™) with K algebraically closed of characteristic 0. Firstly, the main result
of [15], namely Theorem 6.2.1, states that if the underlying adic space to X" is log smooth
and proper and L is an Fj-local system on Aj.¢, then the cohomology groups Hi(Xket,L)
are finite for all ¢, they vanish for ¢ > 0 and the natural map

Hi(XkctvL) & K+/p — Hi(XkCta]L® (9_;"_(‘1@t /p)

is an almost isomorphism for every i > 0. As F = Ry,v! (.F ) for any sheaf of
abelian goups, we obtain the same cohomology groups replacing Xi.; with Xpie in the
isomorphisms above. Here, we denoted v: X,xe — it the natural morphism of sites.

Second, in the case X is finite separated locally noetherian log scheme, proper and log
smooth over K, we have a géométrie algébrique et géométrie analytique (GAGA) type
comparison isomorphism. Let X be the associated log adic space over Spa(K,K™). We
have a natural morphism of sites v: Xiet — Xiet. Let L be an [Fp-local system on Xiet.
Then

Proposition 2.1. For every i > 0 the natural morphism Hi(Xket,L) — Hi(Xket,v* (L))
18 an 1somorphism.

Proof. Let X° and X'° be the scheme, resp. the adic space defined by X and X forgetting
the log structures. In this case, the morphism of sites v?: X4 — X induces the map
H (X8, F) — H(X5,7>*(F)) for every sheaf of torsion abelian groups F. It is an
isomorphism due to [17, Thm. 3.2.10]. Consider the commutative diagram of sites

Xet L> Xet
ol LB

o Y o
Xet Xet'

Using the compatibility of the Leray spectral sequences Hi(XCOt,Rja*'y*(L)) =
H" (Xier,7* (L)) and HY(XZ,RIB,(L)) => H™J(Xyer,L) and the result of Huber, it
suffices to prove that the natural morphism

N (Rjﬁ* (L)) — Ria, ('y* (L)
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is an isomorphism of sheaves for every j. It suffices to prove that we get an isomorphism
after passing to stalks at geometric points { = Spa(l,l“‘) — X° as those form a conservative
family by [17, Prop. 2.5.5]. Recall that ¢ might consist of more than one point but it has
a unique closed point (. Taking the stalk at ( is equivalent to take global sections over
the associated strictly local adic space X°({) (see [17, Lemma 2.5.12]). Let X°({o) be
the spectrum of the strict Henselization of X at (p. Taking the stalk at ¢ of v** of a
sheaf is equivalent to taking the sections of that sheaf over X°({y). We have a natural
map of sites X°({)ket = X °(0)ket, considering on X°({) and on X°(¢) the log structures
coming from X and X. We need to show that it is an equivalence. In both cases, the
Kummer étale sites are the same as the finite Kummer étale sites; indeed by definition
the Kummer étale topology is generated in both cases by finite Kummer étale covers
and classical étale morphisms and a Kummer cover of X°(({), resp. X°((), is still strictly
local and hence does not admit any nontrivial classical étale cover (see [17, Lemma 2.5.6]
in the adic setting). Both in the schematic and in the adic setting, the finite Kummer
étale sites are equivalent to the category of finite sets with continuous action of the group
Hom(M*",Z) with M the stalk of the log structure at ¢, modulo I*. See [18, Ex. 4.7(a)]
in the schematic case and [15, Prop. 4.4.7] in the adic case. As such quotient is the same
in the schematic and adic cases, the conclusion follows. O

3. VBMS and dual VBMS

3.1. VBMS, that is, vector bundles with marked sections

We recall the main constructions of [2] and [4]. Let X denote an adic analytic space over
Spa(Qp,Z,) and let (€,ET) denote a pair consisting of a locally free Oy-module € of
rank 2 and a subsheaf €1 of £ which is a locally free O3-module of rank 2 such that
E=ET ot Ox. Let T C O be an invertible ideal such that Z gives the topology on

Oj(, and let 7 > 0 be an integer such that Z C prOj(.
We suppose that there is a section s € HO(X,EF/ZET) such that the submodule
(0% /Z)s is a direct summand of £7/ZET. We have the following.

Theorem 3.1 [4]. a) The functor attaching to every adic space v: Z — X such that t*(T)
is an invertible ideal in OF, the set (group in fact):

V(E,EF)(v: 2= X) :=Homg: (v(£7),0%) =H(2,7°(£7)"),
is represented by the adic vector bundle V(£,E1) := Spay (Sym(£),Sym(E1)) — X

b) The subfunctor of V(E,ET) denoted Vo(ET,s) which associates to every adic space
v: Z — X as above, the set:

Vo(ET,8)(v: 2= X) = {h eV(EET) (v: 2= X) | h(mod v*(2))(v*(s)) = 1},
is represented by the open adic subspace of V(E,E™), also denoted Vo(E™T,s), consisting of

the points x such that |§—1|, < |al|,, where § is a (local) lift of s to ET and « is a (local)
generator of T at .
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c) Suppose that we have sections s and t € HO(X,EY JIET) which form an (O% /T)-basis
of EYJIE™T. Then, the subfunctor Vo(E1,s,t) of Vo(ET,s) which associates to every adic
space v: Z — X, the set:

Vo(ET,5,8)(v: 2 — X) = {h €Vo(ET,8)(v: 2= X) | h(mod v*(T)) (v () = 0}7

is represented by the open adic subspace Vo(E1,s,t) of Vo(ET,5) consisting of the points
z such that |t|, < |al, for a (any) lift t of t to E¥ and o a (local) generator of T at =.

Proof. The proof is local on X. Assume that U C X is an affinoid open U = Spa(R,R™)
such that Z|y is principal generated by o € RT and E£T|y is free with basis fo, fi

with fo(mod «) = s|y. Then fi(mod «) generates ((€+/I€+)/S(O}/I))|U and we

assume in case (c) that fij(mod «) = t|y. Then by [2, §2] we have V(E,E1)|y =
Spa(R(X,Y),R"(X,Y)) and

Vo(€%, )l = Spa(ROXY) (L RF (X, V) (5 0) =Spa(RIZY), R¥(Z,Y),

where X =1+ aZ giving also the map to V(£,€T)|y. Similarly,
Vo(ET,8,t)|v = Spa(R(Z,W),RT(Z,W))
with Y = aW. We have the tautological map over V(£,€7)|y given by
ET@p+ RYX,)Y) > RYX)Y),  fomr X, fimY

from which we deduce similarly the tautological maps over Vo(E™,s)|y and Vo(ET,s,t)|v
providing the claimed representability and concluding the proof. O

3.2. Dual VBMS

In this article, we’ll need a variant of the construction in Section §3.1 which we now
present. Suppose that X, Z, (£,€") are as in Section §3.1. Moreover, we assume that
there is an exact sequence of locally free Oj( /Z-modules

0—Q—ET/IET — F—0
and a section s € H*(X,F) such that (O%/Z)s = F. We have:

Theorem 3.2. The subfunctor VE(£1,Q,s) of V(E,E7T), defined by associating to every
adic space t: Z — X as in Section §3.1 the set

V(])D(5+,Q,s)(fy: Z 5 X) =
= {h EV(EEY)(v: 2 — X) [h(mod 7*(T)) (v*(Q)) =0 and h(mod v*(Z)) (7" (s)) = 1}

is represented by the the open adic subspace of V(E,ET) denoted VE(£+,Q,s) and
consisting of the points x such that |ql, < |al|, and |§—1|, < |a|., where q is a (local)
lift to ET of a local generator of Q at x, o is a (local) generator of T at x and § is a

(local) lift of s to ET.
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3.3. The sheaves W; and W,’?

Let the hypothesis be as in Section §3.1 and §3.2. We assume that we have a morphism
of adic spaces X — W where let us recall that W is the adic weight space for GLy /q.
For every adic space Z, the morphisms Z — W classify continuous homomorphisms Z; —
I‘(Z,O Z). We denote by kUiv: Ly, = F(X ,(9;() the continuous homomorphism defined
by X — W. We assume that k"™ satisfies the following analyticity assumption: There
exists a section uyniy of Ox such that |uyniv|e < |pﬁ_r|x for every x € X and

k“ni"(t) = expUuniv1og(t), Vtel+p'Z,.

We recall that the integer r > 0 is such that Z C pr(’)j‘}. Let us denote by 7 the adic torus
representing the functor which associates to an adic space v: Z2 — X the group

T(yv: Z—=X):=1+~"(2).

Then k" defines a character k"™V: 7 — G,,, that is, a morphism of adic spaces and
group functors, using the fomula above.

We have natural actions of 7 on Vo(ET,s), Vo(ET,s,t) and VP (£T,Q,s) defined
on v: Z — X points by: uxh :=uh and uxh' := uh/, where u € T(y: 2 = X),
heVo(ET,s)(v: Z2— X),resp. he Vo(ET,5,t)(v: Z— X),resp. M € VP (E1,Q,5)(v: Z—
X). Let us denote by f: Vo(Et,s) — X, g: Vo(Et,5t) — X and by fP :
VE(£1,9,5) — X the structural morphisms.

Definition 3.3. We denote

Wk‘“‘i" (€+7S) = f* (O@—o (5+,s)) [kuniV]’ Wkuniv (ngaS,t) = 0x (OSV‘FO(S‘*',S,t)) [kuniv}

and
Wl?univ (5+7 Q,S) = f*D (O;}FD (£+, 978) ) [kuniv]7

where if G is an (’);C—module on X with an action by the torus 7 :=1+7Z, we denote
G[k"™V] the subsheaf of G of sections z such that uxx = k" (u)x for all corresponding
sections u of 7.

3.3.1. Local descriptions of the sheaves W; and WkD. We assume all notations
and assumptions of the proof of Theorem 3.1 and of Section §3.3. Let U = Spa(R,R™) C
X be an affinoid open such that £¥|y = fOOJUr +f1(9§, Ty = a(’)g and such that

fo(mod «a) = s|y and fi(mod «) generates ((EJF/IS*)/S(O}/I))M (respectively

fi(mod a) =t[v).

In view of the next section, we also consider the dual situation, that is, recall that s
is a global marked section of €T modulo Z and denote F := (£+/Z€%)/(s(0%/T)). By
dualizing, we obtain the exact sequence

0— Q— (EN)V/I(ET)Y — (0%/T)sY — 0,
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where Q := FV, which defines data for V¥. Then (E1)V|y = fyOF + YO, Qlv =
[ (OF /a0f) and f§ (mod a) = sV|y. Therefore, as in [2, Lemma 2.4], one proves that

Vo(€%, )l = Spa(RUXY) (5L RF (X, V) (5 —0)) =Spa(R(ZY), R¥(Z,Y)

where X =1+ «aZ and
Vo(EY,s,t)|lu = Spa(R(Z,W),RT(Z,W))
with Y = aW. Similarly, we have

VB ((E)" Q") = Spa(REA B D) A Byt D))

= Spa(R(C,D),R*(C, D)),

where A=1+aC and B = aD.
Therefore, we have

) + _ pt+ univ] _ p+ univ
Winss (7,)(U) = RHZY)[R™] = RY ()" (1 +a2),
. + _ pt+ univi _ p+/__ "7 \guniv
Wi (6%,5,)(U) = RHZ W)k = B (1= )k (14-a2)
and
D . +\V \Y _ -+ univy _ -+ univ
Wi (E7)Y,Q,8V)(U) = RT(C,D)[k""] = R <1+ac>k (1+aC).

3.4. The duality
Suppose that X, Z, (£,€T), s are as in Section §3.1, and let us denote by

v Fi=5(0%/T) = ET/IET.

Let (£/,(€7)Y) denote the pair where (£1)Y is the O}-dual of £+ and £ := (£1)Y ®ot

Ox. Moreover, let us consider Q := Ker((£F/ZET)Y N FY), where FV is the O /Z-
dual of F. As explained in Theorems 3.1 and 3.2, we have adic spaces Vo(ET,s) and
VP ((£T)Y,Q,5Y) over X. Consider the morphism of adic spaces

(,): Vo(ET,8) xa VP ((ET)Y,Q,8Y) — Vo(0F,1),

defined on points as follows. Fix a morphism of adic spaces v: Z — X. Consider
heVo(Et,s)(y: Z2— X) and b/ € VP ((£1)Y,Q,5Y)(y: Z — X). By definition, this is
equivalent to giving morphisms of O%-modules h: v*(£%) — O with h(mod I)(v*(s)) =
L and h': y*(EF)Y — OF with h/(mod 7*(Z))(Q) = 0 and A'(mod v*(Z))(y*(sV)) = 1.
Then A'(h) € H(Z,0%) and A/ (h)(mod v*(Z)) =1, that is, h'(h) € Vo(O%,1)(v: Z = X).
We define

(h,h')y := N (h) € Vo(O%F,1)(v: 2 = X).
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Notice that Vo(O%,1) is the affine one-dimensional space A}, over X, with standard
coordinate T. The torus 7 x T acts componentwisely on Vo(E,s) xx VP ((€1)Y,Q,5Y).
Given sections (h,h’) of the latter and (u,u’) of T x T, we have (uxh,u' xh') = (u-u)*
(h,h").

Lemma 3.4. There is a section TF"" of Wyuiv (O%,1) over X such that Wy (04,1) =
T . 0% Moreover, {, )*(T*™") € Wyuniv (EF,8)@WP,,., ((E1)Y,Q,5). Here, we see
(', )" in a natural way, as a morphism of sheaves Wy (0%,1) — Wyuniv (E1,8)®
WP (ET)Y,0,8Y).

Proof. The statement is local on X. We use the explicit coordinates of §3.3.1. Then, T'=
1+aV and TF™ is the section k" V(1 +aV). By loc. cit., we have Wyuni (OF,1)(U) =
kuniv . R+
As (,)'(T)=X®A+Y®B=(1+aZ)) (1+aC)+aY ® D, we conclude that

univ : . : Y D
* k __ z.univ univ . J.univ
()T ) =" (1 +aZ)k"™ (14 aC) - k (1+a1+aZ®1+aC)' (1)

This concludes the proof. O

Definition 3.5. Write Wyuniv (E7,5)Y for the O%-dual of Wyuniv (€%, 5). Define the map
of O%-modules

Epow : W (E4,8)Y — W ((€7)¥,Q:8%), v (Y@ 1)((, ) (T"™)).

3.4.1. Local descriptions of the duality between W; and WkD . We put ourselves
in the setting of §3.3.1 and compute explicitly the pairing & univ on the affinoid U in terms
of the local coordinates of loc. cit. As k"™ is supposed to be r-analytic on X, we can
write k"™ (£) = expUuniv log(t) for every t € 1+p"Z,. We then claim that

Univ Y n v n [ Wuniv univ D "
b (1 () () a0 (2

where (uuniv> = tuniy (Yuniv — 1) ';'(uuniv —n+1) ifn>1 and (ngiv> =1.
n n!

First of all, one computes that, if we write f(X) := expuunivlog(l+X) => " ja, X"

as a formal power series in X, then a,, = (u“;i"). Using equation (1), we deduce that

< , >* (TkumV) _ i an Univ Y n o D n
kot (1+ aZ)k (1+aC) - 4 n 1+aZ 1+aC) ’

=0

and the claim follows.

3.5. An example: locally analytic functions and distributions

We consider in this article weights defined as follows. Let W denote the weight space seen
as an adic space.
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Definition 3.6. Let U C W be an open disk of an open affinoid of W, and let Ay denote
the Z,-subalgebra of sections in O (U) which are bounded; see Section §4 of [5]. We
recall that Ay is a complete noetherian local Z-algebra, and we call ‘weak topology’ the
ma,-adic topology of Ay, where my,, is its maximal ideal. Let B denote either Ay for
some open disk U C W or O for a finite extension K of Q,. In this article, we will work
with B-valued weights k: Z; — B*, which, if B = Ay, is the universal weight associated
to U.

Let k: Z, — B* be a weight as in definition 3.6, and suppose it is an r-analytic
character. Let T' = Z, ®Z,; denote by fo =(1,0) and f; = (0,1) € T the standard Z,-basis.
Denote by TV the Z,-dual of T, and let Ty’ C TV be the subset of elements Zjeq x Zye;
with eg = fy’ and e; = fy, the Z,-basis of T dual to (fo, f1). Then T is a profinite set
with an action of the Iwahori subgroup Iw; C GL3(Z,). Following [7, Def. 3.1], we set:

Definition 3.7. For every integer n >, let A%(Ty')[n] denote the space of functions
f: Ty’ — B such that

(1) for every a € Z, t € Ty, we have f(at) = k(a)f(t)

(2) the function z — f(eg + ze1) extends to an n-analytic function, that is, for every
i € Z/p"Z the function f(eo+ (i+p™z)e1) for z € Z,, is given by the values of a convergent
power series Y o @y, i2™.

Define DY(Ty)[n] := Homp (A2(Ty)[n], B), the continuous dual of Af(Ty)[n] with
respect to the weak topology of B. We write Ag(Ty)[n] := AY(Ty)[n] ®z Q and
Dy(T)ln] = DY(TY) ] &5, Q.

By [7, Lemma 3.1], the action of Iw; on Ty induces actions of Iwy on AQ(Ty)[n],
D(TY)[n], Ak(Ty )[n] and Dy (T )[n]. Moreover, [7, Def. 3.3 & Prop. 3.3] the B module
D{(Ty)[n] admits a decreasing filtration Fil®* D¢ (T )[n] of B-modules, stable under the
action of Iwy, such that the graded pieces are finite and D9 (7")[n] is the inverse limit
lim DY(TY)nl/Fil" DY(Ty ).

3.5.1. An alternative description. For later purposes, we end this section by
describing Ag(Ty)[n] and Dy (T)')[n] using the formalism of VBMS. For every \ =
0,...,p"™ — 1 denote by Wy (T, s,t + As,p™), or simply W (T,s,t+ As) if the power of p we
are working with is clear from the context, the sections Wy (T',s,t+ As)(U) over the adic
space U = Spa(B[1/p], B) associated to the rank 2, free Of;-module T'® Of and the two
sections s = fo®1 and t+ As = f1 ® 1 + A(fo® 1) modulo T := p"Oy;. Let Iw,, be the

B

5) € GLy(Z,) such that v =0 modulo p”. Then:

subgroup of matrices M = (:

Proposition 3.8. There is an Iw,-equivariant isomorphism of B-modules
Ut @8 Wi(T,s,t— As) — AL(TY ) [n).

Then, taking duals with respect to the weak topology on B, we get a decomposition into a
direct sum and a Iw,, -equivariant isomorphism

vy s DYTY)n] = @8 "W (T, s,t — As)V.
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Proof. We describe the isomorphism explicitly. First of all, notice that AQ(Ty)[n]
decomposes as a direct sum

AT ] = &5y AR A (TY)
according to residue classes: We say that f € AR(Ty)[n] lies in A ,(Ty) if an only if
f(L,w) is zero if w € A+p"Z,. In particular,

PA(TY) = Bwy) - u”,

where Y °_ amwi-uf: Ty — B sends ueg +vey — k(u)- Zmam(v/;fn_x)m ifv/ue+
p"Zy, and to 0 otherwise. The standard left action of Iw, on T is described as follows:

Given M = (i 6) € Iw,,, we have M (fy) = afo+~vf1, M(f1) = Bfo+df1. This induces

1)
a right action given by eq- M = aeg + fBey, e1 - M = vyeg+ de;. We finally obtain the left
action of Iw,, on A(Ty)[n]. Explicitly, as (ueg +wveq) - M = (au+yv)eg + (Bu+ dv)er,

then
ﬁ+(§w0 k
M(wi'-u) =k
(0 08) = K+ yun) ( 2200
As w™ k I =A m .k 3 : P"—le Y
switut =, (wg? -u®) we get the sought for action of Iw, on ©Y_5" A7 | (1)

On the other hand, consider the subfunctors H’;L:BIVO(T ,8,t —As) = V(T) over the
adic space U = Spa(B[1/p],B). The action of Iw, on T restricts to an action on this
subfunctors and induces an action on @f{zglwk(T,s,t — As). Explicitly,

W
1+pnZ

Wi (T,s,t — As) = B( Yk(1+p"Z)

according to §3.3.1. It contains the B-submodule of the space of integral functions B(X,Y")
of V(T@Of?), where X =14+p"Z and Y = p"W) + AX. Recall that we have a universal
map T — B(X,Y’) defined by sending mfy+7f1 = mX +7Y. The left action of Iw,, on T'
defines by universality an action on B(X,Y): If M = <: ?), then M(fo) = afo+vf1,
M(f1) =Bfo+0f1 and M(X)=aX ++Y, M(Y) = X + Y. Denote by Iw,, C Iw,, the
subgroup of matrices with & =1 modulo p™. We then get an action of Iw,ll on the integral
functions on Hf\gleO(T,s,t— As), and hence on @\Wy(T,s,t — As), determined on the
variables Z and W,’s by the formulas

M(Z):M+7WO, M(WO):I%X+6WO, ((1) _A> (Wo) = Wi.

a3
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a 0
0 ¢
0Wy giving explicitly the action of diagonal matrices on each Wy (T, s,t — As). For every
A=0,...,p" —1 define the map

Notice that if M = ( ) € Iw,, then M (k(1+p"Z)) = k(a)k(1+p"Z) and M (W) =

va: Wi(T,s,t—Xs) — A7 (1Y )[n], k(1+p"Z) Zaz<1 an> »—)ZalwA

It is clearly an isomorphism of B-modules. We are left to show that

p"—1

=D var @ Wi(Ts,t— As) — &5_g AL L (TY)[n] = AU(TY ) [n]

is Iw,-equivariant.

Consider the B-linear map &: B(X,Y) — A(TV), where A(TV) is the ring of ana-
lytic functions from TV to B, sending f(X,Y) = Zh’mathhYm to the function
§(f(X,Y)) : TV — B, ueg+ve; — Zhymah,muhvm. This map is Iw,,-equivariant. Indeed,
given M € Iw, such that M(fo) = afo+7f1, M(f1) = Bfo+0f then M(eo) = aco+
Be1, M(ey) = veg + de; so that M(ueg + ver) = (ua + vy)eg + (uf + dv)e;. Hence,
M(E(f(X,Y))) =&(f(M(X),M(Y))). As vy, is determined by £ using that X =1+p"Z
and Y = p" W, + AX, this implies that v,, is Iw,-equivariant as well. O

Note that we have a Iw,-equivariant map of functors, and hence of representing objects,
Uaez/pmzVo(T,s,t = As) — Vo(T',s). This provides a Iw,-equivariant map
Wi(T,s) — @8_ Wi (T, s,t — \s).

Let Q, C TV /p"T" be the (Z/p"Z)-dual of the quotient (T'/p"T)/(Z/p"Z)s. The duality
between

Gt Wi(T,s)Y — WP(TY,sY,Q,)
of Definition 3.5 composed with the Iw,,-equivariant isomorphism
v+ DY(TY)[n) = @, " Wi (T, 5.t — As)"
of Proposition 3.8 give the following.

Corollary 3.9. We have a Iw, -equivariant, B-linear map

DY(Ty)[n) = @8 Wi (T,s,t — As)" — WP(TV,5V,Q,,).

3.5.2. The U, operator. For p=0,...,p—1,let m,: T'— T be the map defined by

<(1) 5) that is, fo > fo, fi = pfi+pfo. It defines the map 7/: TV — TV that sends

ueg +vei = ueg + (pv + p)er. In particular, taking (7))* it induces a map A?(Ty)[n +
1] = A2(Ty')[n] that is 0 on AR \(Ty')[n+ 1] for A # p modulo p and it induces a map
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AP \(TY)In+1] = A7\ (T)[n] if A= p+plo, with Ao € {0,...,p" —1}. Taking the sum

over the p’s, we get a map m, = Zi;(l)(ﬂ';/)*, where

s AT )+ 1] = @[5 88 25 AL ypag (10 )+ 1] = @xgeypmz Al 5, (16)0]
= AY(TY)[n).

Notice that 7, defines by functoriality a map Vo(T,s,t — As,p"™) — Vo(T,s,t — (p +
pA)s,p" 1) (we have added the dependence on the power of p in the definition of Vg
to avoid confusion). This gives a map p,: Wg(T,s,t — (p+pA)s,p" 1) — Wy (s,t — As,p™)
and, summing over all p’s,

p—1
Hn = Z:up: ®z;é @I;\:—Olwk (T787t - (p+p)‘)57pn+1) — EB)\EZ/})"ZWk(Tv&t - )‘Sapn)'
p=0

Lemma 3.10. With the notation of Proposition 3.8, we have 7, 0Vpy1 = Vp O by, and
similarly taking strong duals v,/ om) = p) ov,.

Proof. This is an explicit computation using the notation of the proof of Proposition 3.8
and follows from the fact that (wg)* sends wyqpx, — W, and gy sends W,y = Wy, O

4. The modular curve setting

Let p > 0 be a prime integer. We fix once for all the p-adic completion C,of an algebraic
closure of Q,. We denote by v the valuation on C,, normalized such that v(p) = 1.

Let N >5 and r > 0 be integers with N prime to p, and let X¢(p",N), resp. X1 (p",N),
resp. X (p",N), be the modular curves over C, of level I'y(N)NTy(p"), resp. I'1(N)N
I'i(p"), resp. T'1(N)NT(p"). Over the complement of the cusps of the modular curve
Xo(p®,N), we have a universal elliptic curve E, a cyclic subgroup H, C E[p®] of order p®
and an embedding Uy : puy < E[N]. For X;(p*,N), we further have a generator of Hy.

We denote the associated adic space over Spa((Cp,OCp) by Xo(p",N), resp. X1(p",N),
resp. X (p",N) considered as adic spaces with logarithmic structures given by the cusps,
with reduced structure, as in [15, Ex. 2.3.17]. We simply write X, resp. X for Xo(p°,N),
resp. X (p°, V). Notice that the p"-torsion of the universal elliptic curve E over the
complement of the cusps in X defines a locally constant sheaf for the finite Kummer
étale topology that we denote by E[p"] and X(p",N) — X is the finite Kummer étale
Galois cover, with group GL3(Z/p"Z), defined by trivializing it. We let T,(E) be the
sheaf on Xprofiet, r€Sp. Xprokes defined by the inverse limt lim E{p”]. Thanks to [23, Thm.
3.1.2], we have

(i) a unique perfectoid space X (p>°,N) such that X (p*>°,N) ~ lim X (p",N) in the sense
oo—T
of [24, Def. 2.4.1];
(ii) the Hodge-Tate period map wyr: X (p>*°,N) — ]P’(bp.
In particular, we have morphisms of adic spaces 7,.: X (p*>°,N) — X(p",N), compatible

for varying r > 0, inducing a homeomorphism of the underlying topological spaces
X (p>,N)[ = lim [X(p",N)|.
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4.1. On the pro-Kummer étale topology of modular curves
For every s € N, we write lim X(p",N) (for r > s) for the pro-finite Kummer étale cover
o0—T

of Xy(p®,N) defined by the Kummer étale covers X (p",N) — Xo(p®,N), for r > s. The
following lemma provides a basis for the pro-Kumemr étale topology of Xy(p®,IN):

Lemma 4.1. For every s € N, the site Xo(p®,N)pke has a basis consisting of log affinoid
perfectoid opens U that are pro-Kummer étale over an affinoid perfectoid open of
lim X(p",N) (for r > s). In particular, for any such open U, T,(E)|y is a constant
oo—T

sheaf and such basis is closed under fibre products over Xo(p®,N).

Proof. Due to [15, Prop. 5.3.12], the site Xy(p®,N)pke admits a basis consisting of log
affinoid perfectoid opens, and thanks to [15, Prop. 5.3.11], the category of such bases is
closed under fibre products. Given any such W, consider the fibre product Z of W and
Ol(}i(rgrz'\f(p”",N) over Xp(p*,N). By [15, Cor. 5.3.9] if such a fibre product exists, it is pro-

Kummer étale over lim X (p",N). As a cover of W, it can be represented as lim W, with
o04—T o04—T

W= X (p",N) X x,(ps, Ny W. In particular, thanks to [15, Lemma 5.3.8], each W, is a finite
étale cover of W so that Z = lim W, — W is a pro-finite étale cover of W. Since W is log

o071

affinoid perfectoid, we deduce from [15, Cor. 5.3.9] that also Z is log affinoid perfectoid.
Recall from [23, Thm. 3.1.2] that lim X(p",N) is covered by perfectoid affinoid open
o0—T

subsets. Taking the fibre product over lim X (p",N) of Z with a cover of lim X' (p",N)
o04—T oo4—T
by perfectoid affinoid open subsets, the claim follows. O

Remark 4.2. Endow X (p™,N) with the limit log structure. Then, open affinoid subsets
of X(p>°,N) for the analytic topology are not log affinoid perfectoid opens as condition
(d) of §2.3 is not satisfied.

This condition is used in [15, Cor. 5.3.8], an analogue of Abhyankar’s lemma, stating
that, for a log affinoid perfectoid, the finite Kummer étale site coincides with the finite
étale site. This was already used in the proof of Lemma 4.1.

4.2. Standard opens
We start by defining certain opens of P! := ]P’(bp, namely let for every n > 1

UO,UOO,UC(Z«,’),U(S”) C P! be defined as follows. Let T denote a parameter at 0 on P!,
then

1
a) U ={z P! ”T”I <1}, Up={z P! | |T—\|, <1, for some A€ {0,1,...,p—1}},

b) UM —pl(——
¢) Us” = AU with A = Ao + Aip + .. + Age1p™ !, whete oA, Ano1 €

i T
{0,1,...,p—1} and we have U&L)\) = Pl( o )

1 n
={z P [ lIFl. <llp"[.},
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We remark that for every n > 1 we have P*(Q,,Z,) C Uég Y Uén), and moreover, the
family {Uég U Ué”)}n21 is a fundamental system of open neighbourhoods of P*(Q,,Z,)
in P!,

We recall from [23, Thm. 3.3.18] that for every rational open subset U’ C Uy or U’ C U
the inverse image U’ := Tyt (U’) is an affinoid perfectoid open subspace of X(p>,N). In
particular, it is quasi-compact so that it is also the inverse image of an open U, via 7,
of X(p",N) for some r using the homeomorphism |X(p>°,N)| = oggln\X(pr,N)L As the
transition maps in the inverse limit are finite and surjective, U, is in fact the image of U’
via 7, for r large enough. If U’ is further invariant for the action of the Iwahori subgroup
Iws C GL2(Z,) of matrices which are upper triangular modulo p®, then also U’ is Iw-
invariant as myt is Iws-equivariant and U’ is the inverse image of a unique open U ¢ of
Xo(p®,N). Indeed, given U C X(p",N) for some r > s such that its inverse image gives
U', then U, is Iws-invariant. As the morphism X (p",N) — Xy(p®,N) is finite Kummer
étale and Galois with group G, equal to the image of Iws C GL2(Z,) = GL2(Z/p"Z)
then U , := U] /G is an open of Xy(p®,N) with the required properties. Furthermore,
Uj  defines the open (U, ),>s for the pro-Kummer étale site of Xy(p®,N), and hence of
X, given by U] :=U , X x,(p+, Ny X (p",N). By construction, U’ ~ lim U;.

oo

In particular, for every n > 1, we consider the open rational subspaces Uég ) of Uso
and Ué") of Uy defined above. We remark that Uég ) is invariant under the left action
of the subgroup Iw,,. Then we denote by X(p‘x’,N)gn) = Wﬁ% (Uon)) and X(p‘x’,N)(()Z) =
Wﬁql: (Uég )) and recall that they define affinoid perfectoid open subspaces of X (p>°,N).

As explained above, they also define opens for the pro-Kummer étale site of Xy(p™, N)
and of X respectively. Namely, for n > 1, X(p>°,N )E;‘), being invariant under Iw,,, descends
to an affinoid open denoted X (pm,N)(oz) of Xo(p™,N), for all m > n. We also have variants
X1 (pm,N)(oZ)7 resp. X(pm,N)gZ), if we descend to Xy (p™,N), resp. X(p™,N).

In contrast, as UO") is invariant with respect to Iwy, the open X(pOO,N)(()") descends

to an open affinoid denoted Xo(pm,N)én) of Xy(p™,N), for all m > 1. In this case, we
consider the variant X(pm,N)é") open of X(p™,N).

Lemma 4.3. For every h € N, there exists n = n(h) > 1 such that for every r > n
the universal elliptic curve over XO(pT,N)(()”) and XO(pT,N)gg) resp. admits a canonical

subgroup of order p".

Proof. This follows from [23, Lemma 3.3.14], stating that the preimage via 7T of
PY(Qp,Z,) is, as a topological space, the closure of the inverse image in X (p™°,N) of
the ordinary locus and the cusps of X.

In particular, X(p™,N )é") and X (p>,N )(()Z) define a fundamental system of open
neighbourhoods of the ordinary locus in X (p*°,N). O

Remark 4.4. Recall that the ordinary locus in Xy(p,N) has two connected components.

Then X(p,N)él) and X(p,N)E,? are neighbourhoods of these two components. The first
is defined by requiring that the level subgroup is not the canonical one while the second
is the component where the level subgroup coincides with the canonical one. Following
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conventions going back to Robert Coleman, we set up the notation so that the first is
indexed by 0 and the second by oco.

A reason to introduce the open subsets Xy (pT,N)g) for r > n and Xo(pT,N)(()"), for any
r > 1, is that they behave nicely under the U,-correspondence, as we will explain below.

4.3. On the Hodge—Tate period map
Over X (p*>°,N), the sheaf T,,(F) admits a universal trivialization

T,(E) = Zpa ® Zpb.
The map dlog defines a surjective map onto the sheaf of invariant differentials of F
TpEv ®z, Ox(pe,N) — WE

which is used to define the map wgr: For every log affinoid perfectoid open
W =Spa(R,R") of X(p>,N) such that the universal elliptic curve extends to a
(generalized) elliptic curve over Spec(R') and wp is generated as RT-module by
one element that we denote Qu, we write dlog(a’) = afdy, dlog(b¥) = Qw with
a, B € R generating the whole ring R. Then 7yr|w : W — P! is defined in homogeneous
coordinates by [«;3]. Namely, let W, C W be the rational open defined by W(1/a),
and let Wy C W be the rational open defined by W (1/8). Then mar|w, : Wo — Uy sends
the standard coordinate T on the standard affinoid neighbourhood Uy = A! of 0 to
a/B and mar|w,, : Wee — Uso sends the standard coordinate T on the standard affinoid
neighbourhood Uy, := Al of oo to 3/a.

For every n € N, we can refine such morphism to a morphism on Xy (p™, N)pke as follows.
Considering the smooth formal model X of the modular curve X over Oc¢, given by moduli
theory and the universal generalised elliptic curve E over X, the invariant differentials
of E relative to X and the fact that X is the adic generic fibre of X, give an invertible
O}—module wg on X. Pulling back via the projection map Xy(p™,N) = X, we get a

(’);0 (0", N)oe -module for the pro-Kummer étale topology that we still abusively denote
N pe

wg and passing to p-adic completions we finally obtain an invertible @j{o (o N)—module

A~ . .. . A+ A+
Wy, Here, for simplicity, we write OXO(pn,N) for OXo(p”,N)pke'

Consider the map dlog for the basis of Xy(p™,N)pke given in Lemma 4.1. Let a modulo
p™ be a generator in T,(E)/p"T,(E) of the level subgroup of order p™. For every log

affinoid perfectoid open U as in loc. cit., write U = Spa(R,RT). Then T,(E)" is constant
on U; we have a universal generalized elliptic curve E over Spec(R*) and (’3}0 on, N)(U )=
R™. We then have the map dlog: T),(E)Y (U) ®z, Rt — @}, (U). Gluing, we obtain a map
of sheaves on Xy (p™, N )pke:

dlog: T,(E)" ®z, Oj\;o(p",N) — W (2)

Proposition 4.5. For every r € N there exist m € N such that for every n € N with
n > m, r the following hold:

https://doi.org/10.1017/51474748022000548 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748022000548

Overconvergent de Rham Eichler—Shimura morphisms 667

a. There exists a canonical subgroup C,. of order p" on Xo(p",N)g)n) and on
Xo(p”,N)gm) which on Xo(p”,N)g)n) coincides with p”-torsion of the level p™ subgroup
and which on Xo(p",N)(()m) 18 disjoint from the level p™ subgroup;

b. There exists an invertible O;( N)(m—module wimed on Xo(p”7N)((;n) (resp. a
o(p™, oo
+

* (m) -Module wimed on Xo(p",N)ém)) contained in wy;

Xo(p™,N)g
c. The morphism dlog surjects onto the p-adic completion med of the pullback ofo.)’““od

to X1 (p ,N)(m) and its restriction to T,,(E)Y modulo p" factors via CY . The kernel

oo, pke
of dlog is isomorphic to the p-adic completion of( mOd)

twist that usually appears as we work over C,);

(here, we omit the Tate
d. The map dlog surjects onto the p-adic completion WE°Y of wBod on X (p" N)gf?ke and
its restriction to T,(E)Y modulo p” factors via C’;/. The kernel of dlog is isomorphic
to the p-adic completion of (AmOd) "
Proof. It follows from [3] that the result holds true on strict neighbourhoods & (p/Ha?")
of the ordinary loci in X' defined by the points z, where |p|, < |Ha?"|, for s large enough;
here, Ha is a (any) local lift of the Hasse invariant. Thanks to [23, Lemma 3.3.8], there
exists m € N such that X' (p",N)™ and X(p”,N)ém) are contained in X(p/Haps). See
Lemma 4.3. The claim follows. O

Remark 4.6. See [12] for similar results in the case of Shimura curves. The notation
wiod s taken from [20].

From Proposition 4.5, we get an integral version of the Hodge-Tate exact sequence:

0— (Am"d) — T,(B)" ®z, Oj{ R —omed 0.
This will be useful to compute the cohomology H! (Xo(p N)OO ;ke’é\Xo(p",N)(oZ))' In
fact, tensoring the exact sequence with med 2 and taking the long exact sequence in

cohomology we obtain a map

H (X (0" ) e @) — B (X0 N) e OF, o) 3)

oo, pke?’™ E o0, pke? Xy (p™, N

and similarly for X (p",]\/')(()m)7 or their covers X (p",N)((fon), X(p",N)((Jm).

4.4. The sheaf w%

Take r, m and n € N as in Proposition 4.5. The map dlog provides w EOd /D w"‘Od with a
marked section s over X;(p",N )f;" ) as the i image of the tautological generator of C).

Similarly, recall that we have a decomposition X (p™, N )(()m) = lxez/prz X (p" )(()nj\),
where over X(p”,N)gj}\), using the trivialization T, (E)/p"T,(E) = (Z/p"Z)a & (Z/p"Z) ,
we have dlog(a") = Adlog(bY). In particular, the canonical subgroup C, is generated by
b+ Aa and wi°d /p"wined acquires a marked section s := dlog(b").
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Suppose we are given an h-analytic character k: Z; — B*, for h <r, as in Definition 3.6.
Using the formalism of VBMS from §3.3 for w°? and the section s modulo p", we get

the invertible OJr - N)“">®B module, resp. (’)X( n N)<m)®B -module

E —W ( mod)s).

Since wB°? and the section s modulo p” are stable under the action of the automorphism

group A, := (Z/p"Z)* of j,: X1 (p”,N)ng) — Xo(p”,N)E,zl), then (Z/p"Z)* acts on
jn,« (w[1/p]) and, taking the subsheaf of jy, . (w§;[1/p]) on which Z* acts via the character
k, then jy .(wk[1/p]) descends to an invertible OXo(p",N)(o?) ®B[1/p]-module that we
denote wk [1/p].

Similarly, the Galois group of j/,: X (p" )<m — Xo(p™, N )(m) which is identified with
the standard Borel subgroup of GLy(Z/ p” ), acts compatibly on (w%°d s) and hence it
acts on j;, , (wp[1/p]). In this case we let wi[1/p] be the invertible O 4 om, W)™ ®B[1/p)-

module defined as the subsheaf of j;, , (w}[1/p]) on which the standard Borel subroup
of GLa(Z,) acts via the projection onto the lower right entry Z,, composed with the
character k.

4.5. The Up-correspondence

Given the modular curve Xy(p®,N) for s > 1, we have correspondences Ty, for ¢
not dividing pN, and U,. They are defined by the analytification Xy(p°,N,¢), resp.
Xo(p®,N,p), of the modular curve Xo(p®,N,£), resp. Xo(p®,N,p), classifying, at least
away from the cusps, subgroups D of order ¢ of the universal elliptic curve E, resp.
subgroups of order p of E complementary to the p-torsion H; of the cyclic subgroup H, of
order p® defined by the level structure. We have two maps ¢1,92: ,Xo(p®,N,¢) = Xo(p*,N)
defined by the analytification of the maps ¢1,q2: Xo(p®,N,¢) = Xo(p*,N), where ¢; sends
the universal object (E,Hg, ¥ n,D) to (E,H,¥y) (the forgetful map) and ¢ sends the
universal object (E,Hs,Uy,D) to (E/D,H,¥";), where H/ is the image of H, via the
isogeny E — E/D and ¥’y is ¥y composed with this isogeny.

These maps induce morphisms of sites Xy(p°,N,€)pke = Xo(p°,N)pke, Tesp. Xo(p®,
N.p)pke = Xo(D°,N)pke- As q1,q2 are finite Kummer étale, the following follows from
the discussion in [5, Cor. 2.6] or [15, Prop. 4.5.2].

Lemma 4.7. There is a natural isomorphism of functors ¢; « = q;,1. In particular, g; . is
exact and we have a natural transformation Try, : q; «qf — 1d, called the trace map.

The maps ¢; and g2 induce maps of perfectoid spaces. Take £ prime to N but possibly
equal to p. The fibre product X(p>°,N,¢) := X(p™,N) Xg( (°, ) Xo(p®, N, ) exists and
is independent of the choice of maps ¢; or ¢2. We then have the two projections

q1,q2: X (p>=°,N,¢) — X (p*,N). Notice that X (p>°,N,p) splits completely as

X(pOOaN7p) = H)\ZO,...,p—lX(poo7N)7
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where over the copy labeled by A=0,...,p— 1 the isogeny E — E’ := E/D produces the
map of Z,-modules

ur: TpE =Zpa®Zyb — T,(E') :=Ty(E)) := Zpa' ®LyY,
b+ Xa

a =ab = €ET,ERQ,.

Using this description, the maps ¢; and gz restricted to the component labeled A\ define
maps ¢1,» and go x, where g1, is the identity map and g x: X (p™°,N) — X (p™,N) is an
isomorphism such that the pullback of T, E is T,,(Ey).

We consider the maps t,t2: Ix=o,.. p—1 P! — P! where on the component labeled by A
the map ¢; ) induced by ¢; is the identity while the map t5 is the isomorphism ¢ »: P* —
P! defined on points by [, 3] — [ — A\B,pS]. We then have the following diagram:

X(pOO7N) (4‘2 X(pooanp):HA*O p—lX(pooaN) i) X(pooaN)

.....

TaT | ) Ma—o,....p—17HT | t THT |
P! AL y—o p_l]Pl — PL.

In fact, the squares are commutative. This follows from the functoriality of dlog with
respect to isogenies and by computing uY: The map uy sends a — a’ and b pb’ — Aa’ so
that on the dual basis u) sends (a’)Y + a¥ —AbY and (V')" > pb".

Remark 4.8. Let us observe that, with the notations above, if we denote by U,
the correspondence on X(p™,N) given by U, :=qga20q; ! and if we denote by U the
correspondence on P! defined by U := t, otl_l7 then we have: myroU, = U omyr.

We conclude this section with a lemma on the dynamic of the operators t, 5. For
A=0,...,p—1 we write ¢, in place of ¢5 ) in the next lemma.

Lemma 4.9. a) Let A= o+pA1+---+\pp" with \; €{0,...,p—1}. Write t) :=t), o
oty Then t (USN) = Up, ta(PAUSNY) = UL

b) If p:= g+ Ap+... +Xu_1p™ "1 with \; as above for 0 <i<n—1 and ty:=tx, 0
...oty,, then we have t, (]P’l\Uéi\H)) C UOO\U(gl) and t#(Uéi)) culity.

Proof. It is enough to prove the statement for Spa(K, K)-valued points for an affinoid
field (K,K™). This is determined by a K-valued point of P!, or equivalently a K *-valued
point [a; 3] as KT is a valuation ring, whose normalized valuation is denoted wv.

a) We prove the statement for A = Ay leaving the inductive process to the reader. If
[a; 8] is a point of Uy \Up, then we can assume that o =1 and that S is in the maximal
ideal of Kt and t)([1;8]) = [1 — A\B;pf] defines a point of uld.

If 8 is a unit, we can assume that =1 and then t)([a;1]) = [ — A;p]. This is a point
of Uy if and only if O‘TT)‘ € K™, that is, if and only if [a;1] defines a point of Ué’lg\. Else
—E< lies in the maximal ideal of K+ and then ¢, ([o;1]) defines a point of Uy \Up.

b) If [o, 8] € ]P’l\UénH), a,3 € KT, we may assume that one of ,f is 1.
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If 3=1, we have t,([o,1]) = [a — p,p"]. Moreover, [a 1] ¢ U("+ implies either that
r:=v(a—pu) <n and in this case [a — p,p"] € UOO\UO , or that v(a—p) =n and a =
p+p"y, with v € K+, v ¢ Fp(mod pK™). Then ¢,([a, 8]) = [v,1] € UOO\Uél).

If now a =1 and $ is in the maximal ideal of KT, we have t,([1,3]) = [1 — uB,p" 3.
Since 1— 3 € (K*)*, we have ¢,([1,8]) = [1,p"8/(1— pB)] € UL c U \USY.

Let us notice that if x € Uoo\Uél) and v € {0,1,...,p— 1}, then t,(z) € UlY. This
observation and claim (b) imply the part tA(IE”l\UO("H)) c UL of claim (a). O

4.6. Etale sheaves

Let H C GL3(Z,) be a finite index subgroup. In this section, we recall the tensor functor
from the category of profinite H-representations to the category of sheaves on the pro-
Kummer étale site of the modular curve X (H,N) defined by H or, equivalently, of the
associated adic space X(H,N). We work with the latter.

We fix log geometric points (;, one for every connected component Z; of X(H,N).
Due to [15, Prop. 5.1.12], the sites Z; pes are Galois categories with underlying profinite
group, the Kummer étale fundamental group 75°*(Z;,¢;). In particular, the pro-Kummer
finite étale cover (X(p’",N))r of X(H,N) for r big enough, restricted to each Z; defines
a homomorphism

m1(Zi,G) = lim Aut(X(p",N)/X(H,N)) = H.

Given a finite representation L,, of H, we view it as a representation of 71 (Z;,(;), for every
i, and hence as a local system on each Z; et and, hence, a local system L,, on X (H, N )et.
In fact, L,, is a sheaf on X' (H,N )k such that there exists a finite Kummer étale cover
X(",N) — X(H,N), for > 0, on which the sheaf L,, is constant.

Given a profinite representation L of H, that is, an inverse limit L = lim L,, of finite
oo n

representations L,, for n € N, we let L be the inverse limit L. = lim L,,. It is a sheaf on
oco—n

X (H,N)ket- Notice that using the scheme X (H,N) one gets, as mentioned before, a sheaf
on X (H,N)et, that we will denote L. We have the following GAGA type of results:

Theorem 4.10. For every i € N, the maps
H' (X (H,N)pke,L) — H (X (H,N)pke, L)
are isomorphisms. Analogously, the natural map
H (X (H,N)pie, L) 80¢, — H' (X(H7N)pke7L®(’3j((H,N))
18 an almost isomorphism.

Proof. The result for each L,, follows from the discussion in §2.4 and from Proposition 2.1.
Consider the natural map liin: Sh(Z) — Sh(Z) from inverse systems of sheaves

on Z =X(H,N)pke, and Z = X(H,N)pke, respectively. Using the existence of bases

of log affinoid perfectoid opens with the properties recalled in §2.3, it follows

from [22, lemma 3.18] that we have Rlim(L) = 0, both in the algebraic and
—
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. . . i1 S A+ _ ;> J
in the adic setting, and ngn(L@OX(HW)) 0 for ¢ > 1. Hence, H (Z,]L) and

HY (X(H,N)pke,L@)@;(H N)) coincide with the derived functors H’(Z,(Ly)nen), resp.

H/ (X(H,N)pke,(]Ln ®O;(H,N)pkc)”€N) of li<£nH0(Z,,) introduced by [19] on the inverse

system Sh"(Z). Due to [19, Prop. 1.6], these cohomology groups sit in exact sequences
0 — limWH " (Z,Ly) — B (Z, (Ln)nery) — imH (Z,L,,) — 0

and similarly for the inverse system (L,, ® Oj( (H,N)pe Jnen- The maps in the theorem are
9 pke
compatible with these sequences, and the claims follow from the finite case, that is, for

the sheaves L,,. O

Remark 4.11. The sheaf L has the property that its pullback to the perfectoid space
X (p™®,N) is constant and coincides, together with the its H-action, with 71, (L) where
we view L as a constant, H-equivariant sheaf on P! (compare with [10, §2.3] for the case
of p-adic automorphic étale sheaves).

Example 4.12. Consider on X(p™,N) trivializations T,E = Zya & Zyb. The group
GL3(Z,) acts on the left on the family of trivializations: Given such a basis A := {a,b}
as above and a matrix M € GLy(Z,), we get a new basis A" := (a/,b') := (a,b)M. If
we think of a trivialization as an isomorphism v 4: T, F = Zf,, then 1 4/ is 14 times left
multiplication by M. Thus, T),(E) corresponds to the standard representation T' = Z, ®Z,
of GL2(Z,,).

This action of M induces a map on dual basis *(a¥,b") = M*(a"V,b"). Then the
trivializations 1 av : TpEY = Z2 and 1 4, : T,EY = Z2 induced by the dual bases are such
that 1 4v is 9 4/,v times the right multiplication by M. To make the map 7y equivariant
for the GLy(Z,)-action we take on IF’}QP the standard action. If myr(¢¥ 4v) = [o; 8] and
(Y 40 ) =[/; 8], then a; 8] = M t[o'; 8'] (where *[a; 5] means [a; 3] viewed as column
vector).

Consider an s-analytic character k: Z; — B* as in Definition 3.6. Consider the Q-
module Dy (T} )[n], for n > s, with action of the Iwahori subroup Iwy, defined in §3.7. As
Dy (Ty)[n] = (Dg(Ty )[n])[1/p] and DZ(Ty )[n] admits a Iwi-equivariant filtration with
finite graded pieces, we get an associated sheaf Dy (7 )[n] on the pro-Kummer étale site
of Xy(p,N). Then:

Proposition 4.13. For every i € N, we have isomorphisms

H' (To(p) NT(N), Di(Ty)[n]) ECp = H (Xo (9, N) piees D (TY ) ]SO, (5,1 ) -
Proof. The first group is identified with H*(Xo(p,N)pke, D (T )[n])®C, arguing as
in [5, Thm. 3.15] using the filtration Fil*Dy (7 )[n] discussed in §3.5. As @Xo(p,N) =

(5;0@ N [1/p] and cohomology commutes with direct limits, the conclusion follows from
Theorem 4.10 and inverting p.

O

For every s > 1, we have actions of Hecke operators on H'(Xy(p®,N)pke, Dy (T3 ) [n]®
@Xo(ps7N)) as follows. Let ¢ be a prime integer not dividing N, and let g1,q2: Xo(p,N,¢) —
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Xo(p,N) be as in §4.5. For £ # p, we have natural isomorphisms g¢; (D¢(Ty)[n]) —
@3 (D(Ty)[n]) inducing a map

Te: g (DZ(EY)[TL]@O;O(ps,N)) = a3 (Dz(Ta/)[n])@O;O(ps’N,z)'

Inverting p, taking g2 . and using the trace map Tr: g2 .q5 — Id of Lemma 4.7, we get a
map

th,*‘ﬁ (Dk(Tov)[n]@@Xo(paN)) — Dk(Ta/)[n]@@Xo(ps,N)-

For ¢ = p, it follows by taking the dual of the Iw,-equivariant map m,, of §3.5.2 that we
have a map Uy, : ¢; (D2(Ty)[n]) — ¢3 (D(Ty)[n+1]) and, hence, a map

Up: qi (DZ(TOV)[TL](@O;O(;,S,N)) — G5 (D%(T(}/)[”JF 1])®Oj(0(ps71v,p)~
Inverting p, taking g2 . and using the trace map Tr: g2 .g5 — Id, we get a map
0.+ 0 (Dk(T) [N Oy (p, ) — Di(TY) [0+ 1@, (e, -

We have a restriction map Dy (Ty )[n+ 1] — Dp(Ty)[n] which is Iws-equivariant and
defines a map D (Ty)[n + 1] — D (Ty)[n]. We finally get a morphism

02,45 (D (TY )[R EO s (e 1)) — Die(Ty)) )@ x4 (e -
Taking cohomology groups over Xy (p®,N)pke and using the map
H (X0 (0%, N) piees Dk (T ) [ @Oy e, ) ) = H (Ko (0%, N, 0) prees 0 (D (T ) ] E Oy (o 3)) )
we get Hecke operators
T, Upve: H (Xo(pS,N)pkeaDk(Tov)["](é@?(o(ps,N))
— H' (X (p°, N) pes Di (T5)) [ E O, (e, v ) - (4)

(Here we introduce the unnormalized operator U;ai"e which is p times the standard
operator U, as it preserves integral structures, a fact that will be of crucial importance
in section §5.)

4.7. A comparison result on Xo(p"7N)((>2n)

Consider an r-analytic weight k: Z; — B* as in Definition 3.6 and integers n > m as in
Proposition 4.5, and define the sheaf

D75 ) = DET) ], o, py 0 OO, 1y

The aim of this section is to prove that for m large enough it admits a decreasing filtration
FilhDZ’(DZL) [n] for h > —1 with the following properties.
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Proposition 4.14. The following hold:

i. Forn>m'>m, we have Fil*D%™ ot ) 2 FI*D7 ") [n];
i. Forn>m'>m, we have Fil*Dy" " [n ]®O;0(pn o O i [n];
ii. We have a surjective map Gr_lka’O?) [n] = @ZE}T) [n]/FilOCDZ:gT) [n] —
wE ®0;O(p” e O:\:o(p”,N)f;”)’ where w,’f; is the sheaf defined in §/./;
iii. We have an isomorphism
Hl(XO(pn’N)go Lke’wE ®0; v, NS OXo(p"7N)f>Z")) = O (X(p", M) wis?) [L/l:
o(p®,
iv. The map
H (X (p" ) e 07 2 [ /R D] (2 ]
1 (m) A+
—H ( (p N)oo,pke’wE ®O+ OXo(p",N)(O?)),

Xo(ps, )5

induced by the projection onto Grflggg) [n] and (ii), has kernel and cokernel
annihilated by a power p®* of p (with a depending on n);

V. Hi(Xo(p",N)(m) @O’(m)[ |/Fil"D 0’(m)[n]) is  equal to HO(X(p" )

oo, pke?

GrhCDZ’,E:;) [n]) for i=0, and it is O for i >2.
Proof. Recall the surjective map

) v A+ mod S A+
dlog: TP(E) ®z, OXo(p",N)EQL) B ®OXo(p"’N)(m)

from equation (2) and Proposition 4.5. It is defined for every m large enough and med

is an invertible (9:; ( N)(m)—module. We also assume that over Xp(p™ ,N)go) we have a
0(P™ N )oo

canonical subgroup C,. of order p”. Consider the natural projection j,: X(p",N )(()21 )
/'t’o(jz)”,N)g;T ); then j, is Kummer étale and Galois with group A, the subgroup
of GL3(Z/p™Z) of upper triangular matrices. In particular, to define a sheaf on

Xo(p™, N )S:;ke is equivalent to define a sheaf on X(p",N )glke with an action of A,

compatible with the action on X (p" N)( ™) In order to define F11h©°’ (m) [n], we define a
A,-equivariant filtration on j (@ZS:) [n]).

Over X (p",N )((DZL ), we have a trivialization
To(E)/p"Tp(E) = (Z/p"Z)a® (Z/p" Z)b

such that dlog(a") is a basis for wi°d/prwmed as O;( N)(m)—module. Dualizing, we get
P N)oo

an injective map

(dlog) mod ®O+ A

Xo (P, N)(m)

(my — T (E) ®Zp @Jr

X (pn,N)$ X (pr, NIV
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with quotient Q isomorphic to wH°d Rt

[T M
“pw mOd YasOF (my-module. Then (dlog)" induces, for
X(p™,N)eo

or my and such that modulo p” the
X(p",N)eo

section a generates wh E

every A € Z/p™Z, an affine map

px: Vo(T,(E),a,b—Aa) xz, X(p",N)T — Vo (wi°® " a) x o X (p™,N)

Xo(p,N) oo
on the pro-Kummer étale site of X(p”,N)((:on). Here and below, the formalism f VBMS
is applied with respect to the ideal Z generated by p”. Notice that Vj (Tp(E)7a,b—

)\a) Xz, X(pn’N)gZ") ~V, (TP(E) ®z, @j{( N)W),a,b— )\b) is a principal homogeneous
p", oo

space under the formal vector group V’ (Q) - V(Q) classifying sections of QY which are

zero modulo p”. We have the invertible (’); ® N)(m)@QB—module wlg’f =W, (WEOd’_l,a),
0
Set

W) | = Wi (Tp(E),a,b— A@@ZPOX(”N)(W)

Applying the formalism of VBMS, we get the map of sheaves on the pro-Kummer étale
site of X(p”,N)(o?)

PA WE X+
X0 (p. NS

Using that Vj (Tp(E) ®z, (’3:;( N)m),a,b—i— )\a) is a principal homogeneous space under
p", oo

\%4 (Q), we obtain a V’ (Q)—stable increasing filtration Filhim,(fol’ ) for h >0 with

~

Flloﬂﬁ =wzF @+ or
oA =W Qo VNGO
Xy AP N)
Grhﬂn(m) > th e . ot . (5)
E O (my  X(p™ N)( )
Xo(p ST ¥ )oo

omy-duals, we get a sheaf and a decreasing

> . A+
See [2] and [6, Prop. 5.2]. Taking OX( N

filtration

(-

Y = Wi (Tp(E),a,b— b)) @z, OF Fil"qu{") b > 1

X (pm, N)S?

(m)

on the pro-Kummer étale site of X'(p™,N)so . Here, Filhﬂﬁémol’v)\ consists of those sections

of Qﬂ,gmo)cf\ which are zero on Fil;tﬂﬂ,(cinol} , (where we set Fil_ﬂﬂ;moli\ =0 so that
Fil~'am{"> ) = 20{"" ). Then

ot : (6)

hoy(m),V ~  k—2h—2
Gr', S\ =wi Qo+ X (pr, N)I

Xo(p,N)S)g1>

Due to Proposition 3.8, we have a A,-equivariant isomorphism

‘7:; (:DZ’,E)ZL)[ ]) @)\GZ/p”Zan 00, )\
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and we set Fil"j* (’DO’ (m)[ ]) to be the filtration corresponding to ©xez/pnzFil Qﬂgcmol 3\

~

The map @xp% defines amap p*: wp" @+ , — @AQB("L)  and, hence,

ot (
Xo(p ) X" N

a map

~

+

v Gr ]n(gw(m)[ ]) —)w ®O+ X N)S,;”)'

X0 (ps N)(m)

By construction, (i) and (ii) hold over X (p™, N )(()21 ), and to prove those claims we need to
show that the given filtration and the map v are A,-equivariant. Also, given a sheaf F
on Xj (p,N)ggl), we have a spectral sequence

Hi(An,HJ()((pn’N)(m) -(]_->):>Hi+j(XO(pn)N)(m) 7).

) pke’jn oo, pke?

Since the cohomology groups HY (An,g) are annihilated by the order of A,, for j > 1, to
conclude (iv)—(v) it suffices to prove those claims for X (p™, N )(()T ).
The rest of the proof is a computation using the log affinoid perfectoid cover by opens U

of the adic space Xy (p", N )(m) defined by trivializing the full Tate module [ [, 7;(E). It is

00, pke
Galois over Xy (p”,N)gzgke with group Gy . Let U := Spa(R,R™") be the associated affinoid
perfectoid space as in §2.3. Write T,,(E)Y(U)® RT = egRT ®e1R™ with €9 mapping

to a generator of wi°? and e; in the kernel of dlog generating wEOd . Recall from

Proposition 3.8 that Qﬂ,(:lq)\(U) is the dual of Qﬂ(m \W(U) =Rt ®B<1+prz> kE(1+p"2)
with increasing filtration defined by Fil" = @  R* ®B( e Z)Z k(1+p"2).

For every o € Gy, we then have o(e1) = e; and o(eg) =eg+&(0)er. Then, o(Wy) =
Wi+ %(1 +p"Z) and 0(Z)=Z. If £(0) = a+p" 5 then o(Wy) = Wiia+ 81 +p"2).

Thus, the increasing ﬁltration on Pyez /pnzﬂﬁlgmoi » and the diagonal embedding of RT®

B— @Aez/anFll Qﬁ ., are both stable for the action of Gy. This concludes the proof
of (i) and (ii).
We pass to claims (iii)(v). As w™? is a locally free (9; ® N)(m)@)B—module, we are left
0 y oo
to show that

H (X (p", V)"

0o Pk‘?’OXo(p",N)&")) = HO (X(](pnvN)gzl)vwE> [1/p]

So to prove claim (iii), we are left to show that that the map (3) is an isomorphism.
The étale cohomology of the structure sheaf on U is trivial as recalled in §2.3. Thanks
to equation (6), the sheaves @0 m)[ |/Fil"D ’(m)[ llu are extensions of the structure
sheaf @g so that also their cohomology over U is trivial. Then the cohomology groups
in equation (3) and those of ZDZ [ ]/Fil"D ’(m)[ | appearing in (iv) and (v) coincide
with the continuous cohomology of Gy of the sections of the relevant sheaves over U.

This reduces the proof of claims (iii), (iv) and (v) to a Galois cohomology computation
for which we refer to [6, Thm. 5.4]. O

We have Hecke operators acting on the cohomology of @Z’ (OT) [n]; see equation (4). We
assume the hypothesis in the proof of Proposition 4.14.
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Proposition 4.15. The operator Up*® = pU, is defined on Hi(Xo(p",N)(m)

oo, pke?
Filh”DZ’S:) [n]) for every h > —1. There exists an operator Up p,

Upon: B (Xo(p V) G Fi" D7 U n]) — HY (X (p", N) ) Fil" @ (7 [n))

o0, pke? o0, pke?
such that on H (Xo(p",N)((;:pk07 lh© [ 1) we have UP*ve = ph*1U, . fori=0, 1.

(n)

oo, pke?

Moreover, for every positive mteger h the cohomology group H! (Xo(p",N)

@Z’g}”) [n])[1/p] admits a slope < h-decomposition with respect to the Uy,-operator and

we have an isomorphism of Hecke modules:
W H (X (0", N) 0 D 8 ) [1/p) ) 2 HO (2 (p7, N) 2, 2) M EC,

where the tensor product is over the finite extension of Q, over which Xo(p”,N)f,?) 1
defined.

Proof. Recall the construction of the Up-operator in equation (4); all steps are defined
integrally on QZ’,S:) [n] except for the trace Tr: go .g5 ~ Id, and all steps are defined for
FithZ’,S:) [n] except possibly for

U: g (DYTY )BT, v)) — 63 (DLTY )+ 1)EOL v

We claim that U restricts to a map on ¢ (Filh]]])z (Ty)[n ]®OX0 ®, N)) —q (Filh]D)Z(T(}/)[nqL

]®(9X0(p N p)) which can be written as p"*! times an operator /’. Both statements can

be checked upon passing to sections over a log affinoid perfectoid. These statements are
then proven in [6, Thm. 5.5].

The statement on the existence of slope decomposition and the displayed isomorphism
are proven as in [6, Thm. 5.1] using Proposition 4.14. O

4.8. A comparison result on Xo(p”7N)ém)

As in the previous section, we fix an r-analytic weight k: Z; — B*, as in definition 3.6,
and we write uy € B[1/p] for the element such that k(a) = expugloga for a € 1+

p"Z,. Note that p"uyr € B. Fix an integer n > r, and define the sheaf @Z’,E)m) [n] =

DO (T )[n ]|X (o N)<m)®(’) In this case, we have the following.

Xo(pn, )™

Proposition 4.16. For m large enough, there exists an increasing filtration

(FilSQZ:E)m) [n])s>0 with the following properties:

ot , 2 FiLO7 ™) [n];

o, (m)
[ } Xo(p",N)(”L

i. For m’ >m, we have Fil,®}’ ®o+

Xo(p™, N)(m)
ii. For every s >0 the image of the map
H! (X (p", N)§ oo Fils D7 2 [0]) — HY (X (9™, N) ™ @7 U ]

k,o00

is annihilated by the product p("+e)s ( ) (with ¢ depending on n).
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Proof. We follow closely the proof of Proposition 4.14. We take m large enough so that
E admits a canoncial subgroup C,, of level p™ over Xy(p™, N )ém). Note that the canonical
subgroup C,, and the level subgroup H,, are distinct.

The natural projection j, : X(p",N)(()m) — X (p",N)((Jm) is Kummer étale with automor-
phism group A,, isomorphic to the subgroup of GL2(Z/p"Z) of matrices that are upper
triangular modulo p™. It is not a Galois cover as X (p", N )(()m) is not connected. In fact, we
have a trivialization T,E /p"T,E = (Z/p"Z)a& (Z/p"Z)b over X(p”,N)(()m). As recalled in

4.2, we have a decomposition X(p",N)gm) = HfEZ/P”ZX(pn’N)&Z) where over X(p”,N)gf'g)

we have dlog(a) = £dlog(bY) modulo p™. We recall that to give a sheaf on Xy (p,N)g?ke

is equivalent to give a sheaf on X (p",N )éf';)kc endowed with a compatible action of A,,.

In particular to define FiISZDZ”E::) [n], we define the filtration over X (p", N )(({T;Le and we
prove that it is stable for the action of A,. The maps dlog and dlog” define an exact
sequence of sheaves on the pro-Kummer étale site of X' (p™, N )ém):

mod, —1 A+ A+
Q:=w T ®p+ O — T, (F)®y O
E OXo(pn N)('") X (pn, N)(m) ( ) p X(p”,N)gm)
d N+
> wp’® Qo+ (m) -
xom, ™ X N)g

Via the trivialization T,E/p"T,E = (Z/p"Z)a & (Z/p"Z)b over X (p™,N){™, over the
component X (p"™, N )(m) the canonical subgroup C., and hence, () modulo p", is generated

by the section b+ ¢a and @ maps to a generator of the quotient wi®d ®,+ -
Xo(p Ng™

A+ T :
X (om, )™ modulo p". In particular, we get an affine map

p: Vo (wféwd -1 ) CcVy (TP(E) ®z, (5+ a,b— )\a)

X, NG

= Vo (T,(E),a,b— Aa) xz, X(p",N)§™,

on the pro-Kummer étale site of X (p",N )(()@)\. Considering the underlying sheaves of

functions of weight 0, the map p* induces a surjective map of sheaves of rings

pi: Wo(Tp(E),a,b— Aa) @z, OF ot

-0 .
X (pn, NS X(pm, N

We let Z be its kernel. We set

WY\ = Wi (T, (E),a,b— Aa) ®z, O, Fil'Q0yy), = 7°20y") .

X (pn N)(m) ’

Taking @j{ -duals we get a sheaf and an increasing filtration

(pm, N

ml(c O))\ _Wk( ( )aa,b_)\b) ®Z O+

. (m),V
X(pm N)(m ) Fllswk,o,k 82 —1
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on the pro-Kummer étale site of X' (p™, N )(m) Here, Fil QH,(Q 0)’ consists of those sections

vanishing on FilsQﬁgr(L)) - Due to Proposition 3.8, we have a A,-equivariant isomorphism

]n (gq(m)[ ]) = ®A€Z/p"2mlg¢%?}\vv

and we set Filgj* (CDO’ (m)[ ]) to be the filtration given by @Aez/anFilsQﬂ,&%?}\v.

2o )

In order to get a well-defined filtration on D3 , we need to prove that

Filyj: (D7 +(m) [n]) is A,-equivariant. If this holds, claim (i) is then clear by construction.
Arguing as in Proposition 4.14, to prove claim (ii) it suffices to prove it for

H! (X(p”,N)éf’;Le,,). As in loc. cit. one reduces the proof of this statement and the
statement of the A,-equivariance after passing to a log affinoid perfectoid cover U of
X(p",N)(m) with group of automorphisms Gy relatively to Xy (p™ N)( ™) and with U :=
Spa(R, R™) the associated affinoid perfectoid space. Write T,,(E)(U)® Rt = RT fo+ R* f
and T,(E)V(U)® R" = egRT ®e1 RT with eg = fy = bY mapping to a generator of

mod mod, —

wped and e; = fY =a¥ — AbY in the kernel of dlog generating wip, . Recall from
Proposition 3.8 that 20\t (U) is the dual of 20y%), (U) = (R* @ B)({22) k(1 +p" Z)
where p" Wy =Y and X =1+4p"Z, and we have the universal map afy+ 8f1 — aY +8X
(note the roles of X and Y are interchanged compared to loc. cit. as in this case we
are looking for functions on 7T that are 0 on b modulo p” and 1 on a modulo p", or
equivalently that are 1 on e; modulo p” and 0 on ey — Ae; modulo p"). The decreasing
filtration is defined by Fil® = @5, (Rt ® B) (122" k(1 +p2).

Given o € Gy, we have o(eg) = ey and o(e1) = e; +&(0)eg so that o(Y) =Y and
o(X) =X +&(0)Y = X +p"&(o)Wy. Here, € is an RT-valued continuous 1-cocycle on
Gyp. In particular, write k(t) = exp(uglog(t)) for t =1 modulo p”. Then

o (K(X)X~) = k(o(X))o (X) ™" = exp((us — ) og(X (1 +57€(0) 22)) =
= k;(X)X_iexp((u;C —i)log(14+p"¢(o) I/I)?\) X)X~ Z pm (uk _Z) (5(0)%)@
=0

Notice that the term m =0 is (uj —i)k(X)X % Thus,

U((lzer)i k1+p'2)) = (14?;12) 'k(1+prz);prm (ukm_l> (5(0)1332) .

(7)

This implies first of all that Gy preserves the filtration. Claim (ii) follows from the
following lemma. O

Lemma 4.17. For every s, consider the short exact sequence of Gy -modules

0 — Fil 200 (U) — Fily, 04 (U) — Fila 20,70y (U) /Fil 28y (U) — 0.
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Then, the connecting homomorphism

HY (G Fila 205 (U)/Fil a0y (1) — H' (Go Filan g (1)
has cokernel annihilated by p("+)°s! (Zk) for some ¢ depending on n.

Proof. We argue by induction on s. We are reduced to prove that for any s the short
exact sequence

0 — Gr, 2001 (U) = Fily 120003 (U) /Fily 128,73 (U) = Gry 120,70 (U) = 0
the connecting homomorphism

H (G, Gro 12014, (U)) — HY (Gy, Gr. 20y, (1)

has cokernel annihilated by p(”c)@ for some ¢ depending on n. Note that
HO (GU,GrsHQU;!%),\(U)) _ ((R+)GU ® B) (( Wy >s+1 k(1 +PTZ)>V
o 1+prZ
and
Wi

HY (G, Gr, 20y, (U)) = (RS @ B) @00 <( )S~k(1 +p’“Z)> H'(Gy,R").

1+p"Z

s+1 v
Thanks to equation (7), the map sends ((H‘_/V];Z) k(1 +prZ)> to the cocyle
s \%
Gu 30— (up—s)p"&(0) ((HWW) k(1 +p"Z)) . The quotient of H'(Gy,RT) by the
(RT)%v-span of the cocycle ¢ is torsion and hence killed by a power p° of p; see [6, Prop.
5.2]. The conclusion follows. O

5. The Hodge—Tate Eichler—Shimura map revisited

Let k: Z;, — B* be a B-valued weight, as in Definition 3.6, which is r-analytic for
some 7 € N (definition 3.6), that is, there is uj, € B[1/p] such that k(t) = exp(uylog(t))
for all ¢ € 1+ p"Z,. In this section, we fix an integer n > r and denote D?(7)[n] the
integral pro-Kummer étale sheaf of distributions on the base-change of X := Xy (p",N)
over Spa(B[1/p],B). We will simply denote this sheaf by D¢ in this section and also set
Dy = Dz ®Zp Qp.

Let us fix a slope h € N, and recall that if M is a Qp-vector space with a linear
endomorphism U, we denote M () the subvector space of M of elements € M such that
P(Up)(x) =0 for all polynomials P(X) € Q,[X], whose roots in C, have all valuations
in [0,A]NQ. Up to localization of B and for s large enough, both H!(Xpk.,Dx) and
HO (X( b -),w]kEH) admit slope h decompositions; here, Ha is a (any) local lift of the

Har®
Hasse invariant. Then the main result of this section is as follows.
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Theorem 5.1. For s large enough, there is a canonical Cy-linear, Galois and Hecke
equivariant map:

h) ~ h) ~
Wy : H' (X, D (1)) VEC, —>H0(X<H§ps>7w§+2)( '&C,.

Moreover, if Hf;ol (ug, —1i) € (B[l/p])*, then Uyt is surjective.

The map Wyt was defined in [5] using Faltings’ sites of &' and X' (%), respectively.
To relate it to the language developed in this paper, first of all we allow ourselves to
increase n. In fact, the map Xp(p™,N) — Xo(p™2,N) for ny > ny is finite étale, and one
can obtain the map ¥yt for n = ny in the theorem upon taking traces from the map
WUyt for n = no; on the left-hand side the trace is defined using Lemma 4.7. We also
replace Xo(p", N)(75=) with Ay (p",N)ggl) for arbitrary large integers n > m, as the first
is contained in the latter for m large enough thanks to [23, Lemma 3.3.15].

In particular, we choose n large enough such that there is m < n with the property
that the restriction of DY to the pro-Kummer étale site of Xy (p™, N )EJZJ ) has the property
that the (pro-Kummer étale) sheaf ]D)g@@ Xo(pn
in Proposition 4.14. We fix such n, m. Let us denote by D¢ := Dg@@};pke, where Oj'(pke
is the structure sheaf of the pro-Kummer étal site of X. As in [5], we let Uyt be the
composition of the following maps:

NG has the decreasing filtration defined

(200", V) D0(1) O, = (! (40" Ve R 0) 1)

(h) ) ~
By (B (X (0" M) D)o DR [1/8]) = B (", V) &) w52) M EC,,

where R is the restriction map while the map & is defined in Proposition 4.15 and it is
proved in loc. cit. that it is an isomorphism. Therefore, in order to prove Theorem 5.1, it
is enough to prove the following.

Theorem 5.2. In the notations above, if H?;()l(uk —i) € (B[l/p])*, then the map R is
surjective.

To simplify the notation, in the rest of the section, we write X’ instead of Xy(p",N),
&8 instead of Xo (p",N)g?), and so on. Before starting the proof of Theorem 5.2, we’ll
describe the dynamic of the Up-operator on the modular curve X. We think about U, as
correspondences on X, and we have:

Lemma 5.3. For every integer u > 1, we have
i) U (XYY c ) and UR(\XTY) A,
i) Uy (Ad)) c alty.

Proof. This is a direct consequence of Lemma 4.9. O
We also have:

Lemma 5.4. For every u > 1, there is a canonical decomposition of correspondences

U;|X(§u> = (U;)gOOdH (U;L)bad such that:
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a) (U;)good (Xéu)) C Xog)
b) (U)P (A5 \ A ) € A\
We remark that for u=1, U}} = U, and so we obtain the decomposition of Up|x,1) =

() 11 0™

Proof. In view of Lemma 4.9 and Remark 4.8, it is enough to define this decomposition
for the correspondence U= Upty: Uéu) — P(Pl), where = Ao+ Aip+... FAu_1p® L,
A €{0,1,....,p—1}, for i =0,1,...,u— 1. Namely, we define (ﬁu)bad|Uéfjj =1, and
(ﬁu)goodbé?ﬁ = Uxzuta. With these definitions, the rest of Lemma 5.4 follows from
Lemma 4.9. O

We have the following consequence of Lemma 5.3 and Lemma 5.4. Let us recall our
notation O := Dg@@; (this is a sheaf on the pro-Kummer étale site of the base-change
of X to Spa(B[1/p],B)) base-change which is not shown in the notations. Also, we recall
that we use the operator U;‘ai"e induced on cohomology by the Up-correspondence and
not its normalized version p_lU;,‘ai"e. With this understanding, to ease the notation, we
simply write U, instead of Upave.

Corollary 5.5. Let P(T) € (BROg,)[T] be such that P(T) =TR(T) and for every u > 1
denote (P(U,)")5°! = (U2)&d R(U, )" and (P(U,)")™*" := (U¥)P*R(U,)". Then
i) P(U)" s B (A )pres ) — H (05" e D7)
if) P(U,) " H (AE)pres D7) — H (AL pre D7)
iit) (P(U,)")*" P(Up): H (Xoc\ XS )pier D7) — HY (X)) pre 07
iv) (PU)")"" (Ao \ X e D7) — HY (X" \AG" ) e, D).
Proof. In view of the fact that, for any polynomial Q(T) with (B@(’)CP)—coeffcients,

bad

Q(U,) maps Hl((XO(é))pke,@Z) to itself, 1) and, respectively, ii) are immediate conse-
quences of Lemma 5.3 a) and b), respectively, while iii) is a consequence of Lemma 5.4
a) and iii) follows from Lemma 5.4 b). O

Before we start the actual proof of Theorem 5.2, it seems natural to recall and gather
here the main ingredients in the proof, namely the properties of the cohomology of the
filtrations of the sheaf ®? on Xég Y and respectively on XO(U), for m as fixed at the
beginning of this section and for the moment v > 1 such that the pro-Kummer étale sheaf
D¢ has the increasing filtration §il, of Proposition 4.16 when restricted to Xo(v).

Recall that we have denoted by D9 := DZ@@} for (5} the completion of the structure
sheaf of the pro-Kummer étale site of X. We have:

i) The image of the morphism H! ((Xé”))pke,gi[h) — Hl((XOU))pke,CDg) is annihilated
by p(rteh H?:_()l (ug —i)/h!, where let us recall r is the degree of analyticity of the weight

on B, X = Xy(p",N) and c is constant independent of h. In particular, if (ngol(uk —

z')/h!)'y = p? for some v € B, then p("t©"+4¢ annihilates the image of the above map.
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if) The U, correspondence on Xo(m) can be written as the disjoint union of U9,
mapping Xo(m) to Xég) and U;fad: Xém) — Xo(m_l) and corresponding to the p-isogeny
E — E’ given by modding out by the canonical subgroup. To keep track of where our
sheaves are defined, we denote @ ( ) the restriction of the pro-Kummer étale sheaf ®j, to

(Xé ))pke. Suppose 1 <u < m is buch that QO,k Y has the i increasing filtration St[, D
on (Xo(u_l))pkc. We have:

Proposition 5.6. The map U;)’ad induces a map U;;ad: @Z:gu) — 7" (@Z:gu_l)) that
preserves the filtration. Furthermore, for every b, there exists an operator

v D20 ) o (D3 )
such that U]}fad :pr;ad’b on @Z:E)u)/gi[l()"). Here, v : Xo(u) - Xo(u_l) is the inclusion.

Proof. We use the notation of Proposition 4.16. It suffices to prove both statements after
passing to a log affinoid perfectoid cover U of Xéfg) for A=Xg+AMp—+... +A1p™ L,
Ai €{0,1,...,p—1}, for i =0,1,...,n— 1, with associated affinoid perfectoid space U=
Spa(R,R*1). Recall from loc. cit. that T,(E) is trivialized T,(E)(U) = Z,a & Z, 3, where
the level subgroup is generated by a and the canonical subgroup is generated by the
section B+ Aa. For every A as above, write A = \g+p)’, and then U;fad restricts to a map

2ot Xo(p", N )((]";\) — Xo(p™,N )(()nz\, D At the level of universal elliptic curves over U, it
corresponds to the p-isogeny defined by wuy,: T,(E)(U) — T,(E")(U) with T,,(E")(U) =
Lpa® Ly with 5/ = 5*}# in T,,(E) ® Q. Notice that Btda >‘ = '+ N« defines a generator

of the canonical subgroup on E’. The map ), induces by functoriality the map @Z gu; —

u* (@Z E) o )) We describe it explicitly.
Write T,(E)(U)®@ Rt = RT fo® R* f1 as in Proposition 4.16 so that fo = 8+ Aa and
f1 =a modulo p" and T,(E)V(U)® RT = egRT ®e; R with eg = f/ = Y mapping to

mod mod, —

a generator of wi°? and e; = f)/ =a¥ —ABY in the kernel of dlog generating wp,
Then 20{') Y (U) is the dual of 20"} \(U) = R* ® B(:12) - k(1 +p" Z). Similarly, write

1+p’"Z
T,(E)(U)@ R = R* fy@ R f{ with f; =L = '+ Na and f{ = fi. Then T,,(E")"(U)®
Rt =¢(RT ®e|R" with e, = (f})V = pep mapping to a generator of wiB*d and e} =

(f1)Y = f1 in the kernel of dlog for E’ generating wp, . In particular, Qﬁéuo_ ilv(U) is

the dual of Qﬁ,(ﬂuo_)l\z (U)=R* ®B<1+p o) -k(1+p"Z"). The map T),(E) — T,(E’) induces
amap T,(E")Y — T,(E)" on the duals and, hence, a map

mod, —

un: WY\ (U) = W WU),  Z s Z W s pW,.
As the decreasing filtrations are defined by

. u u W/\
Fﬂbml(c,()),)\(U) = wl(ch(U) ) (1 Tz

Wy, )b
1+prZ/ ?

b u—
), Fil'anl ) (U) =2 Y (U) - (

we see that vy respects the filtrations and on Fil® can be written as pbv} with
vl Filbﬂﬁl(gf&/\(U) — Filbﬂﬁgf&iz (U). The claim follows upon taking strong R*—duals. O
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iii) Given h € N, there exists an integer d such that p? annihilates Ker (Hl ((Xéom))pke,Dz)
— H! (( éom))pke,CDk)) and pey, is integral, where e;, is an idempotent projecting onto

the slope < h parts of H' (Xpke,Dx) and of H* ((Xéom))pke,Dk). This is the main result
of §7.

Proof of Theorem 5.2. We now start the proof of Theorem 5.2. We work with a weight
k as in Definition 3.6, which will be assumed in this proof to be the universal weight of
some (wide) open disk of the weight space. The case of a finite extension of @, is obtained
by specialization. In particular, uy —4 is not 0 in B for every ¢ € N. This will be used in
step 3.

We recall that we have fixed a slope h € N and consider the module

~ \®

(X0 00) " 2 (B! (AL, D1)BC, )

Let Q(T) € (B®Og,)[T] be the polynomial with deg(Q(T')) > 1 and having the property:
y€H! ((Xég))pke,@k)(h) if and only if Q(U,)y = 0. Such a polynomial exists as by [6] we
have an isomorphism Hl((Xég))pke,@k)(h) >~ HO (Xég),w’fbfz)(h) and on H° (Xég),w%”)
the operator U, is compact and has a Fredholm determinant which is an entire power
series. Q(T) is obtained from a factor of this Fredholm determinant. We write Q(T) =
P(T) — a, with P(T) = TR(T) and remark that there is nonnegative a € Q such that
a € p*(B&0g,)*. Then a < h-deg(Q(T)). Now, we choose integers b with b > 2a + 2,

s:=(r+c)b+q (see i) above) and d as in iii) above. Then it is easy to verify that there
exist integers m and 6 > 1 such that

0
mb> 0> §+s+d+1+(m+u+1)a.

We will work with the open affinoids XL := Xo(p”,N)gf), Xém) = Xo(p”,N)ém),
XOmH) = Xo(p”7N)(()mH) C Xo(p™,N)and their pro-Kummer étale sites.

Step 1. Fix z € H! ((X£))pke,©k)(h)7 then P(U,)z = ax. Without loss of generality,
we may consider z € H'(( o(g))pkeagz)tf such that P(U,)x = ax (this notation was
introduced in Section §7) as H! ((Xég))pke,@k) =H! ((Xég))pke,QZ) [1/p]. Then there is a
unique z’ € Hl((Xo(g))pke,CDZ) with P(Up)2’ = ax’ and (/)% = p?z, and using Corollary
5.5 ii), we have: P(U,)"(z') € H ((Xéol))pkm@g), and by using Corollary 5.5 i), we have
that P(U,)™tutl(z') € Hl((X\X()(m+l)pke7©g). Denote & the image of P(U,)™ "1 (z’)
in HY (XS ) e, D2/p7D3).

We recall that P(U,)"*!(z') = P(U,)(P(Up)“(2')) € Hl((Xoo\Xo(l))prokvgz) by Corol-
lary 5.5 i) and so denote P(x) the image of

(P(U,)™)* " (P(U,)" (o)) € HY (™) pies OF)

in H' ((X)™) e ©9/p7D7).
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Now, let us observe that the opens (X\Xémﬂ)) and Xém) constitute an open covering
of X, and so we have a Mayer—Vietoris exact sequence:

m m 'Ll)

H (X O3 /p7D7) ~5 (NG, 07 /p"05) @ H (4™ )i D7 /D7)
P m m o o
‘>H1((X(§ )\Xé +1))Pke7 2/p°DR),

together with an almost isomorphism H' (Xpie, D) &0c, — H (Xpke, D). We consider
the element

(A,B) = (p°2,p°P(z)) € H (X\XS" ) pie, 02/p7 D7) @ H (X5 pies D3/0° D7),

and we first claim that (A, B) = 0.
Indeed, let us denote by V the pro-Kummer étale site (Xo(m)\XémH))pke. Thanks to
Corollary 5.5 iv), we have

mybad / u s o
Y(A,B)=Aly = Bly = (P(U,)") ™ (0 P(U,)"+ (2')) € p°H! (VD7 /p"DY).
Now, let us recall that we have an exact sequence

H' (V,5il,/p75il,) AT (v, 25/p"D7) & H (V. DY/ (Fil, +p"®°))

Using Proposition 5.6 and the fact that mb > 6, we have g((P(U,)™)**(P(U,)" ™ (2"))
0 which implies that there is 3 € H* (V,§il, /p?Fil;,) such that (P(U,)™ )bad( ( ) L")
= f(B). But by i) above, the image of f is annihilated by p®, therefore ¥ (A4, B) = p* f(5)
0. This proves the claim.

We continue the proof of the theorem. The Mayer—Vietoris exact sequence implies that
there is y € H! (kae,DZ)<§>OC,, such that

~—

W) oy, =P PU) ™ = p Ty (mod pPH! (X)) pie D7) )

Let zo € H! (kac,]]])z)@é@cp be zy := pPen(y). Then 2z, € H! (kac,]]])z)(h)@)(’)cp and
p(zo)|(X<u>) L= pstdtlgmtutlyy (mod peHl((Xég))pke,’Dz)(b)), where we write
Hl((Xég))pke,”DZ)(h) for the image pdehHl((Xég))pke,’DZ).
Step 2. Let ; € H! ((Xég))pkm@z)(h) be such that P(Zo)|(X<u>) . =pitdtlgmtutl(y/ —
oo )pke
p9/2x1). Such z; exists indeed because z; € p~s~¢-1+0/2—m—u-1yl (( ééf))pke@z)(h) C
u o\ (
Hl((')(‘éo))pkev:D )( )
Now, we apply to x; the Step 1 we used on z and obtain z; € H! ( pke,Do)(h)Q@(’)(cp
such that p(z;) = p*TaHlamtutiy, (mod pGHl((Xég))pke,Qo) )

We remark that p(zo +p?/%21) std+lgmtutiy (mod p39/2H1((Xé§))ka,

29)").

‘(Xég))pke = p
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Repeating Step 2, we construct inductively a sequence (2, ),>0 in H! (kae,]]])z) (h)@)(’)cp
such that for every v > 0 we have

- j s m+u v u o) (b
o025 iy =0 (m0d IR (0),00) ).
7=0

If we denote by

5= p—s—d—la—m—u—l ijG/QZj cH! (kaey]D)z) (’L)®Cp7

=0
then p(p~?z) |(X<§Zf))pkc =p~?((2/)"") = . To see that the written series converges, we recall

(see [5]) that H (Xyke, D7) is profinite, therefore compact, and so H! (é\,’pke,DZ)(h)®Cp is
complete for the p-adic topology.

Step 3. Using step (2), Theorem 5.2 is proven under the condition that (Hf;é
(up, — z)) € B[1/p]*. As no uy —i is 0 in B due to our assumptions, we have B[p~* H?;hl

(ur =) '] = NpenBa[p~Y], with B, = B{[p"/ /2, (ux —i)]] satisfying the requirements

of Definition 3.6 for every n > 0. The theorem then holds for each B,,. Since the map R
is a map of finite and projective B[1/p]-modules, we get that Theorem 5.2 holds after
inverting Hf;,ll (ug —1).

Consider the reduction of ¥yt modulo ug — 14, for A <i <b—1. It is compatible with
the classical p-adic Hodge—Tate decomposition, which provides a surjective map

B (Xﬁpke’symi(T(}/)) ®C, — H (X, wi?);

see [5]. The map H'(Xg 10, D9(Ty)[n]) = H' (Xg e, Sym'(Ty')) is induced by the
surjective map DY(TY)[n]/(ugx — i) = DY(Ty)[n] — Sym*(Ty) and induces a surjective

(h

morphism on the slope < h-part H! (X?,pk(:’*) ), by results of Stevens. The map

HO(X,wif?) — HO (Xéff),wg”) ~ HO (Xé?,w%”)/(uk —1) is the restriction map, and it
is an isomorphism on the slope < h-part by the classicity result of Coleman. We conclude
that Wy, and hence R, is surjective modulo ug — 4 for every h <i < b—1. This implies
that R is surjective if (H?:_()l (ug, — Z)) € B[1/p|*, as claimed. O

6. The Byr-comparison

In this section, we consider the modular curve X = X(N) of full-level N and the modular
curve Xp(p™,N) over the ring of integers Ok of an unramified extension K of Q,. Let X
be the p-adic formal scheme over Ok defined by formally completing the modular curve
X (N) over Ok along the special fibre X (N)g. Let E be the universal generalised elliptic
curve over X (N), and denote its modulo p-reduction by Ey. As X(N)g is smooth, the
crystalline cohomology HY,. . (Eo/ X) is identified with the de Rham cohomology Hp :=
Hig (E /)/(: ) (as a module with log connection; see its description below).
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6.1. Period sheaves

There is a map of sites w: Xpke — )?et defined by associating to an étale map U — X
of formal schemes its adic generic fibre. We set Oum Ti=w T (0g) (see [25, §2.2]). Tt is

a subsheaf of (’)+ . As X is endowed with the log structure defined by the cusps, this

¢ more precisely, M is the inverse limit hm /\/ln,

where M,, — O¢/p"O¢ is the log structure defined by the cusps. This mduces a log
structure "™ : MWL = w’l(m — OV and a log structure at: M+ — OF

pke

which defines the log structure a: M — Oy, of §2.2. In particular, we can refine the

induces a log structure a: M= 0y

prelog structure o’: M — @ka of loc. cit. to a prelog structure ot : M>+ — (9 ,
P

pkL
where M®* is the inverse limit lim M7, indexed by N, with transition maps given by
—

raising to the p-th power. We write a — af for the first projection M»* — M+,

Recall that we have the period sheaf Ajn¢ over Apie; see §2.2. We define the morphism
of multiplicative monoids ajut: MO s Aye by composing a”* with the Teichmiiller
lift. Then the map ¢: Ay, — @}pke is compatible with prelog structures, namely 1 o aju¢

coincides with the first projection M*” — M* composed with at and the natural map
O}pke — (’)j‘}pke. The map ¢ defines a map

D = 100: Ohint := O35 @, Aing — OF

of O}ii’j—algebras. Furthermore, ¥y is a map of sheaves compatible with the prelog
structures o™ X aype: MO x MPT — QA and at; namely, dy o (a““r X Oéinf)
coincides with ot composed with the homomorphism of monoids 7 : M"+ x M>+ —
M provided by the natural map M"+ — M+, the projection M>+ — M given by
a — af and the multiplication map M+ x MT — M+,

Define OAjys to be the sheaf on Ak given by the p-adic completion of the log-
divided powers (DP) envelope of OA;,s with respect to the product prelog structure

o™ X aipe and with respect to Jy; see [1, Lemma 2.16] for the definition. More
precisely, let M’ C (M™%F)gP 5 (MP+)8P be the sheaf of monoids defined as the inverse
image of M* C (M™T)2P via the map 78P: (M™% F)gP x (M F)8P — (MT)8P associated
to 7 defined above; here, the superscript gp is the sheaf of groups associated to a
sheaf of monoids. Let OA! . := OAjns ®Z[M“““+><M"«+] Z[M/} be the log envelope of

oyt ®z, Aing, with respect to prelog structure M™+ x M”* and the map Jr. It
is endowed with a tautological prelog structure o: M’ — OA{ ;. The map Yx extends

inf =

uniquely to a map ¥, : OA! ; — (’3;&)1(0 compatible with the prelog structures o’ and o™,

inf
that is, such that ¥’y oo’ is @t composed with the natural morphism M’ — M™ induced
by (a"™)8P X (aing)8P. Let Z be the kernel of 0%

Then QA is the p-adic completion of the DP envelope of OA{ ; with respect to the

. o . . 1 . .
ideal Z. For every p031t1ve integer n, we also define OAS, | to be the p-adic completion of

the subsheaf OA{ ; [p | of OA{ ;[p~!]. The map ¥’ extends to a map Umax,n: OALE

max, ’I'L

@}pke. As T admits DP powers in QA8 and OAjqg is the p-adic completion of the

max,n
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DP envelope of OA[ ; with respect to Z, we have a natural map OAj,s — OARE, | by
the universal property of the DP envelope.
The derivation d: O¢ — Q% defines A;y-linear connections
X/0x

V: OAlog — OAlog ®Ounr,+ qutie
kae
and

max,n max,n Xpke?

V: OAlOg —> OAIOg ®Oum‘,+ Qunr
kae

where QR = wt (Ql)f(g/;OK) is the inverse image of the logarithmic differentials on X.
Remark 6.1. On the complement of the cusps, where the log structure is trivial, the
sheaf OAjy, is the p-adic completion of the DP envelope of OAj,s with respect to the
kernel of ¥y; it is the sheaf denoted QA ;s in [25, Def. 2.9].

Take an affine open neighbourhood fjo CX ofa cusp, with local coordinate Y at
the given cusp. Define Uy C X to be the associated affinoid with induced log structure.
Take U = lim; U; with U; = (Spa(Ri,R;r),./\/li) to be a log affinoid perfectoid with initial
object Uy, and let (R,R™) be the p-adic completion of limi(Ri,Rj). By assumption, we
have a compatible system of p™-th roots Y,, of Y so that the system Y :=[Y,¥7,Y5,---] €
o’ (M"+)(U). As shown in [1, Lemma 3.25], we have OAjoq (U) = Acis (R, RT){(w—1)},
which is the p-adic completion of the DP algebra A.s(R,R")(w —1). The structure as
Ro-algebra is provided by sending Y — [Y]w. Here, A5 is the p-adic completion of the
DP envelope of Aj s with respect to the kernel of ¥. There is a similar description for

OAlE (U).

max,n

There are also the geometric de Rham sheaves OIB%IR log and OBgg,log defined in
[16, Def. 2.2.10], with a map Uqr,iog: C’)IB%(J{RJOg — @j{pkc and logarithmic connection
OBk 10 — OBk 1og Do+ QY (see [16, §2.2]). As OBy, is an Ox,,, @ Ajng-

algebra by construction, there is a natural map of sheaves QA — OIB%;FR log Whose
composite with J4r,1og is V.
Lemma 6.2. The map OAj,r — OIB%CTR_IOg extends to morphisms OAjog — (’)Alﬁ%mm —
(’)IB%;R’log, for every mn, such that the composite with 9qr 10g s the map Vmax,n and it is
compatible with connections.

Proof. First of all, we show how to get a map OA! ; — (’)IBB(‘IRJOg of OAj,¢-algebras.

It suffices to construct this for log affinoid perfectoid objects of X,k arising from toric
charts, as those form a basis of Ajk.. Take any such object that we denote by U. It
follows from [16, Lemma 2.3.12] that there exists a morphism of monoids 3: M>*+(U)* —
OBQ‘R,IOg(U) such that for every a € M>*+(U) we have a™t(a*) = [a”*(a)]B(a). Since
the map M”>*(U) -+ MT(U) is an isomorphism, any element in the kernel H of
(™8P (U) X (aing)8P(U): (MUHH)EP(T) x (MPH)8P(U) — (M1)8P(U) is of the form
(a*(b*)~1ab~!) with a,b € M°(U) such that af,b* € M+ (U). Any such element can
be sent to 3(a)B(b)~', and this defines a group homomorphism 3: H — M+ (U)*. As
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M(U) = H - (M"™F(U) x M»F(U)) C (MBF)ER(U) x (M) (U) — (MF)e(U),
such map extends to a map of monoids §: M'(U) — OIBXRJOg(U) which is compatible
with the map o™ (U) X aing(U): M5 (U) x M>F = OAjne(U) — OIB%IRJOg(U). Using
this we get a unique morphism OA{ ((U) — OIB%(TRleg(U) of OAine(U)-algebras which
coincides with 8 on M'(U).

In this way, we get the claimed morphism OA! ; — OIEB;RJOg whose composite with
VR, log 18 V. In particular, the kernel Z of ¥, is mapped to the kernel of Y4r iog. As p

is invertible in OIBdR log» it also extends to a morphism OAL | n] — OIB%:;R)]O%. and —

maps to the kernel of Jqr,10s. Passing to log affinoid perfectoid objects of A}k one shows

A
that such map extends to the p-adic completion OAE , of OA{[—] = OBy ,,,. The

max,n
compatibility with Ymax » is clear. The compatibility of the connections is also clear as
both are defined using the derivation d: O ¢ — Ql)c:,g/ o O
K

6.2. Crystalline comparison morphisms

We have a crystalline comparison morphism over Xpje:

Vv’'=0
og: (Ty(E))Y — (Hlyys(Fo/X) @0y Ohiog) (8)

where (T,(E))Y is the Z,-dual of T,(E) and V’ is the natural connection on
H! (EO/X ) ® OAjog determined by the connections on the factors. We also write

crys

(Hcrys(EO/X) ®(’)Jr _) for ( - (Hiryb(EO/)?)) ®O“X"r+ _)

to ease the notation.

We describe oy, for a log affinoid perfectoid open cover of X'. Consider an étale open
U = Spf(S) C X. Let W= Spa(R,R™) be a log affinoid perfectoid cover of Ug. » the adic
geometric generic fibre of U. We assume that the universal elliptic curve extends to a
(generalised) elliptic curve E over Spec(S) and that T,(E) is trivialized over W. Consider
the rings Acris(R™) (vesp. Ajog(R")) defined by taking the p-adic completion of the DP
envelope (resp. the log DP envelope) of S ® Aj,s(W) with respect to the kernel of the
map 1QI(W): S®@ A (W) — (’3*( W) = R*. It naturally maps to QAo (W). We define
o (W) with values in HY, (EO/S) ®s Alog(R+) as follows.

Away from the cusps: Assume first that E is an elliptic curve so that E[p"|(RT) =
E]p"|(R) for every n € N and T,(E E)(RY) = T,(E)(R). Equivalently, the log structure
is trivial and Ajog(RT) = Acris(R™). Then to give a € T,(EY)(R) = Tp(E)V(R+)(1) is
equivalent to give a map of p-divisible groups ~v,: Q,/Z, — EY[p>] over R™ and ~,
defines a map of covariant Dieudonné modules

Deris (7(1) : Dcris(@p/Zp) (Acris(R+)) — Deris (Ev [poo]) (Acris (R+))
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Note that Acris(R+) = Crlb(@p/Z )( cris R+)) and Dcris (Ev[poo]) (Acris<R+)) =
He s (Ea//S)v ®g Acris(RT), where Ey is the modulo p reduction of EV. Thus D.is(Va)
defines a map

Dcris(f)/a) : Acris(R+) — Hl (E(\)//S)v ®S Acris(RJr)

crys

and setting
alog(W) (a) = acris(W) ((L) = Dcris(’)/a)(l)
(see [24]83.5) and using Weil, respectively Poincaré dualities gives the map
nog(W) : T,(E)V(RT) — Hlys (Eo/S) ®s a: cris(RT).

crys
As Dgis(7e) is a map of crystals; therefore, it is compatible with connections. Since
VU):OﬁmleAaﬂR+Lﬂan(mﬂ%mUV»):&

Around the cusps: ~Assume next that U does not contain supersingular points. Then
the connected part E[p>]® of E[p™] is a p-divisble group of multiplicative type. Let
E[p™]®V be its Cartier dual; it is an étale p-divisible group over U. We write H,y(Eo/S)
for the direct sum of wp g = Dcris(E[p‘x’]O)(S)v and wE/S = Dcm(E[p 1% v)(S)V.

The connection H{, ((Eo/S) = Hi(Eo/S) ®s Qg /1(09g is the sum of the connections

induced from those on Deys (E[p™]°)(S)Y and Deis(E[p]*Y)(S)Y plus the S-linear
isomorphism wg/g = wE}S ®s Qg’/lggf( provided by the Kodaira—Spencer isomorphism,
which we denote KS. In other words, as a module De,is(E£[p*°]) is isomorphic to the direct
sum Deis(E[p™]°)(9)Y @ Deis(E[p™]%V)(S)Y = wg/s @‘*’E}& while the logarithmic
connection V Bpe] is given with respect to this decomposition by

VB 0 .
KS Vg

Lemma 6.3. If U does not contain supersingular points and E is an elliptic curve,
the two definitions of Hi,  (Eo/S) coincide. Moreover, a splitting of the Tate module
Ty (Elp™])(R) = T, (E[p=]°) (RY) & T, (E[p™]*V) (R) uniquely defines
(1) a_splitting E[p™®]p+ = E[p‘x’}%i EBFEV‘[p‘X’]Ol,%Jr of the connected-étale sequence for
E[poo]R+ ;
(2) a splzttmg Of Dcris (Ev [poo]) (Acris(RJr)) = Hiryg (EO/S)V Qs Acris(R+);
(3) a splitting of auog(W) as the direct sum of the crystalline comparison maps for the

p-divisible groups E[poo]%+ and E[poo]%i, compatibly with (1) ad (2).

Proof. Notice that the quotient map EY[p>°] — EV[p>]° onto the étale part induces a

map from H} (EO /S) to the Dieudonné module of EY[p>°)°*(S) which splits canonically
oo]O,\/ oo]() o

crys
via the unit root decomposition. As EY[p>]* = E[p and similarly EY[p
E[p=]etY = E[p®]° we conclude that HL(Eo/S) Splitb canonically, as a module, as

crys

the direct sum of wg /g = CriS(E[pOO] )(S)Y and wE/S = Dms(E[poo]O VI(S)Y, with
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connection given by the connection on each factor plus the Kodaira—Spencer isomorphism.
Thus, the two descriptions of H{, (Eo/S) coincide. Claims (2) and (3) follow from the
functoriality of Dis and of avog. O

Lemma 6.3 suggests how to define aioe(W) in the case that U does not contain
supersingular points but can possibly contain the cusps. Namely, we write 7}, (E [P (R)
as a split extension of T}, (E[poo]o*v)(RJr) by T, (E[poo]o) (R™) and aueg (W) as the direct
sum of the crystalline comparison maps for the p-divisible groups E [p>=]%+ and E [poo]?%l/ .
Then Lemma 6.3 implies that this definition agreed with the definition given away from
the cusps. Thus, aeg(W) are functorial in the pair (U,W), and hence, they glue to a

morphism ajog on Xpke. We also consider the composite map of sheaves

~ v'=0
1 1
0kt (T(E)) — (Hlyu(Bo/R) 80y OAREL)
induced by composing aiog with the map of sheaves OApq — OAfliX’n described at the
beginning of the section.

6.3. The sheaves Wy, 4r

We consider strict neighbourhoods & (p/ Ha? ) of the ordinary locus in X', where Ha is a
(any) local lift of the Hasse invariant. It follows from [23, Lemma 3.3.8 & Lemma 3.3.15]
that the neighbourhoods X(p/HapS) ®x C, and Xéom) of §4.2 for varying s, respectively m,
are fundamental systems of open neighbourhoods of the ordinary locus of Xc,. We then
take s and m large enough so that the conclusions of Proposition 4.5 hold for X(p/Haps)

and for Xéom). Namely, we require that a canonical subgroup C,, of order p™ exists, and
this defines a section

X (p/Ha"") = Xo(p",N) (p/Ha"") 9)
of the natural forgetful map Xy(p™,N) (p/Haps) — X(p/HapS). Write
v:Tg, (p/HapS) — X(p/Haps)

for the (Z/p"Z)*-Galois cover classifying trivializations of C}. ~
Let E be the universal elliptic curve over the normalization of X in Zg, (p/Hap )
Its invariant differentials wg and relative de Rham cohomology Hp define locally free

or -modules with the Hodge filtration wg C Hg. Write § for the invertible
g, (p/Har")

o* )—module defined by ¢ := wg(wk°d)~1. Note that §* ' = v*(Hdg), where Hdg

s

Zgn (p/Hap‘
is the ideal of O
X (p/Hal"S)
the blowup, it does not depend on the choice of the local lifts).

From the tautological section P of C)/, we get a canonical section ¢ of w4 /prwmed

n?’
generating it as OF -module. Recall that k: Zj; — B* is an r-analytic character
Zg, (p/Har")

generated by the local lifts Ha of the Hasse invariant (due to
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for r < mn, where B is a ring as in definition 3.6. We denote by Hﬁ the pushout in the
category of O -modules of the diagram
gory Tan (p/HaPS) g
Pwp — O0PHp
N

mod
LUE .

We then have the following commutative diagram of sheaves with exact rows:

1

0 — dwgp — Hp — wy, — 0
N } I

0 — wid — HY — fupl — 0
N N n

0 — wg — Hp — wp'! — 0.

It follows that Hg is a locally free O )
Zgn (p/ Ha? )
is a compatible inclusion of locally free sheaves with marked sections.

Using the formalism of the dual VBMS (see §3.3), we get sheaves of (’);r ( p pS)QAZJ
gn \ P/ Ha

modules wh C Wy qr. We have a residual action of the Galois group (Z/p"Z)* of
Jn: Ign(p/HapS) — X(p/Haps) on (wmedt) and (Hg,t) on which it acts by scalar
multiplication. We then get sheaves w% C Wy gr of (’)X( ®B-modules by taking

-module of rank two and (wi°d,¢) C (Hﬁ,t)

»/ Ha”s)
the subsheaves of jy, (W) C jn,«(Wiar) on which Z3 acts via k. We refer to [2, §3.2&
3.3] for details.

Proposition 6.4. The base change of w&[1/p] to X(p/Haups)(C coincides with the

restriction of the sheaf Wi [1/p] defined in §/./ over Xo(p”,N)ggl).
The sheaf Wy ar has a natural, increasing filtration (Fian;{,dR)n>O such that

wh[1/p] = FilyWy ar[1/p]. The Gauss-Manin connection V: Hg — Hp © Q'8 .
X (p/Har* ) /K
induces a connection

Vi: Wi arll/p] — Wi ar @8
k k,dR[ /P} k,dR X(p/HaPS>/K

satisfying Griffiths” transversality, that is, Vi (Fil, Wy ar[1/p]) C Fil,41 Wy ar[1/p]
So0log

x (p/Har® ) /K

The cohomology groups H° (X(p/HapS)Wk,dR) and HO(X(p/Haps),FiankydR) are
endowed with an action of the Uy-operator, and for every integer h they admit slope
< h decompositions. Furthermore, we have pVoU, =U,oVy, and for n >0 we have

H (X (p/Ha?"),Fil, Wy ar )" = HO (X (p/Ha?" ), Wy ar) "

Proof. The first statement follows from the fact that the two constructions coincide on
X (p/ Ha? ) ¢ - The other statements are proven in [2]. Namely, the filtration is constructed
P
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in Theorem 3.11, the connection in Theorem 3.18, the Uy,-operator is defined in §3.6 and
the statements about the slope decomposition follow from Correlation 3.26. O

log
p/Ha?” " x (p/Har" ) /K
view the connection Vi as a map Vi: Wy ar[p™'] = Wiioar[p™'].

Using the Kodaira—Spencer isomorphism w%|X( , we can and will

6.4. The de Rham comparison map

Fix an r-analytic weight k: Z? — B* as in definition 3.6. Let Bjj; and Bar = B [t™'] be
the classical period rings of Fontaine with the canonical topology so that, for example, the
quotient topology on B;‘R /tB(J{R = C,, is the p-adic topology on C,. They are endowed
with filtrations such that Fil'Bggr = tiB(]LR for every i € Z. We write Wy, qr,e for the
complex Wy, qr[p~!] = Wii2 ar[p~!], where the map is defined by V. and Fil,, Wy, 4R e
for the subcomplex Fil,,, W ar[p~'] = Filnt1 Wii24r[p~!]. In this section, we use the
map oyeg to get the following result.

Theorem 6.5. We have a Hecke equivariant, B®Bjy-linear, Gal(K/K)-equivariant
map

pre: BY (X o DR(TY ) 0)) BB — Hig (X (p/Ha?" ), W ar,o) " BFil ™ Bug,

where the completed tensor product is taken considering the canonical topology on BIR.
Moreover,

p° (h)
L (X (p/Ha? ), W ar o)™ 2 HO(X (p/Ha” ), W0 ar[1/p]) '
N (I e ey

Furthermore:

i If ug(ug—1)--- (ur, —h+1) is invertible in B[1/p] the map py is surjective;

ii. The map w§+2 — Wiio gr tnduces a surjective map, which is an isomorphism if (i)
above holds:

HO (X (p/Ha?" ) o5 2(1/p]) " — Hip (X (p/Ha?" ), Wy ar.o[1/p]) "

ili. For specializations, B[1/p] — Q,, so that the composite weight ko is classical, py is
compatible with the classical de Rham comparison map

H' (X e Sym™ (T, (E)Y)) © Bar = Hig (¥,Sym™ (Hp)) @k Bar
via the map induced by taking on the left-hand side the pro-Kummer étale
cohomology wvia the projection DR (Ty)[n] — DY (Ty)[n] — Sym* (T,(E)Y) and on
the right-hand side the restriction map to the open X(p/Haps)
Hig (X,Sym* (Hp)) — HO(X (p/Ha?"),who2[1/p]) /9ko+
x HO (X (p/Ha?" ) ,wi" [1/p]).

(Here, 9 is the classical theta operator on modular forms.)
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The proof of Theorem 6.5 will be given in Section §6.4.2.

We now consider the Galois cohomology for the group G := Gal(K/K). Recall that
H! (G,FilledR(l)) = K[log x], where y is the cyclotomic character. More precisely, we
see log y as a 1-cocycle log x: G — Z, C Fil ' Bar (1) = t(t "' By ) = Bz, and we denoted
[log x| its cohomology class. We then obtain from Theorem 6.5 the following corollary:

Corollary 6.6. We have a Hecke equivariant, B-linear map

h)

Exp}: H! (G,Hl(kae,mg(Tg)[n](l))( ) — Hig (X (p/Ha?" ), W ar.e) ",

called the big dual exponential map. It has the property that for every classical weight
specialization kg it is compatible with the classical dual exponential map as follows:

a) If kg > h—1, that is, ko is a noncritical weight for the slope h, then we have the
following commutative diagram with horizontal isomorphisms. Here, we denoted by expy,,
the Kato dual exponential map associated to weight kg modular forms.

(EXPZ,) s

(1 (G 1 (o BRI ™)), =" (i (X /1) Weana) ™)
I * I

HE (G (g o Sym (L)) 1)) T Ry (2 Sy’ (1)) .

b) If 0 < kg < h+1, that is, kg is critical with respect to h, we only have a commutative
diagram of the form

(mxri), :
(B (Gl (g e DRI 1) ™)) =" (Bl (X (/) W) ™)
i ) T
(G (X o Sy (T(E))(0) ) 5 Rl (2, Sym (1),

where the right vertical arrow is induced by restriction.

Proof. Granted Theorem 6.5, we have the following natural B-linear and G-equivariant
maps:

(h) (h) =
H' (X 1 DA(TY) (1) — HY Xz o DR(TY ) [0](1)) @B, 25
s h) ~_ .,_
L4 HY g (X (p/Ha?' ), Wi aro ) " &Fil ! Bar (1),

whose composition we denote by fr. Then we define Exp; as the map induced by
composing fi in Galois cohomology with the natural isomorphism:

H' (GH! (e DT ) In](1) ™)
— 1 (Gl (X (p/Ha” ), Wi ar,o) " EFI1 Bar (1)) =
= (Hip (X (p/Haps)awk,dR,o) " ®r H' (G, Fil ' Bar(1)) 2 Hig (X (p/Haps)vwk,dR,o) (")
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The vertical maps on the left-hand side of the diagrams in (a) and (b) are induced by
the quotient map DY(Ty)[n]|r, — Sym" (T,(E)Y. The fact that the induced map on
the slope < h-part of H! (X?,pke,,) is an isomorphism upon specialization in weight kg
follows identifying H* (Xkae,,) with the group cohomology H' (I'g(p™) NI'(N),-), arguing
as in [5, Prop. 3.18] and using Glenn Stevens’ classicality result of modular symbols; see
[5, Thm. 3.16 & Thm. 3.17]. The vertical maps on the right-hand side of the diagrams
in (a) and (b) are induced by the inclusion H° (X,wg’”) = FilOHéR(X,Symk0 (Hg)) C
HY (X,Sym"™ (Hg)). The induced map on slope < h-part in (a) is an isomorphism thanks
to Theorem 5.1. O

Remark 6.7. The main reason we twist by 1 the pro-Kummer étale sheaves D¢ (T} )[n]
and Sym* ((T,(E)V) in the corollary above is because the Galois representations attached
to overconvergent eigenforms, respectively classical ones are quotients of pro-Kumer étale
cohomology of such sheaves (with the twist, that is).

6.4.1. A refinement of the map o,,. Consider the étale cover j,: Zgy, (p/Haps) —
X (p/Haps) given by choosing a generator of CY. It is Galois with groups A, &
(Z/p"Z)*. Let D, := (T,(E)/p")/C\. Then we get an exact sequence 0 — D) —
T,(E)Y /p"T,(E)Y — C) — 0 with a marked section s of C}.

log
max,n+1

Proposition 6.8. The restriction to Zgy, (p/HapS) of the map «a

1
submodule Hﬁ Qo+ OA£§X7H+1 |Ign (p/Haps)

factors via the

. The induced map

Zgn | p/HaP®

lo lo
Bttt (Ty(E))Y @2, OALE il (/110"
— HE @0+ OAL

g
) axtilz, (o1
Zgn \ p/HaP

sends the tautological section P of CY to the marked section t of Hﬁ/p’“H?éé and sends D,/
r . . lo
to 0 modulo p”. In particular, jn (B

1) 5 equivariant for the action of Ay,.

Proof. Let J be the kernel of the map OA;,z — (5}})1‘6. By construction of Apax nt1, the
ideal J maps to %OAflime C pnOAls | via the map OAjp, —> OALE

max,n-+ max,n+1°
The map aiog modulo J coincides with the map dlog of equation (2) and thanks
to Proposition 4.5, its image coincides with wi°d @ O" N C Hﬁ ®0" A C
Zgn (p/Ha’" ) Zgn (p/Hap‘ )
HpoO" . Also, Ha? -Hp, C H”.. As p/HaP is a section of OF
L  CHEAsp M i section of O

that pHg C HE"E We deduce that the image of a!% . is contained in

max,n+

, we conclude

HY, @+ OA®

log
ax,n+1|zgn (;D/Haps) +JHg ®O+ OAma

Zgn |\ p/HaP®

Zgn | p/HaP®

Zgn (p/HaP® x,n+1 |Ign (P/Haps) “

# log
c HE (8(9Jr OAmax,n—i—l Tgn (p/Haps)

# 1
CHE ®p+ OApaxnt1 ‘Ig” )

log

max,n+1 T Hap® C
zon (oy110° gn(p/ a )

Zgn |\ p/HaP®
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as claimed. We also know that oo maps the tautological section P of C)/ to the marked
section t of Hﬁ/p’“H*"I;ﬂé modulo p"OAj,, + 7 and sends D, to 0 modulo p"OAjoe +J. As
J Cp"OAmax,nt1, the conclusion follows.

log

The equivariance of j, .(5 ) follows from the fact that after composing with

max,n+1 :
the inclusion Hﬁ C jr(Hg), it coincides with ozlrﬁixm 1 restricted to Zg,(p/Ha? ) and
alo8 is defined over X (p/Ha” ). O

max,n+1

Corollary 6.9. Applying the formalism of VBMS to ﬁlog we get map

max,n+1’

6: W (1B D), (s

V=0
— W k. dR @ + OAIOg |
’ o max,nt1llzg, (p/ Haps)

Zgn | p/HaP®

of sheaves over Lg, (p/Haps)pke such that j, «(6) is Ap-equivariant.
Composing with the map defined in Corollary 3.9, we get a map of sheaves on

X (p/HaPS ) pke d

V=0
Ce: DUTY )] — (Wk,dR®o+ OAlr?lix,n+1 [P_1]>

X p/HapS

that is functorial with respect to isogenies E — E' inducing an isomorphism on canonical
subgroups.

Proof. We define § for a log affinoid perfectoid open W of Zg, (p/ Ha? S)pkc over an open
affinoid U = Spa(R,R™) of Zg, (p/Haps). We assume that T,,(E)(W) is trivial and that
Hg(U) is a free of rank two R*-module. It is easy to see that we have isomorphisms

VP (T, (E))Y, D) t) &z, OALE (W)

max,n+1
2= VP ((T,(B) ®z, OARE, 111 (W)Y, Dy @7 OARE

max,n+1

(W).t)
and that
Vo (HE, 1)@+ OAE (W) 2 Vo (HER R OAE | (W),1).

max,n+1 max,n+1

log
max,n+1

Thanks to Proposition 6.8, the map induces a map

Vo (Hy®p+ OARE 1 (W),t)

max,n+1

= VP ((T,(E) @7, OALE_ (W)Y, DY @7 OAXE . (W),t).

max,n+1 max,n+1

In conclusion, we get a map

Vo (Ht) @ p+ OAE

max,n+1

(W) — VP ((T,(E))Y, Dy t) &z, OAE

max,n+1

(W).

This induces the claimed map 6(W). As jn,*(ﬁrlggx’n 4+1) I8 Ap-equivariant due to
Proposition 6.8, also § is.
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The formalism of VBMS implies that these maps are functorial with respect to isogenies
and base change. The connection on Wy qg is defined in [2] using Grothendieck’s
approach: Passing to the base-change over the first infinitesimal neighbourhood of the
diagonal of X (p/ Ha? 5), it is realized as an isomorphism between the pullback via the two

projections to X (p/ Ha? ) using the functoriality of the VBMS formalism. The fact that

Brlgix,n 41 has image annihilated by V implies that the image of §(W) is also annihilated
by the connection. O

Recall that H' (X, .D2(Ty)[n]) admits slope decompositions for the Uj,-operator
thanks to Proposition 4.13.

Lemma 6.10. For every h, there exists m such the map

H (X o DRI )n) ™ — HY (X (p/Ha?" ) o Wi an o8 OARE oalp ™)),

X (p/HaP®)

induced by (i, factors via

H! (X(p/Haps )?,pke’Fﬂka,dR,o ®(9+ OAflix,n+1 [p_l]) :

X (p/HaP?®)

Proof. Consider the complex Wy, 4r,e/Fil;, Wi ar.e. We claim that for ¢ =0 and 1

H’ (X (p/Haps)?,pke’W’fvdR»'/Fﬂkaade'®O;(p/Haps)OAflix,nH [pfl])
admits a slope h-decomposition and the < h-part is zero, for m > 0. The claim of the
lemma then follows upon taking long exact sequences in cohomology associated to the
short exact sequences 0 — Fil,, Wy qr,e = Wi dr,e = Wi dr,e/Filn Wi ar,e — 0 and
using that the slope h-decomposition is an exact operation.
It follows from [2, Lemma 3.33] that the operator U, on

H'(x (p/HapS) Wi dr,e/Filn Wi dr, e @+ OAféx,nJrl)

K,pke X (p/HaP®)

is integrally defined and can be written as ph“UZ’) for some operator U,, for m > 0. The
proof then follows from [6], Lemma 5.8 and the subsequent claim: One shows that for
every polynomial P of slope < h, P(U,) is invertible on this space after inverting p. [

6.4.2. Proof of Theorem 6.5. Consider the map Fil,,Wg dr,e ®p+

Y(p/HaP?)

OAmaxnt1[P™Y] = Fil, Wi dr,e ® o+ Fil’OBgg 10; Obtained from the mor-
Y(p/HaP?)

phism (’)Aflix,n 41— OBy log Of Lemma 6.2. We recall that the connection V' :

Wk,dR®OBdR — Wk+2,dR®OBdR has the form V' = Vk®1 + 1®vdR; where Vk- is
the connection on Wy, gr and V4gr the one on OBgr. Moreover, both V and Vgg satisfy
the Griffith-transversality property with respect to the respective filtrations of Wy, qr
and respectively OBggr, where let us recall that the first sheaf has an increasing filtration
File W}, ar while the second has a decreasing filtration Fil*OBgg.
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For every s > 1, we consider the composition, which we still denote V':

Fil"OB4R 1og
Fil* OByR 1og

Fil'OBaR 105 v’
Fil,, W — % YL Fil W
Uy W dr @ FIP OBan 1og Upm+1 Wk42,dR &
Fil"'OB Fil ! OBg4r 10
% — Filp 11 Wipodr ® %,
Fil OBdR Fil OBdR,log

+Fil,, Wi 12 ar®

and we have:

Lemma 6.11. For every u > 1, the natural map of complezes

. = Fil° v .
HO (X(#)FFﬂmwkde) ®§ill’“g(:; - HO (X (#)f,Fﬂm-&-ka-i-Q,dR)
. Fil"'Bgr
Fil“ ! Byr

+
. il°o o v .
H (X(#)faFﬂmwk,dR(@ %ﬁiil}i) — H° (X(#)fa Fil,n 1 Wiio,dr
FﬂilOBdRJog )
Fil“ ' OByR 10g 7’

where the cohomology is taken with respect to the pro-Kummer étale topology, is an
isomorphism.

In the above diagram, Bgr denotes Fontaine’s classical period ring. Furthermore,
this complex represents the cohomology RF(X(p/HapS)f’pke,FilmW;@dR,. R+

X (p/HaP®)
Fil°OBagr )
Fil“OBggR /

Proof. Recall that Fil,, Wy, qr[1/p] is a locally free (’)X( -module for every m. We

p/Ha?®
prove the result restricting to an affinoid cover {U; };cr, where )Film and Fil,, 1 are free.
Since X(p/HapS) is affinoid, the Chech complex for Fil,,, Wy, qr[1/p] w.r.t. the U;’s is
exact. As Fil’ By /Fil“Bgg is an iterated extension of C,-vector spaces for every h, the
Chech complex remains exact also after taking ®Fil" Bqg /Fil¥Bgr. From the result for
the U;’s, we then deduce the lemma.

We are left to show the claim for each U; = Spa(R;, R;"). Then [16, Lemma 3.3.2] implies
that the group H7 (Ui’ﬁpkc,Fil”OBdR’log/FiI"+“(’)BdR)log) =0 for j > 1 and coincides with
Fil” (Rj@BdR) /Fil“*” (Rj@BdR) for i =0, for n =0, — 1. As the latter coincides with
R;L@(Fﬂ”BdR/Filu+"BdR) by [16, Def. 3.1.1], the conclusion follows. O

We deduce from Lemma 6.10 and Lemma 6.11 that for every positive integer u we have
a natural map

(n) ~ Fil® Bgr
Fil“Bgag
H® (X (p/Ha”" ), Fily 11 Wi 2.ar) & (Fil ' Bar/Fil*~' Bag)
Vi (HO(X (p/Ha”"),Fil,y Wy ar) ) ®(Fil’ Bar /Fil“ Bar)

HY (X pieer DR(TY ) 1)
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Recall from Proposition 6.4 that H° (X(p/Haps),Filka,dR[l/p]) admits a slope
< h—1 decomposition and H° (X(p/HapS)7Film+1Wk+2,dR[1/p]) admits a slope
< h decomposition and the slope < h — 1 part, resp. < h part, coincides with
HO (% (p/Ha”" ), Wi an[1/p]) ", resp. HO (X (p/Ha?"), Wi 2,an[1/p]) "

The same then holds after @FiloBdR/FiI“BdR7 respectively @Filfl,BdR/FiluledR,
and for their quotient via V (by the five lemma for slope decompositions cf. [6, Thm.
5.7]). As Fil’ By = BJy, Fil ' Bar =t ' Bjg and Fil"*“Byg = t"**BJ, for n € {~1,0},
we get maps

(=t Big

() 5 B;rR 1 P W
— Hag (¥ (p/Ha” ), Wian,o[1/p]) 8
dR

H (A 0 DRI n])
dR

with
HO (X (p/Haps),Wk+2,dR[1/p])(h)
Vi (HO (X(p/HaP“’),Wk,dR[l/p])(h_l))

Hig (X (p/Ha?"), Wi ar o[1/p]) " 2

by [2, Lemma 3.33 & Eq. (6)]. As they are obtained from maps of sheaves on Xk, the
equivariance for the Gal(K /K)-action is clear. The compatibility with Hecke operators
follows from the fact that (i is compatible with the map induced by isogenies preserving
the canonical subgroup that are used to define the Hecke operators Ty, for ¢ JpN, and the
Hecke operator Up. It is compatible with weight specializations as the map (j, is. Taking
the inverse limits for u — oo, we get the statement of Theorem 6.5, except for (i) and (ii).
Claim (ii) follows from [2, section §3.9]. Using (ii), we get a map

+ “1p+
0 (ns B . (W=t B
H' (X e DR(TY) [0]) o Jgi — HO(X (p/Ha" ),wh) ®ﬁ,
dR dR
which we’d like to prove is surjective under the hypothesis of i). By devissage it suffices
to prove surjectivity for u=1. As t 1B, /Biz = C,(—1), the surjectivity follows from
Theorem 5.1.

7. Appendix: Integral slope decomposition

Let us start by formulating the following general property.

We let R be a p-torsion-free Zy-algebra and 7" an R-module equipped with an R-linear
operator v: T — T and let « € R be an element such that there is » € N and v € R with
ay =p". We denote by p: T — T[1/p] :=T ®g R[1/p] and denote by T*°*s := Ker(p),
T :=T/T*™ =Tm(p) and remark that v — « respects the submodule 7% and therefore
induces an R-linear map on T,

Definition 7.1. We say that the triple (T,v,«) has property (x) if

1) There is w € N such that p® (7%°)"~" =0.

2) There is a n € N, which depends only on «, such that for every = € (th)v:a there
is & € TV=° such that (%)" = p"z, where we denoted () the image of 7 in T*.
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The main result of this appendix is the following. Let B denote a ring, and let k: Z, —
B* be a B-valued weight as in Definition 3.6, which is s-analytic. Let XL be the adic
subspace of the adic modular curve X := Xy(p™,N) for n > u as in Proposition 4.5.
Let Dy (T )[n] denote the pro-Kummer étale sheaf of weight & distributions, for n > s,

over X and @Z’E}?) [n] := ]I])k(Ta/)[n]@O?X(u)) , where we have denoted OZFX(“)) the
’ oo )pke oo " )pke

structure sheaf of the pro-Kummer étale site of Xéou). We write R := O;(u)(Xég))@ZpB
and T :=H! ((/'\,’o(ff))pke,@()’ (m) [n]). On T[1/p], we have a B[1/p]-linear operator U, which

has finite slope decomposkig:)ns by Proposition 4.15.

Let Q(X) € (B®0Oc,)[X] be the polynomial with the property that 7'[1/p]®), for some
b€ N is the subset of elements z € T[1/p] such that Q(U,)xz = 0. Such a polynomial
exists as T[1/p]® = H° (Xé;‘),wlgﬂ)[l/p](b) by Proposition 4.15, and on H° (Xég),w%“)
the U, operator is compact and has a Fredholm determinant. Then « := —Q(0) €
p*(B&Oc,)* with a < b-deg(Q(X)). We write Q(X) = P(X) —a, with P(X) = XR(X)
and P(X),R(X) € (B®Oc,)[X]. We denote v := P(U,) and remark that = € T[1/p]® if
and only if v(z) = ax. We have

Theorem 7.2. After localizing B to a new p-adically complete ring which we denote
by B’ and replacing R by R := O;(u) (XS))@)ZPB’ and T by T' :=T ®@gr R’ the triple
(T, v®1p,a) above satisfies property (x) of definition 7.1.

Before we start on the proof of this theorem, we need a few lemmas. We remind the

reader that the sheaf ZDZ”S)ZL) [n] has a decreasing filtration (Fil”) by subsheaves with
the property (see Proposition 4.15): For all v >0 and i > 0 we have

Up (B (28 s Gi0°) ) © 9 HHE (XL s ).

Moreover, we have Fil”/Fil'T! = w§_2”_2®(9
notations we have:

o (¥ +1) by equation (5). With these

Lemma 7.3. For every v € N large enough and i > 0 the triple (TZ" =M ((z’\,’o(g))pke,Si[V),
v= P(Up),a) satisfies property (x) of definition 7.1.

Proof. We have the following commutative diagram with exact rows:

O s (j,iy)tors 7_,7;” . (Tiu),tf N 0
lv—a lv—a lv—a
0 — ()™ — T — ()" — o

We remark that the above property about the behavior of U, with respect to the
cohomology of the filtration and the fact that v is the composition of U,, with an
endomorphism of 7} which commutes with Up,, implies that there is vy such that for all
v >y we have (v—a-Idry) = aUj, where U : T — T} is an isomorphism. Therefore,

(T/)"™ =TV[a] = (Ti”)tmrs [] and (Ti”)tf [«] = 0. Therefore, 1) of property (x) follows:
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a((T;’)tors) o a(T?[a]) = 0. For property 2), let = € ((Ti”)tf) " = 0. For every
ye (T¥)" " =T7[a], we have ay =0 = 2. O
Lemma 7.4. For every v € N, the triple (TV = Hl((Xcgg))pke,Qz/Si[V),u = P(Up),a>
satisfies the property (x) of Definition 7.1.

Proof. In order to prove the lemma, we’ll use induction on v > 0. For v =0, we have
Dy /50 = wE@(’);&?); therefore, we have:

1) pl/(P—l)(TO)tors =pl/(P-1y! ((Xég))pke,@;(u) )torSQ%HO(Xég),w]’fJ) =0 as computed by
Faltings; see [22, Lemma 5.5 & 5.6] when the log structure is trivial and their analogues
[15, Lemma 6.1.7 & 6.1.11] in the general case;

and

2) If v € (Tp)™ is such that (v—a)x =0, let y € Ty be any lift of 7. Then (v—a)(y) € T¢e™;
therefore, z := p/(P=Vy € T, satisfies: (v—a)(z) =0 and 2f = p/ P~z where we wrote
2% for the image of z in Tgf. Let us observe that we proved more then 1) of property
(%); namely, we showed that there is > 0 such that p"7{°™ = 0. We’ll prove the same
property, call it (xx) for all v > 0.

Suppose now that (xx) is true for T,, v > 1, and let us prove it for T, 1. We have an

exact sequence of pro-Kumer étale sheaves on the site V := (Xé:f ))pke:
0 — Fl/FMH — D0 /F T — DY/FI — 0,
therefore a long exact cohomology sequence:
A=HO(V,D,/Fil") 5 B:=H! (3l /3l ) 5
C:=H'(V,D/Fi" ) S D= H' (V,D/3il") — 0.

By the induction hypothesis, there is r such that p" A" = p"Btrs = pDWrs — (). We
have the commutative diagram with the middle row exact:

Ators B Btors v Ctors J Dtors

4 1 1 {
m A 5 B 5 ¢ 5 D —o0
4 4 4 {

Att i> Bt O, ot O, ptf

tors
Let us suppose that there is s > 0 such that p® (Btf/ﬁ(fltfo = 0. Then we claim

that p?"tsCtrs = 0. To see it, let ¢ € C*™ then p"2z = v(y), y € B. We denote by [y] the
image of y in B /B(A"). As pNa =0 for some N >0 we have that p™V[y] = 0, therefore

tors
[y] € (Btf/ﬁ(Atf) and so by the above assumption p*[y] = 0. Let z € A be such that

B(z") = psyf in B, It follows that B(z) — p°y € B which implies that p"+5y = p"3(2).
Therefore, p*+272 = 0.
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Let us now prove the remaining claim, namely that there is s > 0 such that

tors
p° (Btf/ ,B(Atf) = 0. For this, let us recall [6] that we have a commutative diagram
with exact rows

HO(Xéé‘),wg*Q”) i) HO(XS),WE*QV) — Coker(B) — 0
Vi 1 Lu
A 2, B — BY/BAY) — 0,

where i and j are injective with cokernels killed by p*/®—1 and p'/®=1 | respectively.
Moreover, it follows using the explicit basis of the filtration described in Proposition 4.14
and [6, Prop. 5.2] that § = (IT;, _o(ux —n)) B’, with 3’ an isomorphism. As p'/®=1 kills
Coker(3), it also kills Coker(u). Therefore, it is enough to prove the claim for Coker ().
We have two possibilities. Either uj = n for some 0 <n < v and then B /8(A) = B!
so that the claim is obvious. Else [, _(ux —n) € (B[1/p])* due to our assumption on B
in Definition 3.6, that is, there exists s € N and v € B such that [])_,(up —n)-v =p*.
Then § is injective with the cokernel annihilated by p°® and the claim is proven also in
this case.

So we have proved that the property (*x) holds for triples (7,,v = P(Up),a) for all
v > 0, which implies 1) of property ().

Let us prove 2) of property (x) for C, supposing that it holds for D. We recall our
diagram (1) and let = € C*f be such that (v—a)(x) =0. Then §(x) € D is such that
(v—a)(d(x)) = 0; therefore, by the induction hypothesis there is m >0 and y € DV=*
such that y* = p™§(z). Let z € C be such that §(z) =y and let 7 € C be such that #'f = .
Then there is ¢ € B such that y(p™q) — z+p™x € C*™ and so p"z — p™+"y(q) = p™+"i.
Let t = p™z —p™T"y(q) € C. It has the property that (v—a)(t) = (v —a)p™"(Z) and
so (v—a)(t)" =0, that is, (v—a)(t) € C*™. Therefore, (v—a)(p"t) =0 and (p"t)* =
pm,+2rx- O

Proof. (of Theorem 7.2). Let v € N be large enough so that Lemma 7.3 is satisfied for
the triple (H1 ((Xég))pke,gi[”),u = P(Up),a), and consider the exact sequence of sheaves

on the pro-Kummer étale site al ))pke:
0— Fil" — Dy, — Dy /Fil" — 0,

where we use the notations introduced before Lemma 7.4. It induces the long exact
sequence of pro-Kummer étale cohomology groups which, in order to simplify notations,
we write H®(F) instead of H® ((Xég))pke,F), where F' is a sheaf on (Xo(ff))pke.

B

A=H'(D, /3"y 5 B=H'(5") > H' (D)
&

C—
g £ = H2(3ilY).

S D =HYD,/Fil")

We'd like to show the v-module C satisfies the property (x).
1) Let € C*=% such that z is a p-power torsion element. Then §(x) € DV=% is a p-power
torsion element, and let s = s(D) € N be such that p®d(z) = 0. Then let y € B be such
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that v(y) = p*=z. We also have y((v—a)y) = (v—a)y(y) = (v—a)(p*z) = 0. Therefore,
let z € A be such that 5(z) = (v—a)(y).

At this point, we recall the following result from [21], Proposition 12, and [13],
Propositions A.4.2 and A.4.3: As A[l/p| is a finitely generated, free R[1/p]-module and
U, is completely continuous on it, after localizing B to B’ and replacing R by R’, there
are d = d(A,a),e = e(A4,a) €N and e, = p?P,(U,), with p?P,(T) a series with integral
coefficients such that for every z € A we denote by 2z, := e,z € Aand by 2+ :=plz—z, € A.
Then (v— a)(z4) = 0. Moreover there is a w, € A with (v—a)(wg) = p°z2.

Let now e,d be as above, then p?*¢z = p°z, + (v — a)(w, ). Therefore, we have:

(v—a)(p™y — B(wa)) = p°B(2a), and so we have (v—a)?(p*™y — B(wa)) = 0.

If we set m := p?*ey — B(w, ), we have (v—a)?(m) =0 and y(m) = pdTey(y) = pitetsn.
As (v—a)?m =0, we have a?m = 0; therefore, a?p?*¢*sz = 0. This concludes 1) of
property (%) for C.

2) Let x € (C*)""". Then there is 7 := 7(D,a) and y € D= such that y'f = p"(x),
where we denoted y'f the image of y in D'. The image €(y) € £~ is annihilated by
and therefore, there is z € C such that 6(z) = ay. There is w € D such that (v—a)(z) =
~v(w) and let ¢ € B be such that aw = (v — «)(q). Therefore, (v—a)(az —7(q)) =0. Let
7= az—7(q) €C'=%. Then §(7) = §(az) = a®y. The image oy of a2y in (D[1/p])*=“ is

V=

9 V=
a?p"d(z). But § induces an isomorphism (C[1/p])" " = (D[1/p]) (see [6]). Therefore,
the image (%) of 7 in (C[l/p])vza is a?p”x which proves the claim. O

References

[1] F. ANDREATTA AND A. IOVITA, ‘Semistable sheaves and comparison isomorphisms in the
semistable case’, Rend. Semin. Mat. Univ. Padova 128 (2012), 131-285.

[2] F. ANDREATTA AND A. IoviTa, ‘Triple product p-adic L-functions associated to a triple
of finite slope p-adic families of modular forms’, Duke Math. J. 170 (2021), 1989-2083.

[3] F. ANDREATTA, A. IoviTA AND V. PILLONI, ‘p-adic families of Siegel modular cuspforms’,
Ann. of Math. 181 (2015), 623-697.

[4] F. ANDREATTA, A. IoviTA AND V. PILLONI, ‘p-adic variation of automorphic sheaves’,
in Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018,
Invited Lectures, vol. II, (World Sci. Publ., Hackensack, NJ, 2018), 249-276.

[5] F. ANDREATTA, A. IOoVvITA AND G. STEVENS, ‘Overconvergent Eichler—Shimura isomor-
phisms’, Journal of the Institute of Mathematics of Jussieu 14 (2015), 221-274.

[6] F. ANDREATTA, A. IoviTA AND G. STEVENS, ‘A 0.5 overconvergent Eichler—Shimura
isomorphism’, Annales mathématiques du Québec 40 (2016), 121-148.

[7] D. BARRERA AND S. GAO, ‘Overconvergent Eichler-Shimura isomorphisms for quater-
nionic modular forms over Q’, International Journal of Number Theory 13 (2017), 2487—
2504.

[8] B. BHATT, M. MORROW AND P. SCHOLZE, ‘Integral p-adic Hodge theory’, Preprint, 2019,
arXiv:1602.03148v3.

[9] B. BHATT AND P. SCHOLZE, ‘Prisms and prismatic cohomology’, Preprint, 2019.

[10] A. CARAIANI AND P. SCHOLZE, ‘On the generic part of the cohomology of compact unitary
Shimura varieties’, Ann. of Math. 186 (2017), 649-766.

https://doi.org/10.1017/51474748022000548 Published online by Cambridge University Press


https://arxiv.org/abs/1602.03148v3
https://doi.org/10.1017/S1474748022000548

Overconvergent de Rham Eichler—Shimura morphisms 703

[11] K. Cesnavicius AND T. KOSHIKAWA, ‘The A;,f-cohomology in the semi-stable case’,
Comp. Math. 155, (11) (2019), 2039-2128.

[12] P. CHOJECKI, D. HANSEN AND C. JOHANSSON, ‘Overconvergent modular forms and
perfectoid Shimura curves’, Documenta Math. 22 (2017), 191-262.

[13] R. COLEMAN, ‘p-adic Banach spaces and families of modular forms’, Invent. Math. 127
(1997), 417-479.

[14] P. CoLMmEZ, G. DOsPINESCU AND W. NizioL, ‘Intregral étale cohomology of Drinfeld
symmetric spaces’, Preprint, 2019.

[15] H. D1ao, K.-W. LaN, R. Liu AND X. ZHU, ‘Logarithmic adic spaces: some foundational
results’, Preprint, 2019, arXiv:1912.09836.

[16] H. D1ao, K.-W. LaN, R. Liu AND X. ZHU, ‘ Logarithmic Riemann—Hilbert correspondences
for rigid varieties’, Preprint, 2019, arXiv:1803.05786. To appear in J. Amer. Math. Soc.

[17] R. HUBER, ‘Etale cohomology of rigid analytic varieties and adic spaces’, Aspects of
Mathematics 30 (2014).

[18] L. ILLUSIE, ‘An overview of the work of K. Fujiwara, K. Kato and C. Nakamura on
logarithmic étale cohomology’, Astérisque 279 (2002), 271-322.

[19] U. JANNSEN, ‘Continuous étale cohomology’, Math. Ann. 280 (1988), 207—245.

[20] V. PiLLonNI AND B. STROH, ‘Cohomologie cohérente et représentations Galoisiennes’,
Annales mathématiques du Québec 40 (2016), 167-202.

[21] J.-P. SERRE, ‘Endomorphismes complétement continus des espaces de Banach p-adiques’,
Inst. Hautes Etudes Sci. Publ. Math. 12 (1962), 69-85.

[22] P. ScHOLZE, ‘p-adic Hodge thery for rigid analytic varieties’, Forum Math. II1 (2013), 77.

[23] P. SCHOLZE, ‘On torsion in the cohomology of locally symmetric varieties’, Ann. of Math.
182 (2015), 945-1066.

[24] P. ScHOLZE AND J. WEINSTEIN, ‘Moduli of p-divisible groups’, Camb. J. Math. 1 (2013),
145-237.

[25] F. TAN AND J. TONG ‘Crystalline comparison isomorphisms in p-adic Hodge theory: The
absolutely unramified case’, Algebra & Number Theory 13 (2019), 1509-1581.

https://doi.org/10.1017/51474748022000548 Published online by Cambridge University Press


https://arxiv.org/abs/1912.09836
https://arxiv.org/abs/1803.05786
https://doi.org/10.1017/S1474748022000548

	1 Introduction
	2 Preliminaries
	2.1 Pro-Kummer étale site
	2.2 Sheaves on the pro-Kummer étale site
	2.3 Log affinoid perfectoid opens
	2.4 Comparison results

	3 VBMS and dual VBMS
	3.1 VBMS, that is, vector bundles with marked sections
	3.2 Dual VBMS
	3.3 The sheaves Wk and WDk
	3.3.1 Local descriptions of the sheaves Wk and WkD

	3.4 The duality
	3.4.1 Local descriptions of the duality between Wk and WkD

	3.5 An example: locally analytic functions and distributions
	3.5.1 An alternative description
	3.5.2 The Up operator


	4 The modular curve setting
	4.1 On the pro-Kummer étale topology of modular curves
	4.2 Standard opens
	4.3 On the Hodge–Tate period map
	4.4 The sheaf ωEk
	4.5 The Up-correspondence
	4.6 Étale sheaves
	4.7 A comparison result on X0(pn,N)∞(m)
	4.8 A comparison result on X0(pn,N)0(m)

	5 The Hodge–Tate Eichler–Shimura map revisited
	6 The BdR-comparison
	6.1 Period sheaves
	6.2 Crystalline comparison morphisms
	6.3 The sheaves Wk, dR
	6.4 The de Rham comparison map
	6.4.1 A refinement of the map αlog
	6.4.2 Proof of Theorem 6.5


	7 Appendix: Integral slope decomposition



