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Classification of homomorphisms from
C(Q) to a C*-algebra *

Qingnan An, George A. Elliott and Zhichao Liu

Abstract. Let Qbe a compact subset of C and let A be a unital simple, separable C*-algebra with stable
rank one, real rank zero, and strict comparison. We show that, given a Cu-morphism @ : Cu(C(Q2)) —
Cu(A) with a((1Lg)) < (1), there exists a homomorphism ¢ : C(Q) — A such that Cu(¢) = a.
Moreover, if Ki(A) is trivial, then ¢ is unique up to approximate unitary equivalence. We also give
classification results for maps from a large class of C*-algebras to A in terms of the Cuntz semigroup.

1 Introduction

The Cuntz semigroup is an invariant for C*-algebras that is intimately related to Elliott’s
classification program for simple, separable, nuclear C*-algebras. Its original construc-
tion W (A) resembles the semigroup V (A) of Murray-von Neumann equivalence classes
of projections, and is a positively ordered, abelian semigroup whose elements are equiv-
alence classes of positive elements in matrix algebras over A [13]. This was modified
in [12] by constructing an ordered semigroup, termed Cu(A), in terms of countably
generated Hilbert modules. Moreover, a Cuntz category was described to which the
Cuntz semigroup belongs and as a functor into which it preserves inductive limits. The
Cuntz semigroup has been successfully used to classify certain classes of C*-algebras,
as well as maps between them. In 2008, Ciuperca and Elliott classified homomor-
phisms from Cy((0, 1]) into an arbitrary C*-algebra of stable rank one in terms of the
Cuntz semigroup [10]. Later, the codomain was extended to a larger class in [28]. These
results can also be regarded as a classification of positive elements. Subsequently, Robert
greatly expanded the domain Cy((0, 1]) to the class of direct limits of one-dimensional
NCCW-complexes with trivial K;-group [26]. More specifically, he employed a series of
techniques to reduce complicated domains to C[0, 1] and applied the classification result
in [10]. For the more general domain C(Q), it is still expected that the Cuntz semigroup
can be used in some sense. Further research and investigation are needed to explore the
applicability and potential of the Cuntz semigroup in this broader field.

In this paper, let Q be a compact subset of C, our primary focus is on the classifi-
cation of homomorphisms from the algebra of continuous functions C(€2) to a unital
simple, separable C*-algebra A with stable rank one, real rank zero, and strict com-
parison. Using the properties of the Cuntz semigroup, we can lift the Cu-morphism
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to a homomorphism approximately. Based on spectral information, we associate these
homomorphisms to normal elements and use a result of Hu and Lin. Then, we establish
a uniqueness result and use this to get a homomorphism exactly. Finally, we classify the
homomorphisms from C(2) to A in terms of the Cuntz semigroup. Additionally, we
employ the augmented Cuntz semigroup introduced by Robert to classify more general
non-unital cases.

2 Preliminaries

Definition 2.1 Let A be a unital C*-algebra. Recall that A is said to have stable rank
one, written sr(A) = 1, if the set of invertible elements of A is dense, and to have real
rank zero, written rr(A) = 0, if the set of invertible self-adjoint elements is dense in
the set Ay, of self-adjoint elements of A. If A is not unital, let us denote the minimal
unitization of A by A~. A non-unital C*-algebra is said to have stable rank one (or real
rank zero) if its unitization has stable rank one (or real rank zero).

Let p and g be two projections in A. Recall that p is Murray—von Neumann equivalent
to g in A, written p ~ g, if there exists x € A such that x*x = p and xx* = g. We will
write p < q if p is equivalent to some subprojection of g. The class of a projection p in
Ko (A) (see [30] for the definition of Kp) will be denoted by [p].

Let us say that A has cancellation of projections if, for any projections p, g, e, f € A
with pe = 0,qf = 0,e ~ f,and p+ e ~ g + f, necessarily p ~ q. Then A has
cancellation of projections if and only if p ~ g implies that there exists a unitary u € A~
such that u*pu = g. It is well known that every unital C*-algebra of stable rank one has
cancellation of projections.

Definition 2.2 ([3, 4]) A (bounded) quasitrace on a C*-algebra A is a function7: A —» C
such that:

{0 < 7 (x*x) = 7 (xx*) for all x in A;

(ii) 7 is linear on commutative *-subalgebras of A;

(iil) If x = a + ib with q, b self-adjoint, then 7(x) = 7(a) + it ().

If T extends to a quasitrace on M;(A), then 7 is called a 2-quasitrace. A linear
quasitrace is a trace.

If A is unital and 7(1) = 1, then we say 7 is normalized. Denote by QT',(A) the space
of all the normalized 2-quasitraces on A and by T (A) the space of all the tracial states
on A. Note that every 2-quasitrace in QT,(A) is lower semicontinuous (see [3, Remark
2.27(V)]).

Remark 2.1 It is an open question whether every 2-quasitrace on a C*-algebra is a
trace (asked by Kaplansky). A theorem of Haagerup [20] says that if A is exact and unital
then every bounded 2-quasitrace on A is a trace. This theorem can be extended to obtain
that every lower semicontinuous 2-quasitrace (not necessarily bounded) on an exact C*-
algebra must be a trace (see [3, Remark 2.29(i)]). Brown and Winter [7] presented a short
proof of Haagerup’s result in the finite nuclear dimension case. Note that if A is a unital
simple C*-algebra of stable rank one and real rank zero, with strict comparison, then
QOT,(A) = T(A) (see [24, Theorem 2.9]).
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Definition 2.3 (Cuntz semigroup) Denote the cone of positive elements of A by A,.
Let a,b € A.. One says that a is Cuntz subequivalent to b, denoted by a <S¢y b, if there
exists a sequence (r,) in A such that r; br, — a. One says that a is Cuntz equivalent to
b, denoted by a ~cy b, if a Scu band b <y a. The Cuntz semigroup of A is defined as
Cu(A) = (A® K)+/ ~cy. We will denote the class of a € (A ® K); in Cu(A) by (a).
Note that Cu(A) is a positively ordered abelian semigroup with zero (or monoid) when
equipped with the addition: {(a) + (b) = (a & b), and the relation:

(a) <(bys asceb, abe(AK),.
The following facts are well known; see [29].

Lemma 2.2 Let A be a C*-algebra, let a, b € Ay, and let p, q be projections. Then
() a Scy bifand only if (a — &)+ Scu b foralle > 0;
(i) if lla — bl| < &, then (a — &)+ Scu by
(iii) p < qifand only if p Scu .

Definition2.4 ([12]) (The category Cu) Let (S, <) be a positively ordered abelian semi-
group with zero (or monoid). For x and y in S, let us say that x is compactly contained
in y (or x is way-below y), and denote it by x < y, if for every increasing sequence (y;,)
in S that has a supremum, if y < sup, ¢y Y, then there exists k such that x < yi. This
is an auxiliary relation on S, called the compact containment relation. If x € S satisfies
X < X, we say that x is compact.

We say that S is a Cu-semigroup of the Cuntz category Cu, if it has a 0 element (so is
a monoid) and satisfies the following order-theoretic axioms:

(O1): Every increasing sequence of elements in S has a supremum.

(O2): For any x € S, there exists a <-increasing sequence (x,), ey in S such that
SUpP, ey Xn = X.

(O3): Addition and the compact containment relation are compatible.

(O4): Addition and suprema of increasing sequences are compatible.

A Cu-morphism between two Cu-semigroups is a positively ordered monoid mor-
phism that preserves the compact containment relation and suprema of increasing
sequences.

Definition 2.5 Let S be a Cu-semigroup. S is said to have weak cancellation if, for every
X, ¥,2,z € Swith 7/ < z, we have that x + z < y + z" implies x < y. It was shown
in [31, Theorem 4.3] that the Cuntz semigroup of a C*-algebra with stable rank one has
weak cancellation (see also [15]).

The following is a foundation result which establishes the relation between C*-
algebras and the category Cu.

Theorem 2.3 ([12]) Let A be a C*-algebra. Then Cu(A) is a Cu-semigroup. Moreover, if ¢
A — B is a x-homomorphism between C*-algebras, then ¢ naturally induces a Cu-morphism
Cu(y) : Cu(A) — Cu(B).
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Definition 2.6 ([17]) Let A be a C*-algebra. A functional on Cu(A) is a map f :
Cu(A) — [0, o] which takes 0 into 0 and preserves addition, order, and the suprema
of increasing sequences. Denote by F(Cu(A)) the set of all the functionals on Cu(A)
endowed with the topology in which a net (1;) converges to A if

limsup 4;(x) < A(y) < liminf 4;(y)

forall x, y € Cu(A) such that x < y.
If A is unital, a functional A on Cu(A) is said to be normalized if A([1]) = 1. Denote
by F[1)(Cu(A)) the set of all the normalized functionals on Cu(A).

Definition 2.7 Lett € QT,(A), we defineamap d; : A® K — [0, co] by
d;(a) = lim T(Cl%).
n—oo

It has the following properties:

(1 if a <cu b, then d;(a) < d.(b);

(2) if @ and b are mutually orthogonal, then d.(a + b) = d.(a) + d(b);

(3 d-((a-¢&)y) = d(a) (e — 0).

This map depends only on the Cuntz equivalence class of a € A ® K. Hence, we will
also d; to denote the induced normalized functional on Cu(A).

Remark 2.4  Given A € F;3(Cu(A)), the function

(@) = fo A(a—1)u))de

defined on the positive cone A, can be extended to a normalized lower semicontinuous
quasitrace on A. If A is separable, it can be checked that QT ,(A) has a countable basis
(see [17, Theorem 3.7)).

The following result is [17, Theorem 4.4] (see also [19, Theorem 6.9)).

Theorem 2.5 Let A be a unital C*-algebra. Then the cones QT ,(A) and Fj;j(Cu(A)) are
compact and Hausdorff, and the map T +— d is a homeomorphism between them.

It follows that if A is exact then every functional on Cu(A) arises from a lower
semicontinuous trace.
Combining the above results, we obtain a characterization of strict comparison.

Proposition Suppose that A is simple unital, then the following statements are equiv-
alent:

(i) A has strict comparison (of positive elements), i.e., for any non-zero a,b €
(A® K)4, dr(a) < di(b), T € QT,(A), implies a Scy b.

(ii) For any s, € Cu(A), A(s) < A(t), A € F3;3(Cu(A)), implies s < t.
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Let Q be a compact metric space. Denote by N the set of natural numbers with 0 and
oo adjoined. By [27], if the covering dimension of € is at most two and H(K) = 0 (the
Cech cohomology with integer coefficients) for any compact subset K C €, then the
Cuntz semigroup of C(Q) is isomorphic to the ordered semigroup Lsc(Q, N). If Q is
an interval or a graph without loops, the classification results of the present paper were
obtained in [10, 11]. Note that if Q is a compact subset of C, then we have Cu(C(£2)) =
Lsc(Q, N). (This can be deduced from H2(K) = lim H2(N(U;)), where U; is an open

1—00

cover of K and N(U;) is the nerve of U;, while H>(N(U;)) = 0; see [1, p.256-257].)

Definition 2.8 Let Q C Cbe acompact subset andlet O C Qbe an open set. Forr > 0,
set O, = {x € Q| dist(x, O) < r}. Let fp denote the positive function corresponding
to O as follows:

min{1, dist(x, Q\0)}, ifx € O,
0, otherwise.

fo(x) ={

Then 0 < fo < 1 and support(fp) = O. We shall use 1 to denote the class (fo).
Let @ : Cu(C(Q)) — Cu(A) be a Cu-morphism with @(1g) = (14). For any 7 €
T(A), d; o a defines a lower semicontinuous subadditive rank function on C(Q). By [4,
Proposition 1.2.1], this function uniquely corresponds to a countably additive measure
on Q, denoted by (14:7, i.e., for any open set O C Q, we have

Ha7(0) = dr(a(10)).

The following result combines Corollary 4.6 and Corollary 4.7 in [6], together with
the fact that if A is separable, unital and has stable rank one then x € W(A) if x € Cu(A)
and x < {14) (see [25, 6.2(1))).

Proposition Let A be a separable, unital C*-algebra with stable rank one. Suppose that
x € Cu(A) satisfies x < (14). Then there exists a € A, such that x = {a). Moreover, if
X is compact, then a can be chosen to be a projection. |

Proposition Let A be a separable, unital C*-algebra with stable rank one and let p be a
projection in A. Suppose that x1, X2, - -, x;, € Cu(A) are compact elements and satisfy
X1+ X3+ -+ 4+ x, < (p). Then there exist mutually orthogonal projections py, - -, py
such that {p;) = x; and

pL+p2t--+pan=p.
|

Proof By Proposition 2.7, there exist projections g1, g2, - - + , g5 such that (¢g;) = x; for
any i. By Lemma 2.2,
[q1] + (g2l + - + [ga] < [p).

Since A has cancellation of projections, with viv] = g; and v]v; < p, and setting p; =
viq1vi, we have

(2] + - +qu] < [p—p1l.
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There exists a partial isometry v, such that v;v5 = g; and vjv, < p — p1. Set p, = V31,
and continue this procedure; we obtain a collection of mutually orthogonal projections
{pi} such that
piy=(q)=xi, 1=12--,n,
and
prtprt---+tpp=p.
|

Theorem 2.9 ([12], Corollary 5) If A is a C*-algebra with rr(A) = 0, then Cu(A) is alge-
braic ([2, Definition 5.5.1]: every element is the supremum of an increasing sequence of compact
elements).

3 Distances between homomorphisms

Definition 3.1 Let Abe aunital C*-algebraandlet Q be a compact metric space. Denote
by Hom; (C(Q), A) the set of all unital homomorphisms from C(Q) into A. Let ¢, ¢ :
C(Q) — A be two unital homomorphisms. Define the Cuntz distance between ¢, by

dw (¢, ¢) = inf{r > 0] ¢(fo) <cu ¥ (fo,)¥(fo) Scu #(fo,), O C L, open}.

Write ¢ ~ ¢ if dw (¢, ) = 0.1t is easy to see that “~" is an equivalence relation. Put

H.1(C(Q), A) = Hom,(C(Q), A)/ ~ .

Remark 3.1 The definition of dy can be regarded as the symmetric version of the dis-
tance D, (-, -) defined in [21]. When A is a unital simple C*-algebra with stable rank one,
(Hc,1(C(Q), A), dw) is a metric space; see [21, Proposition 2.15]. There are some works
where this distance is considered in special cases (see [10, 11, 16]).

Definition 3.2 Let ¢ € Hom(C(Q), A). Thenkerp = {f € C(QQ) : f|x = 0} for
some compact subset X C . We shall call X the spectrum of ¢. We may also use ¢x to
denote ¢. If X c C, every homomorphism ¢x : C(£2) — A corresponds to a normal
element x = px(id) € A, whereid : X — X C C is the identity function.

Conversely, suppose that x, y are normal elements in A with sp(x) = X and sp(y) =
Y. We can define px, ¢y : C(X UY) — A to be two homomorphisms with ¢x (f) =
f(x) and oy (f) = f(y) forall f € C(X UY). Define the Cuntz distance between
normal elements as follows:

dw (x,y) = dw (¢x, ¢y).

Definition 3.3 Let Q be a compact metric space and let @, 3 : Lsc(Q, N) — Cu(A) be
two Cu-morphisms. Define the Cuntz distance between «, 8 by

dou(a@, B) :==1inf{r > 0|a(lp) < B(1p,), B(lo) < a(lp,), VY O C Q, open}.
Denote by Cu(C(£2), A) the set of all Cu-morphisms from Cu(C(Q2)) to Cu(A).
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Remark 3.2 Foranya, 8,y € Cu(C(Q), A) and ¢,y € Hom; (C(L2), A), the following
properties hold:

(1) dCu(a/a ﬂ) = dCu(IB’ (l);

(ii) dcu(@, B) < dcu(@,y) + dcu(B,y);

(iii) dw (¢, ¥) = dcu(Cu(9), Cu(y)).

Proposition Let Q be a compact subset of C. Then dc, is a metric on the Cuntz
category morphisms from Cu(C(€2)) to Cu(A). ]

Proof Let us identify Cu(C(£2)) with the semigroup of lower semicontinuous func-
tions Lsc(Q, N). Suppose that dcy (e, ) = 0. We need only to show that @ and S agree
on the functions 1o for any open set O C Q (their overall equality is apparent through
the additivity and preservation of suprema of increasing sequences).

For any open set O C €, there exists a sequence of open subsets O, such that
sup, 1o, = 1o and O_n C Op41 for any n. Since O, is bounded, there exists r,, > 0
such that (O,);, C Op41, and by the definition of dg,, we have a(1p,) < B(1o,,,)
and B(Lo,) < a(lo,.,).

Then we have

a(lp) < B(lp,) <+ <a(lop,, ) < Blo,,) <.
Note that
supa(lo,, ) = a(lo), sup B(1o,,) = B(1lo),

which implies @(1p) = (1), as desired.

| |
We will now present a version of the Marriage Lemma.
Proposition Letay, - -, an, B1,- -+, Bn € Cu(C(Q), A). Then
n n
dCu(iZ; o, ; Bi) < ;HEISI; max. dcu(ai, Bo(i))s
where S, is the set of all permutations of (1,2, - - , n). ]

Proof Letd = min max dcy(ai, Bo@)). Then for any € > 0, there exists o € S,
oeS, 1<i<n

such that
dew(ai, Bowy) <d+e, i=12--,n.

For any open set O C Q, we get

ai(1o) £ Boiy(Loy,.)s Boiy(Lo) < ai(lo,,.), i=1,2---,n.

Then we have

im(nm < i/ﬁ(nom), Zn]ﬁialo) < im(nom).
i=1 i=1 i=1 i=1
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Hence,

dCu(i a;, i B <d+e.
-1 =l

Since & is arbitrary, the conclusion follows.
| |

Definition 3.4 Let A be aunital C*-algebra and Q2 be a compact metric space. Let x, y €
A be normal elements and ¢, : C(€2) — A be two homomorphisms. We say ¢ and
are approximately unitarily equivalent, written ¢ ~,, ¥, if there exists a sequence of
unitaries u,, € A such that u, ¢u,, — y pointwise. Define the distance between unitary
orbits of x and y by

dy(x,y) = inf{|luxu™ — y|| : u is a unitary in A}.
Lemma 3.5 Let {x,} be a sequence of normal elements in A with limit x. Suppose that Q is

a compact subset of C such that sp(x,) C Q. Then for any finite set F C C() and € > 0,
there exists N € N such that || f (x,,) — f(x)|| < eforall f € Fandn > N.

Proof We may suppose that ||x,|| < M for all n, so that also ||x|| < M. For any
f € C(Q) and € > 0, by the Stone-Weierstrass theorem, there exists a polynomial
P(z, ) such that

Hf—HL©H<§

Note that

A

) xl, = ()X < 1) x, = 2 () I I+ [l (%)™ = ()Xl

M) ™ g, = ) T+ M e, =

IA

By induction, we have
() x = ()X < (s + )M ||x,, — x|l

Therefore, there exists Ny such that if ||x,, — x|| is sufficiently small for alln > Ny, we
will have

* * g
1P (xn, x3,) — P(x, x| < 3
Now we have

£ Gen) = FOOI < 11f (xn) = P(xn, )11 + 1P (xp, x3) = P, x7) |
+HIP(x, x) = foll

e € &
< —+-—+-=¢.
3 3 3
Since F is finite, N := max{Ny | f € F} is as desired. [ ]

Definition 3.5 Let A be a unital C*-algebra and let x and y be normal elements in A.
Let us say that x and y have the same index, written ind(x) = ind(y), if

[A-x]=[1-ylinK,(A)
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forall A ¢ sp(x) U sp(y). (Note that A — x, A — y are invertible and so give rise to the
K -classes; see [30].)

The following theorem shows the relation between dw (x,y) and dy(x,y); see
Corollary 6.4 and Theorem 6.7 in [21].

Theorem 3.6  Let A be a unital simple separable C*-algebra with real rank zero, stable rank
one and with weakly unperforated Ko(A). Suppose that x and y are two normal elements in
A with ind(x) = ind(y). Then

dy(x,y) < 2dw(x,y).

Theorem 3.7 Let A be a unital simple separable C*-algebra with real rank zero, stable
rank one, and weakly unperforated Ko(A). Let Q be a compact subset of C. Suppose that
X1, Xp, X are normal elements in A with sp(x;) € Q1 <i < n,sp(x) C Q, and
¢, : C(Q) — A are two unital homomorphisms. Then

(1) if dy(xp, x) — O, then dw (x5, x) — 0;

2)if dw ($,1) = 0 and ind($(id)) = ind (¥ (id)), then ¢ ~que V.

Proof (1) Without loss of generality, we may assume that x,, — x. Suppose that X,, =
sp(xy) and X = sp(x). We need to show that for any € > 0, there exists N € N such that

dw(ex,.¢x) <& n=N.

Let 6 = &/2. Since Q is compact, there is a finite open cover {Q, Qy, - -+, Q,,} of Q
with diameter(€;) < 6,i = 1,2,---,m. Let ¥ denote the set of unions of some of the
sets Q1,Qy, - -+, Q. Forany Y € F, define

1—dist(z,Y)/6, ifz € (¥Y)s,
gr(2) = .
0 otherwise.

Set
F={gy(2) | Y eF}.

Since F is finite, by Lemma 3.5, there exists N € N such that
lg(xn) —g()l <6, ge€F,n=N.

Now for any openset O C Q,letYp = |J €;.ThenYp € ¥ and
oNQ;+2

OCYo COs Cc Yo)s C Oss.
Then we have
ex, (fo) Scu ¢x,(fro) and  ox(fy,) Scu ¢x(f0u5)-

Note that gy,, € F,soforalln > N, we have

llgyve (Xn) — gvo (Xl < 6.
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It follows from Lemma 2.2(ii) that

(8vo (Xn) = 6)+ Scu 8vo (X)-

Note that support(gy,, ) = (Yo)s. so that fy, <cu (8v, — 0)+, and we get

Sro (xn) Scu (8o (Xn) — 6)+ Scu 8¥o (X) Scu fvo)s (X).
Therefore,
¢x, (fYo) = fro (xn) Scu fvo)s (X) = ox(fvo)s)-
Now we have
ex, (fo) Scu ¢x, (fyo) Scu ¢x(f(vo)s) Scu ex(f0,5)-

Similarly, for any open O C €, we also have

ex(fo) Scu ¢x, (f0,5)-
Finally, we obtain
dw (¢x,.¢x) <20 = ¢.

(2) Set a = ¢(id), b = Y (id). By hypothesis, we have dw (a, b) = 0 and ind(a) =
ind(b), and so by Theorem 3.6, we get diy(a, b) = 0. This means that there exists a
sequence of unitaries u,, € Asuch thatu)au, — b.Then forany finite subset F ¢ C(2)
and € > 0, by Lemma 3.5, there exists N € N such that

Il f(uyau,) — f(B)ll <&, feF,n>N.
From the Stone-Weierstrass theorem, it can be checked that
flupauy) = uy, f(ayun, f€F.
Now we get

e (Nun = (Hll <&, feF.

Since ¢ is arbitrary, we have ¢ ~ 0 .
| |

Remark 3.8 The question whether the metrics dw and dy are equivalent relates to the
distances between unitary orbits. There are some results for self-adjoint elements and
normal elements. Under certain conditions, one can even get dy = dy; see [28, 21,
23, 22, 16] for more details. Distances for Cu-morphisms between general pairs of Cu-
semigroups are studied in detail in [9, Section 5]. Some similar results intersecting with
this work can be found in [8], which employs a different method.

4 Approximate Lifting

In this section, we present an approximate existence result. Given a Cu-morphism
with certain properties, we can approximately lift it to a homomorphism between
C*-algebras.
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Proposition Let A be a unital, simple, separable C*-algebra of stable rank one. Then

for any x € Cu(A) (x # 0) with x < (14), we have i]I}(fA) d:(x) > 0. (Here, d; is a
TE

normalized functional on Cu(A).) ]

Proof From the definition of Cu(A) and Lemma 2.7, there exists a € A, such that

a < 14 and (a) = x. By the simplicity of A, there exist ay, as, - - - , ax in A such that
1a = 2?:1 a;aa;. Then for any 7 € T(A),

k k

k
1=71(14) = ZT(afaa,-) = ZT(al/za;‘a[al/Z) < Z lla:a;ll - T(a).

i=1 i=1 i=1
Now we get 7(a) > 0, whence from the compactness of T(A) and
d-(x) 2 7(a),

t inf d;(x) > 0. [ ]
WeEs 7()

Suppose that ) is a compact space, and for any x € Q, write B(x,r) = {y € Q |
dist(y, x) < r}and R(x, s) = {y € Q| dist(y, x) = s}.

Lemma 4.2  Let A be a unital, simple, separable C*-algebra with QT,(A) = T(A) and Q
be a compact metric space. Let & : Cu(C(Q)) — Cu(A) be a Cu-morphism with «(1g) <
(14). Then for any x € Qand r,o > O, there exist s € (r/2,r) and € > O such that
s+tee(r/2,r)and

de(@(lR(x,s),)) <0, 7€ QT (A).

Proof For any open set O C Qand 7 € T(A), let yg+r be the countably additive
measure on € such that

Ho7(0) = d(a(1p)).

If a(1p(x,r)) = O, the proof is trivial. In general, we have o+ (B(x,r)) < 1. Since
R(x,5) N R(x,s") = @,if s # 5/, there are at most finitely many s in (r/2, r) such that

Harr (R(x,5)) > 0 /2.

Since we have QT,(A) = T(A), by Remark 2.4, QT,(A) is compact metrizable and
has a countable basis, and so we may choose a countable dense subset Y of QT,(A).
For any 7 € Y, we define

S = {s| ptarr (R(x,5)) > 0/2}.
Then | J, ey Sr has at most countably many points and

/2| S %o

TEY

Now there exist an s € (r/2, r) such that yy+ (R(x,5)) < /2, 1e,

Uz (Q\R(x,8)) >1-0/2, TE€Y.
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That is,
di(a(la\rx,s)) 2 1-0/2, T€Y.
By the density of Y and Theorem 2.5, we have

de(a(lo\rx,5)) 2 1=0/2, 7€ QT,(A).
Let {&,,} be a strictly decreasing sequence such that

&, <min{s —r/2,r—s}, n=1,2---, and lim g, =0.

n—oo

The sequence {1 } is increasing in Cu(C(2)) with supremum Lo\R(x,s)-

Q\R(X,5) e,
Since @ and d; preserve the suprema of increasing sequences,

de(@(loRr(rs)) = lim de(@(lg =) T € OT,(A).

For any 7 € QT,(A), by [14, Lemma 3.1], there exist an integer N; € N and an open
neighborhood V; of 7 such that
o
-0 < d‘r(a'(]lQ\R(x,s))) - E < dy(a'(]lg\m))’ n> Nz, yeVr.
Then {V; | 7 € QT,(A)} forms an open cover of QT,(A), and so from the compactness
of QT,(A), there are finitely many sets {V7,, V¢,,-- -, V¢, } covering OT, (A). Now we
set
No = maX{NT17 NT27 ) N‘rk 1.

For any n > Ny, we have

dT(Q(]lQ\m)) >1-—0, 71e€QT,(A).

Then forany 0 < & < gy, wehave s + € € (r/2,r) and

d‘r(a/(]lR(x,s)g)) <0, TE QTZ(A)'

Definition 4.1 Let Q be a compact metric space and ¥ be a finite collection of open
subsets of Q. Let X,Y € ¥, we say X and Y are almost connected if there exists a
sequence of sets X = Q,Q,,---,Q, = Y in F such that for each i, Q; € F and
Q;NQ;41 # @. Under this relation, # has finitely many almost connected components.

Definition 4.2 Let a : Lsc(Q), N) - Cu(A) bea Cu-morphism and a(Lg) < (14).
Let 6 > O and let {O1, 05, - --,Opn} be a collection of mutually disjoint open sets of Q.
SetU = Uf\il O;. Wesay {01, O, - -+ ,On} is an almost 6-cover with respect to a if,

(i) dist(x,U) < 6 forall x € Q;

(ii) diameter(O;) < 6, foranyi = 1,2,---, N;

(iii) dist(O;, O;) > O, forany i # j,i,j € {1,---, N};

(iv) a(]lg\ﬁ) <a(lo,)snv), foranyi=1,2,---, N;

W) {(01)s, (02)s, - -+ , (On)s} has a unique almost connected component.

Lemma 4.3 Let A be a unital, simple, separable C*-algebra with stable rank one, strict
comparison and QT,(A) = T(A) and let Q be a compact metric space. Let
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Cu(C(Q2)) — Cu(A) be a Cu-morphism and & > 0. Suppose that Q has an open cover
{B(x1,0/4), -+, B(x;, 6/4)} satisfying

(D a(lg) < (1a)

(2) a(1p(x;,6/2)) #0, foranyi € {1,2,--- ,m};

(3){B(x1,6/4), -, B(xm, 6/4)} has a unique almost connected component.

Then Q has an almost d-cover with respect to a.

Proof By Proposition 4.1, we set

o= min inf {d:(@(1py;s/2)))} > 0.

1<i<mteT(A)
Foreachi € {1,2,---,m}, by Lemma 4.2 for x;, §/2, and 07/ (2m + 1), there exist s; €
(6/4,0/2) and g; such that s; = &; € (6/4,6/2) and

o o
< — e OT,(A).
om+1 - 2m OT>(4)

:u(l/*T (R(xi, si)s,') S

Set R = J2| R(x;, 5;), then

m
(on a
Har(R) < Zlﬂa/*r(R(xi’ si)a,—) < % m= E

L

Since Q\R is open, there exists a positive function fo\r € C(2) corresponding to
Q\R (see 2.8) such that

o
dr(@({fa\R))) = Mo r(Q\R) > 1 - - T€ QT,(A).
Let {0, } be a strictly decreasing sequence such that

o, <min{e, €2, ,&m}, n=12,---, and lim o, =0.
n—oo

Set

W, = supp{(fo\r — 0n)+}-

Then {1w,} is an increasing sequence in Cu(C(£2)) with supremum Lq\g. Since @
preserves suprema, we have

a(lg\r) = sup a(lw,).

neN

Hence,
de(a(lq\r)) = r}grolo d:(a(lw,)), 7€ 0T,(A).

Since QT,(A) is compact, with a similar method of the proof of Lemma 4.2, there
exists Ny such that

di(a(lw,)) >1—-0, n> Ny, 7€QT,(A).
Now for fixed integers ny > n; > Ny, we have 0, < 07y, and

Wno URO’,,O Ui{x| fQ\R(x) = O—no} = Wn1 ) Ro‘,,I U{x| fQ\R(x) = U-nl} =Q.
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As Wy, O W,,, we then have

(x| farr(¥) = @) € Rer,, € | J RO, 500,

i=1
Now we set
n:i=0y, U:=W,.
Note that

n <min{ey, &2, - ,&n} and di(a(ly)) >1-0, V71eQT,(A).

We also have

m
UUR,U x| farr(x) =} =Qc UU|_JR(xi, e

i=1
Define

O :=U N B(xy, 51),

0, := (U\O1) N B(x3, 52),

Om = (U\ U1 0:) N B(xpmy Sm).
Note that all the O; are open sets in U. Let us delete the empty sets and rewrite those
remaining as {01,005, -+ ,On}; then U = Ufil 0;.
Let us now show that {O1, O, - - - , On} is an almost d-cover with respect to a. For
any x € Q,if x € U, it is trivial that dist(x, U) = 0;if x € U:il R(x;, 5i)¢,;, there exists
ig such that x € B(x;,, 6/2). Since

- o 0
D Har (R 50)e) < 5 < tare (B(xips ),

i=1
we have B(x;y, 6/2)\ UL, R(xi, 8i)s; # @, and hence, there exists y € B(x;,,6/2) NU
such that dist(x, y) < d. From the construction of O;, for any i > 1, O; is contained in
B(xj, s;) for some j, and so diameter(0O;) < 0.1Ifi # j, then O; and O; can be separated
by Ry, and so dist(O;, O;) > 0. Then (i)-(iii) hold.
Now we check (iv). Given any O;, there exists j such that
0

O; C B(xj,s;) C B(xj, 5) and (I(]IB(xj’%)) # 0.

Set
Y1 = B( 6)ﬂU Y, := B( 6)HOR( )
= Xi, — = Xj, = Xis Si)e; -

1 73 > 2 3 i:1 i» Si)e;

Then we have

6
hcB(x,5)chuhc(Ois.
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Recall that
<L o
D de(@ris,) < 5. T € QTH(A).
i=1
Then
o
d‘r(a'(]le)) < d‘r(a(]luﬁlR(xi,si)gi)) < E’
and hence,

o <di(a(lp, ¢)) < de(a(ly)) + de(a(ly,)) < dc(a(ly,)) + %-

Now we have
o
de(a(ly,)) > - T€ 0T, (A).

Since

m
U < | RCxi, sy,
i=1
we have

dr(a(lg\g)) < de(a(lum Rixsi)e,;)) < % <d-(a(ly)), 7 € OT,(A).

Since A has strict comparison, by Proposition 2.6 and the inclusion ¥; € (0;)s N U,
we have

a(lgp) < ally) < a(lo)snv)-

Finally, notice that for any i, we have shown that B(x;,8/2) N U # @,
and then B(x;,6/2) C (0Oj,)s for some j;. Combining this with assumption (3),
{(0}))s, (0},)s, -+, (0},,)5} is also an open cover of Q and has a unique almost con-
nected component. Note that Q = U (0},)s = Uf{V:l Oy, then for any k €
{1,2,---, N}, there exists (O}, )s such that Ox N (0},)s # @. Thus any two elements
in {(01)s,(02)s," -+ ,(ON)s} are almost connected through {(O; )s, (O},)s, """,
(0},,)s}. In general, {(O1)s, (O2)s, -+, (On)s} has a unique almost connected com-
ponent, that is, (v) holds.

| |

Lemma 4.4  Let A be a unital, simple, separable C*-algebra with stable rank one, real rank
zero, strict comparison and let Q be a compact metric space. Let & : Cu(C(Q)) — Cu(A) be
a Cu-morphism and p is a projection in A. Suppose that

(M a(la) = (p)

(2) Q has an almost §-cover with respect to a.

Then there exists a *-homomorphism ¢ : C() — pAp with finite dimensional range
such that

dcu(Cu(9), @) < 96.

Proof Suppose that {O1, O,,- - -, Opn} is an almost d-cover respect to .
Let

U=

-

1
0;, p= Zmin{é, dist(0;,0), i # j, 1 <i,j < NJ.
1

4
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Then the facts that 1o, < 1(0,), and « preserves the compact containment relation
imply that
a'(]lol.) < a’(]l(ol.)p) < a(]l(ol.)zp).

Since Cu(A) is algebraic (see 2.9), for each i, there exists an increasing sequence of
compact elements {x!'}, with supremum a(1(g;),,)- From the compact containment
relation, there exists n; € N such that a(1 g, )) < x;”. For convenience, we use x; to
denote x;“; then,

a/(]l(o,.)p) < x; < a’(]l(ol.)zp).
Now we have
xptxp+etay <@y g,),,) <<p)-
By Proposition 2.8, there exists a collection of mutually orthogonal projections {p; } such
that
<pi>:-xi7 i:1527”'aN
and
pitpy+---+tpnN =<p.
Setpo=p— Zi]il pi- Note that

N
(po) + Y (p1) = a(la) < a(lgg) +a(ly,)
i=1

and
N

a(ly,) < ey o,,) < Z(pi).
i=1

By weak cancellation in Cu(A) (Definition 2.5), we have
(po) < a(lgp) < @(Liopsnv), Yhk=1,2---,N.

Now choose zo € Q\U and z; € O; (1 < i < N). Define
N

$(f) =D fGpn feC@.
i=0
Then we need to show dcy (Cu(¢), @) < 96.
For any nonempty open set V. C €, we have Vs N U # @. Now we consider the
following two cases:
Case 1: There exists k € {1,2,---, N} such that O C Vgs\V3s.
Define index sets

L={ilVN(0),#2 1<i<N)

L={il0;N(OK)s #@,1<i<N}.
Ifi € I, then O; N Vo5 = @, we have Iy N [} = @. We also note that

@i ud Jon c vas.

i€l i€l
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Then we have

Cu@)(v) < pod+ D, (p)

z; €V, i#0

< a(lop)snu) + Z(Pi)

i€l

< Z a'(]loi) + Z a(]l(oi)Zp)

iely i€l
< a(ly,,).

Note that
VcvnQU)uVnU,).

Now we have

a(ly)

IA

a(ly qp) +allvau,)
a(Lo)snv) + @(lvau,)

D allo) + Y allop,)

i€l i€ly

D+ >

iely i€l

Cu(@) (L, ).

Case 2: There doesn’t exist k € {1,2,---, N} such that O C Vgs\Vjs.
In this case, U N (Vy5\V4s) = @. Now we define index sets

IA

IA

IA

IA

Jo={i| O; C Vys, 1 <i <N},

Ji={i|0; cQ\Vss, 1 <i <N}

Thus, we have Jo U J; ={1,2,---,N}and Jo N J| = @.

By (i), if Q\Vss # @, then J; # @. Then for arbitrary i € Jo,i’ € Jj, we have
dist((O;)s, (Oi)s) > 0, this means that (O;)s and (O;/)s can’t be almost connected,
and this contradicts (v). Then we must have Vg5 = Q. It is clear that

Cu(¢)(1y) < Cu(¢)(ly,,) = a(lg)
and

a(ly) < a(ly,) = Cu($)(1a).

Combining these two cases, we have
dcy(Cu(¢), @) < 90.

Now we must consider the possibility that certain open sets in the covering may be
transformed into zero by the Cu-morphism. In such situations, it is essential to delicately
organize the open sets into appropriate groupings.
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Theorem 4.5  Let A be a unital, simple, separable C*-algebra with stable rank one, real rank
zero and strict comparison and let Q be a compact metric space. Let @ : Cu(C()) — Cu(A)
be a Cu-morphism with a(Lq) < (14). Then for any & > O, there exists a *-homomorphism
¢ : C(Q) — A such that

dcu(Cu(¢), ) < e.

Proof Since Q is compact, for § = £/9, there exist x1, x2, - -+ , X, € Q such that
m
Q=) B(xi6/4.
i=1

Denote
A = {1’2".. 7m}’

F ={B(x;,0/4) | «(1B(x;,5/4)) # 0}.

Then F has finitely many almost connected (Definition 4.1) components 7, - - - , F7.
Foreachi € {1,2,---,1}, we also define

1
A= | Bxj,6/4) € Fi), Ao = A\ A,
i=1

Q= | By 614, Qo= | ] Bxj,6/4).
jE/\i jEAO
(One may say that Q, - - - , € are “separated” by Q.)
Since Q; N Q; # @ foralli,j € {1,2,---,1} withi # j, we have

l !

a(lg) < ) a(lo) = ) a(la) < a(la).

i=0 i=1
Thus,
a(lg) +a(lg,) +---+a(lg,) = a(lg).

Now we will prove that a(1 g, ) is compact for eachi € {1,2,---,1}.

For each i, let {a, ; }» be a <-increasing sequence in Lsc(£2, N) with supremum 1o, .
Set by = au1 + anz + -+ + auy, then {b,}, is also a <-increasing sequence with
supremum

supb, =supda, 1 +supdnz +---+supan].
n n n n
Since a preserves suprema of increasing sequences, then we have
sup a(by) = a(supa,,1) + a(sup anz) + -+ a(sup an)
n n n n

= a(lg,) +a(lg,) + - +a(lg,)
a(lg).

From the compactness of @(1g), there exists k € N such that a(by) = a(1g), ie,

alag) + alagy) +- - +alag;) = a(lp,) + a(lg,) + -+ a(lg,).
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Since we have ay_,, < 1g,, (in Lsc(Q, N)) for anym = 1,2,---,[, then
D aam) < ) a(la,) (in Cu(A)).
m#i m#i
Since @(1q) is compact, we also have
a(lg) +a(lg,) + - +a(lg,) < alak,) + alaxy) + -+ alagy).
From the weak cancellation of Cu(A), we have
a(lg,) < aar:) < a(lg,).

This means that (g, ) is compact in Cu(A).
Since we have a(1q,) + a(lg,) +--- + a(lg,) = a(lg), by Proposition 2.8, there
exists a collection of mutually orthogonal projections {p;} such that

(pi)za(]lgi)’ i=1»2a""l
and

pPr+pr+---+pp < la.
Let h(t) € Lsc(Q, N). For any open set V C Q, define

h(t), ifteV
hly(t) =
v ) {Q ifrev.
Foreachi € {1,2,---,1}, define a; as follows:
a;(h(1)) = a(hlg, (1)).

It can be checked that a1, @3, - - - , @; are Cu-morphisms from Lsc(€, N) to Cu(A). We
also have

ayt+ay+---+a = .

For each i, we apply Lemma 4.3 and Lemma 4.4 for Q;, §, p; and a; (the key point is
that a(1q, ) is compact); this gives ¢; : C(Q) — p;Ap; such that

dca(Cu(éi), @i) < 96.
Denote ¢ = 25:1 @;. Since @1, ¢, - - - , ¢; have mutually orthogonal ranges, we have
Cu(¢1) + Cu(¢2) + - - + Culey) = Cu(g).
By Proposition 3.4, we obtain
dcy(Cu(e), @) < 96 = &.
|
Remark 4.6 In most cases, we assume that ) is a compact space, but we point out that
the main point is that @(1g) is compact in Cu(A). In the presence of stable rank one,
a(Lg) can be lifted to a projection p in A, and then we may regard @ as a Cu-morphism

from Cu(C(Q)) to Cu(pAp). We also note that if A is a unital, simple, separable C*-
algebra with strict comparison, then pAp also has strict comparison and Ky(A) is
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weakly unperforated; in this case, if A has real rank zero, then A has stable rank one
([18, Corollary 9.5]).

5 Classification Results

Denote by C the class of all simple, separable C*-algebras with stable rank one, real
rank zero, and strict comparison (see 5.4). In this section, we give classification results
for both the unital case and the non-unital case.

Definition 5.1 Let A and B be C*-algebras such that A has a strictly positive element
s 4. Let us say that the functor Cu classifies the pair (A, B) if for any Cu-morphism

a : Cu(A) — Cu(B)

such that a({s4)) < (sp), where sp is a positive element of B, there exists a *-
homomorphism ¢ : A — B, unique up to approximate unitary equivalence, such that
a = Cu(¢). We shall say the functor Cu classifies (A, C) if Cu classifies the pair (A, B)
for any B in C.

Theorem 5.1 Let Q be a compact subset of C and A be a unital C*-algebra in C. Suppose
that @ : Cu(C(Q)) — Cu(A) is a Cu-morphism with a(1q) < (14). Then there exists a
homomorphism ¢ : C(Q) — A such that Cu(¢) = a. In particular, if K;(A) is trivial, Cu
classifies the pair (C(Q), A).

Proof From Theorem 4.5, there exists a sequence of homomorphisms ¢,, with finite
dimensional range such that dc,(Cu(¢y,), @) — 0.Let x, = ¢,(id) and € > 0. As the

range of ¢,, is finite dimensional, we have [1 — x,,] = 01in K (A) for all 2 ¢ sp(x,). By
Theorem 3.6 and Remark 2.5, there exists N; > 0 such that

&
dU(xm xm) < ZdW(xn7 xm) < 59 n,m 2 Nl'

Then for £/22, there exists N, > Nj such that

&
dy (xp, Xm) < i, n,m > N,.

Similarly, for any k, there exists Ny > Ni_; such that

&
dU(xmxm) < Z_ka ’n7m2Nk'

Then for each k > 1, there exists a unitary u € A such that

E
*
X, — XN, uell < 2
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Write

X1 = )CN],

.
= U XN, UL,

=
[SS}
|

*
=1 (Ug—1 +* - U)X N Ug—1 + *  Uglhy,

=
~
|

Then {x}} is a Cauchy sequence. We may assume that X3 — x. Note that all the X and
x are normal and o (Xy), o (x) C Q.
Define ¢ : C(QQ) — Aby ¢(f) = f(x). By Lemma 3.7(i), we have

dW(¢Nk, ¢) = dw(xNk, )C) = dw(fk, x) — 0.
From the properties of d¢y (see 3.3), we have

dcu(Cu(), @) < deo(Culdny ), @) + dcu(Cul(gn, ), Cu(¢))
dCu(Cu(¢Nk )7 CY) + dW(¢Nk’ ¢) — 0.

Then the *-homomorphism ¢ : C(QQ) — A satisfies dcy(Cu(¢), @) = 0, and so by
Proposition 3.3, we have @ = Cu(¢).

Suppose that y : C(Q) — A also satisfies Cu(y) = . As K;(A) is trivial, we obtain
ind(¢(id)) = ind(¥ (id)). By Lemma 3.7 (ii), we obtain ¢ ~4ye . Thus, ¢ is unique up
to approximate unitary equivalence. ]

The following properties are established in [11, Proposition 5.2].

Proposition The following statements hold true:

(i) If Cu classifies the pair (A, B) and B has stable rank one, then Cu classifies the pair
(M, (A), B) for everyn € N.

(ii) Let C be a C*-algebra of stable rank one. If Cu classifies the pairs (A, D) and
(B, D) for all hereditary subalgebras D of C, then Cu classifies the pair (A @ B, C).

(iii) If Cu classifies the pairs (A;, B) for a sequence

P1 P2
A1—>A2—>~--

>

then Cu classifies the pair (lim(4;, p;), B).

(iv) Let A, B and C be C*-algebras such that A is stably isomorphic to B, and C has
stable rank one. If Cu classifies the pair (A, C®K), then Cu classifies the pair (B,C). =

Combining Theorem 5.1 and Proposition 5.2, we obtain the following result.
Theorem 5.3 Let A be either a matrix algebra over a compact subset of C or a sequential

inductive limit of such C*-algebras, or a unital C*-algebra stably isomorphic to one such induc-
tive limit. Suppose that B is unital in C and K| (B) is trivial. Then for every Cu-morphism in
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the category Cu
a : Cu(A) —» Cu(B)

such that @ ({14)) < (1p), there exists a homomorphism ¢ : A — B such that Cu(¢) = a.
Moreover, ¢ is unique up to approximate unitary equivalence.

Remark 54 In general, if B is non-unital simple, one needs to have densely-defined,
lower semicontinuous 2-quasitraces to formulate strict comparison. But in our setting,
B has real rank zero, every non-zero projection is a full projection, and so by [5, Theorem
2.8], we have pBp ® K = B ® K. Then we can say B has strict comparison if pBp has.

Remark 5.5 If B is non-unital and A is unital, then @ ({14)) is still compact, and there
exists a projection p in B (B has stable rank one) such that @ ({(14)) = (p). Apply
Theorem 5.3, there exists a homomorphism ¢ : A — pBp such that Cu(¢) = o and ¢
is unique up to approximate unitary equivalence (see [29, Proposition 2.3.1]). When A is
non-unital, we need Robert’s augmented Cuntz semigroup to overcome the difficulty.

Definition 5.2 (Augmented Cuntz semigroup) Let A be a unital C*-algebra. Let us
define Cu™(A) as the ordered semigroup of formal differences (a) — n(1), with {a) €
Cu(A) and n € N. That is, Cu™(A) is the quotient of the semigroup of pairs ({(a), n),
with (@) € Cu(A) and n € N, by the equivalence relation ({(a), n) ~ ({(b), m) if

(a) + m(1) + k(1) = (b) + n(1) + k(1),

for some k € N. The image of ({a), n) in this quotient will be denoted by {(a) — n(1).
If A is non-unital, denote by 7 : A~ — C the quotient map from the unitization of
A onto C. Define Cu™(A) as the subsemigroup of Cu™ (A™) consisting of the elements
(a) — n(1), with {a) in Cu (A™) such that Cu(r)({a)) = n < co. We refer the reader to
[26] for more details.

The functor Cu™ can also be used to classify the C*-pair, with the meaning of “Cu”™
classifies the pair" the same as the one defined above for Cu. Note that we will not explore
the detailed structure of Cu™, we only need the following facts; see Theorem 3.2.2 in [26].

Theorem 5.6  Let A, B be C*-algebras of stable rank one.
(@) If A is unital, then the functor Cu” classifies (A, C) if and only if Cu classifies (A, C).
(i) The functor Cu” classifies the pair (A, C) if and only if it classifies (A~, C).
(iii) Suppose Cu™ classifies the sequence of pairs (A;, C) as in Proposition 5.2 and all the
A; are C*-algebras of stable rank one. If A = li_r)nAi, then Cu” classifies (A, C).
(iv) If Cu” classifies (A, C) and (B, C), then Cu™ classifies (A ® B, C).
() If Cu” classifies (A, C), then it classifies (A’, C) for any A’ stably isomorphic to A.

Theorem 5.7 Let A be either a matrix algebra over a compact subset of C, or a sequential
inductive limit of such C*-algebras, or a C*-algebra stably isomorphic to one such inductive
limit. Let B € C. Suppose that K (B) is trivial. Then for every morphism in the category Cu

@ : Cu™(A) - Cu™(B)
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such that @ ({(sA)) < (sp), where so € A, and sg € B, are strictly positive elements, there
exists a homomorphism ¢ : A — B such that Cu™ (¢) = a. Moreover, ¢ is unique up to
approximate unitary equivalence.

With a combination of Theorem 5.3 and Theorem 5.7, we present the following
classification result of a class of C*-algebras.

Corollary 5.8 Let A, B be sequential inductive limits of finite direct sums of matrix algebras
over compact subsets of C. Suppose that A, B € C and K,(A), K (B) are trivial. Then

(1) A = B ifand only if (Cu™(A),(s4)) = (Cu~(B),(sp)), where s € Ay and
s € By are strictly positive elements;

(2)if A, B are unital, A = B if and only if (Cu(A), (14)) = (Cu(B),{1p)).

Proof See the proof of [11, Corollary 1.2].

We also have the following result communicated to us by H. Thiel.

Corollary 5.9 Let A be a sequential inductive limit of finite direct sums of matrix algebras
over compact subsets of C. Suppose that A is unital in C and K, (A) is trivial. Then A is an
AF algebra.

Proof Since A has real rank zero and stable rank one, Cu(A) is algebraic (Theorem
2.9) and has weak cancellation (Definition 2.5). Moreover, Cu(A) is the limit of
Cu-semigroups of the form Lsc(X, N), and so Cu(A) is unperforated (because each
Lsc(X, N) is). By [2, Corollary 5.5.13], there exists an AF algebra B such that Cu(A) =
Cu(B). Then by Corollary 5.8, this lifts to an isomorphism A = B. [ ]

Remark 510 In [26], Robert defined an equivalence relation «» to reduce every
1-NCCW complex with trivial K; to C[0, 1]. One may expect that any 1-NCCW com-
plex with torsion-free K; can be reduced to continuous functions over finite graphs.
However, this is not true in general, as the following example shows.

Let F; = C@Cand F, = C® M,(C). Let A be the pullback of the following diagram:

A —— C([0,1], F>)

L l evpdevy

F1 L‘ F2€BF2,

oo o)

Then Ko(A) = Z K ;(A) = Z. But A has a quotient whose K is Z;, and this phe-
nomenon will not happen for C(T) (or C(X) where X is any finite graph). We remark
that if A «» B, then for any quotient algebra A’ of A, there exists a quotient algebra B’

where
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of B such that K;(A’) = K;(B’). Then A can’t be reduced to C(T) (or C(X) where X
is any finite graph) via Robert’s equivalence relation.
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