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1. Introduction. A (round-robin) tournament Tn con-
sists of n nodes p1,p2, . .,pn such that each pair of distinct
-
nides P; and pj l_i joined by one of the oriented arcs pipj or
Pjpi . If the arc pipj is in Tn’ then we say that P, dominates

pj . The set of all dominance-preserving permutations ¢« of the

nodes Tn form a group, the automorphism group G(Tn) of Tn.

It is known (see [1]) that there exist tournaments T whose group
n

G(Tn) is abstractly isomorphic to a given group H if and only

if the order g(H) of H is odd.

If g(Tn) denotes the order of the group G(Tn) , let g(n)
denote the maximum of g(Tn) taken over all tournaments Tn

Our main object here is to prove the following result.

THEOREM. The limit of g(n)ifn as n tends to infinity

exists and lies between N 3 and 2.5 , inclusive.

2. An Upper Bound. In this section we shall prove by
induction that

n
(1) g(m < {230

on for n> 4,

It is not difficult to verify that this inequality holds when
4<n<9 byusing the exact values of g(n) given in Table 1.
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Table 1

Consider any node p of an arbitrary tournament Tn,

where n> 10. Let d denote the number of different nodes in
the set

D = {alp) : ¢ G(Tn)} .
If Td and Tn—d
nodes that are in D and by the nodes that are notin D, then it
is clear that

denote the subtournaments determined by the

. < g(d) - -d).
(2) g(T )< g(Ty) - g(T__ ) <gld) - g(n-d)
If 3<d< n-3, then it follows from the induction hypothesis that

2.5°  @.5™° n_ (2.5 (25"
2d 2(n-d) — 8(n-4) 2n 2n '

g(T )<

If d=3 or n-3, then

(T <3 2.5 % (@2.5°
AR 2(n-3) 2n ’
and if d =1, 2, n-2 or n-1, then

2n . (2.5)" . (2.5)%
(n-2) 2n 2n

T )<1°-
g(T )<t -~
A different argument must be used when d = n.

There are n(n-1) /2 arcs in the tournament Tn. Hence,
if d = n and the nodes of Tn are all similar to each other with
respect to the group G(Tn) , it must be that each node dominates

exactly (n-1)/2 other nodes. This can happen only when n is
odd.
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Consider the subgroup H of automorphisms o of G(Tn)

It follows from a result in group theory

such that ofp .
= n, then

)=p
(see [2]) that if 4
g(Tn) = ng(H).

No element of H can transform one of the (n-1)/2 nodes that
dominate p into one of the (n-1)/2 nodes dominated by p,
since p is fixed. Hence,
2
g(H) < (g((n-1)/2)) .

Therefore, if d = n, then
(2.5 "1)/2 2.

4.m2 (2.5)"
n-1 5 "n-1

n
2. < (2.5)
2n 2n

gﬂgin(

(Notice that if n> 11, then (n-1)/2 > 5, so we are certainly
entitled to apply the induction hypothesis to g{(n-1)/2).) This
suffices to complete the proof of inequality (1) by induction.

An immediate consequence of inequality (1) is that

1/n

(3) lim sup g(n) <2.5.

We remark that equality holds in inequality (2) when the

arcs joining nodes in Td to nodes in Tn 4 all have the same

orientation. It follows thatif n is even, then
(4) g(n) = max {g(d) . g(n-d)}, d=1,35,...,n-1

since d is odd. Hence, in determining exact values of g(n)
the only tournaments that need to be examined individually are
those with an odd number of nodes in which all the nodes are
similar to each other.

When n is odd and d = n, the inequality
2
g(T_) < n(g((n-1)/2))

is best possible in the sense that equality holds for certain tour-
naments when n = 3,9,27 and, perhaps, for all higher powers
of three.
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Stronger forms of inequality (1) can be obtained by the same
type of argument if one is willing to treat more special cases
separately. For example, it can be shown that

.45(2.03)"
n

g(n) < if n>13,

but this result has to be verified directly for 13< n< 26.

We conjecture that
gn) < V3271,
. . . . . k
with equality holding if and only if n=3 , k=0,1,...

3. Proof of the existence of the limit. If Ta and T

b
are two arbitrary tournaments, consider the tournament Tab

obtained by replacing each node of Ta by a copy of Tb ; if the
node p dominates the node q in Ta originally, then in Ta

each node of the tournament that replaces p dominates each

node of the tournament that replaces q. (When Ta and Tb

are both 3-cycles, the tournament Ta is illustrated in Figure

b
1.) It is not difficult to see that the orders of the groups of T ,
a

Figure 1.

T, and Ta satisfy the inequality

b b

a
g(T ) > &(T) [g(Tb)] .
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Therefore,
(5) g(ab) > g(a) [g(b)]a , for all integers a and b.

In particular, since g(3) = 3, it follows by induction that

(6) g(n) > NE ST S S AT
Hence,
(7) lim sup g(n)iln_>_ N3,

We now use inequality (5) to prove the following result.

LEMMA., If g(m)i/m >y, then g(n)i/n >y - ¢ for any

positive e and all sufficiently large n.

Proof. We assume that y > 1 since the result is obvious

-1 -
otherwise. Let { be the least integer such that vy "t >1-¢efy.
Every sufficiently large integer n can be written in the form
n=km +t, where k>¢ and 0<t<m. Then

g(km+t)1/km+t > g(krn)'l/m(k'f"l)

g(n)i/n

1/m k/k+1 k/k+1
>y

]

> [g(m)

+ -
>Yz/z 1 >Y1 1/

Y(1-¢/y) = y-¢,

as required,

1
Let B = lim sup g(n) /n (We know that ¥ 3< B <2.5.)
For every positive ¢ there exists an integer m such that

g(m)1/m> B-ce.
But then, according to the lemma,

g(n)i/n > B - 2¢
for all sufficiently large n. Hence,
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/

lim inf g(n)'/®> g - 2¢

for every positive ¢ . Therefore,

(8) lim inf g(n)i/n = lim sup g(n)“rl .

The theorem stated in §1 now follows from statements (3),
(7) and (8).

ADDENDUM

Perhaps it should be pointed out that the problem of deter-
mining g(n) is equivalent to the group-theoretic problem of de-
termining the order of the largest subgroup of odd order of Sn’

the symmetric group on n objects.

If H is any subgroup of odd order of SI1 let H acton
the nodes of the complete graph Kn with n nodes. Then H
induces an equivalence relation on the edges of Kn . Assign an

arbitrary orientation to one edge from each equivalence class
and orient the images of these edges under H in the same way.
The fact that H has odd order implies that the orientation of
every edge of Kn is now uniquely determined. This procedure

defines a tournament Tn and it is clear that H is a subgroup
of G(Tn) . If H is chosen to be the largest subgroup of odd
order in Sn then, since g(Tn) is always odd, it must be that
H 1is in fact isomorphic to G(Tn) . It follows, therefore, that
g(n) is the order of the largest subgroup H of odd order of Sn.

It is not difficult to show that in determining the order of the

largest subgroup H of odd order it is sufficient to consider the
case that H is transitive.
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