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1. Introduction

1.1. Motivation

It is well known that the Chow group of 0-cycles on a smooth projective scheme over an

appropriate field describes many other invariants of the scheme, such as Suslin homology,

cohomology of K -theory sheaves, and abelianized étale fundamental groups. However,
this is not the case when the underlying scheme is not projective. The latter case is a

very challenging problem in the theory of algebraic cycles. The principal motivation of

this paper is to explore whether the Levine–Weibel Chow group [50] of normal projective
schemes can be used to solve this problem for those smooth quasiprojective schemes which

are the regular loci of normal projective schemes. The results that we obtain in this paper

suggest that this strategy is indeed a promising one. We describe our main results in some

detail.

1.2. Levine–Weibel Chow group and class field theory

The aim of the class field theory in the geometric case is to describe the abelian étale

coverings (which are extrinsic to the scheme) of a scheme over a finite field in terms
of some arithmetic or geometric invariants (such as the Chow groups of 0-cycles) which

are intrinsic to the scheme. Let k be a finite field and X an integral smooth projective

scheme over k. Let CHF
0 (X) denote the classical [17] Chow group of 0-cycles and let

CHF
0 (X)0 denote the kernel of the degree map degX : CHF

0 (X)→ Z. Let πab
1 (X) denote

the abelianized étale fundamental group of X (see, for example, [74, §5.8]) and let πab
1 (X)0

denote the kernel of the canonical map πab
1 (X)→Gal

(
k/k

)
induced by the structure map

of X. The following is the main theorem of the geometric class field theory for smooth

projective schemes. The case of curves was earlier proven by Lang [45], based on Artin’s

reciprocity theorem for local and global fields [2].

Theorem 1.1 (37, Theorem 1). Let X be an integral smooth projective scheme over a

finite field. Then the map φ0
X : CHF

0 (X)0 → πab
1 (X)0, induced by sending a closed point

to its associated Frobenius element, is an isomorphism of finite groups.

If U is a smooth quasiprojective scheme over a finite field k which is not projective,

then one does not know in general how to describe πab
1 (U) in terms of 0-cycles. It was

shown by Schmidt and Spieß [67] and Schmidt [66] that the tame quotient of πab
1 (U) is

described by the Suslin homology of U. But we do not yet know if the abelian covers of

U with wild ramifications could be described in terms of the Chow group of 0-cycles on a

compactification of U. Our main result in this direction provides a partial answer to this
problem.

Let CHLW
0 (X) denote the Levine–Weibel Chow group of 0-cycles of a scheme X [50]

(see §2.1 for a reminder of its definition).
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Theorem 1.2. Let X be an integral projective scheme over a finite field which is regular
in codimension 1. Then the Frobenius substitution associated to the regular closed points

gives rise to a reciprocity homomorphism

φX : CHLW
0 (X)→ πab

1 (Xreg),

which restricts to a surjective homomorphism φ0
X : CHLW

0 (X)0 � πab
1 (Xreg)

0
. The map

φ0
X is an isomorphism of finite groups in one of the following cases:

(1) X has only isolated singularities.

(2) X is regular in codimension 3 and its local rings satisfy Serre’s S4 condition.

It readily follows that in these cases, the map φX is injective with uniquely divisible

cokernel Ẑ/Z (see diagram (3.3)). Note also that the finiteness of the source and target

of φ0
X is part of our assertion, and was not known before.

Without assumptions (1) or (2) in Theorem 1.2, we prove the following:

Theorem 1.3. Let X be an integral projective scheme over a finite field which is

regular in codimension 1. Then the reciprocity homomorphism of Theorem 1.2 induces
an isomorphism of finite groups

φX : CHLW
0 (X)/m→ πab

1 (Xreg)/m

for every integer m ∈ k×.

1.3. Bloch’s formula for the Levine–Weibel Chow group

In the theory of algebraic cycles, Bloch’s formula describes the Chow group of algebraic

cycles of codimension d on a smooth scheme (of any dimension) over a field as the dth
Zariski or Nisnevich cohomology of an appropriate Milnor or Quillen K -theory sheaf. A

statement of this kind plays a central role in the study of algebraic cycles on smooth

schemes. Bloch’s formula for smooth schemes in the case d= 1 is classical, the case d= 2
is due to Bloch [8], and the general case is due to Quillen [60]. This formula for the Chow

group of 0-cycles on smooth schemes in terms of the Milnor K -theory is due to Kato [33].

Bloch’s formula for the Levine–Weibel Chow group is well known for singular curves

[50, Proposition 1.4]. However, it is a very challenging problem in higher dimensions.
This formula for singular surfaces over algebraically closed fields is due to Levine [48].

For projective surfaces over infinite fields, the formula was recently proven by Binda,

Krishna, and Saito [5, Theorem 8.1]. Bloch’s formula for the Levine–Weibel Chow group
of singular projective schemes over nonalgebraically closed fields is yet unknown in any

other case.

Suppose that X is a quasiprojective scheme of pure dimension d over a perfect1 field
k and x ∈ Xreg is a regular closed point. One then knows by [33, Theorem 2] that

there is a canonical isomorphism Z
∼=−→ KM

0 (k(x))
∼=−→ Hd

x

(
X,KM

d,X

)
, where the latter is

the Nisnevich cohomology with support, KM
n (R) is the Milnor K -theory on a ring R,

1Perfectness is not required by [27, Lemma 3.7].
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and KM
i,X is the Nisnevich sheaf of Milnor K -theory on X (as defined, for instance, in

[33, §0])2. Hence, using the ‘forget support’ map for x and extending it linearly to the

free abelian group on all regular closed points of X, we get the cycle class homomorphism

cycX : Z0 (Xreg)→Hd
nis

(
X,KM

d,X

)
. (1.1)

As an application of Theorem 1.2 and the class field theory of Kato and Saito [35],

we prove the following:

Theorem 1.4. Let X be an integral projective scheme of dimension d over a finite field

which satisfies one of the following:

(1) X has only isolated singularities.

(2) X is regular in codimension 3 and its local rings satisfy Serre’s S4 condition.

Then the cycle class map induces an isomorphism

cycX : CHLW
0 (X)

∼=−→Hd
nis

(
X,KM

d,X

)
.

In case of isolated singularities, one can also include the Zariski topology and Quillen

K -theory sheaf Kd,X in Theorem 1.4 (see §2.4). We remark that the existence of cycX on

CHLW
0 (X) is part of our assertion, and was not previously known.

1.4. Levine–Weibel Chow group and 0-cycles with modulus

Let X be an integral projective scheme of dimension d ≥ 2 over a field which is regular
in codimension 1. Let us assume that a resolution of singularities f : X̃ →X exists in the

sense of Hironaka. Let E ↪→ X̃ denote the reduced exceptional divisor. Let CH0

(
X̃ |mE

)
denote the Chow group of 0-cycles with modulus (see §3.3). It is not hard to see that

the identity map of Z0 (Xreg) induces a surjection CHLW
0 (X) � CH0

(
X̃ |mE

)
for all

integers m ≥ 1. The following application of Theorem 1.2 is an extension of the Bloch–

Srinivas conjecture (which was proven for normal surfaces in [44]) to higher dimensions
over finite fields:

Theorem 1.5. Let X be an integral projective scheme of dimension d ≥ 2 over a finite
field which satisfies one of the following:

(1) X has only isolated singularities.

(2) X is regular in codimension 3 and its local rings satisfy Serre’s S4 condition.

Let f : X̃ →X be a resolution of singularities with the reduced exceptional divisor E. Then

the pullback map f∗ : Z0 (Xreg)→Z0

(
X̃ \E

)
induces an isomorphism

f∗ : CHLW
0 (X)

∼=−→ CH0

(
X̃ |mE

)
for all m� 0.

2We could use the improved Milnor K -theory of Kerz instead, but it will make no difference in
the top cohomology.
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If X is defined over an algebraically closed field, Theorem 1.5 was proven by Gupta
and Krishna [26, Theorem 1.8] (see also [39] and [40] for earlier results).

1.5. Levine–Weibel Chow group and Suslin homology

The Suslin homology was introduced by Suslin and Voevodsky [73] with the objective

of constructing an analogue of the singular homology of topological spaces for algebraic

schemes. It is now a part of the motivic cohomology with compact support of schemes, in
the sense of A1-homotopy theory. Because of this, Suslin homology is now a well-studied

theory, and there are many known results which can be used for its computation. On

the contrary, the Levine–Weibel Chow group is only conjecturally a part of a motivic
cohomology theory of singular schemes, and is much less accessible.

Our next main result, however, provides an identification between the two groups and

provides a strong evidence that over algebraically closed fields of positive characteristic,

the conjectural motivic cohomology of a normal projective scheme should coincide with
the already-known motivic cohomology with compact support of its regular locus.

Theorem 1.6. Let X be an integral projective scheme of dimension d≥ 1 over a field k

which is regular in codimension 1. Then there is a canonical surjective homomorphism

θX : CHLW
0 (X)�HS

0 (Xreg) .

Furthermore, we have the following if k is algebraically closed:

(1) θX is an isomorphism if char(k)> 0.

(2) θX/n : CHLW
0 (X)/n → HS

0 (Xreg)/n is an isomorphism for all integers n �= 0 if

char(k) = 0.

We shall show (see §8.7) that the condition that k is algebraically closed in part (1) is

essential. When char(k) = 0, we expect that Ker(θX) is a (large) divisible group.

1.6. Roitman torsion theorem for Suslin homology

Let k be an algebraically closed field. Let U be a smooth quasiprojective scheme over
k which admits an open embedding U ↪→ X, where X is smooth and projective over

k. Then Spieß and Szamuely [72] showed that the Albanese map into the generalized

Albanese variety (à la Serre) of U induces a homomorphism ϑU : HS
0 (U)→ AlbS(U)(k),

which is an isomorphism on the prime-to-p torsion subgroups, where p is the exponential

characteristic of k. This was a crucial breakthrough in eliminating the projectivity

hypothesis from the famous Roitman torsion theorem for the Chow group of 0-cycles [63].
Geisser [18] subsequently showed that the prime-to-p condition in the torsion theorem

of Spieß and Szamuely could be eliminated if one assumed resolution of singularities. The

final result of this paper eliminates the prime-to-p condition from the torsion theorem of

Spieß and Szamuely without assuming resolution of singularities.
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Theorem 1.7. Let U be a smooth quasiprojective scheme over an algebraically closed
field k. Suppose that there exists an open immersion U ⊂X such that X is smooth and

projective over k. Then the Albanese homomorphism

ϑU : HS
0 (U)tor →AlbS(U)(k)tor

is an isomorphism.

1.7. Overview of proofs

The proofs of our main results broadly have two main steps, namely, the construction of
the underlying maps and the proof that these maps are isomorphisms. The first part is

achieved by means of a moving lemma for the Levine–Weibel Chow group. The heart of

the problem is the more challenging second part.

Following an induction technique, we first prove our results for surfaces. To take care
of higher dimensions, we establish new Lefschetz hypersurface3 section theorems for

several invariants of smooth quasiprojective (but not necessarily projective) and singular

projective schemes. We may emphasize that these Lefschetz theorems are of independent
interest, and we expect them to have several applications elsewhere. They allow us to

reduce the proofs of the main results to the case of surfaces.

We prove the moving lemma (Lemma 2.4) and its consequences in §2. Using this, we
construct the reciprocity map (Corollary 3.3) and prove the reciprocity isomorphism for

surfaces (Theorem 3.6) in §3. We prove the Lefschetz theorems for the étale cohomology

(Proposition 5.3) and the abelianized étale fundamental group (Theorem 5.4) in §5. They
allow us to prove Theorem 1.2 in §6. We then combine this result with the class field
theory of [35] to prove Theorems 1.4 and 1.5 in §6.
The heart of the proofs of Theorems 1.6 and 1.7 are the following two results: a

Lefschetz hypersurface section theorem for the generalized Albanese variety of smooth
quasiprojective schemes and an identification of Suslin homology with the Chow group

of 0-cycles of a certain modulus pair. This first result is shown in §7, and the second in

§8.3. The latter section also contains the proof of Theorem 1.6. We combine the Lefschetz
theorem with a result of Geisser [18] to prove Theorem 1.7 in §9, following a delicate

blowup trick.

1.8. Notations

We shall, in general, work with an arbitrary base field k even if our main results are

over either finite or algebraically closed fields. We let Schk denote the category of
quasiprojective k -schemes and Smk the category of smooth quasiprojective k -schemes.

A product X×k Y in Schk will be simply written as X×Y . For a reduced scheme X, we

let Xn denote the normalization of X.

For any excellent scheme X, we let Xo denote the regular locus of X. One knows that
Xo is an open subscheme of X that is dense if X is generically reduced. We shall let

3We call them hypersurface section theorems because we use hypersurfaces of large degree
instead of only the hyperplanes used in some of the classical Lefschetz theorems.
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Xsing denote the singular locus of X. If X is reduced, we shall consider Xsing as a closed
subscheme of X with the reduced induced structure. For any Noetherian scheme X, we

shall denote its étale fundamental group with a base point x∈X by π1(X,x). We shall let

πab
1 (X) denote the abelianization of π1(X,x). One knows that πab

1 (X) does not depend
on the choice of the base point x ∈ X. We shall consider πab

1 (X) a topological abelian

group with its profinite topology.

For X ∈ Schk equidimensional, we let X(i) denote the set of codimension i points and

X(i) the set of dimension i points on X for i ≥ 0. We shall let Zi(X) denote the free

abelian group on X(i) and CHF
i (X) the Chow group of cycles of dimension i as defined

in [17, Chapter 1]. For an abelian group A, we shall denote the torsion and the p-primary
torsion subgroups of A by Ator and A{p}, respectively, for any prime p. For a commutative

ring Λ, we shall write AΛ for A⊗ZΛ.

2. Zero-cycles on R1-schemes

In this section, we shall recall the definition of the Levine–Weibel Chow group of an R1-

scheme and prove some preliminary results about this group. Recall from [52, p. 183] that

a Noetherian scheme X is called an Ra-scheme if it is regular in codimension a, where
a ≥ 0. One says that X is an Sb-scheme if for all points x ∈X, one has depth(OX,x) ≥
min{b, dim(OX,x)}. We shall say that a Noetherian scheme X is an (Ra+Sb)-scheme for

a ≥ 0 and b ≥ 0 if it is an Ra- as well as an Sb-scheme. A Noetherian commutative ring

will be called an Ra-ring (resp., Sb-ring) if its Zariski spectrum is so.

2.1. The Levine–Weibel Chow group

Let k be any field and X a reduced quasiprojective scheme of dimension d ≥ 2 over k.
Recall from [3, Definition 3.5] that a Cartier curve on X is a purely 1-dimensional reduced

closed subscheme C ↪→ X, none of whose irreducible components is contained in Xsing,

and whose defining sheaf of ideals is a local complete intersection in OX at every point

of C ∩Xsing. Let k(C) denote the ring of total quotients for a Cartier curve C on X, and
let {C1, . . . ,Cr} be the set of irreducible components of C. For f ∈ O×

C,C∩Xsing
⊂ k(C)×,

let fi ∈ k(Ci)
× be the image of f under the projection O×

C,C∩Xsing
↪→ k(C)× � k(Ci)

×.

We let div(f) =
r∑

i=1

div(fi) ∈ Z0(X
o) be the cycle associated to f. We let RLW

0 (X) denote

the subgroup of Z0(X
o) generated by div(f), where C ⊂ X is a Cartier curve and f ∈

O×
C,C∩Xsing

. The Levine–Weibel Chow group of X is the quotient Z0(X
o)/RLW

0 (X) and

is denoted by CHLW
0 (X).

It is immediate from the definition that CHLW
0 (X) coincides with CHF

0 (X) if X is
regular. We also remark that the foregoing definition of CHLW

0 (X) is slightly different

from that of [50]. However, this difference disappears if k is infinite, as a consequence

of [49, Lemma 1.4]. If X is integral and projective over k, there is a degree map
deg : CHLW

0 (X)→ Z and we let CHLW
0 (X)0 be the kernel of this map.

Let Rlci
0 (X) be the subgroup of Z0(X

o) generated by ν∗(div(f)) for f ∈ O×
C,ν−1(Xsing)

,

where ν : C →X is a finite morphism from a reduced curve of pure dimension 1 over k
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such that the image of none of the irreducible components of C is contained in Xsing

and ν is a local complete intersection (lci) morphism at every point x ∈ C such that

ν(x) ∈Xsing. Such a curve C is called a good curve relative to Xsing. The lci Chow group

of 0-cycles for X is the quotient CHlci
0 (X) = Z0(X

o)/Rlci
0 (X). This modification of the

Levine–Weibel Chow group was introduced in [3].

Clearly, the identity map of Z0(X
o) induces a surjection CHLW

0 (X)� CHlci
0 (X). If k

is infinite, we can say the following:

Lemma 2.1. Assume that k is infinite and X is an R1-scheme. Then the canonical map

CHLW
0 (X)� CHlci

0 (X) is an isomorphism.

Proof. Let ν : C → X be a good curve relative to Xsing, and let Z = ν−1 (Xsing). It
suffices to show that ν∗(div(f)) ∈ RLW

0 (X) for any f ∈ O×
C,Z . Since ν is finite, we can

find a factorization

Pn
X

g

��

C

i

��������

ν
�� X,

(2.1)

where i is a closed immersion and g is the canonical projection. Setting X ′ = Pn
X , we see

that X ′ is an R1-scheme and X ′
sing = g−1 (Xsing). In particular, i−1

(
X ′

sing

)
⊆ Z. Since

ν is an lci morphism along Xsing and g is smooth, it follows that the closed immersion

i is regular along X ′
sing. In other words, C is embedded as a Cartier curve on X ′. One

deduces that div(f) ∈RLW
0 (X ′).

Since X ′ is R1 and k is infinite, it follows from [7, Lemma 2.1] (see also [49, Lemma 1.4])

that there are closed reduced curves C ′
i ⊂ X ′ and rational functions fi ∈ k (C ′

i)
×

such

that C ′
i ⊂ X ′o and div(f) =

∑
idiv(fi) ∈ Z0(X

′o). If g (C ′
i) is a point, then clearly

g∗(div(fi)) = 0, as the map C ′
i → X then factors through a regular closed point and

g∗(div(fi)) is already zero in the Chow group of the closed point. Otherwise, we let

Ci = g (C ′
i) and assume that the map C ′

i → Ci is finite. Then each Ci ⊂ X is clearly a

Cartier curve, as it does not meet Xsing. Let Ni : k (C
′
i)

× → k(Ci)
× denote the norm map.

We then have

ν∗(div(f)) = g∗(div(f)) =
∑
i

g∗(div(fi)) =
∑
i

div(Ni(fi)),

and it is clear that div(Ni(fi)) ∈RLW
0 (X) for every i.

2.2. The moving lemma

One of the key ingredients for proving Theorem 1.2 is a moving lemma for the Levine–

Weibel Chow group over finite fields, which we shall prove in this subsection.

Let k be any field and X ∈ Schk an integral R1-scheme. Let A⊂X be a closed subset
of X of codimension ≥ 2 such that Xsing ⊆ A. We let RLW

0 (X,A) be the subgroup of

Z0(X \A) generated by div(f), where f is a nonzero rational function on an integral

curve C ⊂ X such that C ∩A = ∅. We define CHLW
0 (X,A) := Z0(X \A)/RLW

0 (X,A).
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We define CHlci
0 (X,A) in an analogous way. The inclusion Z0(X \A) ↪→Z0(X

o) preserves
the subgroups of rational equivalences. Hence, we get canonical maps

CHLW
0 (X,A)→ CHLW

0 (X), CHlci
0 (X,A)→ CHlci

0 (X).

Lemma 2.2. The canonical surjection CHLW
0 (X,A)� CHlci

0 (X,A) is an isomorphism.

Proof. Let ν : C →X be a finite morphism from an integral curve such that ν(C)∩A= ∅.
It suffices to show that ν∗(div(f)) ∈RLW

0 (X,A) for any f ∈ k(C)×. But the proof of this

is identical to that of [17, Theorem 1.4] (see the last part of the proof of Lemma 2.1).

We shall need the following application of the Bertini theorems of Altman and Kleiman

[1] and Wutz [77] (which is a small modification of the Bertini theorem of Poonen [59]):

Lemma 2.3. Assume that k is perfect, dim(X) ≥ 2, and W ⊂ Xo
(0) is a finite set. Let

B ⊂ A be any closed subset containing Xsing such that B ∩W = ∅. We can then find a
smooth integral curve C ⊂X containing W such that C ∩B = ∅ and C �⊂A.

Proof.We let ν : Xn →X be the normalization morphism and let B̃= ν−1(B). We choose

a dense open immersion Xn ↪→ Y such that Y is an integral projective normal k -scheme.

We let B′ be the Zariski closure of B̃ in Y. Then dim(B′) ≤ dim(X)−2. We let S ⊂ B′

be a finite closed subset whose intersection with every irreducible component of B′ is
nonempty. We fix a closed embedding Y ↪→ Pn

k . We choose a closed point x∈ π−1(Xo \A)
and set Z =W ∪{x}.
By the Bertini theorems of Altman and Kleiman [1, Theorem 1] (when k is infinite) and

Wutz [77, Theorem 3.1] (with C = S and T =H0
zar(S,O×

S ) when k is finite), we can find

a hypersurface H ⊂ Pn
k containing Z and disjoint from S such that Yreg ∩H is smooth.

The condition S∩H = ∅ implies that dim(B′∩H)≤ dim(B′)−1≤ dim(X)−3.
Since Y is normal, it follows from [23, Exposé XII, Corollaire 3.5] that Y ∩H is

connected. In particular, Yreg ∩H is connected and smooth. Hence, it is integral. By

iterating this process dim(X)− 1 times, we get an integral curve C ′ ⊂ Y containing Z

such that dim(B′∩C ′)≤ (dim(X)−2)− (dim(X)−1)< 0. In particular, B′∩C ′ = ∅ and
C ′ �⊂ π−1(A). We let C = π(C ′∩Xn). Then C satisfies the desired properties.

The moving lemma we want to prove is the following:

Lemma 2.4. Let k be any field. Then the canonical map

CHLW
0 (X,A)→ CHLW

0 (X) (2.2)

is an isomorphism. The same holds also for the lci Chow group.

https://doi.org/10.1017/S1474748022000032 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748022000032


2250 M. Ghosh and A. Krishna

Proof. We can assume that dim(X) ≥ 2 because the lemma is trivial otherwise. Before

we begin the proof, we note that one always has the commutative diagram

CHLW
0 (X,A) ��

��

CHLW
0 (X)

��

CHlci
0 (X,A) �� CHlci

0 (X).

(2.3)

Suppose now that k is infinite. Since X is R1, the top horizontal arrow is known to be

an isomorphism (see [7, Lemma 2.1] and [49, Lemma 1.4]). The right (resp., left) vertical

arrow is an isomorphism by Lemma 2.1 (resp., Lemma 2.2). It follows that the bottom

horizontal arrow is an isomorphism.
We now assume that k is finite and prove the injectivity of formula (2.2). Let α ∈

CHlci
0 (X,A) be a cycle which dies in CHlci

0 (X). Let 	1 �= 	2 be two distinct prime numbers

and let ki be the pro-	i algebraic extension of k for i=1,2. For i=1,2, [3, Proposition 6.1]
says that there is a commutative diagram

CHlci
0 (X,A) ��

��

CHlci
0 (X)

��

CHlci
0 (Xki

,Aki
) �� CHlci

0 (Xki
) .

(2.4)

The bottom horizontal arrow is an isomorphism because ki is infinite. It follows that

α dies in CHlci
0 (Xki

,Aki
). It follows from [3, Proposition 6.1] (by a straightforward

modification, explained in [27, Proposition 8.5]) that there is a finite algebraic extension

k ↪→ k′i inside ki such that α dies in CHlci
0

(
Xk′

i
,Ak′

i

)
. We apply [3, Proposition 6.1] once

again to conclude that 	ni α= 0 for i= 1,2 and some n� 1. Since 	n1 and 	n2 are relatively
prime, it follows that α= 0. We have thus shown that the map CHlci

0 (X,A)→ CHlci
0 (X)

is injective.

To show the same for the Levine–Weibel Chow group, we use diagram (2.3) again. The

left vertical arrow is an isomorphism by Lemma 2.2. We just showed that the bottom
horizontal arrow is injective. It follows that the top horizontal arrow is also injective.

It remains to show that formula (2.2) is surjective when k is finite. For this, we fix a

closed point x ∈Xo. We need to show that there is a 0-cycle α ∈ Z0(X
o) supported on

Xo \A such that the cycle class [x] coincides with α in CHLW
0 (X).

To that end, we let C ⊂X be a curve as in Lemma 2.3 with W = {x} and B =Xsing.

We let CHF
0 (C,C ∩A) be the cokernel of the map O×

C,C∩A
div−−→ Z0(C \A). Using the

isomorphism CHF
0 (C)∼=H1

zar

(
C,O×

C

)
and taking the colimit over the exact sequences for

the cohomology of O×
C with support in finite closed subsets S ⊂ C \A, one easily checks

that the canonical map CHF
0 (C,C ∩A)→ CHF

0 (C) is an isomorphism. In particular, the

0-cycle [x] on C coincides with a 0-cycle α′ ∈ CHF
0 (C) supported on C \A.

Since C ∩Xsing = ∅, we have a push-forward map ι∗ : CH
F
0 (C) → CHLW

0 (X), where

ι : C ↪→ X is the inclusion. Letting α = ι∗(α
′), we achieve our claim. This proves

the surjectivity of formula (2.2) for the Levine–Weibel Chow group. Since the map
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CHLW
0 (X)→ CHlci

0 (X) is surjective by definition, it follows that the map CHlci
0 (X,A)→

CHlci
0 (X) is also surjective. This concludes the proof.

We now draw some consequences of the moving lemma. The first is an extension of
Lemma 2.1 for integral R1-schemes over finite fields.

Theorem 2.5. Let k be any field and X ∈ Schk an integral R1-scheme. Then the

canonical map CHLW
0 (X)→ CHlci

0 (X) is an isomorphism.

Proof. By Lemma 2.1, we assume that k is finite. We look at the commutative diagram

(2.3). Its left vertical arrow is an isomorphism (without any condition on k), by Lemma

2.2. The two horizontal arrows are isomorphisms by Lemma 2.4. The theorem now follows.

The next two applications show that the Levine–Weibel Chow groups of R1-schemes

admit pullback and push-forward maps. Note that neither of these maps was previously

known to exist.

Corollary 2.6. Let k be any field and X ∈ Schk an integral R1-scheme. Let f : X ′ →
X be a morphism in Schk such that X ′

sing ⊆ f−1 (Xsing) and the resulting map

f−1 (Xreg)→Xreg is finite and surjective. Then f∗ : Z0(X
o)→Z0(X

′o) induces a pullback
homomorphism

f∗ : CHLW
0 (X)→ CHLW

0 (X ′).

This is an isomorphism if f is the normalization morphism.

Proof. The proof of the existence of f∗ is a routine construction following [17, Chapter 1],

once we note that the map f−1 (Xreg)→Xreg is finite and flat. The assertion that f∗ is

an isomorphism if f is the normalization follows directly from Lemma 2.4.

Corollary 2.7. Let f : X ′ →X be a proper morphism of integral quasiprojective schemes

over a field k. Assume that f−1 (Xsing) has codimension ≥ 2 in X ′ and contains X ′
sing.

Then the push-forward between the cycle groups f∗ : Z0

(
X ′ \f−1 (Xsing)

)
→ Z0(X

o)
descends to a homomorphism

f∗ : CH
LW
0 (X ′)→ CHLW

0 (X).

Proof. The hypothesis of the corollary implies that X ′ is R1. We let A′ = f−1 (Xsing).

Using Lemma 2.4 and the canonical map CHLW
0 (X,Xsing) → CHLW

0 (X), it suffices to

construct the homomorphism f∗ : CH
LW
0 (X ′,A′) → CHLW

0 (X,Xsing). But this can be
achieved by repeating the construction of the proper push-forward map for the classical

Chow groups in [17, §1.4].

2.3. The cycle class map

Let k be any field and X ∈ Schk of pure dimension d. Let KM
i,X be the Zariski

(or Nisnevich) sheaf of Milnor K -theory on X [33, §0]. Let Ki,X denote the Zariski

(or Nisnevich) sheaf of Quillen K -theory on X. The product structures on the Milnor
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and Quillen K -theory yield a natural map of sheaves KM
i,X →Ki,X . In formula (1.1), we

defined the cycle class homomorphism (this could be trivial, for example, if Xo = ∅)

cycX : Z0(X
o)→Hd

zar

(
X,KM

d,X

)
. (2.5)

Using the Thomason–Trobaugh spectral sequence for Quillen K -theory [75,

Theorem 10.3], there are canonical maps Hd
zar (X,Kd,X) → Hd

nis (X,Kd,X) → K0(X).

These maps fit into a commutative diagram [26, Lemma 3.2]

Hd
zar

(
X,KM

d,X

)
��

��

Hd
nis

(
X,KM

d,X

)
��

Z0(X
o) ��

cycX

�����������

c̃ycX

��
Hd

zar (X,Kd,X) �� Hd
nis (X,Kd,X) �� K0(X)

(2.6)

such that the composite map Z0(X
o)→K0(X) is the cycle class map [50, Proposition 2.1]

which takes a closed point x ∈Xo to the class [k(x)] ∈K0(X). Note also that any closed

point x∈Xo has a class [k(x)]∈K0(X,D), where the latter is the 0th homotopy group of

the S1-spectrum K(X,D) defined as the homotopy fiber of the pullback map of spectra

K(X) → K(D) for any closed subscheme D supported on Xsing. Moreover, there is a
factorization Z0(X

o)→K0(X,D)→K(X).

As an analogue of Bloch’s formula, one asks whether the cycle class homomorphism

Z0(X
o)→Hd

nis

(
X,KM

d,X

)
factors through CHLW

0 (X) and whether the resulting map is

an isomorphism when X is reduced. We shall prove some new results on this question in

this paper. We consider a special case in what follows.

2.4. The case of isolated singularities

Let us now assume that X is reduced and equidimensional, and has only isolated
singularities. Let S denote the finite set of singular points. We consider the sequence

of Zariski sheaves of Milnor K -groups [33, §0]:

KM
m,X

ε−→

⎛⎜⎜⎝
∐

x∈X(0)

(ix)∗K
M
m (k(x))

⊕∐
P∈S

(iP )∗K
M
m (OX,P )

⎞⎟⎟⎠ e0−→

⎛⎜⎜⎜⎝
∐

x∈X(1)

(ix)∗K
M
m−1(k(x))

⊕∐
P∈S

∐
P∈{x},x∈X(0)

(iP )∗K
M
m (k(x))

⎞⎟⎟⎟⎠ e1−→ ·· ·

(2.7)

· · · ed−1−−−→

⎛⎜⎜⎜⎝
∐

x∈X(d)

(ix)∗K
M
m−d(k(x))

⊕∐
P∈S

∐
P∈{x},x∈X(d−1)

(iP )∗K
M
m−d+1(k(x))

⎞⎟⎟⎟⎠ ed−→

⎛⎜⎝ 0
⊕∐

P∈S

(iP )∗K
M
m−d(k(P ))

⎞⎟⎠→ 0.
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Here the map ε is induced by the inclusion into both terms and the other maps are given
by the matrices

e0 =

(
∂1 0

−Δ ε

)
,e1 =

(
∂1 0

Δ ∂2

)
, · · · ,ed =

(
0 0

±Δ ∂2

)
,

with ∂1 and ∂2 being the differentials of the Gersten–Quillen complex for Milnor K -theory

sheaves as described in [33] and Δs being the diagonal maps.

Lemma 2.8. This sequence of maps forms a complex which gives a flasque resolution of

the sheaf ε
(
KM

m,X

)
in Zariski and Nisnevich topologies.

Proof. A similar complex for the Quillen K -theory sheaves is constructed in [58, §5],
and it is shown there that this complex is a flasque resolution of ε(Km,X). The same

proof works here verbatim. On all stalks except at S, the exactness follows from [37,

Proposition 10]. The exactness at the points of S is an immediate consequence of the way

the differentials are defined in formula (2.7) (see [58] for details).

Proposition 2.9. Let X ∈ Schk be integral of dimension d ≥ 1 with only isolated
singularities, and let τ denote Zariski or Nisnevich topology. Then there are canonical

maps

CHLW
0 (X)

cycX−−−→Hd
τ

(
X,KM

d,X

)
→Hd

τ (X,Kd,X)→ CHF
0 (X),

in which the middle arrow is an isomorphism. Furthermore, all arrows in the middle

square of diagram (2.6) are isomorphisms.

Proof. The case d = 1 is well known [50, Proposition 1.4]. We can thus assume that

d ≥ 2. Let S denote the singular locus of X and let X
(j)
S denote the set of points

x ∈ X of codimension j such that S ∩ {x} = ∅. We first observe that the map of

sheaves KM
d,X � ε

(
KM

d,X

)
is generically an isomorphism, and the same holds for the

Quillen K -theory sheaves. It follows [29, Exercise II.1.19, Lemma III.2.10] that the map

Hd
τ

(
X,KM

d,X

)
→Hd

τ

(
X,ε

(
KM

d,X

))
is an isomorphism, and ditto for the Quillen K -theory

sheaves. It follows from Lemma 2.8 that both Hd
τ

(
X,KM

d,X

)
and Hd

τ (X,Kd,X) are given

by the middle homology of the complex CX :⎛⎜⎜⎜⎝
∐

x∈X(d−1)

K1(k(x))

⊕∐
P∈S

∐
P∈{x}

K2(k(x))

⎞⎟⎟⎟⎠ ed−1−−−→

⎛⎜⎜⎜⎝
∐

x∈X(d)

K0(k(x))

⊕∐
P∈S

∐
P∈{x}

K1(k(x))

⎞⎟⎟⎟⎠ ed−→

⎛⎜⎝ 0

⊕∐
P∈S

K0(k(P ))

⎞⎟⎠ .

On the other hand, letting C0
X and CF,0

X denote, respectively, the complexes∐
x∈X

(d−1)
S

K1(k(x))
div−−→

∐
x∈X

(d)
S

K0(k(x))→ 0,

∐
x∈X(d−1)

K1(k(x))
div−−→

∐
x∈X(d)

K0(k(x))→ 0,
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we see that there are canonical maps of chain complexes C0
X ↪→ CX � CF,0

X . This

yields canonical maps H1

(
C0
X

)
→Hd

τ

(
X,KM

d,X

) ∼=−→Hd
τ (X,Kd,X)→H1

(
CF,0
X

)
. It follows,

however, from Lemma 2.4 that H1

(
C0
X

) ∼= CHLW
0 (X). It is also clear that H1

(
CF,0
X

)
∼=

CHF
0 (X). The second assertion is clear. This concludes the proof.

3. Zero-cycles on surfaces

In this section, we shall define the reciprocity maps. We shall then restrict to the case

of surfaces and prove several results which will essentially be enough to prove the main
theorems of this paper in this special case.

3.1. The reciprocity maps

Let k be a finite field and X ∈ Schk an integral R1-scheme of dimension d ≥ 1. Given

a closed point x ∈Xo, we have the push-forward map (ιx)∗ : π1(Spec (k(x)))→ π1(X
o),

where ι : Spec (k(x)) ↪→Xo is the inclusion. We let φX([x]) = (ιx)∗(Fx), where Fx is the

Frobenius automorphism of k(x), which is the topological generator of Gal
(
k(x)/k(x)

)
∼=

π1(Spec (k(x))) ∼= Ẑ. Extending it linearly, we get the reciprocity map φX : Z0(X
o) →

πab
1 (Xo). By [35, Theorem 2.5], the cycle class map cycX : Z0(X

o)→Hd
nis

(
X,KM

d,X

)
is

surjective.

Lemma 3.1. There exists a homomorphism ρX : Hd
nis

(
X,KM

d,X

)
→ πab

1 (Xo) such that

φX = ρX ◦ cycX .

Proof. We let KM
i,(X,Y ) = Ker

(
KM

i,X �KM
i,Y

)
for any closed subscheme Y ⊂X. We now

look at the diagram

lim←−
Y

Hd
nis

(
X,KM

d,(X,Y )

) ∼= ��

��

ψX

����
���

���
���

��

Hd
nis

(
X,KM

d,X

)
ρX

��

Z0(X
o)

cyc′X

�������������
ηX ��

φX

		
lim←−
Y ,m

Hd
nis

(
X,KM

d,(X,Y )

)
/m

∼= �� πab
1 (Xo),

(3.1)

where Y ranges over all closed subschemes of X contained in Xsing and m ranges over

all nonzero integers. The top horizontal arrow is the map induced on the cohomology
by the inclusion of Nisnevich sheaves KM

d,(X,Y ) ↪→KM
d,X . All such maps are isomorphisms,

because dim(Y ) ≤ d−2. This explains why the top horizontal arrow is an isomorphism.

The cycle class map cycX clearly factors through Z0(X
o)→Hd

nis

(
X,KM

d,(X,Y )

)
for any

Y ⊂Xsing, because Hd
{x}

(
X,KM

d,(X,Y )

) ∼=−→Hd
{x}

(
X,KM

d,X

)
for any closed point x ∈Xo.

The limit of all these maps is cyc′X . Hence, cycX is the composition of cyc′X with the top

horizontal arrow.
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The middle vertical arrow is induced by the canonical surjections Hd
nis

(
X,KM

d,(X,Y )

)
�

Hd
nis

(
X,KM

d,(X,Y )

)
/m. The bottom horizontal arrow on the right is given by [35,

Theorem 9.1(3)], and is an isomorphism. The arrows ηX and ψX are defined so that
the triangles on the two sides of the middle vertical arrow commute. It follows from [35,

Proposition 3.8(2)] that ψX ◦ cyc′X = φX . We deduce from this that there is a unique

homomorphism ρX : Hd
nis

(
X,KM

d,X

)
→ πab

1 (Xo), which factors φX via cycX .

Lemma 3.2. For any closed subset A⊂X of codimension ≥ 2 and containing Xsing, the

reciprocity map φX descends to a homomorphism

φX : CHLW
0 (X,A)→ πab

1 (X \A).

Proof. If d = 1, then X is a connected smooth projective curve over k (note that k is

perfect) with A = ∅, and one knows that CHLW
0 (X) ∼= CHF

0 (X). The lemma therefore

follows from the classical class field theory in this case.
To prove that φX kills RLW

0 (X,A) in general, we need to show that φX(div(f)) = 0 if

f is a nonzero rational function on an integral projective curve C ⊂X \A. So we choose

any such curve C and f ∈ k(C)×. Let ν : Cn →C ↪→X be the composite map, where ν is
the normalization morphism. We then have a commutative diagram [62, Lemma 5.1(1)]

Z0(Cn)
φCn ��

ν∗

��

πab
1 (Cn)

ν∗

��

Z0(X \A) φX �� πab
1 (X \A).

(3.2)

Since div((f)C) = ν∗ (div((f)Cn
)), this diagram reduces the problem to showing that

φCn
(div((f)Cn

)) = 0. But this has already been shown.

In view of Lemma 2.4 (with A=Xsing), Lemma 3.2 implies the following:

Corollary 3.3. The reciprocity map φX descends to a homomorphism

φX : CHLW
0 (X)→ πab

1 (Xo).

It is clear that there is a commutative diagram (with exact rows)

0 �� CHLW
0 (X)0 ��

φ0
X

��

CHLW
0 (X)

deg
��

φX

��

Z� �

��

0 �� πab
1 (Xo)0 �� πab

1 (Xo) �� Ẑ.

(3.3)

3.2. Reciprocity map for surfaces

We assume now that X is an integral projective R1-scheme of dimension 2 over a field k.
By Proposition 2.9, there are canonical maps

CHLW
0 (X)

cycX−−−→H2
τ

(
X,KM

2,X

)
→K0(X), (3.4)
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where τ = zar/nis and the composite arrow is the cycle class map to K -theory. We let

F 2K0(X) denote the image of this composite arrow. For any closed subscheme D ⊂ X

supported on Xsing, we let F
2K0(X,D) denote the image of the cycle class map Z0(X

o)→
K0(X,D) (see §2.3). The main result about CHLW

0 (X) is the following:

Proposition 3.4. Under the foregoing assumptions, the following hold:

(1) There are cycle class maps CHLW
0 (X) → F 2K0(X,D) → F 2K0(X) which are

isomorphisms.

(2) The maps CHLW
0 (X)

cycX−−−→H2
τ

(
X,KM

2,X

)
←H2

τ

(
X,KM

2,(X,D)

)
are isomorphisms for

τ = zar/nis.

Proof. By [44, Lemma 2.2], there is an exact sequence

SK1(D)→ F 2K0(X,D)→ F 2K0(X)→ 0,

where SK1(D) is the kernel of the edge map K1(D)→H0
zar

(
D,O×

D

)
in the Thomason–

Trobaugh spectral sequence [75, Theorem 10.3]. But this edge map is an isomorphism,

because D is a 0-dimensional k -scheme.

By Lemma 2.4 and [58, Theorem 2.2], there is an exact sequence

SK1 (Xsing)→ CHLW
0 (X)→ F 2K0(X)→ 0.

Item (1) now follows because SK1 (Xsing) = 0. To prove (2), it is enough to work with

the Nisnevich topology by Proposition 2.9. We now have the maps CHLW
0 (X)

cycX−−−→
H2

nis

(
X,KM

2,X

)
� F 2K0(X). The map cycX is surjective by [35, Theorem 2.5] (see [27,

§3.5] for an explanation as to why it suffices to know that Xo is regular instead of being
nice). The map cycX in (2) is now an isomorphism by (1). The other map in (2) is an

isomorphism for dimension reasons.

3.3. Zero-cycles on a surface and its desingularizations

Let k be any field. We recall the definition of the Chow group of 0-cycles with modulus

from [6]. Let X be a quasiprojective scheme over k and D ⊂ X an effective Cartier
divisor. Given a finite map ν : C →X from a regular integral curve whose image is not

contained in D, we let E = ν∗(D). We say that a rational function f on C has modulus

E if f ∈ Ker
(
O×

C,E �O×
E

)
. We let G(C,E) denote the multiplicative subgroup of such

rational functions in k(C)×. Then CH0(X |D) is the quotient Z0(X \D) by the subgroup

R0(X |D) generated by ν∗(div(f)) for all possible choices of ν : C →X and f ∈G(C,E)
as above.

Let D⊂X be as before. We have seen in §2.3 that there is a cycle class homomorphism

c̃ycX|D : Z0(X
o \D)→K0(X,D). If k is perfect and X ∈ Smk, then it was shown in [3,

Theorem 12.4] that cycX|D descends to a group homomorphism

cycX|D : CH0(X |D)→K0(X,D). (3.5)

If dim(X)≤ 2, this map exists without any condition on k by [41, Theorem 1.2]. We let

F dK0(X,D) be the image of this map if X is of pure dimension d.
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Let us now assume that k is any field and X is an integral projective R1-scheme
of dimension 2 over k. Let f : Xn → X be the normalization morphism and f ′ : X̃ →
Xn a resolution of singularities of Xn (assuming it exists). Let E ⊂ X̃ be the reduced

exceptional divisor. Then π = f ◦ f ′ : X̃ → X is a resolution of singularities of X with
reduced exceptional divisor E. We let E′ = π−1 (Xsing)red so that E′ is a union of E and a

finite set of closed points. Note that such a resolution of singularities exists (for example,

by [51]). We write S =Xsing and S′ = (Xn)sing with reduced structures.

Proposition 3.5. Let k be a field and X an integral and projective k-scheme of dimension

2 which is R1. Let X̃
f ′

−→Xn
f−→X be the desingularization and normalization morphisms

as before. Let m≥ 1 be any integer. With the foregoing notations, we have a commutative

diagram

CHLW
0 (X)

cyc(X,mS)

∼=
��

f∗∼=
��

π∗





F 2K0(X,mS)

f∗∼=
��

∼= �� F 2K0(X)

f∗∼=
��

CHLW
0 (Xn)

cyc(Xn,mS′)

∼=
��

f ′∗

����

F 2K0(Xn,mS′)

f ′∗

����

∼= �� F 2K0(Xn)

f ′∗
�������

���
���

���

CH0

(
X̃ |mE

)
cyc

˜X|mE

�� �� F 2K0

(
X̃,mE

)
.

(3.6)

Moreover, all arrows are isomorphisms for m� 1.

Proof. It is clear that the two squares on the top are commutative. Furthermore, all

arrows in these squares are isomorphisms, by Proposition 3.4 and Corollary 2.6. It is also

easy to check using Lemma 2.4 that the pullback f ′∗ : Z0 (X
o
n)

∼=−→ Z0

(
X̃ \E

)
induces

a pullback map f ′∗ : CHLW
0 (Xn) � CH0

(
X̃ |mE

)
which makes the bottom square

commutative. The map f ′∗ : F 2K0(Xn,mS′)→ F 2K0

(
X̃,mE

)
is an isomorphism for all

m� 1 by [44, Theorem 1.1]. It follows that all arrows in the diagram are isomorphisms

for m� 1.

3.4. Reciprocity theorem for surfaces

Assume now that k is a finite field and X an integral projective R1-scheme of dimension
2 over k. It follows from Proposition 2.9 and Corollary 3.3 that the cycle class and the

reciprocity homomorphisms give rise to the degree-preserving maps

CHLW
0 (X)

cycX−−−→H2
nis

(
X,KM

2,X

) ρX−−→ πab
1 (Xo). (3.7)

Our main result on the class field theory of X is the following:

Theorem 3.6. The cycle class and the reciprocity homomorphisms induce isomorphisms

of finite groups

CHLW
0 (X)0

∼=−→H2
nis

(
X,KM

2,X

)0 ∼=−→ πab
1 (Xo)0. (3.8)
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Proof. By Proposition 3.4, we only have to show that the composition of the two
maps in formula (3.8) is an isomorphism of finite groups. We now choose a resolution

of singularities π : X̃ → X (which exists by [51]) with the reduced exceptional divisor

E ⊂ X̃. For every integer m≥ 1, we then have a commutative diagram

CHLW
0 (X,Xsing)

0

π∗

����

ρX �� πab
1 (Xo)0

����

CH0

(
X̃ |mE

)0 ρ
˜X|mE

�� πab
1

(
X̃,mE

)0
,

(3.9)

where πab
1

(
X̃,mE

)
is the abelianized étale fundamental group with modulus (see [5, §8.3]

for the definition) and πab
1

(
X̃,mE

)0
is the kernel of the map πab

1

(
X̃,mE

)
→Gal

(
k/k

)
.

The left vertical arrow in diagram (3.9) is an isomorphism for all m� 0 by Proposition

3.5. Combining this with [38, Theorem III] (if char(k) �= 2) and [5, Lemma 8.4,
Theorem 8.5] (in general), it follows that all arrows in the diagram are isomorphisms

for all m� 0. Moreover, these groups are finite by [5, Corollary 8.3].

4. The Lefschetz condition

In this section, we shall prove one of Grothendieck’s Lefschetz conditions as a prelude to

our proof of the Lefschetz hypersurface section theorem for the étale fundamental groups

of the regular loci of certain projective schemes over a field. All cohomology groups in
this section will be with respect to the Zariski topology on schemes.

4.1. Reflexive sheaves

Let (X,OX) be a locally ringed space. If (X,OX) is an integral locally ringed space (that

is, the stalks of OX are integral domains), we let KX denote the sheaf of field of fractions

of OX . Recall that for a sheaf of OX -modules E on X, the dual E∨ is the sheaf of OX -

modules HomOX
(E,OX). There is a natural evaluation map evE : E → E∨∨ whose kernel

is the subsheaf of torsion submodules of E , where the latter is defined as the kernel of the

canonical map E → E ⊗OX
KX . We denote either of these kernels by Etor. If E is torsion-

free, one calls E∨∨ the reflexive hull of E . One says that E is reflexive if the evaluation
map E → E∨∨ is an isomorphism. The following lemma is elementary:

Lemma 4.1. The dual of any sheaf of OX-modules is reflexive.

Proof.We need to show that for any sheaf of OX -modulesM with dualN , the evaluation
map evN : N → HomOX

(N∨,OX) is an isomorphism. Since this is a local condition on

X, we can assume that X = Spec(A) for a commutative ring A and represent M (resp.,

N ) by M (resp., N ).
Now, evN (f) = 0 implies that f(x) = evN (f)(evM (x)) = 0 for all x ∈M . Equivalently,

f = 0. This shows that evN is injective. To show the surjectivity, set α ∈ HomA(N
∨,A)

and let fα : M →A be given by fα(x) = α(evM (x)). It is then clear that α= evN (fα).
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Let (X,OX) be a locally ringed space with Noetherian stalks and let E be a sheaf of OX -

modules. Recall that E is said to satisfy the Si property for some i≥ 0 if for every x ∈X,

the OX,x-module Ex satisfies Serre’s Si condition – that is, depth(Ex)≥min{i, dim(Ex)}
for every point x ∈X. One says that X is a locally Si-ringed space (or an Si-scheme, if

X is a Noetherian scheme) if it has Noetherian stalks and OX satisfies the Si property.

The following is easy to verify using [11, Lemma 0AV6]:

Lemma 4.2. Let (X,OX) be a locally S2-ringed space and E a coherent OX-module. Then

E∨ satisfies the S2 property. In particular, every reflexive coherent OX-module satisfies
the S2 property.

Let k be a field. Suppose that X is an integral k -scheme and there is a locally closed

immersion X ↪→ PN
k . We let Or

X(m) be the restriction of the sheaf
(
OP

N
k
(m)

)⊕r

onto X.

Let E be a reflexive coherent sheaf on X. We can then prove the following:

Lemma 4.3. There are integers q,q′ ∈ Z, r,r′ ≥ 1, and a coherent sheaf E ′ together with
exact sequences

0→E →Or
X(q)→E ′ → 0, (4.1)

0→E ′ →Or′

X(q′)→H→ 0.

In particular, each of E and E ′ is torsion-free (or zero). If E is locally free, so is E ′.

Proof. Since E∨ is coherent, there is a surjection Or
X(−q) � E∨ for some q,r � 0. We

let F be the kernel of this surjection. Since F is necessarily coherent, we also have a
surjection Or′

X(−q′)� F for some q′,r′ � 0. Letting F ′ be its kernel, we get short exact

sequences of coherent sheaves

0→F →Or
X(−q)→E∨ → 0,

0→F ′ →Or′

X(−q′)→F → 0.

By dualizing, we get exact sequences

0→E →Or
X(q)→F∨ →Ext1OX

(E∨,OX)→ 0, (4.2)

0→F∨ →Or′

X(q′)→F ′∨ →Ext1OX
(F,OX)→ 0.

Letting E ′ be the cokernel of E →Or
X(q), we get the two exact sequences (4.1). If E is

locally free, then so is E∨. In this case, Ext1OX
(E∨,OX) = 0 and F must also be locally

free. This implies that E ′ is locally free.

4.2. The Hartogs lemma

We need to prove a version of the Hartogs lemma for formal schemes. Before we do this,

we recall this result for the ordinary schemes.

Lemma 4.4. Let A be a Noetherian integral domain such that X = Spec(A) is an S2-

scheme. Let U ⊂X be an open subscheme whose complement has codimension ≥ 2 in X.

https://doi.org/10.1017/S1474748022000032 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748022000032


2260 M. Ghosh and A. Krishna

Let E be a finitely generated reflexive A-module and E the associated Zariski sheaf on X.
Then the canonical map E →H0(U,EU ) is an isomorphism.

Proof. Since E is reflexive, we can find an exact sequence of A-modules

0→ E →Ar →Ar′ (4.3)

for some r,r′ ≥ 1. This gives rise to a commutative diagram of exact sequences

0 �� E ��

j∗

��

Ar ��

j∗

��

Ar′

j∗

��

0 �� H0(U,EU ) �� O(U)r �� O(U)r
′
,

(4.4)

where j : U ↪→X is the inclusion. A diagram chase shows that we can assume that E =A.

But this case follows from Lemma 4.5.

The following lemma is well known:

Lemma 4.5. Let A be a Noetherian integral domain with quotient field K which is an

S2-ring. Then A=
⋂

depthAp=1

Ap inside K.

Proof. The proof of this lemma is identical to that of [11, Lemma 031T(2)] once we

observe that in a Noetherian integral domain which is an S2-ring, a prime ideal has

height 1 if and only if its depth is 1. We add a proof of the lemma for completeness.
Suppose a,b∈A are two nonzero elements such that a∈ bAp for every prime ideal p⊂A

of depth 1. We need to show that a ∈ (b).

Let Ass(b) denote the set of associated primes of (b). Since the integral domain A is an
S2-ring and b �= 0, an easy consequence of [25, Propositions 16.4.6(ii), 16.4.10(i)] is that

A/(b) is an S1-ring (see, for example, [20, Lemma 2.1]). In particular, all associated primes

of A/(b) have height 0. The latter statement is equivalent to saying that all associated

primes of (b) are minimal, and hence have height 1 by Krull’s principal ideal theorem [52,
Theorem 13.5]. Since 1≤ depth(Ap)≤ dim(Ap)≤ 1, we conclude that depth(Ap) = 1 for

every p ∈ Ass(b). This implies by our hypothesis that a ∈ bAp for every p ∈ Ass(b). We

are now done, because the canonical map

A/(b)→
∏

p∈Ass(b)

Ap/bAp

is injective (see, for example, [11, Lemma 0311]).

Lemma 4.6. Let X be a Noetherian integral S2-scheme and j : U ↪→ X an open

immersion whose complement has codimension ≥ 2 in X. Then the unit-of-adjunction
map E → j∗EU is an isomorphism for every reflexive coherent Zariski sheaf E on X.

Proof. This is a local question, and hence follows directly from Lemma 4.4.

Corollary 4.7. Let E be as in Lemma 4.6. Then the restriction map H0(X,E) →
H0(U,EU ) is an isomorphism.
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Proof. This is immediate from Lemma 4.6.

Corollary 4.8. Let U ⊂ X be an open immersion as in Lemma 4.6 and E a reflexive

coherent sheaf on U. Then j∗E is a reflexive coherent sheaf on X.

Proof. By choosing a coherent extension of E on X and taking its double dual, we can
find a reflexive coherent sheaf E ′ on X such that j∗E ′ ∼= E . We now apply Lemma 4.6 to

conclude the proof.

4.3. The formal Hartogs lemma

Let X be a Noetherian scheme and Y ⊂X a closed subscheme. Let X̂ denote the formal

completion of X along Y (see [21, Chapitre 0, §9] or [29, Chapter II, §10]). Let IY denote
the sheaf of ideals on X defining Y. Let Ym denote the closed subscheme of X defined by

the ideal sheaf Im
Y . For any open subscheme U ⊂X such that V := U ∩Y is dense in Y,

we have a commutative diagram of Noetherian formal schemes

Vm
ιU ��

jY

��

Û ��
cU ��

̂j
��

U

j

��

Ym
ι �� X̂

cX �� X,

(4.5)

where Vm := U ∩Ym. In the right square, all arrows are flat morphisms (of locally ringed

spaces), the vertical arrows are open immersions (see [11, §01HD] for the definition of

open immersion of locally ringed spaces), and the horizontal arrows are the completion
morphisms. In the left square, the vertical arrows are open immersions and the horizontal

arrows are closed immersions. The two squares are Cartesian. The compositions of the

two horizontal arrows are the given closed immersions Ym ↪→X and Vm ↪→ U of schemes.

For any quasicoherent sheaf F on X, we let F̂ denote the pullback of F under cX . Note
that the canonical map F̂ → lim←−

m

F⊗OX
OYm

is an isomorphism if F is coherent. We shall

use this isomorphism later. For any morphism f : X ′ →X and quasicoherent sheaf F on
X, we let FX′ = f∗(F). We shall write FYm

simply as Fm for m ≥ 1. Our goal in this

subsection is to prove a formal version of the Hartogs lemma.

Let A be an excellent normal integral domain and J ⊂ A the radical ideal such that
V (J) =Xsing, where X = Spec(A). Let p⊂A be a complete intersection prime ideal such

that ht(p+ J) ≥ ht(p) + ht(J) and A/p is normal. Let U ⊂ X be an open subscheme

containing V (p)∩Xo whose complement has codimension ≥ 2 in X. Let Â be the p-

adic completion of A and X̂ = Spf
(
Â
)
, the formal spectrum of Â. Let Û be the formal

completion of U along V (p)∩U . We let Y = Spec(A/p) and Am := A/pm. Since A is
excellent, so is U. It follows therefore from [22, Corollaire 6.5.4, Scholie 7.8.3(v)] that

X̂ and Û are both normal integral formal schemes. Under these conditions, we have the

following:

Lemma 4.9. For any finitely generated reflexive A-module E with the associated Zariski

sheaf E on X, the canonical map Ê →H0
(
Û,ÊU

)
is an isomorphism.
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Proof. Since E is reflexive, we can find an exact sequence of A-modules

0→ E →Ar →Ar′ (4.6)

for some r,r′ ≥ 1. Since all arrows in the right square of diagram (4.5) are flat, we have

an exact sequence of coherent sheaves

0→ Ê →Or
̂X
→Or′

̂X
(4.7)

on X̂. This gives rise to a commutative diagram of exact sequences

0 �� Ê ��

̂j∗

��

Âr ��

̂j∗

��

Âr′

̂j∗

��

0 �� H0
(
Û,Ê

̂U

)
�� O
(
Û
)r

�� O
(
Û
)r′

,

(4.8)

where j : U ↪→X is the inclusion. A diagram chase shows that we can assume that E =A.
We now let V = Y ∩U . Let j : U ↪→X and ĵ : Û ↪→ X̂ denote the inclusion maps. We

then have a commutative diagram

Â
∼= ��

̂j∗

��

lim←−
m≥1

Am

̂j∗

��

H0
(
Û,O

̂U

) ∼= �� lim←−
n≥1

H0 (Vm,OVm
) .

(4.9)

The top horizontal arrow is clearly an isomorphism, and the Milnor exact sequence for
the cohomology of inverse limit sheaves (see, for example, [31, Proposition 1.6]) implies

that the bottom horizontal arrow is also an isomorphism. It suffices therefore to show

that the right vertical arrow is an isomorphism. We shall show by induction the stronger
assertion that the restriction map Am →H0 (Vm,OVm

) is an isomorphism for all m≥ 1.

Let us first assume that m= 1. It follows from our assumption that Y is a Noetherian

normal integral scheme in which the codimension of Y \V is ≥ 2. Therefore, the map

A1 → H0(V ,OV ) = H0(V1,OV1
) is an isomorphism by Lemma 4.4. We now prove the

general case by induction on m. We consider the exact sequence of Am+1-modules

0→ pm/pm+1 →Am+1 →Am → 0. (4.10)

Since p ⊂ A is a complete intersection, it follows that pm/pm+1 ∼= Sm
(
p/p2

)
is a free

A/p-module. That is, pm/pm+1 ∼= Aq
1 for some q ≥ 1. We thus get an exact sequence of

Am+1-modules

0→Aq
1 →Am+1 →Am → 0. (4.11)

This gives rise to the exact sequence of coherent OX -modules

0→Oq
Y →OYm+1

→OYm
→ 0. (4.12)
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Considering the cohomology groups and comparing them on X and U, we get a
commutative diagram of exact sequences

0 �� Aq
1

��

��

Am+1
��

��

Am
��

��

0

0 �� H0 (V1,OV1
)
q �� H0

(
Vm+1,OVm+1

)
�� H0(Vm,OVm

)
∂ �� H1 (V1,OV1

)
q
.

(4.13)

The left and right vertical arrows are isomorphisms by induction on m. It follows from the
five lemma that the middle vertical arrow must also be an isomorphism. This concludes

the proof of the claim and the lemma.

Let X be an excellent normal integral scheme and Y ⊂X a local complete intersection
closed subscheme which is integral and normal. Let U ⊂ X be an open subscheme

containing Y ∩Xo such that X \U has codimension ≥ 2 in X. Under these hypotheses,

we have the following ‘formal Hartogs lemma’:

Lemma 4.10. Let E be a reflexive coherent sheaf on X. Then the unit-of-adjunction map

Ê → ĵ∗
(
ÊU
)
is an isomorphism.

Proof. Since this is a local question, we can assume that X = Spec(A) is affine and
Y is a complete intersection on X. In this case, E is the Zariski sheaf associated to a

finitely generated reflexive A-module E. Furthermore, the lemma is equivalent to showing

that the canonical map Ê → H0
(
Û,ÊU

)
is an isomorphism. But this is the content of

Lemma 4.9.

Corollary 4.11. Let E be as in Lemma 4.10. Then the restriction map H0
(
X̂,Ê

)
→

H0
(
Û,ÊU

)
is an isomorphism.

Proof. This is immediate from Lemma 4.10.

4.4. The Lef(X,Y ) condition

Let X be a Noetherian scheme and Y ⊂ X a closed (resp., open) subscheme. We shall

then say that (X,Y ) is a closed (resp., open) pair. Recall from [23, §2, Exposé X] that a
closed pair (X,Y ) is said to satisfy the Lefschetz condition, and one says that Lef(X,Y )

holds if, for any open subscheme U ⊂X containing Y and any coherent locally free sheaf

E on U, the restriction map H0(U,E)→H0
(
X̂,Ê

)
is an isomorphism. We shall not recall

the effective Lefschetz condition, because we do not need it.

We shall work with the following setup throughout this subsection. We fix a field k
and let X ↪→ PN

k be an integral normal projective scheme over k of dimension d ≥ 3.

Suppose we are given a closed immersion ι : Y ↪→ X of integral normal schemes such

that Xo ∩Y ⊂ Y o and 2 ≤ dim(Y ) ≤ d− 1. We further assume that Y ⊂ X is cut out
by e general hypersurfaces in PN

k such that Y is a complete intersection in X, where

e = codim(Y ,X). Let U ⊂X be an open subscheme containing Xo ∩Y such that X \U
has codimension ≥ 2 in X. Let j : U ↪→X be the inclusion map. We shall let X̂ (resp., Û)
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denote the formal completion of X (resp., U ) along Y (resp., U ∩Y ). We shall continue

to use the notations of diagram (4.5).

Lemma 4.12. For any coherent reflexive sheaf E on X, the pullback map H0(X,E) →
H0

(
X̂,Ê

)
is an isomorphism.

Proof. Using the Milnor exact sequence for the cohomology of inverse limit sheaves,

the lemma is equivalent to showing that the map H0(X,E) → lim←−
m≥1

H0(Ym,Em) is an

isomorphism. But this follows immediately from Lemma 4.2 and [11, Proposition 0EL1],
since X is normal (hence S2) and d≥ 3.

Lemma 4.13. For any coherent reflexive sheaf E on U, the pullback map H0(U,E) →
H0

(
Û,Ê

)
is an isomorphism.

Proof. We let E ′ = j∗E . It follows from Corollary 4.8 that E ′ is a reflexive coherent sheaf

on X. We now consider the commutative diagram

H0(X,E ′)
c∗X ��

j∗

��

H0
(
X̂,Ê ′

)
̂j∗

��

H0(U,E)
c∗U �� H0

(
Û,Ê

)
.

(4.14)

The top horizontal arrow is an isomorphism by Lemma 4.12. Corollary 4.7 implies that

the left vertical arrow is an isomorphism. Since X is excellent and normal, Corollary 4.11
implies that the right vertical arrow is an isomorphism. A diagram chase now finishes the

proof.

Lemma 4.14. One has Y o =Xo∩Y .

Proof. Since we are already given that Xo∩Y ⊂ Y o, the lemma follows because at any

point x ∈Xsing∩Y , the ideal of Y is defined by a regular sequence.

It follows from Lemma 4.14 that (Xo,Y o) is a closed pair. We can now prove the

following:

Proposition 4.15. Assume that Y intersects Xsing properly in X. Then Lef(Xo,Y o)
holds.

Proof. Let U ⊂ Xo be an open subscheme containing Y o. In view of Lemma 4.13, we

only need to show that X \U has codimension ≥ 2 in X. Suppose to the contrary that

there is an irreducible closed subscheme Z ⊂X \U of dimension d−1. We must then have

that the scheme theoretic intersections Z∩Y and Z∩(Y ∩Xsing) have same support, and
therefore dim(Z ∩Y )≤ dim(Y ∩Xsing). We also get

dim(Z ∩Y )≥ dim(Z)− e= d−1− (d−dim(Y )) = dim(Y )−1> dim(Y ∩Xsing),

https://doi.org/10.1017/S1474748022000032 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748022000032


Zero-cycles on normal projective varieties 2265

and since Y ⊂X is cut out by e general hypersurfaces in PN
k , the intersection of Y and

Xsing is proper and X is catenary. This is clearly a contradiction.

5. Lefschetz for étale fundamental group

In this section, we shall prove a Lefschetz hypersurface section theorem for the abelianized

étale fundamental group of the regular locus of a normal projective scheme over a field

under certain conditions. Our setup for this section is the following.

Let k be a field of exponential characteristic p≥ 1 and X ↪→ PN
k an integral projective

scheme over k of dimension d≥ 3. We let H ⊂ PN
k be a hypersurface such that the scheme-

theoretic intersection Y =X ∩H satisfies the following:

(1) Y is integral of dimension d−1.

(2) Xo∩Y is regular.

(3) Y is normal if X is so.

(4) Y does not contain any irreducible component of Xsing.

A hypersurface section Y satisfying these conditions will be called a ‘good’ hypersurface

section. Note that if X is an Ra-scheme for some a≥ 0 and Y is good, then Y too is an Ra-

scheme by (2) and (4). SinceXsing is reduced, it follows from (4) that the scheme-theoretic
intersection Ys := Y ∩Xsing is an effective Cartier divisor on Xsing [26, Lemma 3.3] and

(Ys)red = Ysing (Lemma 4.14). We let

ι : Y ↪→X, ιo : Y o ↪→Xo, j : Xo ↪→X, j̃ : Y o ↪→ Y , ι̃ : Ys ↪→Xsing

be the inclusions. We let q = dim(Ys).

5.1. The Enriques–Severi–Zariski theorem

We shall need a version of the Enriques–Severi–Zariski theorem for some singular
projective schemes and their regular loci. Suppose that H ⊂ PN

k is a hypersurface of

degree m ≥ 1 such that Y =X ∩H is good. Let CY/X denote the conormal sheaf on Y

associated to the regular embedding ι : Y ↪→X so that CY/X = IY /I2
Y
∼=OY (−m), where

IY is the sheaf of ideals on X defining Y. For any coherent sheaf F on Y and integer

n ≥ 1, we define F [n] := F ⊗OY
Sn
(
CY/X

) ∼= F(−nm). For any coherent sheaf F on Y o

and integer n≥ 1, we define F [n] := F ⊗OY o Sn
(
CY o/Xo

)∼= F(−nm).

Lemma 5.1. Assume that X is an (R1+Sb)-scheme for some b ≥ 2. Let E be a locally
free sheaf on X. Then Hi

zar(X,E(−j)) = 0 for i≤ b−1 and j � 0.

Proof. Let ω•
X/k denote the dualizing complex for X. Under the assumption of the

lemma, it follows from [47, Lemma 4.27] that ω•
X/k ∈ D[−d,−b](X). Moreover, we have

H−d
(
ω•
X/k

)
∼= j∗

(
ωXo/k

)
, where ωXo/k is the canonical sheaf of Xo. Since X is an

(R1 +Sb)-scheme for some b ≥ 2, it is normal (see, for example, [52, Theorem 23.8]).
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We can therefore apply the Grothendieck–Serre duality for normal projective schemes to
get

Hi
zar(X,E(−j))∼=H−i

zar

(
X,E∨⊗L

OX
ω•
X/k(j)

)
.

The desired assertion now follows easily from the Serre vanishing theorem.

Lemma 5.2. Assume that X is normal and let E be a coherent reflexive sheaf on Y o.

Then H0
(
Y o,E [n]

)
= 0 for n� 0.

Proof. It follows from Corollary 4.8 that j̃∗E is a coherent reflexive sheaf on Y. We denote
this extension by E itself. Using the exact sequences of Lemma 4.3 and tensoring them

with Sn
(
CY/X

)
(which is invertible on Y ) and subsequently taking the cohomology, we

get exact sequences

0→H0
(
Z,E [n]

)
→H0

(
Z,Or

Z(q)
[n]
)
→H0

(
Z,E ′[n]

)
→H1

(
Z,E [n]

)
→H1

(
Z,Or

Z(q)
[n]
)

(5.1)

and

0→H0
(
Z,E ′[n]

)
→H0

(
Z,Or′

Z (q′)
[n]
)
, (5.2)

where Z ∈ {Y ,Y o}. Corollary 4.7 and Lemma 5.1 together tell us that H0
(
Z,Or

Z(q)
[n]
)
=

0 =H0
(
Z,Or′

Z (q′)
[n]
)
for all n� 0. We conclude that H0

(
Z,E [n]

)
= 0 and

H1
(
Z,E [n]

)
↪→H1

(
Z,Or

Z(q)
[n]
)

(5.3)

for all n� 0.

5.2. The Gysin map and Poincaré duality

We fix a prime-to-p integer n and let Λ = Z/n be the constant sheaf of rings on the étale

site of Schk. For any integer m ∈ Z, we let Λ(m) denote the usual Tate twist of the sheaf
of nth roots of unity μn on the étale site of Schk. For any étale sheaf of Λ-modules F
on Schk, we let F(m) = F ⊗Λ Λ(m). Let D+(X,Λ) denote the derived category of the

bounded-below complexes of the sheaves of Λ-modules on the small étale site of X.

Let ι : Y ↪→ X be as in §5.1. Recall from Gabber’s construction [16] (see also
[56, Definition 2.1]) that the regular closed embedding ι : Y ↪→ X induces the Gysin

homomorphism ι∗ :H
i
ét(Y ,Λ(m))→Hi+2

ét (X,Λ(m+1)) for any pair of integers i≥ 0 and

m ∈ Z. This homomorphism is defined as follows. It follows from [14, §2] that the line
bundle OX(Y ) (which we shall write for short as O(Y )) on X has a canonical class

[O(Y )]∈H1
Y ,ét(X,Gm), and its image via the boundary mapH1

Y ,ét(X,Gm)→H2
Y ,ét(X,Λ)

is Deligne’s localized Chern class c1(Y ). Here, H∗
Y ,ét(X,−) denotes the étale cohomology

with support in Y.

At the level of the derived category D+(Y ,Λ), this Chern class is given in terms of the

map c1(Y ) : ΛY → ι!ΛX(1)[2]. Using this Chern class, Gabber’s Gysin homomorphism
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ι∗ : H
∗
ét(Y ,Λ(m)) → H∗+2

ét (X,Λ(m+1)) is the one induced on the cohomology by the

composite map ι∗ : ι∗(ΛY ) → ι∗ι
!(ΛX(1)[2]) → ΛX(1)[2] in D+(X,Λ), where the second

arrow is the counit-of-adjunction map.

The local complete intersection closed immersions Y ↪→ X and Ys ↪→ Xsing induce a

diagram of distinguished triangles in D+(X,Λ) given by

ι∗ ◦ j̃! (ΛY o) �� ι∗(ΛY ) ��

c1(Y )

��

ι∗ ◦ ι̃∗ (ΛYs
)

c1(Ys)

��

j! (ΛXo)(1)[2] �� ΛX(1)[2] �� ι∗
(
ΛXsing

)
(1)[2].

(5.4)

The Cartesian square

Ys
ι̃ ��

��

Xsing

��

Y
ι �� X

(5.5)

and the functoriality of Deligne’s localized Chern class imply (see [56, Corollary 2.12]

or [16, Proposition 1.1.3]) that the right-side square in diagram (5.4) is commutative. It

follows that there is a Gysin morphism cj!1 (Y
o) : ι∗ ◦ j̃! (ΛY o)→ j! (ΛXo)(1)[2] in D+(X,Λ)

such that the resulting left square in diagram (5.4) is commutative.

Applying the cohomology functor on D+(X,Λ), we get a commutative diagram of long

exact sequences

H∗
c,ét(Y

o,Λ(m)) ��

ιo∗
��

H∗
ét(Y ,Λ(m)) ��

ι∗

��

H∗
ét(Ys,Λ(m)) ��

ι̃∗

��

H∗+1
c,ét (Y

o,Λ(m))

ιo∗
��

H∗+2
c,ét (X

o,Λ(m+1)) �� H∗+2
ét (X,Λ(m+1)) �� H∗+2

ét (Xsing,Λ(m+1)) �� H∗+3
c,ét (X

o,Λ(m+1)),

(5.6)

where H∗
c,ét(−,Λ(m)) denotes the étale cohomology with compact support [54, Chap-

ter VI, §3] and the vertical arrows are the Gysin homomorphisms.
Assume now that k is either finite or algebraically closed. Recall in this case (see [32,

Introduction] and [54, Chapter VI, §11], as well as [12, Corollary 4.2.3]) that there is a

perfect pairing

Hi
c,ét(X

o,Λ(m))×H2d+e−i
ét (Xo,Λ(d−m))→H2d+e

c,ét (Xo,Λ(d))∼= Λ (5.7)

for m ∈ Z, where e = 1 if k is finite and e = 0 if k is algebraically closed. This pairing

exists even if Xo is not smooth, but may not be perfect in the latter case. It is well

known and follows from its construction (see [54, proof of Theorem VI.11.1] or directly use
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[12, §3.3.13 and Remark 4.2.5]) that formula (5.7) is compatible with the closed immersion

ιo : Y o ↪→Xo – that is, there is a commutative diagram

Hi
c,ét(Y

o,Λ(m−1))

ιo∗
��

× H2d−2+e−i
ét (Y o,Λ(d−m)) �� H2d−2+e

c,ét (Y o,Λ(d−1))

ιo∗
��

Hi+2
c,ét (X

o,Λ(m)) × H2d−2+e−i
ét (Xo,Λ(d−m))

(ιo)∗

��

�� H2d+e
c,ét (Xo,Λ(d)).

(5.8)

5.3. A Lefschetz theorem for étale cohomology of Xo

Let ι : Y ↪→ X be as in §5.1. We shall now prove a Lefschetz theorem for the étale

cohomology of Xo. This is of independent interest in the study of singular varieties.

In this paper, we shall use it in the proofs of the main results.

Proposition 5.3. Assume that k is either finite or algebraically closed and X is an R2-

scheme. Then the pullback map Hi
ét(X

o,Λ)→Hi
ét(Y

o,Λ) is an isomorphism for i≤ 1 and

injective for i= 2.

Proof. Using diagram (5.8), the proposition is reduced to showing that the Gysin
homomorphism

ιo∗ : H
i
c,ét(Y

o,Λ(d−1))→Hi+2
c,ét (X

o,Λ(d)) (5.9)

is an isomorphism for i≥ 2d+ e−3 and surjective for i= 2d+ e−4.

Using the long exact sequences of diagram (5.6) and the known bounds on the
étale cohomological dimensions of Xsing and Ys, the assertion that formula (5.9) is an

isomorphism is equivalent to asserting that the Gysin homomorphism

ι∗ : H
i
ét(Y ,Λ(d−1))→Hi+2

ét (X,Λ(d)) (5.10)

is an isomorphism for i≥ 2d+e−3 and surjective for i= 2d+e−4. For e= 0, this follows

from [71, Theorem 2.1]. We shall prove the case e= 1 using a similar strategy as follows.
We let U = X \Y . The Leray spectral sequence for the inclusion j′ : U ↪→ X yields a

strongly convergent spectral sequence

Ea,b
2 =Ha

ét

(
X,Rbj′∗(ΛU (d))

)
⇒Ha+b

ét (U,Λ(d)). (5.11)

We know that the canonical map ΛX(d)
∼=−→ j′∗(ΛU (d)) is an isomorphism. Furthermore,

the canonical map Rbj′∗(ΛU (d))→ ι∗ι
∗Rbj′∗(ΛU (d)) is an isomorphism for b > 0. We let

Fb = ι∗Rbj′∗(ΛU (d)). The sheaf exact sequence

0→ ι∗ι
!(ΛX(d))→ ΛX(d)→ j′∗(ΛU (d))→ 0

shows that the resulting boundary map ∂′ : F1 → ι!(ΛX(d)[2]) is an isomorphism.

Moreover, it follows from the construction of the spectral sequence (5.11) that the map on

the cohomology groups Ha
ét(Y ,F1)

∂′
−→ Ha+2

ét (X,ΛX(d)), induced by the composite map
ι∗(F1)→ ι∗ι

!(ΛX(d)[2])→ ΛX(d)[2], is the map

Ea,1
2 =Ha

ét(Y ,F1)
∂−→Ha+2

ét (X,ΛX(d)) = Ea+2,0
2 .
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It follows that the composition

Ha
ét

(
X,ι∗ι

!(ΛX(d)[2])
) ∂′−1

−−−→Ha
ét(Y ,F1)

∂−→Ha+2
ét (X,ΛX(d))

is induced by the canonical adjunction map ι∗ι
!(ΛX(d)[2])→ΛX(d)[2]. Precomposing the

latter with the Gysin map (see §5.2) ι∗ΛY (d− 1)
c1(Y )−−−→ ι∗ι

!(ΛX(d)[2]), we see that the

composition

Ha
ét(Y ,ΛY (d−1))

∂′−1◦c1(Y )−−−−−−−→Ha
ét(Y ,F1)

∂−→Ha+2
ét (X,ΛX(d)) (5.12)

coincides with the Gysin homomorphism ι∗ in diagram (5.6).

We next study the map Ha
ét(Y ,F1)

∂−→Ha+2
ét (X,ΛX(d)). Using the purity theorem for

the closed pair (Xo,Y o) of smooth schemes [54, Theorem VI.5.1], it follows that

Fb|Y o ∼=
{
ΛY o(d) if b= 1,

0 if b > 1.
(5.13)

On the other hand, the affine Lefschetz theorem [54, Theorem VI.7.3(d)] implies that

the sheaf Rbj′∗(ΛU (d)) is supported on a closed subscheme of Y whose dimension is

bounded by d− b. We conclude that

Ha
ét

(
X,Rbj′∗(ΛU (d))

)
= 0 if b≥ 2 and a >min{2q+1,2d−2b+1}. (5.14)

Using formulas (5.11), (5.13) and (5.14), we get exact sequences

Hi−1
ét (U,ΛU (d))→Hi−2

ét (Y ,F1)
∂−→Hi

ét(X,ΛX(d))→Hi
ét(U,ΛU (d)), (5.15)

H2d−3
ét (Y ,F1)

∂−→H2d−1
ét (X,ΛX(d))→H2d−1

ét (U,ΛU (d))

for i ≥ 2d. Since d ≥ 3 and the étale cohomological dimension of k is 1, another

application of the affine Lefschetz theorem reduces these exact sequences to an iso-

morphism Hi−2
ét (Y ,F1)

∼=−→ Hi
ét(X,ΛX(d)) for i ≥ 2d and a surjection H2d−3

ét (Y ,F1) �
H2d−1

ét (X,ΛX(d)).

Finally, we consider the long exact sequences

Hi−1
ét (Ys,ΛYs

(d−1)) �� Hi
c,ét (Y

o,ΛY o(d−1)) �� Hi
ét(Y ,ΛY (d−1)) ��

��

Hi
ét (Ys,ΛYs

(d−1))

Hi−1
ét (Ys,ι̃

∗F1) �� Hi
c,ét

(
Y o,j̃∗F1

)
�� Hi

ét(Y ,F1) ��

∂

��

Hi
ét (Ys,ι̃

∗F1)

Hi+2
ét (X,ΛX(d)).

The left vertical isomorphism on the top is a consequence of formula (5.13). Using

the bound on the cohomological dimension of Ys, this diagram shows that the right

vertical arrow is an isomorphism. Since the composite right vertical arrow is the Gysin
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homomorphism as observed before, we conclude that the map ι∗ in formula (5.10) is an

isomorphism for i≥ 2d−2 and surjection for i= 2d−3. This finishes the proof.

5.4. A Lefschetz theorem for étale fundamental groups

Recall that the Lefschetz theorem for the étale fundamental groups of smooth projective

schemes over a field was proven by Grothendieck [23, Exposé XII, Corollaire 3.5]. However,

this is a very challenging problem for smooth nonprojective schemes, due to the presence
of ramification when we extend étale covers to compactifications. We shall prove the

following version of the Lefschetz theorem for the étale fundamental groups of smooth

but nonprojective schemes:

Theorem 5.4. Assume that k is either finite or algebraically closed and X ⊂ PN
k is an

(R3+S4)-scheme. Let Y ⊂X be a good hypersurface section of degree m� 0. Then the
induced map ιo∗ : π

ab
1 (Y o) → πab

1 (Xo) is an isomorphism of profinite topological abelian

groups.

Proof. Since πab
1 (Xo)

∼=−→ lim←−
n∈Z

πab
1 (Xo)/n and the same holds for Y o, it suffices to show

that the map πab
1 (Y o)/n→ πab

1 (Xo)/n is an isomorphism for every integer n ∈ Z. Using
the Pontryagin duality (see, for example, the middle of [62, proof of Lemma 1.9, p. 99]),(
πab
1 (Z)/n

)∨ ∼= H1
ét(Z,Z/n), for Z ∈ {Xo,Y o}, we are reduced to showing that the

pullback map

(ιo)∗ : H1
ét(X

o,Z/n)→H1
ét(Y

o,Z/n) (5.16)

is an isomorphism for all n ∈ Z. In view of Proposition 5.3, we can assume n= pr, where

char(k) = p > 0. We shall prove this by induction on r ≥ 1.

We have an exact sequence of constant étale sheaves on Schk:

0→ Z/p→ Z/pr → Z/pr−1 → 0

for every r ≥ 2, where Z/p → Z/pr is multiplication by pr−1. This yields a long exact

sequence of étale cohomology groups

H0
ét(X

o,Z/pr)→H0
ét

(
Xo,Z/pr−1

)
→H1

ét(X
o,Z/p)→H1

ét(X
o,Z/pr)

→H1
ét

(
Xo,Z/pr−1

)
→H2

ét(X
o,Z/p).

Since Xo is integral, the first arrow from the left in this exact sequence is surjective.

The same applies to Y o as well. We thus get a commutative diagram of exact sequences

0 �� H1
ét(X

o,Z/p) ��

��

H1
ét(X

o,Z/pr) ��

��

H1
ét

(
Xo,Z/pr−1

)
��

��

H2
ét(X

o,Z/p)

��

0 �� H1
ét(Y

o,Z/p) �� H1
ét(Y

o,Z/pr) �� H1
ét

(
Y o,Z/pr−1

)
�� H2

ét(Y
o,Z/p),

(5.17)
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where the vertical arrows are the pullback maps. Using a diagram chase and an induction
on r, we are reduced to showing that the pullback map

(ιo)∗ : Hi
ét(X

o,Z/p)→Hi
ét(Y

o,Z/p) (5.18)

is an isomorphism for i= 1 and injective for i= 2.

We let U = X \ Y so that Uo = Xo \ Y o. We let u : U ↪→ X and uo : Uo ↪→ Xo

denote the inclusion maps. Then formula (5.18) is equivalent to the assertion that

Hi
ét (X

o,uo
! (Z/p|Uo)) = 0 for i = 1,2. Using the cohomology exact sequence associated

to the relative Artin–Schreier sheaf exact sequence (where F is the Frobenius of OXo)

0→ uo
! (Z/p|Uo)→OXo(−Y o)

1−F−−−→OXo(−Y o)→ 0,

we get the long exact sequence

· · · →Hi−1
ét (Xo,OXo(−Y o))→Hi

ét (X
o,uo

! (Z/p|Uo))→Hi
ét (X

o,OXo(−Y o))

1−F−−−→Hi
ét (X

o,OXo(−Y o))→ . . .

for i ≥ 1. Using this, it suffices to show that Hi
ét (X

o,OXo(−Y o)) = 0 for i ≤ 2.

Equivalently, it suffices to show that Hi
zar(X

o,OXo(−Y o)) = 0 for i≤ 2.
We now consider the exact sequence of Zariski cohomology groups

· · · →Hi−1 (Xo,OXo(−Y o))→Hi
Xsing

(X,OX(−Y ))→Hi(X,OX(−Y ))

→Hi (Xo,OXo(−Y o))→ ·· · .

Since X is an (R3+S4)-scheme, we have inf
x∈Xsing

{depth(OX(−Y )x)} ≥ 4. We conclude

from [28, Theorem 3.8] and a spectral sequence argument that Hi
Xsing

(X,OX(−Y )) = 0

for i ≤ 3. The long exact sequence then tells us that the map Hi(X,OX(−Y )) →
Hi (Xo,OXo(−Y o)) of Zariski cohomology groups is an isomorphism for i ≤ 2. The
theorem therefore is finally reduced to showing that Hi(X,OX(−Y )) = 0 for i ≤ 2. But

this follows from Lemma 5.1, since the degree of the hypersurface H is very large.

Remark 5.5. If one knew that the eigenvalues of the Frobenius on H2 (Xo,OXo(−Y o))

were all different from 1, then the hypothesis of Theorem 5.4 (and hence Theorem 1.2)

could be weakened.

6. Class field theory and applications

In this section, we shall study the class field theory of singular schemes over finite fields

and its applications. In particular, we shall prove Theorems 1.2, 1.4 and 1.5.

6.1. Proof of Theorem 1.2

Let k be a finite field and X ∈ Schk an integral projective R1-scheme of dimension

d ≥ 1 over k. It was shown in Corollary 3.3 that the Frobenius substitution associated
to the regular closed points gives rise to a reciprocity homomorphism φX : CHLW

0 (X)→
πab
1 (Xo). Also, the left vertical arrow of diagram (3.3) gives us the restriction map φ0

X .

What remains to show is that φ0
X : CHLW

0 (X)0 → πab
1 (Xo)0 is surjective, and it is an
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isomorphism of finite groups under either condition (1) or (2) of the theorem. We shall

prove all of these by induction on d. Since the case d ≤ 2 already follows from Theorem

3.6, we shall assume that d≥ 3.
We let π : Xn →X be the normalization morphism. Using Corollaries 2.6 and 2.7, the

Zariski–Nagata purity theorem [24, Exposé X, Théorème 3.1] for π1((Xn)
o), and [62,

Lemma 5.1(1)], we can assume that X is normal.
Part 1. We first consider the case when X has isolated singularities. Let α∈CHLW

0 (X)

be a 0-cycle such that φX(α) = 0. We now fix an embedding X ↪→PN
k and apply [77, Theo-

rem 3.1] to find a hypersurfaceH ⊂PN
k containing Supp(α) such that the scheme-theoretic

intersection Y = X ∩H is smooth and does not meet Xsing. In particular, Y ⊂Xo. We

can then find a cycle α′ ∈CHF
0 (Y ) such that α= ι∗(α

′), where ι : Y ↪→X is the inclusion.

Since X is an S2-scheme of dimension ≥ 3 and Y ⊂Xo, it follows from [23, Exposé XII,

Corollaire 3.5] that Y is connected (hence integral) and the map π1(Y )→ lim←−
W

π1(W ) is

an isomorphism, where the limit is taken over all open neighborhoods of Y in X.

Since Y ⊂Xo, there is a factorization

π1(Y )→ lim←−
U

π1(U)→ lim←−
W

π1(W ), (6.1)

where the first limit is over all open neighborhoods of Y contained in Xo. Note that

the second arrow is an isomorphism, and therefore so is the first arrow. On the other

hand, we showed in the proof of Lemma 4.15 that for any open U ⊂ Xo containing Y,

the codimension of Xo \U is ≥ 2. We conclude from the Zariski–Nagata purity theorem
that the first limit in formula (6.1) is π1(X

o). It follows that the map π1(Y )→ π1(X
o) is

an isomorphism. We therefore conclude that there is a commutative diagram

CHF
0 (Y )

φY ��

ι∗

��

πab
1 (Y )

ι∗∼=
��

CHLW
0 (X)

φX �� πab
1 (Xo)

(6.2)

such that the right vertical arrow is an isomorphism and α′ ∈ CHF
0 (Y ).

It follows that ι∗ ◦φY (α
′) = 0. Since φY is injective by induction, we get α′ = 0. In

particular, we get α= ι∗(α
′) = 0. This shows that φX is injective. The surjectivity of φ0

X

and finiteness of CHLW
0 (X)0 and πab

1 (Xo)0 also follow from diagram (6.2) and induction

on d. We have thus finished the proof of Theorem 1.2 when X has isolated singularities.

Part 2. We now assume that X is an (R3 +S4)-scheme. In particular, it is normal.
Moreover, it is regular if d≤ 3, in which case the theorem is due to Kato and Saito [34].

If d = 4, then X has isolated singularities, in which case we have already proven the

theorem in part 1. We can therefore assume that d≥ 5. As before, we let α ∈ CHLW
0 (X)

be a 0-cycle such that φX(α) = 0.

We can now apply [20, Theorem 6.3], which says that for every integer m � 1 there

exists a hypersurface H ⊂ PN
k of degree m containing Supp(α) such that the hypersurface

section Y =X ∩H satisfies the following:

(1) Y ∩Xo = Y o is regular.
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(2) Y is an (R3+S4)-scheme.

(3) Y contains no irreducible component of Xsing.

Since X is normal and integral, it follows from [23, Exposé XII, Corollaire 3.5] that Y is

connected. Since (2) implies that Y is also normal, it follows that it must be integral. In

particular, it is good (see the beginning of §5). Moreover, there is a 0-cycle α′ ∈CHLW
0 (Y )

such that α= ι∗(α
′) if we let ι : Y ↪→X be the inclusion.

Using Corollary 2.7 and [62, Lemma 5.1(1)], we get a commutative diagram

CHLW
0 (Y )

φY ��

ι∗

��

πab
1 (Y o)

ι∗∼=
��

CHLW
0 (X)

φX �� πab
1 (Xo).

(6.3)

The right vertical arrow is an isomorphism by Theorem 5.4, since m� 0. It follows that
φY (α

′) = 0. We conclude by induction that α′ = 0. The surjectivity of φX and finiteness

of πab
1 (Xo)0 also follow from the diagram, because φY is surjective and πab

1 (Y o)0 is finite

by induction. This finishes the proof of the theorem, except that we still need to show
that φ0

X is surjective without condition (1) or (2) of the theorem.

As d≥ 3 and X is normal (equivalently, (R1+S2)), we can find a hypersurface section

Y = X ∩H which satisfies conditions (1) and (3) in part 2, and it is an (R1 + S2)-

scheme. We already observed that Y is then an integral normal scheme. Now, the map
ι∗ : π

ab
1 (Y o)→πab

1 (Xo) is surjective by Proposition 4.15 and [23, Exposé X, Corollaire 2.6].

Since the map φY in diagram (6.3) is surjective on degree 0 subgroups by induction, we

conclude that φ0
X is surjective.

6.2. Proof of Theorem 1.4

Let X be as in Theorem 1.4. We need some preparation before we prove the theorem.

By [62, Theorem 6.2], the norm maps Nx : K0(k(x)) → K0(k) for x ∈ Xo
(0) induce a

natural homomorphism deg : Hd
nis

(
X,KM

d,X

)
→ Z. Since these norms are multiplication

by the degrees of the field extensions k(x)/k, we see that the composition Z0(X
o)

cycX−−−→
Hd

nis

(
X,KM

d,X

)
deg−−→Z is the degree homomorphism. We let Hd

nis

(
X,KM

d,X

)0
be the kernel

of this map. We then get a commutative diagram

0 �� Hd
nis

(
X,KM

d,X

)0
��

ρ0
X

��

Hd
nis

(
X,KM

d,X

)
deg

��

ρX

��

Z� �

��

0 �� πab
1 (Xo)0 �� πab

1 (Xo) �� Ẑ,

(6.4)

where the right vertical arrow is the canonical inclusion into the profinite completion and

πab
1 (Xo)→ Ẑ is the push-forward map induced by the structure map of Xo.
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Since the last term of the top row of diagram (6.4) is torsion free, we have an exact

sequence of inverse limits

0→ lim←−
m

Hd
nis

(
X,KM

d,X

)0
/m→ lim←−

m

Hd
nis

(
X,KM

d,X

)
/m→ Ẑ. (6.5)

Lemma 6.1. The map ρX : Hd
nis

(
X,KM

d,X

)
→ πab

1 (Xo) is injective.

Proof. If π : Xn →X denotes the normalization ofX, then the maps π∗ : Hd
nis

(
X,KM

d,X

)
→

Hd
nis

(
Xn,KM

d,Xn

)
and π∗ : πab

1 (Xo)→ πab
1 (Xo

n) are isomorphisms. The first isomorphism

holds for dimension reasons and by the exactness of π∗ on Nisnevich sheaves. The second

isomorphism holds by the Zariski–Nagata purity theorem [24, Exposé X, Théorème 3.1].
We can therefore assume that X is normal. By diagram (6.4), it suffices to show that ρ0X
is injective.

We assume first that X is geometrically connected. Since Hd
nis

(
X,KM

d,X

)0
is a finite

group (hence profinite complete) by [62, Theorem 6.2(1)] (take I =OX and T =X) and

πab
1 (Xo) is profinite complete, diagram (6.4) and formula (6.5) give rise to a commutative

diagram of exact sequences

0 �� Hd
nis

(
X,KM

d,X

)0
��

ρ0
X

��

lim←−
m

Hd
nis

(
X,KM

d,X

)
/m

deg
��

ρ̂X

��

Ẑ

0 �� πab
1 (Xo)0 �� πab

1 (Xo) �� Ẑ.

(6.6)

The middle vertical arrow is an isomorphism by [35, Theorem 9.1(3)]. It follows that the

left vertical arrow must also be an isomorphism.
Suppose now that X is not geometrically connected. Since ρ̂X is always an isomorphism

by [35, Theorem 9.1(3)], it suffices to show, using formula (6.5), that Hd
nis

(
X,KM

d,X

)0
is profinite complete. To show the latter, it suffices to prove the stronger claim that

Hd
nis

(
X,KM

d,X

)0
is torsion of bounded exponent. Since the image of ρ0X is finite by

Theorem 1.2, the claim is equivalent to proving that the kernel of ρ0X is torsion of

bounded exponent. Since ρ̂X is an isomorphism, it is enough to show that the kernel of

the completion map αX : Hd
nis

(
X,KM

d,X

)
→ lim←−

m

Hd
nis

(
X,KM

d,X

)
/m is torsion of bounded

exponent.

Now, we know that there exists a finite field extension k′/k such that Xk′ is a disjoint

union of geometrically connected integral normal schemes. We pick any irreducible

component Y of Xk′ and let π : Y →X be the projection map. Then π is a finite étale
morphism of normal schemes whose degree divides [k′ : k]. Since we have shown that

αY is injective, it suffices to show that the kernel of the map π∗ : Hd
nis

(
X,KM

d,X

)
→

Hd
nis

(
Y ,KM

d,Y

)
is torsion of bounded exponent. But this follows directly from [35,

Lemma 4.5(1)].
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We now prove Theorem 1.4. The claim that the cycle class map cycX : Z0(X
o) →

Hd
nis

(
X,KM

d,X

)
factors through CHLW

0 (X) is a direct consequence of Lemmas 3.1 and 6.1,

and Corollary 3.3. The resulting map cycX : CHLW
0 (X)→Hd

nis

(
X,KM

d,X

)
is surjective by

[35, Theorem 2.5]. It is injective because φX = ρX ◦ cycX is injective by Theorem 1.2.

6.3. Proof of Theorem 1.5

Let X be as in Theorem 1.5 and let f : X̃ → X be a resolution of singularities with
reduced exceptional divisor E. By Corollary 2.6, we can assume that X is normal. Since

f∗ : CHLW
0 (X)→CH0

(
X̃ |mE

)
is clearly surjective for all m≥ 1, we only need to show

that this map is injective for all m� 1. The latter is equivalent to showing that the map

f∗ : CHLW
0 (X)0 → CH0

(
X̃ |mE

)0
is injective for all m� 1.

We let C(Xo) = lim←−
m

CH0

(
X̃ |mE

)
and let C(Xo)0 denote the kernel of the degree

map C(Xo)→ Z. It was shown in [38, Proposition 3.2] that the Frobenius substitution

associated to closed points in Xo defines a reciprocity map φXo : C(Xo)→ πab
1 (Xo) such

that one has a commutative diagram

CHLW
0 (X)

φX ��

f∗

��

πab
1 (Xo)

C(Xo)
φXo

�� πab
1 (Xo).

(6.7)

If we restrict this diagram to the degree 0 subgroups, then Theorem 1.2 says that

the top horizontal arrow is an isomorphism. On the other hand, [38, Theorem III] (if

char(k) �= 2) and [5, Theorem 8.5] (in general) say that the bottom horizontal arrow is
an isomorphism. It follows that the map f∗ : CHLW

0 (X)0 → C(Xo)0 is an isomorphism.

In particular, C(Xo)0 is finite.

Since C(Xo) � CH0

(
X̃ |mE

)
for every m ≥ 1, it follows that C(Xo)0 �

CH0

(
X̃ |mE

)0
for every m≥ 1. We conclude that

{
CH0

(
X̃ |mE

)0}
m≥1

is an inverse

system of abelian groups whose transition maps are all surjective and whose limit C(Xo)0

is finite. But this implies that this inverse system is eventually constant. That is, the

map C(Xo)0 →CH0

(
X̃ |mE

)0
is an isomorphism for all m� 1. It follows that the map

f∗ : CHLW
0 (X)0 → CH0

(
X̃ |mE

)0
is an isomorphism for all m� 1.

6.4. Necessity of R1-condition

We show by an example that it is necessary to assume the R1-condition in Theorem 1.2.
Let C be the projective plane curve over a finite field k which has a simple cusp along

the origin and is regular elsewhere. Its local ring at the singular point is analytically

isomorphic to k
[[
t2,t3

]]
, which is canonically a subring of its normalization k[[t]]. Let

https://doi.org/10.1017/S1474748022000032 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748022000032


2276 M. Ghosh and A. Krishna

π : P1
k → C denote the normalization map. Let S ∼= Spec

(
k
[
t2,t3

]
/
(
t2,t3

))
denote the

reduced conductor and S̃ ∼= Spec
(
k[t]/

(
t2
))

its scheme-theoretic inverse image in P1
k. We

have a commutative diagram with exact rows:

0 �� lim←−
m

O×(mS)/k× ��

��

lim←−
m

K0(C,mS) ��

∼=
��

Pic(C) ��

π∗

��

0

0 �� lim←−
m

O×
(
mS̃

)
/k× �� lim←−

m

K0

(
P1
k,mS̃

)
�� Pic

(
P1
k

)
�� 0.

(6.8)

The isomorphism of the middle vertical map follows from the known result that the double

relative K -groups K0

(
C,P1

k,mS
)
and K−1

(
C,P1

k,mS
)
vanish.

It is easy to check from the K -theory localization sequence that Pic
(
P1
k,mS̃

) ∼=−→

K0

(
P1
k,mS̃

)
. On the other hand, the known class field theory for curves (with modulus)

tells us that there is a canonical isomorphism lim←−
m

Pic0
(
P1
k,mS̃

) ∼=−→ πab(Co)0. It follows

that there are isomorphisms (1 + tk[[t]])×
∼=−→ W(k)

∼=−→ πab(Co)0. On the other hand,
CHLW

0 (C)0 ∼= Pic0(C) ∼= k. This shows that there is no reciprocity map CHLW
0 (C)0 →

πab(Co)0, and the two can not be isomorphic.

7. Lefschetz for generalized Albanese variety

In order to prove the remaining of our main results, we need to use a Lefschetz

hypersurface theorem for the generalized Albanese variety of smooth quasiprojective
schemes over algebraically closed fields. The goal of this section to establish such a

Lefschetz theorem.

We assume in this section that k is an algebraically closed field of characteristic p > 0.
Recall from [68] that to any quasiprojective scheme V over k, there is associated a semi-

abelian variety AlbS(V ) over k together with a morphism albV : V → AlbS(V ) which

have the universal property that given any semi-abelian variety A over k and a morphism
f : V →A, there exists a unique affine morphism f̃ : AlbS(V )→A such that f = f̃ ◦albV .
Recall here that an affine morphism between two commutative group schemes over k is

the composition of a group homomorphism with a translation of the target scheme.

The assignment V �→ AlbS(V ) is a covariant functor for arbitrary morphisms of
quasiprojective schemes. If V is smooth and projective, then AlbS(V ) is the Albanese

variety in the classical sense. If V is a smooth curve, then AlbS(V ) coincides with

Rosenlicht’s generalized Jacobian [64] or Serre’s generalized Jacobian with modulus [70].
We shall call AlbS(V ) the ‘generalized Albanese variety’ of V.

For any quasiprojective scheme V over k, let AlbW (V ) denote the Albanese variety

of V which is universal for rational maps from V to abelian varieties over k (see [76]
or [46, Chapter II, §3]). Let Cl(V ) denote the divisor class group of V and Cl0(V ) the

subgroup of Cl(V ) consisting of Weil divisors which are algebraically equivalent to zero in

the sense of [17, Chapter 19]. If V is projective and R1, then we recall from [76] (see also
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[46, Chapter IV, §4]) that there is an abelian variety PicW (V ) over k, known as the

Weil–Picard variety of V, such that PicW (V )(k) ∼= Cl0(V ). Moreover, AlbW (V ) ∼=
AlbW (V o) is the dual of PicW (V ) [46, Chapter VI, p. 152]. We shall therefore refer
to AlbW (V ) as the ‘Weil–Albanese variety’ of V.

7.1. Generalized Albanese of a smooth variety

Let X ∈ Schk be an integral projective R1-scheme of dimension d≥ 1. Let U ⊂Xo be a

nonempty open subscheme and set Z =X \U , endowed with the reduced induced closed

subscheme structure. In this case, Serre gave an explicit description of AlbS(U) in [69].
We recall this description. We remark here that even if we do not assume X to be smooth,

the exposition of [69] remains valid in the present case with no modification.

Let Div(X) denote the free abelian group of Weil divisors on X. Let Λ1
U (X) denote the

image of the push-forward map Zd−1(Z)→Zd−1(X) =Div(X). There is thus a canonical

homomorphism ιU : Λ1
U (X)→ Cl(X)

Cl0(X)
= NS(X), where NS(X) is the Néron–Severi group

of X. Let ΛU (X) denote the kernel of the canonical map Λ1
U (X)

ιU−→ NS(X) so that the
quotient Div(X)� Cl(X) induces a homomorphism ΛU (X)→ Cl0(X). It was shown by

Serre [69] that AlbS(U) is the Cartier dual of the 1-motive [ΛU (X)→ PicW (X)] (see [13]

for the definitions of 1-motives and their Cartier duals).

We thus have a canonical exact sequence of algebraic groups

0→ ΛU (X)∨ →AlbS(U)→AlbW (X)→ 0, (7.1)

where ΛU (X)∨ is the Cartier dual of the constant group scheme over k associated to the

lattice ΛU (X). In particular, ΛU (X)∨ is a split torus of rank equal to the rank of the

lattice ΛU (X).

7.2. A Lefschetz theorem for AlbS(U)

We shall now prove a Lefschetz theorem for the generalized Albanese variety. We let
X ⊂ PN

k be an integral normal projective scheme of dimension d ≥ 3 over k which is an

R2-scheme. Let U ⊂ Xo be a nonempty open subscheme. We let Z = X \U with the

reduced closed subscheme structure. We let H ⊂ PN
k be a hypersurface and Y =X ∩H

the scheme theoretic intersection. We shall say that Y is ‘Z -admissible’ if the following

hold:

(1) Y is good (see §5).
(2) For every irreducible component Z ′ of Z of dimension d− 1, the scheme-theoretic

intersection Y ∩Z ′ is integral of dimension d−2.

Let ι : Y ↪→ X be the inclusion of a Z -admissible hypersurface section of X. Then

the construction of the pullback map on algebraic cycles in [17, Chapter 2, §4] yields a

homomorphism ι∗ : Div(X)→Div(Y ). Furthermore, it easily follows from the proof of [17,
Corollary 2.4.1] that it induces the pullback maps ι∗ : Cl(X)→ Cl(Y ) and ι∗ : Cl0(X)→
Cl0(X). Taking the quotients, we get a pullback map ι∗ : NS(X)→NS(Y ). We shall follow

the notations of §5.
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Lemma 7.1. Assume that X is normal, H is a hypersurface of degree m� 0, and Y =
X ∩H is good. Then the map ι∗ : NS(X)tor →NS(Y )tor is injective.

Proof. Since X is normal and Y is good, the latter is also normal. It follows therefore
from [17, Example 10.3.4] that the pullback maps j∗ : NS(X)→NS(Xo) and j̃∗ : NS(Y )→
NS(Y o) are isomorphisms. Hence, the lemma is equivalent to the statement that the map

(ιo)∗ : NS(Xo)tor →NS(Y o)tor is injective.
Since PicW (X)(k) and PicW (Y )(k) are divisible, there is a commutative diagram of

short exact sequences

0 �� Cl0(X)tor ��

��

Pic(Xo)tor ��

��

NS(Xo)tor ��

��

0

0 �� Cl0(Y )tor �� Pic(Y o)tor �� NS(Y o)tor �� 0.

(7.2)

Since Y ⊂ X is a general hypersurface section, it follows from the Lefschetz theorem

for the Weil–Albanese variety [46, Chapter VII, Theorem 5] that the canonical map
AlbW (Y )→AlbW (X) is an isogeny of abelian varieties whose kernel is isomorphic to the

finite infinitesimal group scheme αpr for some r≥ 0. Considering the induced map between

the dual abelian varieties, we see that the pullback morphism PicW (X)→ PicW (Y ) is an

isogeny of abelian varieties [10, Theorem 11.1]. It is then an easy exercise to show that
the map Cl0(X)tor →Cl0(Y )tor is surjective. Using a diagram chase in diagram (7.2), the

lemma is now reduced to showing that the map Pic(Xo)tor → Pic(Y o)tor is injective.

We first fix a prime-to-p integer n. Since k is algebraically closed, we can identify μn

with Z/n. Since H0
ét

(
Xo,O×

Xo

)∼= k× (because X is R1) and the latter is a divisible group,

one observes using the Kummer sequence that nPic(X
o) ∼= H1

ét(X
o,Z/n). By the same

token, we have nPic(Y
o) ∼= H1

ét(Y
o,Z/n). It follows therefore from Proposition 5.3 that

the map nPic(X
o)→ nPic(Y

o) is injective. We note here that this part of Proposition 5.3

does not require X to be R2.

We now let n= pr for some r ≥ 1. Using the short exact sequence of étale sheaves

0→O×
Xo

n−→O×
Xo →O×

Xo/n→ 0, (7.3)

we see that nPic(X
o)∼=H0

ét

(
Xo,O×

Xo/n
)
. Using the similar isomorphism for Y o, we need

to show that the map H0
ét

(
Xo,O×

Xo/n
)
→ H0

ét

(
Y o,O×

Y o/n
)
is injective. Comparing the

exact sequence (7.3) with the similar sequence for Y o, this injectivity is equivalent to show-

ing that H0
ét

(
Xo,K1,Xo|Y o/n

)
= 0, where we let K1,Xo|Y o = Ker

(
O×

Xo � (ιo)∗
(
O×

Y o

))
.

Note here that K1,Xo|Y o/n=Ker
(
K1,Xo/n→ (ιo)∗

(
O×

Y o/n
))
, since O×

Y o is p-torsion free.

We let WrΩ
•
Xo be the p-typical de Rham–Witt complex of Xo (see, for example, [30])

and letWrΩ
i
Xo,log be the image of the Bloch–Gabber–Kato homomorphism dlog: KM

i,Xo →
WrΩ

i
Xo . This map is given by dlog({x1, . . . ,xi}) = dlog[x1]r ∧ ·· · ∧ dlog[xi]r, where [·]r

denotes the Teichmüller homomorphism [·]r : O×
Xo → (WrOXo)

×
. The Bloch–Gabber–

Kato homomorphism induces an isomorphism dlog: KM
i,Xo/n

∼=−→WrΩ
i
Xo,log.
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We let WrΩ
1
Xo/Y o,log denote the image of dlog: K1,Xo|Y o/n ↪→ WrΩ

1
Xo . It suffices to

show thatH0
ét

(
Xo,WrΩ

1
Xo|Y o,log

)
=0. Using the short exact sequence [32, Theorem 1.1.6]

0→Wr−1Ω
1
Xo|Y o,log

p
−→WrΩ

1
Xo|Y o,log →W1Ω

1
Xo|Y o,log → 0 (7.4)

and induction on r, it suffices to show that H0
ét

(
Xo,W1Ω

1
Xo|Y o,log

)
= 0.

One easily checks that the image of the composite inclusion

K1,Xo|Y o/p ↪→ Ω1
Xo ↪→ Ω1

Xo(logY o)

lies in the OXo -submodule Ω1
Xo|Y o := Ω1

Xo(logY o)(−Y o) [32, Theorem 1.2.1]. Hence, it

suffices to show that H0
ét

(
Xo,Ω1

Xo|Y o

)
= 0.

To show this, we use the exact sequence

0→ Ω1
Xo(−Y o)→ Ω1

Xo|Y o

Res−−→OY o(−Y o)→ 0, (7.5)

where Res is the Poincaré residue map twisted by OXo(−Y o). It suffices therefore to
show that the left and the right terms of this sequence have no global sections. Since

char(k) = p > 0, we are finally reduced to showing that

H0
zar (Y

o,OY o(−Y o)) =H0
zar

(
Xo,Ω1

Xo/k(−Y o)
)
= 0, (7.6)

where we note that these Zariski cohomologies coincide with the corresponding étale

cohomologies.
Now, we first note that OY (Y ) is very ample on Y. This already implies that

H0
zar (Y ,OY (−Y ))= 0 [29, Exercise III.7.1]. Since Y is normal, we conclude from Corollary

4.7 that H0
zar (Y

o,OY o(−Y o)) = 0. On the other hand, since Ω1
Xo/k is locally free and

m� 0, it follows from Lemma 5.2 that H0
zar

(
Xo,Ω1

Xo/k(−Y o)
)
= 0. This concludes the

proof of the lemma.

Proposition 7.2. Assume that X is an (R2+S2)-scheme, H is a hypersurface of degree
m� 0, and Y =X ∩H is good. Then the map ι∗ : NS(X)→NS(Y ) is injective.

Proof. Since Cl0(X) is divisible, the map Pic(Xo)/n→NS(X)/n is an isomorphism for

every integer n �= 0. It follows from [57, Théorème 2] that NS(X) is a finitely generated

abelian group. Hence, there exists a short exact sequence

0→NS(X)tor →NS(X)→NS(X)free → 0, (7.7)

where the first group is finite and the last group is free of finite rank (called the Weil–
Picard rank of X ). We can therefore find a prime number 	 �= p such that the map

NS(X)/	r →NS(X)free/	
r is an isomorphism for all r≥ 1. It follows now from the Kummer

sequence that there is a series of homomorphisms

lim←−
r≥1

Pic(Xo)/	r
∼=−→ lim←−

r≥1

NS(X)/	r
∼=−→ lim←−

r≥1

NS(X)free/	
r ↪→ lim←−

r≥1

H2
ét(X

o,Z/	r)∼=H2
ét(X

o,Z).
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Comparing with the similar maps for Y, we obtain a commutative diagram

NS(X)free
� � ��

ι∗

��

N̂S(X)
� � ��

ι∗

��

H2
ét(X

o,Z)

(ιo)∗

��

NS(Y )free
� � �� N̂S(Y )

� � �� H2
ét(Y

o,Z),

(7.8)

where Â denotes the 	-adic completion of an abelian group A.
Using Lemma 7.1, the exact sequence (7.7), and diagram (7.8), we reduce the

proposition to showing that the pullback map

H2
ét(X

o,Z/	r)→H2
ét(Y

o,Z/	r) (7.9)

is injective for all r ≥ 1. But this follows from Proposition 5.3.

We can now prove our Lefschetz theorem for the generalized Albanese variety.

Theorem 7.3. Let X ⊂ PN
k be an integral projective scheme of dimension d≥ 3 over an

algebraically closed field k of characteristic p > 0. Let U ⊂Xo be a dense open subscheme
and Z = X \U . Assume that X is an (R2 +S2)-scheme and H ⊂ PN

k is a hypersurface

of degree m� 0 such that Y =X ∩H is Z-admissible. Then the map AlbS(U ∩Y )(k)→
AlbS(U)(k) is an isomorphism.

Proof. We let V = U ∩ Y and consider the commutative diagram of the short exact

sequences of abelian groups (see formula (7.1))

0 �� ΛV (Y )∨(k) ��

α

��

AlbS(V )(k) ��

β

��

AlbW (Y )(k)

ι∗

��

�� 0

0 �� ΛU (X)∨(k) �� AlbS(U)(k) �� AlbW (X)(k) �� 0,

(7.10)

where the vertical arrows are the canonical maps induced by the inclusion Y ↪→X. We
have seen in the proof of Lemma 7.1 that the right vertical arrow ι∗ is an isomorphism.

So we need to show that α is an isomorphism to prove the theorem.

Since Y is Z -admissible, we see that the homomorphism ι∗ : Λ1
U (X) → Λ1

V (Y )
is bijective. But this implies by virtue of Proposition 7.2 that the homomorphism

ι∗ : ΛU (X) → ΛV (Y ) is also bijective. Taking the Cartier duals of these groups, we

conclude that α is an isomorphism.

8. The Suslin homology

The goal of this section is to prove Theorem 1.6, which identifies the Levine–Weibel
Chow group of a projective R1-scheme over an algebraically closed field with the Suslin

homology of its regular locus. We begin by recalling the definition of Suslin homology of

smooth schemes.
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8.1. Recollection of Suslin homology

Let k be any field. Let Δi denote the algebraic i -simplex – that is, the spectrum of

the ring k[x0, . . . ,xi]/(x0+ · · ·+xi−1). Set X ∈ Schk. Recall from [73] that the Suslin

homology HS
i (X,A) of X with coefficients in an abelian group A is defined to be the ith

homology of the complex (C∗(X)⊗ZA,∂), where Ci(X) is the free abelian group on the
set of integral closed subschemes of X×Δi which are finite and surjective over Δi. The

boundary map is given by the alternating sum

∂ =
i∑

j=0

(−1)jδ∗j : Ci(X)→ Ci−1(X),

where δ∗j is the pullback map between the cycle groups induced by the inclusion δj : X×
Δi−1 ↪→X×Δi, given by xj = 0. Note that the finiteness and surjectivity conditions on

the cycles over Δi insure that this pullback is defined.

As explained in [73], HS
∗ (X,A) is an algebraic analogue of the singular homology of

topological spaces. We shall write HS
∗ (X,Z) as HS

∗ (X) for short. One easily checks from
the definition that HS

∗ (−,A) is a covariant functor on Schk. By [53, Proposition 14.18]

and [15, Chapter 4, §9], the Suslin homology is also a part of the motivic homology and

cohomology theories of algebraic varieties in the sense of A1-homotopy theory.
It is easy to see from the definition that the identity map C0(X)→Z0(X) induces a

surjective homomorphism HS
0 (X)� CHF

0 (X). This is an isomorphism if X is complete.

Otherwise, HS
0 (X) carries more information about X than its Chow group. We shall be

interested in the group HS
0 (X,A). In this case, the universal coefficient theorem implies

that there is a functorial isomorphism HS
0 (X)/n

∼=−→HS
0 (X,Z/n) for any integer n ∈ Z.

In this paper, we shall use the following description of HS
0 (X) due to Schmidt [66,

Theorem 5.1]. Assume that X is a reduced scheme which is dense open in a projective

scheme X. Let ν : C →X be a finite morphism from a regular projective integral curve
whose image is not contained in X \X. Let f ∈ k(C)× be such that it is regular in a

neighborhood of ν−1
(
X \X

)
and f(x) = 1 for every x ∈ ν−1

(
X \X

)
. Then the identity

map C0(X)→Z0(X) induces an isomorphism between HS
0 (X) and the quotient of Z0(X)

by the subgroup generated by ν∗(div(f)), where the (C,f) runs through the collection of
all curves C and f ∈ k(C)× as before. We shall let RS

0 (X) denote this subgroup.

8.2. Chow group with modulus and Suslin homology

One of the key steps in proving Theorem 1.6 is to show that the Suslin homology coincides

with the Chow group of 0-cycles with modulus (see §3.3 for the definition of the latter)
in certain cases. We shall prove this result of independent interest in this subsection. We

expect this to have many applications in the theory of 0-cycles with modulus.

Let X be a regular projective scheme over a field k and D ⊂ X an effective Cartier

divisor. It is then an easy exercise to show, using Schmidt’s description of Suslin homology,
that the identity map of Z0(X \D) induces a surjection CH0(X |D)�HS

0 (X \D). We

let Λ be Z
[
1
p

]
if char(k) = p > 0 and Z/n, where n is any nonzero integer, if char(k) = 0.

The following result was obtained by the second author in a joint work with F. Binda [4].

Since the paper is not yet published, we present a proof.
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Proposition 8.1. Let X be a regular projective scheme over a field k and D ⊂ X
a reduced effective Cartier divisor whose all irreducible components are regular. Then

CH0(X |D)Λ �HS
0 (X \D)Λ is an isomorphism.

Proof. We can assume that X is connected. We let U = X \D. We need to show that

RS
0 (U) dies in CH0(X | D)Λ. So we let ν : C → X be a finite morphism from a regular

integral projective curve whose image is not contained in D. We let E = ν−1(D) and let

f ∈O×
C,E be such that either E = ∅ or f(x) = 1 for all x ∈E. Our assertion is immediate

if E = ∅, and we therefore assume that this is not the case.

Since ν is a finite morphism of regular schemes, we can find a factorization C
ν′
−→

Pn
X

π−→X of ν such that the first map is a closed immersion and the second map is the

canonical projection. Since π is smooth, it follows that π∗(D) is reduced with regular
irreducible components. There is a push-forward map π∗ : Z0 (Pn

U ) → Z0(U) such that

π∗ (R0 (P
n
X | Pn

D)) ⊂R0(X |D) (see [6] or [43, §2]). Since ν∗(div(f)) = π∗ ◦ ν′∗(div(f)), it
suffices to show that ν′∗(div(f)) dies in CH0 (P

n
X | Pn

D)Λ. We can therefore assume that

ν : C ↪→X is a closed immersion.
Since D is reduced with regular irreducible components, we can apply [63, Proposi-

tion A.6] to find a finite sequence of blowups π : X ′ → X along the closed points lying

over D such that the scheme-theoretic inverse image D′ :=X ′×XD satisfies the following:

(1) The irreducible components of D′
red are regular.

(2) The strict transform C ′ of C is regular.

(3) C ′ intersects D′
red only in the regular locus of D′

red and transversely.

Since π is proper, we have a commutative diagram

Z0(X
′ \D′)

π∗

��

�� CH0(X
′ |D′)

π∗

��

Z0(X \D) �� CH0(X |D),

(8.1)

where π∗ is the push-forward map between the 0-cycle groups. Since C is regular, the map

π : C ′ → C is an isomorphism and hence f ∈ k(C ′)× such that div(f)C = π∗ (div(f)C′).
Moreover, f is a regular invertible function in a neighborhood of D′ ∩C ′ with f(x) = 1

for every x ∈D′∩C ′.
It follows from diagram (8.1) that div(f)C will die in CH0(X |D)Λ if we can show that

div(f)C′ dies in CH0(X
′ |D′)Λ. Equivalently, div(f)C′ dies in CH0 (X

′ |D′
red)Λ by [55,

Theorem 1.3]. We can therefore assume that our original curve C ⊂X has the property

that it is regular and intersects D transversely in the regular locus of D. But in this case, it

is easy to see that f ∈O×
C,E and f(x) = 1 for all x∈E if and only if f ∈Ker

(
O×

C,E →O×
E

)
.

This concludes the proof.
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8.3. Relation with the Levine–Weibel Chow group

Let k be any field and X an integral projective R1-scheme of dimension d≥ 1 over k. We

first define a canonical homomorphism from the Levine–Weibel Chow group of X to the

Suslin homology of Xo.

Lemma 8.2. There is an inclusion of subgroups RLW
0 (X)⊆RS

0 (X
o) inside Z0(X

o). In
other words, the identity map of Z0(X

o) defines a canonical surjection

θX : CHLW
0 (X)�HS

0 (X
o).

Proof. By Lemma 2.4, we can replace RLW
0 (X) by RLW

0 (X,Xsing). We now let C ⊂X be

an integral curve with C∩Xsing = ∅ and set f ∈ k(C)×. Since C is closed in the projective

scheme X which does not meet Xsing, it is clear that the pair (Cn,f) defines a relation in
RS

0 (X
o) according to Schmidt’s description of HS

0 (X
o).

Lemma 8.3. Assume that char(k) = p > 0 and d = 2. Then the kernel of CHLW
0 (X)�

HS
0 (X

o) is a p-primary torsion group of bounded exponent.

Proof. Let π : X̃ → X be a resolution of singularities of X such that the reduced
exceptional divisor E ⊂ X̃ has strict normal crossings (see [51] for the existence of X̃). For

an integer m≥ 1, let mE ↪→ X̃ denote the infinitesimal thickening of E in X̃ of order m.

It is clear from the definitions of CHLW
0 (X), CH0

(
X̃ |D

)
, and HS

0 (X
o) that the

identity map of Z0(X
o) defines, by the pullback via π∗, the canonical surjective maps

CHLW
0 (X)

π∗

� CH0

(
X̃ |mE

)
� CH0

(
X̃ | E

)
�HS

0 (X
o) (8.2)

for every integer m≥ 1 such that the composite map is θX . The first arrow from the left

is an isomorphism for all m� 1 by Theorem 1.5, and the third arrow is an isomorphism

after inverting p by Proposition 8.1. We thus have to show that the kernel of the

surjection CH0

(
X̃ |mE

)
� CH0

(
X̃ | E

)
is a p-group of bounded exponent4 if m� 1.

But this follows by comparing the map (see diagram (3.6)) cyc
˜X|mE : CH0

(
X̃ |mE

)
→

F 2K0

(
X̃,mE

)
with cyc

˜X|E : CH0

(
X̃ | E

)
→ F 2K0

(
X̃,E

)
for m � 1, and applying

Proposition 3.5 in combination with [42, Lemma 3.4].

We shall now generalize Lemma 8.3 to arbitrary dimension.

Theorem 8.4. Let k be a perfect field of characteristic p > 0 and X an integral projective

R1-scheme of dimension d ≥ 2 over k. Then the kernel of the canonical surjection
CHLW

0 (X)�HS
0 (X

o) is a p-primary torsion group. Equivalently, the map

θX : CHLW
0 (X)

[
1
p

]
→HS

0 (X
o)
[
1
p

]
is an isomorphism.

4If we do not insist on bounded exponent, then we can directly apply [55, Theorem 1.3].
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Proof. We shall prove the theorem by induction on d. The case d=2 follows from Lemma
8.3. So we can assume d≥ 3. Let ν : C →X be a finite morphism from a regular integral

projective curve whose image is not contained in Xsing and set f ∈ Ker
(
O×

C,E �O×
E

)
,

where E = ν−1 (Xsing) with the reduced closed subscheme structure. We need to show
that ν∗(div(f)) ∈ CHLW

0 (X) is killed by a power of p.

We can get a factorization C
ν′

↪→ Pn
X

π−→ X of ν, where ν′ is a closed immersion and
π is the canonical projection. Since the singular locus of Pn

X coincides with Pn
Xsing

, it is

clear that ν′∗(div(f)) ∈ RS
0 (P

n
Xo) and ν∗(div(f)) = π∗ (ν

′
∗(div(f))). Using Corollary 2.7,

it suffices therefore to show that ν′∗(div(f)) is killed by some power of p in CHLW
0 (Pn

X).

We can thus assume that ν : C →X is a closed immersion.

We now fix a closed embedding X ↪→ PN
k . We let C ′ = C ∩Xo. Since Xo and C ′ are

smooth (this uses the perfectness of k) and d≥ 3, we can use [1, Theorem 7] (for k infinite)

and [77, Theorem 3.1] (for k finite) to find a hypersurface H ⊂ PN
k containing C and not

containing X, such that the scheme-theoretic intersection X ∩H has the property that it
contains no irreducible component of Xsing and H ∩Xo is smooth.

We let W be the connected component of H ∩Xo which contains C ′ and Y ⊂X the

closure of W with the reduced closed subscheme structure. Then Y ⊂ X is an integral

closed subscheme of dimension d−1 containing C which satisfies the following properties:

(1) Y ∩Xo is smooth.

(2) dim(Y ∩Xsing) ≤ dim(Xsing)− 1 ≤ d− 3 = dim(Y )− 2. In particular, Y is an R1-

scheme.

We let A= Y ∩Xsing and U = Y ∩Xo so that Ysing ⊂A and U ⊂ Y o. Let C
ν′

↪→ Y
ι
↪→X be

the factorization of ν. It follows from the choice of Y that ν′∗(div(f))∈RS
0 (U)⊂RS

0 (Y
o).

On the other hand, we have a commutative diagram

CHLW
0 (Y ,A)

∼= ��

����

CHLW
0 (Y )

����

HS
0 (U) �� HS

0 (Y
o),

(8.3)

where the existence of the left vertical arrow follows directly from the proof of Lemma 8.2

and the top horizontal arrow is an isomorphism by Lemma 2.4.

Since ν′∗(div(f)) ∈ CHLW
0 (Y ,A), it follows from this diagram and by induction that

ν′∗(div(f)) is killed by a power of p in CHLW
0 (Y ). Equivalently, ν′∗(div(f)) is killed by a

power of p in CHLW
0 (Y ,A). The push-forward map ι∗ : Z0(Y \A)→Z0(X

o) and Corollary

2.7 together imply that ν∗(div(f)) = ι∗ ◦ν′∗(div(f)) is killed by a power of p in CHLW
0 (X).

This concludes the proof.

8.4. The Albanese homomorphism

We now assume that k is an algebraically closed field. Let X be a connected smooth

quasiprojective scheme of dimension d ≥ 1 over k. The covariance of Suslin homology

defines the push-forward map degX : HS
0 (X)→HS

0 (k)
∼= Z. This is also called the degree
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map, since degX([x]) = [k(x) : k] for a closed point x ∈X. We let HS
0 (X)0 =Ker(degX).

Let AlbS(X) be the generalized Albanese variety of X (see §7).
Let ϑX : Z0(X)0 → AlbS(X)(k) be given by ϑX(

∑
ini[xi]) =

∑
ini(albX(xi)). It was

shown in [72, Lemma 3.1] that this map factors through the quotient by RS
0 (X) to yield

the Albanese homomorphism

ϑX : HS
0 (X)0 →AlbS(X)(k). (8.4)

Furthermore, ϑX defines a natural transformation of covariant functors from Smk to
abelian groups as X varies. The map ϑX was in fact discovered by Ramachandran [61],

who showed more generally that there exists an Albanese group scheme AlbS(X) and an

Albanese homomorphism ϑX : HS
0 (X)→AlbS(X)(k) such that AlbS(X) is the identity

component of AlbS(X) and formula (8.4) is the induced map on the degree 0 part. If X

is projective over k, then ϑX coincides with the classical Albanese homomorphism from

the degree 0 Chow group of 0-cycles on X.
Suppose now that X ∈ Schk is an integral projective R1-scheme of dimension d ≥ 1.

Recall from §7 that the universal rational map albwX : Xn ��� AlbW (X) extends to a

regular morphism albwX : Xo →AlbW (X). Moreover, the universal property of AlbS(X
o)

shows that this map is the composition Xo albXo−−−−→AlbS(X
o)→AlbW (X).

Recall from [44, §7] that if X is normal, then albwX : Xo → AlbW (X) gives rise to

the Albanese homomorphism αX : CHLW
0 (X)0 → AlbW (X)(k). The construction of this

homomorphism is identical to that of ϑXo . If X is smooth, this is the classical Albanese

homomorphism for CHF
0 (X)0. The main result of [44, §7] is that αX is an isomorphism

between the torsion subgroups, extending the famous Bloch–Roitman–Milne torsion

theorem for smooth projective schemes. Using Corollary 2.6 and the birational invariance

of AlbW (X), this result immediately extends to R1-schemes:

Proposition 8.5. Let X ∈ Schk be an integral projective R1-scheme of dimension d≥ 1.

Then the Albanese map albwX : Xo →AlbW (X) induces a homomorphism

αX : CHLW
0 (X)0 →AlbW (X)(k),

which is an isomorphism on the torsion subgroups.

8.5. Proof of Theorem 1.6

We shall now prove Theorem 1.6. We let k be an algebraically closed field and X ∈ Schk

an integral projective R1-scheme of dimension d≥ 1. We assume first that char(k) = p> 0.
We need to show in this case that the map θX : CHLW

0 (X)→HS
0 (X

o) is an isomorphism.

By Theorem 8.4, we only have to show that Ker(θX){p}= 0. For this, we consider the

diagram

CHLW
0 (X)0

θX ��

αX

��

HS
0 (X

o)0

ϑXo

��

AlbW (X)(k) AlbS(X
o)(k),

∼=

(8.5)
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where the bottom horizontal arrow is an isomorphism by formula (7.1). It follows from

the construction of various maps that this diagram is commutative.

If a ∈ Ker(θX){p}, then it must lie in CHLW
0 (X)0. Moreover, its image under θX will

die in HS
0 (X

o)0. This in turn implies by diagram (8.5) that αX(a) = 0. Proposition 8.5

implies that a= 0.

We now assume that char(k) = 0. In this case, we have to show that the map
θX : CHLW

0 (X)/n→HS
0 (X

o)/n is an isomorphism for all integers n �= 0.

We let π : X ′ →X be the normalization map. We let A= π−1 (Xsing) and U =X ′ \A.
We then have a commutative diagram

CHLW
0 (X ′)/n

θX′
����

CHLW
0 (X ′,A)/n

π∗
∼=
��

∼=


θX′
����

CHLW
0 (X)/n

θX
����

HS
0 (X

′o)/n HS
0 (U)/n

π∗
∼=

�� HS
0 (X

o)/n.

(8.6)

The top horizontal arrows are isomorphisms by Lemma 2.4 and Corollary 2.6. Suppose
that the left vertical arrow is an isomorphism. Then the middle and the right vertical

arrows also are isomorphisms. We can therefore assume that X is normal.

Let π : X̃ →X be a resolution of singularities of X such that the reduced exceptional
divisor E ⊂ X̃ has strict normal crossings. As in formula (3.4), there are canonical

surjections

CHLW
0 (X)/n

π∗

� CH0

(
X̃ |mE

)
/n� CH0

(
X̃ | E

)
/n�HS

0 (X
o)/n. (8.7)

The first arrow from the left is an isomorphism for all m � 1 by [26, Theorem 1.8],

and the third arrow is an isomorphism by Proposition 8.1. We thus have to show that

CH0

(
X̃ |mE

)
/n � CH0

(
X̃ | E

)
/n is an isomorphism for all m ≥ 1. But this follows

from [55, Theorem 1.3(2)]. This concludes the proof of Theorem 1.6.

8.6. Class field theory with finite coefficients

We shall now prove Theorem 1.3 as an application of Theorem 8.4. We restate it for

convenience.

Theorem 8.6. Let X be an integral projective R1-scheme of dimension d≥ 1 over a finite

field. Let n be any integer prime to char(k). Then the reciprocity map

φX : CHLW
0 (X)/n→ πab

1 (Xo)/n

is an isomorphism of finite abelian groups.

Proof. By an argument identical to the one in diagram (8.6), we can assume that X is

normal. We shall first show by induction on d that φX is surjective. This is clear for d≤ 2
by Theorem 1.2. We assume therefore that d ≥ 3. We fix an integer n prime to char(k).

We fix an embedding X ⊂ PN
k and apply [20, Theorem 6.3] to find a hypersurface H ⊂ PN

k

such that the scheme-theoretic intersection Y =X ∩H is normal and smooth along Xo
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and intersects Xsing properly. We argued in the proof of Theorem 1.2(2) that Y must be

integral in this case.

By Corollary 2.7, we get a commutative diagram

CHLW
0 (Y )/n

φY ��

ι∗

��

πab
1 (Y o)/n

ι∗

��

CHLW
0 (X)/n

φX �� πab
1 (Xo)/n,

(8.8)

where ι : Y ↪→X is the inclusion.

It follows from Proposition 4.15 and [23, Exposé X, Corollaire 2.6] that the right vertical

arrow is surjective. The top horizontal arrow is surjective by induction. We conclude

that φX is surjective. To finish the proof of the theorem, it suffices now to show that
CHLW

0 (X)/n and πab
1 (Xo)/n are both finite abelian groups of the same cardinality.

By Theorem 8.4, we can replace CHLW
0 (X)/n by HS

0 (X
o)/n∼=HS

0 (X
o,Z/n). Similarly,

we can replace πab
1 (Xo)/n byH1

ét(X
o,Z/n)∗ :=HomZ/n

(
H1

ét(X
o,Z/n),Z/n

)
. On the other

hand, [36, Corollary 7.1] implies thatHS
0 (X

o,Z/n)∼=H1
ét(X

o,Z/n)∗ and [19, Theorem 4.1]

says that H1
ét(X

o,Z/n)∗ is finite. It follows that CHLW
0 (X)/n and πab

1 (Xo)/n are finite

and have the same cardinality.

8.7. Chow group versus Suslin homology over finite fields

We shall now show that the assumption that k is algebraically closed in Theorem 1.6 is

essential. Assume that k is a finite field and X ∈ Schk satisfies one of the two conditions

of Theorem 1.2. Let πt,ab
1 (Xo) be the abelianized tame fundamental group of Xo [66]

which describes the finite étale covers of Xo which are tamely ramified along Xsing. We

then have a commutative diagram

0 �� CHLW
0 (X)

φX ��

θX
����

πab
1 (Xo) ��

����

Ẑ/Z �� 0

0 �� HS
0 (X

o)
φXo

�� πt,ab
1 (Xo) �� Ẑ/Z �� 0,

(8.9)

whose rows are exact. The top row is given by Theorem 1.6 and the bottom row is given
by [66, Theorem 8.7]. It is clear that the middle vertical arrow may not be injective in

general. This implies that θX is not injective in general.

9. The Roitman torsion theorem

Let k be an algebraically closed field of arbitrary characteristic. Let X be a smooth

quasiprojective scheme over k which admits an open embedding X ↪→ X, where X

is smooth and projective over k. Then Spieß and Szamuely [72] showed that the
Albanese homomorphism ϑX (see formula (8.4)) is an isomorphism on prime-to-p torsion

subgroups, where p is the exponential characteristic of k. This was an important

development, as it provided a crucial breakthrough in eliminating the projectivity
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hypothesis from the famous Roitman torsion theorem [63]. Geisser [18] subsequently

showed that the prime-to-p condition in the torsion theorem of Spieß and Szamuely

could be eliminated if one assumed resolution of singularities.
The goal of this section is prove Theorem 1.7, which eliminates the prime-to-p condition

from the torsion theorem of [72] without assuming resolution of singularities.

9.1. Some preliminaries

We shall use the following results in our proof.

Lemma 9.1. Let X ⊂ PN
k be an integral Cohen–Macaulay closed subscheme of dimension

d ≥ 2 and let C ⊂ PN
k be a closed subscheme such that the scheme-theoretic intersection

C ∩X has codimension ≥ 2 in X. Then for all m� 0, a general hypersurface H ⊂ PN
k of

degree m containing C has the property that X ∩H is an integral scheme of dimension

d−1.

Proof. Since codim(C ∩X,X)≥ 2, by [1, Theorem 1] a general hypersurface H ⊂ PN
k of

any degree m� 0 containing C has the property that X ∩H is irreducible of dimension

d−1 and smooth along Xreg \C. In particular, it is generically smooth. That is, X ∩H

satisfies Serre’s R0 condition.
Since X is Cohen–Macaulay, any hypersurface H ⊂ PN

k containing C has the property

that X ∩H is Cohen–Macaulay. In particular, it satisfies Serre’s S1 condition. But it

is classical that a Noetherian scheme is reduced if and only if it satisfies R0 and S1

conditions. We therefore conclude that a general hypersurface H ⊂ PN
k of any degree

m � 0 containing C has the property that X ∩H is reduced and irreducible, hence

integral of dimension d−1.

Lemma 9.2. Let X ⊂ PN
k be a smooth and connected projective scheme of dimension

d≥ 3. Let Z ⊂X be a nowhere dense reduced closed subscheme with (d−1)-dimensional

irreducible components Z1, . . . ,Zr. Let C ⊂X be a reduced curve with no components lying

in Z. Assume that the embedding dimension of C at each of its closed points is at most 2.

Then for all m � 0, a general hypersurface H ⊂ PN
k of degree m containing C has the

property that X ∩H is Z-admissible.

Proof. Since each Zi is a Cartier divisor on a smooth scheme, it is Cohen–Macaulay of

dimension d− 1 ≥ 2. Furthermore, our hypothesis implies that C ∩Zi has codimension

≥ 2 in Zi for each i. Since edim(C∩Xo)< 3, it follows from [1, Theorem 7] that a general
hypersurface H ⊂ PN

k of any degree m� 0 containing C has the property that X ∩H is

smooth. We combine this with Lemma 9.1 to conclude the proof.

We shall also need the following result on the invariance of the p-primary torsion

subgroup of the generalized Albanese variety under monoidal transformations.

Lemma 9.3. Assume that char(k) = p > 0 and let U be a smooth quasiprojective scheme

of dimension d≥ 1 over k. Suppose that there exists an open immersion U ⊂X such that
X is a smooth projective scheme. Let π : X̃ →X be the morphism obtained by a successive

blowups along closed points. Then the induced homomorphism π∗ : AlbS
(
π−1(U)

)
(k)→

AlbS(U)(k) is an isomorphism on the p-primary torsion subgroups.
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Proof. We let Ũ = π−1(U). It follows from formula (7.1) that there is a commutative

diagram of exact sequences of abelian groups

0 �� Λ
˜U

(
X̃
)∨

(k) ��

π∗

��

AlbS

(
Ũ
)
(k) ��

π∗

��

AlbW

(
X̃
)
(k) ��

π∗

��

0

0 �� ΛU (X)∨(k) �� AlbS(U)(k) �� AlbW (X)(k) �� 0.

(9.1)

Since T (k) is divisible and T (k){p}= 0 for an algebraic torus T over k, we see that the

maps AlbS

(
Ũ
)
(k){p} → AlbW

(
X̃
)
(k){p} and AlbS(U)(k){p} → AlbW (X)(k){p} are

isomorphisms. On the other hand, one knows that the Weil–Albanese variety of a smooth
scheme is a birational invariant. This implies that the right vertical arrow in the diagram

is an isomorphism. We conclude that the middle vertical arrow is an isomorphism on the

p-primary torsion subgroups.

9.2. Proof of Theorem 1.7

We shall now prove Theorem 1.7. We let U be a smooth quasiprojective scheme of

dimension d ≥ 1 over k with an open immersion U ⊂ X such that X is smooth and
projective over k. We have to show that the Albanese homomorphism ϑU : HS

0 (U)tor →
AlbS(U)(k)tor is an isomorphism.

We can assume X to be integral. We can also assume that char(k) = p > 0. We shall
prove the theorem by induction on d. The case d≤ 2 follows from [18, Theorem 1.1]. We

therefore assume d≥ 3.

We fix a closed embedding X ↪→ PN
k and let Z = X \U with reduced structure. Let

H ⊂ PN
k be a hypersurface such that the scheme-theoretic intersection Y =X∩H satisfies

the condition of Lemma 9.2. Using the covariance of the Albanese homomorphism (see

the beginning of §8.4), we get a commutative diagram

HS
0 (Y ∩U)0

ϑY ∩U ��

ι∗

��

AlbS(Y ∩U)(k)

ι∗

��

HS
0 (U)0

ϑU �� AlbS(U)(k),

(9.2)

where ι : Y ↪→ X is the inclusion. Using Theorem 7.3, the known case d ≤ 2, and an
induction on d, we see that ϑU is surjective on the torsion subgroups. In the rest of the

proof, we shall show that this map is injective too.

We shall prove the injectivity in several steps. We fix an element α ∈ Z0(U) such that
α �= 0 in HS

0 (U) but nα= 0 in HS
0 (U) for some integer n≥ 2. By the torsion theorem of

Spieß and Szamuely [72], we can assume n = pa, where a is a positive integer. We must

then have α ∈ Z0(U)0. We shall show that ϑU (α) �= 0. This will finish the proof.
Since nα= 0 in HS

0 (U), we can find a finite collection of distinct integral normal curves

{C1, . . . ,Cm} with finite maps νi : Ci →X, none of whose images is contained in Z, and

elements fi ∈ O×
Ci,Ei

such that fi(x) = 1 for every x ∈ Ei and nα =
∑

i(νi)∗(div(fi)).
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Here, Ei = ν−1
i (Z). We let C ′

i = νi(Ci) and C ′ =
⋃

iC
′
i ⊂X. Since we cannot always find

a hypersurface section of X which is smooth along U and contains C ′, we have to go
through some monoidal transformations of X.

Step 1. We can find a morphism π : X̃ → X which is a composition of monoidal

transformations whose centers are closed points such that the following hold:

(1) The strict transform D′
i of each C ′

i is smooth so that D′
i
∼= Ci.

(2) D′
i∩D′

j = ∅ for i �= j.

(3) Each D′
i ⊂ X̃ intersects the exceptional divisor E (which is reduced) transversely.

It is clear that there exists a set of distinct blown-up closed points T ⊂ X such that

π : π−1(X \T )→X \T is an isomorphism. Set Ũ = π−1(U) and Z̃ = π−1(Z) with reduced

structure. We shall identify D′
i with Ci and the composite map Ci

∼=−→ D′
i

π−→ C ′
i with

νi. Let C denote the strict transform of C ′ with irreducible components {C1, . . . ,Cm}.
We then have Ei = ν−1

i (Z) = Z̃ ∩Ci. Since Supp(α) ⊂ C ′ ∩U , we can find α′ ∈ Z0

(
Ũ
)

supported on C such that π∗(α
′) = α. This implies that π∗ (nα

′−
∑

idiv(fi)) = 0. Setting
β = nα′−

∑
idiv(fi), we get π∗(β) = 0 in the cycle group Z0(U).

Step 2. We let T ′ = T ∩U = {y1, . . . ,ys}. We can then write β =
s∑

i=0

βi, where βi is a

0-cycle on Ũ supported on π−1(yi) for 1 ≤ i ≤ s and β0 is supported on Ũ \E. We then

get
s∑

i=0

π∗(βi) = 0 in Z0(U) ⊆ Z0(X). Since all closed points of T are distinct and the

support of π∗(β0) is disjoint from T ′, and hence from T, one easily checks that we must
have π∗(βi) = 0 for all 0≤ i≤ s. Since π is an isomorphism away from T, we must have

β0 = 0. We can therefore assume that β is a 0-cycle on E∩ Ũ .

We now note that each π−1({yi}) is a (d− 1)-dimensional projective scheme whose
irreducible components are successive point blowups of Pd−1

k . Moreover, we have

π∗(βi) = 0 under the push-forward map π∗ : Z0

(
π−1({yi})

)
→ Z, induced by the maps

π : π−1({yi}) → Spec(k(yi))
�−→ Spec(k). But this means that deg(βi) = 0. Taking the

sum, we get deg(β) =
s∑

i=1

deg(βi) = 0. We can therefore find finitely many smooth

projective rational curves L1, . . . ,Lm′ on E ∩ Ũ and rational functions f ′
j ∈ k (Lj) such

that β =
m′∑
j=1

div
(
f ′
j

)
Lj

[42, Lemma 6.3].

Step 3. Using an argument of Bloch [9, Lemma 5.2], after possibly further blowup of

X̃ along the closed points of E∩ Ũ , we can assume that no more than two Ljs meet at a
point, and they intersect C transversely (note that C is smooth along E ). In particular,

in combination with items (1)–(3) of step 1, this implies that D :=C∪(∪jLj) is a reduced

curve with the following properties (see four lines up from the bottom of [9, p. 5.2]):

a) Each component of D is smooth (note that D = C away from (∪jLj)).

b) D is smooth along X̃ \ Ũ .
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c) D∩ Ũ has only ordinary double point singularities – that is, exactly two components

of D∩ Ũ meet at any of its singular points with distinct tangent directions.

In particular, the embedding dimension of D at each of its closed points is at most 2.
Furthermore, we have

nα′ =
m∑
i=1

div(fi)+β =
m∑
i=1

div(fi)+
m′∑
j=1

div
(
f ′
j

)
. (9.3)

Since Lj ∩ Z̃ = ∅ for each j, it follows that nα′ ∈RS
0

(
Ũ
)
. Note also that X̃ is an integral

smooth projective scheme.

Step 4. Let
{
Z̃1, . . . ,Z̃r

}
be the set of irreducible components of Z̃ of dimension d−1

with integral closed subscheme structure on each Z̃i. We fix a closed embedding X̃ ↪→ PM
k .

It follows from Lemma 9.2 that for all q � 0, a general hypersurface H ⊂ PM
k of degree

q containing D has the property that the scheme-theoretic intersection Y =X ∩H is Z̃-

admissible. Since q � 0, we can also ensure using the Enriques–Severi–Zariski vanishing

theorem thatH0
(
X̃,Ω1

˜X/k
(−Y )

)
=0. We choose such a hypersurface H and let ι : Y ↪→ X̃

denote the inclusion. We let V = Y ∩ Ũ .

Step 5. It follows from equation (9.3) and step 4 that α′ ∈ Z0(V ) and nα′ ∈RS
0 (V ) –

that is, nα′ = 0 in HS
0 (V ). Note that α′ �= 0 in HS

0 (V )0, since π∗(α
′) = α is not zero in

HS
0 (U)0tor. Since the Albanese homomorphism is a natural transformation between two

functors on Smk (see formula (8.4)), there is a commutative diagram

HS
0 (V )0tor

ϑV ��

ι∗

��

AlbS(V )(k)tor

ι∗

��

HS
0

(
Ũ
)0
tor

ϑ
˜U �� AlbS

(
Ũ
)
(k)tor.

(9.4)

By the choice of H and Theorem 7.3, the right vertical arrow is an isomorphism. Since

α′ ∈HS
0 (V )0tor, it follows by induction on d that ϑV (α

′) �= 0. Hence, we get

ϑ
˜U (α

′) = ϑ
˜U ◦ ι∗(α′) = ι∗ ◦ϑV (α

′) �= 0. (9.5)

We now consider another commutative diagram,

HS
0

(
Ũ
)0

{p}
ϑ

˜U ��

π∗

��

AlbS

(
Ũ
)
(k){p}

π∗

��

HS
0 (U)0{p} ϑU �� AlbS(U)(k){p}.

(9.6)

Using this diagram, we get

ϑU (α) = ϑU ◦π∗(α
′) = π∗ ◦ϑ˜U (α

′).
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Since ϑ
˜U (α

′) �= 0 by diagram (9.5), we conclude from Lemma 9.3 that ϑU (α) �= 0.

This concludes the proof of Theorem 1.7.
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(to appear), Preprint, 2021, https://arxiv.org/abs/2104.07968v2.

[5] F. Binda, A. Krishna and S. Saito, Bloch’s formula for 0-cycles with modulus and
the higher dimensional class field theory, J. Alebraic Geom. (to appear), Preprint, 2020,
https://arxiv.org/abs/2002.01856.

[6] F. Binda and S. Saito, Relative cycles with moduli and regulator maps, J. Math. Inst.
Jussieu 18(6) (2019), 1233–1293.

[7] J. Biswas and V. Srinivas, Roitman’s theorem for singular projective varieties, Compos.
Math. 119(2) (1999), 213–237.

[8] S. Bloch, K2 and algebraic cycles, Ann. of Math. (2) 99(2) (1974), 349–379.
[9] S. Bloch, Lectures on Algebraic Cycles, Duke University Mathematics Series, 4

(Duke University Press, Durham, North Carolina, 1976).
[10] G. Cornell and J. Silverman, Arithmetic Geometry (Springer, New York, 1986).
[11] A. J. de Jong et al., The Stacks Project, 2020, http://stacks.math.columbia.edu.
[12] F. Deglise, Bivariant theories in motivic stable homotopy, Doc. Math. 23 (2018), 997–

1076.
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Tome 4, (1958–1959), no. 10, 1–22.

[69] J.-P. Serre, Morphisme universels et différentielles de troisième espèce, Séminaire Claude
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