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Abstract

In this paper we establish a Chowla–Selberg formula for abelian CM fields. This is

an identity which relates values of a Hilbert modular function at CM points to values

of Euler’s gamma function Γ and an analogous function Γ2 at rational numbers. We

combine this identity with work of Colmez to relate the CM values of the Hilbert

modular function to Faltings heights of CM abelian varieties. We also give explicit

formulas for products of exponentials of Faltings heights, allowing us to study some of

their arithmetic properties using the Lang–Rohrlich conjecture.

1. Introduction and statement of results

1.1 Overview

The Chowla–Selberg formula [CS49, CS67] is a remarkable identity which relates values of the

Dedekind eta function at CM points to values of Euler’s gamma function Γ at rational numbers.

This formula arises in connection with many topics in number theory, including elliptic curves,

L-functions, modular forms, and transcendence. For a very nice discussion, see Zagier [Zag08,

§ 6.3]. In this paper we will establish a Chowla–Selberg formula for abelian CM fields. This is an

identity which relates values of a Hilbert modular function at CM points to values of Γ and an

analogous function Γ2 at rational numbers. The function Γ2 was studied extensively by Deninger

[Den84] in his work on the Chowla–Selberg formula for real quadratic fields. We will combine our

Chowla–Selberg formula for abelian CM fields with a theorem of Colmez [Col93], which relates

Faltings heights of CM abelian varieties to logarithmic derivatives of Artin L-functions, to give

a geometric interpretation of the CM values. Using this circle of ideas, we will also give explicit

formulas for products of exponentials of Faltings heights, allowing us to study some of their

arithmetic properties using the Lang–Rohrlich conjecture, which concerns algebraic relations

among values of Γ at rational numbers. We note that there has recently been a great amount

of interest in formulas for CM values of Hilbert modular functions. Some examples occur in

the work of Bruinier and Yang [BY06, BY07, BY11] and Bruinier et al. [BKY12], which is

related to Borcherds products and the seminal work of Gross and Zagier [GZ85] on factorization

of differences of singular moduli. See also the work of Yang [Yan10a, Yan10b, Yan13], which

reveals new connections between the Chowla–Selberg formula, Faltings heights, and arithmetic

intersection theory.
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1.2 The Chowla–Selberg formula
We begin by reviewing the classical Chowla–Selberg formula (see e.g. [Wei76, ch. IX]). Let ∆ =
f2d be a fundamental discriminant, where f > 0 and d is squarefree. Let K = Q(

√
d) be a

quadratic field of discriminant ∆, OK be the ring of integers, CL(K) be the ideal class group,
hd be the class number, wd = #O×K be the number of units (for d < 0), εd be the fundamental

unit (for d > 0), and χd(·) = (∆
· ) be the Kronecker symbol associated to K. Assume now that

d < 0. Given an ideal class C ∈ CL(K), one may choose a primitive integral ideal a ∈ C−1 such
that

a = Za+ Z
(−b+

√
∆

2

)
, a, b ∈ Z,

where a = NK/Q(a) is the norm of a and b satisfies b2 ≡ ∆ mod 4a. Then

τa =
−b+

√
∆

2a

is a CM point in the complex upper half-plane H which corresponds to the inverse class [a] = C−1.
The Chowla–Selberg formula is obtained by comparing two different expressions for the

Dedekind zeta function ζK(s). One has the classical identity

ζK(s) =
2

wd
ζ(2s)

(
2√
|∆|

)s ∑
[a]∈CL(K)

E(τa, s),

where

E(z, s) :=
∑

M∈Γ∞\SL2(Z)

Im(Mz)s, z ∈ H, Re(s) > 1

is the non-holomorphic Eisenstein series for SL2(Z). On the other hand, one has the well-known
factorization

ζK(s) = ζ(s)L(χd, s),

where L(χd, s) is the Dirichlet L-function associated to χd. Comparing these expressions and
making the shift s 7→ (s+ 1)/2 yields

∑
[a]∈CL(K)

E

(
τa,

s+ 1

2

)
=
wd
2

(√|∆|
2

)(s+1)/2 ζ((s+ 1)/2)

ζ(s+ 1)
L

(
χd,

s+ 1

2

)
. (1.1)

Now, one has the ‘renormalized’ Kronecker limit formula

E

(
z,
s+ 1

2

)
= 1 + log(G(z))(s+ 1) +O((s+ 1)2), (1.2)

where

G(z) :=
√

Im(z)|η(z)|2

and

η(z) := q1/24
∞∏
n=1

(1− qn), q := e2πiz, z ∈ H
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The Chowla–Selberg formula for abelian CM fields and Faltings heights

is the Dedekind eta function, a weight 1/2 cusp form for SL2(Z). Substitute (1.2) into the
left-hand side of (1.1), calculate the Taylor expansion of the right-hand side of (1.1) at s = −1,
differentiate both sides of the resulting identity with respect to s, and evaluate at s = −1 to get∑

[a]∈CL(K)

log(G(τa)) =
wd
2
L(χd, 0)

{
log

(√|∆|
2

)
− ζ ′(0)

ζ(0)
+
L′(χd, 0)

L(χd, 0)

}
. (1.3)

Recall the evaluation

−ζ
′(0)

ζ(0)
= −log(2π) (1.4)

and the class number formula

L(χd, 0) =
2hd
wd

. (1.5)

To evaluate L′(χd, 0), one uses the decomposition

L(χd, s) = |∆|−s
|∆|∑
k=1

χd(k)ζ

(
s,

k

|∆|

)
, (1.6)

where

ζ(s, w) :=
∞∑
n=0

1

(n+ w)s
, Re(w) > 0, Re(s) > 1

is the Hurwitz zeta function. Lerch [Ler97] showed that

ζ(s, x) =
1

2
− x+ log

(
Γ(x)√

2π

)
s+O(s2), x > 0, (1.7)

where

Γ(s) :=

∫ ∞
0

ts−1e−t dt

is Euler’s gamma function. Substitute (1.7) into (1.6) and then differentiate to get

L′(χd, 0) = −log(|∆|)L(χd, 0) +

|∆|∑
k=1

χd(k) log

{
Γ

(
k

|∆|

)}
. (1.8)

Finally, substitute (1.4), (1.5), and (1.8) into (1.3) and then exponentiate to obtain the Chowla–
Selberg formula

∏
[a]∈CL(K)

G(τa) =

(
1

4π
√
|∆|

)hd/2 |∆|∏
k=1

Γ

(
k

|∆|

)wdχd(k)/4

. (1.9)

1.3 Statement of the main results
To establish a Chowla–Selberg formula for abelian CM fields, we will follow the basic structure
of the argument just described.

The following facts concerning Hilbert modular varieties and CM points are explained in
detail in §§ 3 and 4.
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Let F/Q be a totally real field of degree n. Let OF be the ring of integers, O×F be the group
of units, dF be the absolute value of the discriminant, and ζF (s) be the Dedekind zeta function.
Let z = (z1, . . . , zn) ∈ Hn. The Hilbert modular group SL2(OF ) acts componentwise on Hn by
linear fractional transformations.

Let E be a CM extension of F and Φ = {σ1, . . . , σn} be a CM type for E. Let hE be the class
number of E, and assume that F has narrow class number 1. Given an ideal class C ∈ CL(E),
let za be a CM point corresponding to the inverse class [a] = C−1. To ease notation, we identify
the CM point za with its image Φ(za) ∈ Hn under the CM type Φ. Let

CM(E,Φ,OF ) := {za : [a] ∈ CL(E)}
be a set of CM points of type (E,Φ). This is a CM zero-cycle on the Hilbert modular variety
SL2(OF )\Hn.

We will establish the following analog of (1.3),∑
[a]∈CL(E)

log(H(za)) =
hE
2

{
log

(√
dE

2ndF

)
− 1

n

ζ
(n)
F (0)

ζ
(n−1)
F (0)

+
L′(χE/F , 0)

L(χE/F , 0)

}
, (1.10)

where H : Hn
→ R+ is a SL2(OF )-invariant function analogous to G(z) which arises from a

renormalized Kronecker limit formula for the non-holomorphic Hilbert modular Eisenstein series
(see § 3 and, in particular, (3.5)) and L(χE/F , s) is the L-function of the quadratic character
χE/F associated by class field theory to the CM extension E/F .

Assume now that E is abelian over Q. Then F ⊂ E ⊂ Q(ζN ) for some primitive Nth root
of unity ζN := e2πi/N . Let HE (respectively HF ) be the subgroup of GN := Gal(Q(ζN )/Q)
which fixes E (respectively F ). Using the isomorphism GN ∼= (Z/NZ)×, one defines the group
of Dirichlet characters associated to E (respectively F ) by

XE := {χ ∈ ̂(Z/NZ)× : χ|HE
≡ 1}

(respectively XF ). Clearly, we have HE 6 HF and XF 6 XE .
Given a Dirichlet character χ ∈ XE , let L(χ, s) denote the L-function of the primitive

Dirichlet character of conductor cχ which induces χ. The Gauss sum of χ ∈ XE is defined
by

τ(χ) :=

cχ∑
k=1

χ(k)ζkcχ , ζcχ := e2πi/cχ .

We will establish the identity

L′(χE/F , s)

L(χE/F , s)
=

∑
χ∈XE\XF

L′(χ, s)

L(χ, s)
;

hence, to evaluate the logarithmic derivative of L(χE/F , s) at s = 0, we must evaluate L′(χ, 0)
for χ ∈ XE\XF . We can express L′(χ, 0) in terms of values of log(Γ(s)) at rational numbers as
in (1.8).

On the other hand, we will reduce the evaluation of the logarithmic derivative of ζ
(n−1)
F (s) at

s = 0 to the evaluation of L′(χ, 1) for non-trivial χ ∈ XF . Because each χ ∈ XF is even, L′(χ, 1)
cannot be expressed in terms of values of log(Γ(s)) at rational numbers (this is due to the sign
of the functional equation for L(χ, s) when χ is even). However, Deninger [Den84] showed how
to evaluate L′(χ, 1) in terms of values of the function

R(w) := ∂2
sζ(0, w), Re(w) > 0

at rational numbers. The function R(w) is analogous to log(Γ(s)/
√

2π), as we now explain.
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Consider the Taylor expansion

ζ(s, x) =
1

2
− x+ log

(
Γ(x)√

2π

)
s+R(x)s2 +O(s3), x > 0.

By the Bohr–Mollerup theorem, log(Γ(x)/
√

2π) is the unique function f : R+
→ R such that

f(x+ 1)− f(x) = log(x),

f(1) = ζ ′(0) = −log(
√

2π), and f(x) is convex on R+. Using properties of the Hurwitz zeta
function, one can show that ∂sζ(0, x) also satisfies these three conditions; hence, by uniqueness,
one recovers Lerch’s identity

∂sζ(0, x) = log

(
Γ(x)√

2π

)
.

Note that using the limit

Γ(x) = lim
n→∞

n!nx

x(x+ 1) · · · (x+ n)
, x > 0

one has

log

(
Γ(x)√

2π

)
= lim

n→∞

(
ζ ′(0) + x log(n)− log(x)−

n−1∑
k=1

(log(x+ k)− log(k))

)
. (1.11)

Deninger [Den84, Theorem 2.2] proved a similar result for the functions ∂αs ζ(0, x), α ∈ Z+,
by modeling the proof of Lerch’s identity just described. In particular, for α = 2 he proved that
R(x) is the unique function R : R+

→ R such that

R(x+ 1)−R(x) = log2(x),

R(1) = −ζ ′′(0), and R(x) is convex on (e,∞). He also proved the following analog of (1.11),

R(x) = lim
n→∞

(
−ζ ′′(0) + x log2(n)− log2(x)−

n−1∑
k=1

(log2(x+ k)− log2(k))

)
.

Define the function
Γ2(w) := exp(R(w)), Re(w) > 0,

which is analogous to Γ(s)/
√

2π. Note that Γ2(w) does not extend to a meromorphic function
on C (see e.g. [Den84, Remark (2.4)]).

We can now state our Chowla–Selberg formula for abelian CM fields.

Theorem 1.1. Let F/Q be a totally real field of degree n with narrow class number 1. Let E/F
be a CM extension with E/Q abelian. Let Φ be a CM type for E and

CM(E,Φ,OF ) = {za : [a] ∈ CL(E)}
be a set of CM points of type (E,Φ). Then∏

[a]∈CL(E)

H(za) = c1(E,F, n)
∏

χ∈XE\XF

cχ∏
k=1

Γ

(
k

cχ

)hEχ(k)/2L(χ,0)

×
∏
χ∈XF
χ 6=1

cχ∏
k=1

Γ2

(
k

cχ

)hEτ(χ)χ(k)/2cχL(χ,1)

,
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where

c1(E,F, n) :=

(
dF

2n+1π
√
dE

)hE/2
.

Remark 1.2. Given a triple (E,F,Φ) satisfying the hypotheses of Theorem 1.1, one can obtain

explicit examples by determining the group of characters XE (respectively XF ) and a set of CM

points CM(E,Φ,OF ) of type (E,Φ) (see § 2).

Remark 1.3. The narrow class number 1 assumption in Theorem 1.1 could be removed by working

adelically. We have worked in the classical language to emphasize parallels with the original

Chowla–Selberg formula.

When E/Q is a multiquadratic extension (equivalently, Gal(E/Q) is an elementary abelian

2-group), one can explicitly determine the group of characters XE (respectively XF ), leading to

the following result.

Theorem 1.4. Let d1, . . . , d`+1 be squarefree, pairwise relatively prime integers with di > 0 for
i = 1, . . . , ` and d`+1 < 0, where ` = 1 or 2. Assume that F = Q(

√
d1, . . . ,

√
d`) has narrow class

number 1 and let E = F (
√
d`+1). Let χα (respectively χβ) be the Kronecker symbol associated

to the quadratic field Q(
√
α) (respectively Q(

√
β)), where α = de11 · · · de`` d`+1 (respectively β =

de11 · · · de`` ) for e = (e1, . . . , e`) ∈ {0, 1}`. Then

∏
[a]∈CL(E)

H(za) = c1(E,F, 2`)
∏

e∈{0,1}`
α=d

e1
1 ···d

e`
` d`+1

cα∏
k=1

Γ

(
k

cα

)hEχα(k)wα/4hα

×
∏

e∈{0,1}`
β=d

e1
1 ···d

e`
` 6=1

cβ∏
k=1

Γ2

(
k

cβ

)hEχβ(k)/(4hβ log(εβ))

.

Remark 1.5. The restriction to ` = 1 or 2 in Theorem 1.4 is made for the following reasons. By

Fröhlich [Fro83, Theorem 5.6], if F is a totally real abelian field in which at least five rational

primes ramify, then the class number of F is even. If ` > 5, then at least five rational primes

ramify in F = Q(
√
d1, . . . ,

√
d`) and hence F cannot have narrow class number 1 (since the class

number divides the narrow class number). It is well known that there exist real quadratic fields of

narrow class number 1, and these must be of the form Q(
√

2) or Q(
√
p) for a prime p ≡ 1 (mod 4)

(see e.g. [CH88, Corollary 12.5]). This leaves the possibilities ` = 2, 3, or 4. One can compute

many examples of real biquadratic fields with narrow class number 1. We wrote a program in

SAGE which calculates the narrow class numbers of the real biquadratic fields F = Q(
√
p,
√
q) for

p and q primes with 2 6 p < q 6 n (see http://www.math.tamu.edu/~masri/NarrowOne.pdf).

For example, if n = 30, there are six real biquadratic fields in this list with narrow class number 1,

corresponding to the pairs (p, q) given by {(2, 5), (2, 13), (2, 29), (5, 13), (5, 17), (17, 29)}. On the

other hand, for ` = 3 or 4 the class number of F = Q(
√
d1, . . . ,

√
d`) can be 1 (see e.g. [Mou09]),

but we were unable to find any examples with narrow class number 1.

For CM biquadratic fields of class number 1, we have the following result.

Theorem 1.6. Let p = 2 or p ≡ 1 (mod 4) be a prime such that F = Q(
√
p) has narrow class

number 1. Let d < 0 be a squarefree integer relatively prime to p such that E = Q(
√
p,
√
d) has
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class number 1. Let ∆p, ∆d, and ∆pd be the discriminants of the quadratic fields Q(
√
p), Q(

√
d),

and Q(
√
pd), respectively, and assume that ∆p and ∆d are relatively prime. Then

H(zOE ) =
1

2
√

2π|∆d|

|∆d|∏
k=1

Γ

(
k

|∆d|

)χd(k)wd/4hd

×
|∆pd|∏
k=1

Γ

(
k

|∆pd|

)χpd(k)wpd/4hpd ∆p∏
k=1

Γ2

(
k

∆p

)χp(k)/(4 log(εp))

,

where

zOE =


(
√
d,
√
d), d ≡ 2, 3 (mod 4),(

1 +
√
d

2
,
1 +
√
d

2

)
, d ≡ 1 (mod 4),

is a CM point of type (E,Φ) for Φ = {σ1 = id, σ2 :
√
p 7→ −√p,

√
d 7→

√
d}.

Theorem 1.1 gives a closed form evaluation of the product of CM values
∏

[a]H(za). On the
other hand, this product can also be related to Faltings heights of CM abelian varieties, giving a
link between the CM values and the arithmetic and geometry of abelian varieties. To explain this
relationship, we first recall that the product of CM values

∏
[a]G(τa) appearing in the classical

Chowla–Selberg formula (1.9) can be expressed in terms of the Faltings height of a CM elliptic
curve (see e.g. Gross [Gro80] and Silverman [Sil86]); hence, the Chowla–Selberg formula can be
reformulated as an identity relating the Faltings height of a CM elliptic curve to the logarithmic
derivative of the Dirichlet L-function L(χd, s) at s = 0. There is a vast conjectural generalization
of this identity due to Colmez [Col93], which relates Faltings heights of CM abelian varieties to
logarithmic derivatives of Artin L-functions at s = 0. Yoshida [Yos99] made a similar conjecture
relating periods of CM abelian varieties (in the sense of Shimura) to logarithmic derivatives of
Artin L-functions. See also the work of Anderson [And82] for results in this direction.

We now state Colmez’s conjecture in the form we will use. Let E be a CM extension of a
totally real field F of degree n over Q. Let A be an abelian variety with complex multiplication
by E which is defined over Q. Let K ⊂ Q be a number field over which A is defined and let
ωA ∈ H0(A,Ωn

A) be a Néron differential. The Faltings height of A is defined by (see e.g. [Col93,
p. 667, (II.2.12.1)])

hFal(A) := − 1

[K : Q]

( ∑
σ∈Hom(K,Q)

1

2
log

(∫
Aσ(C)

|ωσA ∧ ωσA|
)
−
∑
p<∞

∑
σ∈Hom(K,Q)

vp(ω
σ
A) log(p)

)
,

where vp(ω
σ
A) is a certain rational number defined using the p-adic valuation on Qp (see [Col93,

p. 659]).
Given a CM type Φ ∈ Φ(E), let AΦ be a CM abelian variety of type (OE ,Φ) defined over Q.

Colmez [Col93, (3)] conjectured the following identity for the average of the Faltings heights
hFal(AΦ) of the abelian varieties AΦ,

1

2n

∑
Φ∈Φ(E)

hFal(AΦ) = −1

2

{
L′(χE/F , 0)

L(χE/F , 0)
+

1

2
log(fχE/F ) + n log(2π)

}
,

where fχE/F is the analytic Artin conductor of the quadratic character χE/F (here we have
corrected a minor typographical error in the statement of [Col93, (3)]). When E/Q is abelian,
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Colmez [Col93, Théorème 5] proved this conjectured identity, up to addition by a possible rational
multiple of log(2). Obus [Obu13] recently completed Colmez’s proof by eliminating this possible
term. Note that Yang proved the first non-abelian cases of Colmez’s conjecture in [Yan10a].

By combining our results with Colmez’s theorem, we will obtain the following result.

Theorem 1.7. Let F/Q be a totally real field of degree n and narrow class number 1. Let E/F
be a CM extension with E/Q abelian. Given a CM type Φ ∈ Φ(E), let AΦ be a CM abelian
variety of type (OE ,Φ) defined over Q and

CM(E,Φ,OF ) = {za : [a] ∈ CL(E)}

be a set of CM points of type (E,Φ). Then

∏
[a]∈CL(E)

H(za) = c2(E,F, n)
∏
χ∈XF
χ 6=1

cχ∏
k=1

Γ2

(
k

cχ

)hEτ(χ)χ(k)/2cχL(χ,1) ∏
Φ∈Φ(E)

exp(hFal(AΦ))−hE/2
n
,

where

c2(E,F, n) :=

(√
dE

fχE/F

1

22n+1πn+1d2
F

)hE/2
.

On the other hand, we will use Colmez’s theorem to evaluate products of exponentials of
Faltings heights in terms of values of Γ(s) at rational numbers.

Proposition 1.8. Let d1, . . . , d`+1 be squarefree, pairwise relatively prime integers such that
di > 0 for i = 1, . . . , ` and d`+1 < 0, where ` ∈ Z+. Let F = Q(

√
d1, . . . ,

√
d`) and E =

F (
√
d`+1). Let χα be the Kronecker symbol associated to the quadratic field Q(

√
α), where

α = de11 · · · de`` d`+1 for e = (e1, . . . , e`) ∈ {0, 1}`. Given a CM type Φ ∈ Φ(E), let AΦ be a CM
abelian variety of type (OE ,Φ) defined over Q. Then

∏
Φ∈Φ(E)

exp(hFal(AΦ)) = c3(E,F, `)
∏

e∈{0,1}`
α=d

e1
1 ···d

e`
` d`+1

cα∏
k=1

Γ

(
k

cα

)−22
`−2χα(k)wα/hα

,

where

c3(E,F, `) :=

((2π)2`dF
√
fχE/F

dE

)−22
`−1

.

Remark 1.9. Proposition 1.8 should be compared with [Col93, Remarque on p. 680] and
[BMM90].

The formula in Proposition 1.8 allows us to study some arithmetic properties of the products∏
Φ∈Φ(E)

exp(hFal(AΦ))

using the Lang–Rohrlich conjecture (see e.g. [Lan90, Appendix to § 2, p. 66]). Roughly speaking,
the Lang–Rohrlich conjecture states that all polynomial algebraic relations among the special Γ-
values {Γ(s) : s ∈Q\Z60} and 2πi with coefficients in Q are ‘explained’ by the standard functional
equations. One can formulate this conjecture as a converse of the Koblitz–Ogus criterion for an
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element of the subgroup of C× generated by the special Γ-values and 2πi to belong to Q× (see the
Appendix to [Del79] and § 12). For a more detailed discussion of the Lang–Rohrlich conjecture,
including its various formulations and known results in this direction, see the introduction to
Anderson et al. [ABP04].

We will prove the following result, which should be compared with the classical result of
Euler,

ζ(2n) ∈ π2nQ, n = 1, 2, . . . ,

concerning values of the Riemann zeta function ζ(s) at positive even integers.

Theorem 1.10. Let d1, . . . , d`+1 be squarefree, pairwise relatively prime integers such that di > 0
for i = 1, . . . , ` and d`+1 < 0, where ` ∈ Z+. Let F = Q(

√
d1, . . . ,

√
d`) and E = F (

√
d`+1). Given

a CM type Φ ∈ Φ(E), let AΦ be a CM abelian variety of type (OE ,Φ) defined over Q. Then,
assuming the Lang–Rohrlich conjecture,∏

Φ∈Φ(E)

exp(hFal(AΦ)) /∈ πkQ

for any k ∈ Q.

1.4 Connection to some existing work
We conclude the introduction by discussing the connection between our results and some existing
work. A version of the Chowla–Selberg formula for CM fields was given by Moreno [Mor83] over
30 years ago. The foundation for such a generalization was laid by Asai [Asa70] in the late
1960s, who established a Kronecker limit formula for Eisenstein series associated to any number
field of class number 1. Following Weil’s [Wei76, ch. IX] beautiful exposition of the classical
Chowla–Selberg formula (which involves a renormalized Kronecker limit formula for Eisenstein
series over Q), Moreno obtained an expression relating values of a Hilbert modular function
at special points on a Hilbert–Blumenthal variety to the logarithmic derivative of L(χE/F , s)
at s = 0. Moreno then used Shintani’s [Shi77, Shi76] remarkable work on special values of
L-functions to express L′(χE/F , 0) in terms of certain Barnes-type multiple gamma functions
(formulas of this type resulting from Shintani’s work can be viewed as ‘higher’ analogs of Lerch’s
identity). Putting things together, he obtained a version of the Chowla–Selberg formula for CM
fields (see [Mor83, Main theorem, p. 242]). The starting point of this paper was that it should
be possible to give a much more explicit version of the Chowla–Selberg formula for abelian CM
fields. The initial structure of the proof is similar to that of Moreno’s, namely to arrive at a
version of the identity (1.10), though there are important differences. For example, we identify
the CM zero-cycles along which we evaluate the Hilbert modular Eisenstein series, which allows
us to give explicit examples of our formula (see § 2) and paves the way to relate the CM values
of H(z) to the arithmetic and geometry of CM abelian varieties via Colmez’s conjecture.

2. Examples

In this section we give some explicit examples of the Chowla–Selberg formula for abelian CM
fields. Recall that the function H : Hn

→ R+ appearing in these examples is a SL2(OF )-invariant
function analogous to G(z) :=

√
Im(z)|η(z)|2 which arises from a renormalized Kronecker limit

formula for the non-holomorphic Hilbert modular Eisenstein series. See (3.5) for the definition
of H(z). For background and notation regarding CM points, see § 4.
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Example 2.1 (Theorem 1.6, d1 = 2 and d2 = −3). Let E = Q(
√

2,
√
−3) and F = Q(

√
2). Then

E has class number 1 and F has narrow class number 1. Moreover, ∆2 = 8,∆−3 = −3 and

∆−6 = −24, so that ∆2 and ∆−3 are relatively prime. The hypotheses of Theorem 1.6 are

satisfied, so it remains to determine the quantities in the identity stated in Theorem 1.6.

Since −3 ≡ 1 mod 4, the CM point of type (E,Φ) corresponding to the class [OE ] is given

by

zOE =

(
1 +
√
−3

2
,
1 +
√
−3

2

)
.

The groups of characters associated to E and F are XE = {χ1, χ−3, χ2, χ−6} and XF =

{χ1, χ2}, respectively; hence, XE\XF = {χ−3, χ−6}. We have the following correspondence

between subfields and associated character groups.

E = Q(
√

2,
√
−3)

F = Q(
√

2) Q(
√
−3) Q(

√
−6)

Q

XE = 〈χ2, χ−3〉

XF = 〈χ2〉 〈χ−3〉 〈χ−6〉

{χ1}

The characters χ2 = (8
· ), χ−6 = (−24

· ), and χ−3 = (−3
· ) have conductors 8, 24, and 3,

respectively (note that the character χ2 generates XF and the characters χ−3 and χ2 generate

XE). The following tables give the values of these characters.

Values of χ2 = (8
· )

k 1 3 5 7
χ2(k) 1 −1 −1 1

Values of χ−6 = (−24
· )

k 1 5 7 11 13 17 19 23
χ−6(k) 1 1 1 1 −1 −1 −1 −1

Values of χ−3 = (−3
· )

k 1 2
χ−3(k) 1 −1

The fundamental unit of F is ε2 = 1 +
√

2, and we have h−3 = 1, h−6 = 2, w−3 = 6, and

w−6 = 2.
Substituting these quantities in Theorem 1.6 yields

H(zOE ) =
1

2
√

6π

3∏
k=1

Γ

(
k

3

)3χ−3(k)/2 24∏
k=1

Γ

(
k

24

)χ−6(k)/4 8∏
k=1

Γ2

(
k

8

)χ2(k)/(4 log (1+
√

2))

.

After expanding each product on the right-hand side, we get
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H

(
1 +
√
−3

2
,
1 +
√
−3

2

)
=

1

2
√

6π

(
Γ(1/3)

Γ(2/3)

)3/2( Γ(1/24)Γ(5/24)Γ(7/24)Γ(11/24)

Γ(13/24)Γ(17/24)Γ(19/24)Γ(23/24)

)1/4

×
(

Γ2(1/8)Γ2(7/8)

Γ2(3/8)Γ2(5/8)

)1/(4 log (1+
√

2))

.

Example 2.2 (Theorem 1.4, d1 = 2 and d2 = −5). Let E = Q(
√

2,
√
−5) and F = Q(

√
2). Then

E has class number 2 and F has narrow class number 1. Moreover, d1 = 2 and d2 = −5 are
squarefree and relatively prime. The hypotheses of Theorem 1.4 are satisfied, so it remains to
determine the quantities in the identity stated in Theorem 1.4.

The four embeddings of E are determined by

σ1 :
√

2 7−→
√

2,
√
−5 7−→

√
−5,

σ2 :
√

2 7−→ −
√

2,
√
−5 7−→

√
−5,

σ3 :
√

2 7−→
√

2,
√
−5 7−→ −

√
−5,

σ4 :
√

2 7−→ −
√

2,
√
−5 7−→ −

√
−5.

Fix the choice of CM type Φ = {σ1, σ2}. The class group of E is given by CL(E) = {[OE ], [a]}
where

[OE ] = [OF (10−
√

2) +OF (
√
−5 + 18

√
2− 1)],

[a] = [OF 2 +OF (
√
−5−

√
2 + 1)].

Then

zOE =

√
−5 + 18

√
2− 1

10−
√

2
and za =

√
−5−

√
2− 1

2

are CM points of type (E,Φ) corresponding to the classes [OF ] and [a], respectively, since

Φ(zOE ) =

(√−5 + 18
√

2− 1

10−
√

2
,

√
−5− 18

√
2− 1

10 +
√

2

)
∈ E× ∩H2

and

Φ(za) =

(√−5−
√

2− 1

2
,

√
−5 +

√
2− 1

2

)
∈ E× ∩H2.

The absolute values of the discriminants of E and F are dE = 6400 and dF = 8, respectively,
hence the constant

c1(E,F, 2) =
8

23π
√

6400
=

1

80π
.

The groups of characters associated to E and F are XE = {χ1, χ2, χ−5, χ−10} and XF =
{χ1, χ2}, respectively, hence XE\XF = {χ−5, χ−10}. We have the following correspondence
between subfields and associated character groups.

E = Q(
√

2,
√
−5)

F = Q(
√

2) Q(
√
−5) Q(

√
−10)

Q

XE = 〈χ2, χ−5〉

XF = 〈χ2〉 〈χ−5〉 〈χ−10〉

{χ1}
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The characters χ2 = (8
· ), χ−5 = (−20

· ), and χ−10 = (−40
· ) have conductors 8, 20, and 40,

respectively (note that the character χ2 generates XF and the characters χ2 and χ−5 generate
XE). The following tables give the values of these characters.

Values of χ2 = (8
· )

k 1 3 5 7
χ2(k) 1 −1 −1 1

Values of χ−5 = (−20
· )

k 1 3 7 9 11 13 17 19
χ−5(k) 1 1 1 1 −1 −1 −1 −1

Values of χ−10 = (−40
· )

k 1 3 7 9 11 13 17 19 21 23 27 29 31 33 37 39
χ−10(k) 1 −1 1 1 1 1 −1 1 −1 1 −1 −1 −1 −1 1 −1

The fundamental unit of F is ε2 = 1 +
√

2, and we have h2 = 1, h−5 = 2, h−10 = 2, w2 = 2,
w−5 = 2, and w−10 = 2.

Substituting the preceding quantities in Theorem 1.4 yields

H(zOE )H(za) =
1

80π

20∏
k=1

Γ

(
k

20

)χ−5(k)/2 40∏
k=1

Γ

(
k

40

)χ−10(k)/2 8∏
k=1

Γ2

(
k

8

)χ2(k)/(2 log (1+
√

2))

.

After expanding each product on the right-hand side, we get

H

(√−5 + 18
√

2− 1

10−
√

2
,

√
−5− 18

√
2− 1

10 +
√

2

)
H

(√−5−
√

2− 1

2
,

√
−5 +

√
2− 1

2

)
=

1

80π

(
Γ(1/20)Γ(3/20)Γ(7/20)Γ(9/20)

Γ(11/20)Γ(13/20)Γ(17/20)Γ(19/20)

)1/2

×
(

Γ(1/40)Γ(7/40)Γ(9/40)Γ(11/40)Γ(13/40)Γ(19/40)Γ(23/40)Γ(37/40)

Γ(3/40)Γ(17/40)Γ(21/40)Γ(27/40)Γ(29/40)Γ(31/40)Γ(33/40)Γ(39/40)

)1/2

×
(

Γ2(1/8)Γ2(7/8)

Γ2(3/8)Γ2(5/8)

)1/(2 log (1+
√

2))

.

Example 2.3 (Theorem 1.1, E = Q(ζ5) and F = Q(
√

5)). Let E = Q(ζ5) and F = Q(
√

5). Then
E is a CM extension of the real quadratic field F with E/Q abelian (a cyclic quartic extension).
Moreover, E has class number 1 and F has narrow class number 1. The hypotheses of Theorem 1.1
are satisfied, so it remains to determine the quantities in the identity stated in Theorem 1.1.

The four embeddings of E are determined by σi(ζ5) = ζi5 for i = 1, . . . , 4. Fix the choice of
CM type Φ = {σ1, σ2} for E. We have OE = OF +OF ζ5; thus, zOE = ζ5 is a CM point of type
(E,Φ), since Φ(zOE ) = (ζ5, ζ

2
5 ) ∈ E× ∩H2.

The absolute values of the discriminants are dE = 125 and dF = 5, respectively, hence the
constant

c1(E,F, 2) =

(
1

8π
√

5

)1/2

.
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Since E = Q(ζ5) is cyclotomic, we have XE = ̂(Z/5Z)×. The following table gives the group
of Dirichlet characters modulo 5.

Dirichlet characters modulo 5

1 2 3 4
χ1 1 1 1 1
χ 1 i −i −1

χ2 = χ5 = (5
· ) 1 −1 −1 1

χ3 = χ 1 −i i −1

We have the following correspondence between subfields and associated character groups.

E = Q(ζ5)

F = Q(
√

5)

Q

XE = 〈χ〉

XF = 〈χ5〉

{χ1}
It follows that XF = {χ1, χ

2} = {χ1, χ5} and XE\XF = {χ, χ3} = {χ, χ}.
The L-values corresponding to the characters χ, χ are given in terms of generalized Bernoulli

numbers by

L(χ, 0) = −B1(χ) = 3
5 + 1

5 i and L(χ, 0) = −B1(χ) = 3
5 − 1

5 i.

Moreover, by the class number formula, we have

L(χ5, 1) =
2 log((1 +

√
5)/2)√

5
,

the Gauss sum is evaluated as τ(χ5) =
√

5, and the fundamental unit of F is ε5 = (1 +
√

5)/2.
Substituting the preceding quantities in Theorem 1.1 yields

H(zOE ) =

(
1

8π
√

5

)1/2 5∏
k=1

Γ

(
k

5

)χ(k)/(2(3/5+(1/5)i))

×
5∏

k=1

Γ

(
k

5

)χ(k)/(2(3/5−(1/5)i)) 5∏
k=1

Γ2

(
k

5

)χ5(k)/(4 log ((1+
√

5)/2))

.

After expanding each product on the right-hand side, we get

H(ζ5, ζ
2
5 ) =

(
1

8π
√

5

)1/2(Γ(1/5)

Γ(4/5)

)3/2(Γ(2/5)

Γ(3/5)

)1/2(Γ2(1/5)Γ2(4/5)

Γ2(2/5)Γ2(3/5)

)1/(4 log ((1+
√

5)/2))

.

3. Hilbert modular Eisenstein series

In this section we establish a renormalized Kronecker limit formula for the non-holomorphic
Hilbert modular Eisenstein series. Moreno stated such a formula in [Mor83, § 3.1], and gave a
very brief explanation as to how it is derived from a Fourier expansion of Asai [Asa70] for the
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Eisenstein series. Here we give a similar formula using a slightly different form of the Fourier
expansion (the Fourier expansion we use for the Hilbert modular Eisenstein series goes back to
Hecke).

Let F be a totally real number field of degree n over Q with embeddings τ1, . . . , τn. Let

z = x+ iy = (z1, . . . , zn) ∈ Hn,

where H denotes the complex upper half-plane. Let OF be the ring of integers of F and SL2(OF )
be the Hilbert modular group. Then SL2(OF ) acts componentwise on Hn by linear fractional
transformations,

Mz = (τ1(M)z1, . . . , τn(M)zn), M =

(
α β
γ δ

)
∈ SL2(OF ),

where

τj(M) =

(
τj(α) τj(β)
τj(γ) τj(δ)

)
.

Let

N(y(z)) :=

n∏
j=1

Im(zj) =

n∏
j=1

yj

denote the product of the imaginary parts of the components of z ∈ Hn. Define the non-
holomorphic Hilbert modular Eisenstein series

E(z, s) :=
∑

M∈Γ∞\SL2(OF )

N(y(Mz))s, z ∈ Hn, Re(s) > 1,

where

Γ∞ =

{(
∗ ∗
0 ∗

)
∈ SL2(OF )

}
.

Furthermore, let

N(a+ bz) :=

n∏
j=1

(σj(a) + σj(b)zj)

for (a, b) ∈ OF ×OF and define the Epstein zeta function

Z(z, s) :=
∑′

(a,b)∈OF×OF /O×F

N(y(z))s

|N(a+ bz)|2s , z ∈ Hn, Re(s) > 1,

where the sum is over a complete set of non-zero, non-associated representatives of OF × OF
(recall that (a, b) and (a′, b′) are said to be associated if there exists a unit ε ∈ O×F such that
(a, b) = (εa′, εb′)). One has the identity

Z(z, s) = ζF (2s)E(z, s), (3.1)

where ζF (s) is the Dedekind zeta function of F .
Define the completed Eisenstein series

E∗(z, s) := ζ∗F (2s)E(z, s), (3.2)

where

ζ∗F (s) := d
s/2
F π−ns/2Γ(s/2)nζF (s)

is the completed Dedekind zeta function of F .
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From [VdG88, Proposition 6.9], (3.2), and the shift s 7→ (s+1)/2, we obtain the renormalized
Fourier expansion

E

(
z,
s+ 1

2

)
= N(y)(s+1)/2 +

ζ∗F (s)

ζ∗F (s+ 1)
N(y)(1−s)/2

+
2nN(y)1/2

ζ∗F (s+ 1)

∑
µ∈∂−1

F /O×F
µ6=0

NF/Q((µ)∂F )s/2σ−s((µ)∂F )

×
n∏
j=1

Ks/2(2π|µ(j)|yj)e2πiTr(µx), (3.3)

where ∂F is the different of F ,

σν(a) :=
∑
b|a

NF/Q(b)ν

is the divisor function,

Tr(µx) :=
n∑
j=1

µ(j)xj , µ(j) := τj(µ)

is the trace, and

Ks(t) :=

∫ ∞
0

e−t coshx cosh (sx) dx

is the K-Bessel function of order s.
Let A(s), B(s), and C(s) denote the first, second, and third terms on the right-hand side of

(3.3), respectively. We compute the first two terms in the Taylor expansion of E(z, (s+ 1)/2) at
s = −1 by doing this for each of the functions A(s), B(s) and C(s).

Observe that

A(s) = 1 + logN(y)1/2(s+ 1) +O((s+ 1)2).

Now, a calculation with the functional equation ζ∗F (s) = ζ∗F (1−s) yields the Taylor expansion

B(s) =
N(y)ζ∗F (−1)

rf
(s+ 1) +O((s+ 1)2),

where rF is the residue of ζ∗F (s+ 1) at s = −1.
A similar calculation, along with the identities K−s(t) = Ks(t) and K1/2(t) =

√
π/2e−tt−1/2

for t > 0, yields the Taylor expansion

C(s) =
∑

µ∈∂−1
F /O×F
µ6=0

NF/Q((µ)∂F )−1/2

rF
σ1((µ)∂F )|NF/Q(µ)|−1/2e2πiT (µ,z)(s+ 1) +O((s+ 1)2),

where

T (µ, z) := Tr(µx) + i

n∑
j=1

|µ(j)|yj .

By combining the Taylor expansions for A(s), B(s), and C(s), we obtain the following result.
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Proposition 3.1. We have

E

(
z,
s+ 1

2

)
= 1 + log(H(z))(s+ 1) +O((s+ 1)2), (3.4)

where

H(z) :=
√
N(y)φ(z) (3.5)

and

log(φ(z)) :=
ζ∗F (−1)N(y)

rF
+

∑
µ∈∂−1

F /O×F
µ 6=0

NF/Q((µ)∂F )−1/2

rF
σ1((µ)∂F )|NF/Q(µ)|−1/2e2πiT (µ,z).

Remark 3.2. Using (3.4) and the automorphy of E(z, s), we have H(Mz) = H(z) for all M =(α β
γ δ

)
∈ SL2(OF ). Then a straightforward calculation yields the transformation formula

φ(Mz) = |N(γz + δ)|φ(z).

4. CM zero-cycles on Hilbert modular varieties

In this section we summarize some facts we will need regarding CM zero-cycles on Hilbert
modular varieties. For more details, see [BY06, § 3]. Let F be a totally real number field of
degree n over Q with embeddings τ1, . . . , τn, and assume that F has narrow class number 1. The
quotient X(OF ) = SL2(OF )\Hn is the (open) Hilbert modular variety associated to OF . The
variety X(OF ) parameterizes isomorphism classes of principally polarized abelian varieties (A, i)
with real multiplication i : OF ↪→ End(A).

Let E be a CM extension of F and Φ = (σ1, . . . , σn) be a CM type for E. A point z = (A, i)
∈ X(OF ) is a CM point of type (E,Φ) if one of the following equivalent conditions holds.

(1) As a point z ∈ Hn, there is a point τ ∈ E such that

Φ(τ) = (σ1(τ), . . . , σn(τ)) = z

and
Λτ = OF +OF τ

is a fractional ideal of E.

(2) There exists a pair (A, i′) that is a CM abelian variety of type (E,Φ) with complex
multiplication i′ : OE ↪→ End(A) such that i = i′|OF .

By [BY06, Lemma 3.2] and the narrow class number 1 assumption, there is a bijection
between the ideal class group CL(E) and the CM points of type (E,Φ) defined as follows: given
an ideal class C ∈ CL(E), there exist a fractional ideal a ∈ C−1 and α, β ∈ E× such that

a = OFα+OFβ (4.1)

and

z =
β

α
∈ E× ∩Hn = {z ∈ E× : Φ(z) ∈ Hn}.

Then z represents a CM point in X(OF ) in the sense that Cn/Λz is a principally polarized abelian
variety of type (E,Φ) with complex multiplication by OE . Conversely, every principally polarized
abelian variety of type (E,Φ) with complex multiplication by OE arises from a decomposition
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as in (4.1) for some a in a unique fractional ideal class in CL(E). We denote the CM zero-cycle
consisting of the set of CM points of type (E,Φ) by CM(E,Φ,OF ) and identify it with the set

{za ∈ E× ∩Hn : [a] ∈ CL(E)}
under the bijection just described. The reader should keep in mind that the latter set depends
on Φ.

5. Periods of Eisenstein series

In this section we evaluate the non-holomorphic Hilbert modular Eisenstein series along a CM
zero-cycle on the Hilbert modular variety X(OF ). Let F be a totally real number field of degree
n over Q with narrow class number 1. Let E be a CM extension of F and fix a CM type Φ for
E. By the results of § 3, given an ideal class C ∈ CL(E), there exists a fractional ideal a ∈ C−1

such that

a = OFα+OFβ, α, β ∈ E×. (5.1)

where za = β/α ∈ E× ∩Hn is a CM point of type (E,Φ).
By [Mas10, Proposition 4.1], we have the identity

ζE(s, C) =

(
2ndF√
dE

)s 1

[O×E : O×F ]
ζF (2s)E(za, s),

where we have identified za with its image Φ(za) ∈ Hn. Make the shift s 7→ (s + 1)/2 in this
identity and sum over ideal classes C ∈ CL(E) to obtain∑

[a]∈CL(E)

E

(
za,

s+ 1

2

)
= [O×E : O×F ]

(√
dE

2ndF

)(s+1)/2 ζE((s+ 1)/2)

ζF (s+ 1)
.

By class field theory, we have the factorization

ζE(s) = ζF (s)L(χE/F , s), (5.2)

where L(χE/F , s) is the L-function of the quadratic character χE/F associated to the extension
E/F . Using the Taylor expansion (3.4), the factorization (5.2), and the Taylor expansion

ζF ((s+ 1)/2)

ζF (s+ 1)
=

1

2n−1

{
1− 1

2n

ζ
(n)
F (0)

ζ
(n−1)
F (0)

(s+ 1) +O((s+ 1)2)

}
,

we obtain∑
[a]∈CL(E)

{1 + log(H(za))(s+ 1) +O(s+ 1)2} =
[O×E : O×F ]L(χE/F , 0)

2n

×
{

2 + log

(√
dE

2ndF

)
(s+ 1)− 1

n

ζ
(n)
F (0)

ζ
(n−1)
F (0)

(s+ 1) +
L′(χE/F , 0)

L(χE/F , 0)
(s+ 1) +O((s+ 1)2)

}
. (5.3)

Let s = −1 in (5.3) to recover the class number formula

L(χE/F , 0) =
2n−1hE

[O×E : O×F ]
.

Then differentiate (5.3) with respect to s and evaluate at s = −1 to get∑
[a]∈CL(E)

log(H(za)) =
hE
2

{
log

(√
dE

2ndF

)
− 1

n

ζ
(n)
F (0)

ζ
(n−1)
F (0)

+
L′(χE/F , 0)

L(χE/F , 0)

}
. (5.4)
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6. Evaluation of the logarithmic derivative

In this section we evaluate the logarithmic derivative of L(χE/F , s) at s = 0 in terms of values
of the gamma function Γ at rational numbers. Let Q ⊆ F ⊆ E be abelian number fields. By the
Kronecker–Weber theorem, there is a cyclotomic field Q(ζN ) such that F ⊆ E ⊆ Q(ζN ), where
ζN := e2πi/N is a primitive Nth root of unity. Let GN := Gal(Q(ζN )/Q), which we identify with
the group (Z/NZ)× via the isomorphism

sN : GN −→ (Z/NZ)×

σ 7−→ [sN (σ)]N ,

where σ(ζN ) = ζ
sN (σ)
N for some integer sN (σ) modulo N . Let HF and HE be the subgroups

of GN which fix F and E, respectively. Since GN is abelian, HF and HE are normal and,
by Galois theory, we have Gal(F/Q) ∼= GN/HF and Gal(E/Q) ∼= GN/HE . We also note that
HE 6 HF 6 GN , since the Galois correspondence is inclusion reversing.

Let G be a finite abelian group and Ĝ be its character group. Given a subgroup H 6 G, we

have Ĝ/H ∼= H⊥, where
H⊥ := {χ ∈ Ĝ | χ|H ≡ 1}.

Additionally, if H ′ 6 H 6 G, then H⊥ 6 H ′⊥.
Given an abelian field K ⊆ Q(ζN ), the group of characters associated to K is defined by

XK := H⊥K = {χ ∈ ̂(Z/NZ)× | χ|HK ≡ 1}.

By our preceding observations, we have ĜN/HE
∼= XE and ĜN/HF

∼= XF and, since HE 6
HF 6 GN , we have XF 6 XE .

We now evaluate the logarithmic derivative of L(χE/F , s) at s = 0. The Dedekind zeta
function ζK(s) of an abelian field K ⊂ Q(ζN ) factors as

ζK(s) =
∏
χ∈XK

L(χ, s),

where L(χ, s) is understood to be the Dirichlet L-function associated to the primitive Dirichlet
character of conductor cχ which induces χ ∈ XK (see [Coh07, Theorem 10.5.25]). Therefore, by
(5.2), we have

L′(χE/F , s)

L(χE/F , s)
=

d

ds

(
log

ζE(s)

ζF (s)

)
=

∑
χ∈XE\XF

L′(χ, s)

L(χ, s)
, (6.1)

where
XE\XF = {χ ∈ ̂(Z/NZ)× | χ|HE ≡ 1 and χ|HF \HE 6≡ 1}

is the set of characters in ̂(Z/NZ)× that are trivial on HE but not trivial on HF .
Now, we have

L(χ, s) = c−sχ

cχ∑
k=1

χ(k)ζ

(
s,
k

cχ

)
, (6.2)

where

ζ(s, w) :=
∞∑
n=0

1

(n+ w)s
, Re(w) > 0, Re(s) > 1

462

https://doi.org/10.1112/S0010437X15007629 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X15007629


The Chowla–Selberg formula for abelian CM fields and Faltings heights

is the Hurwitz zeta function. Differentiating (6.2) yields

L′(χ, s) = −log(cχ)L(χ, s) + c−sχ

cχ∑
k=1

χ(k)ζ ′
(
s,
k

cχ

)
.

The Taylor expansion of the Hurwitz zeta function at s = 0 is given by

ζ(s, x) = ζ(0, x) + ζ ′(0, x)s+O(s2), x > 0,

where ζ(0, x) = 1/2− x; Lerch’s identity [Ler97] gives

ζ ′(0, x) = log

(
Γ(x)√

2π

)
. (6.3)

Using (6.3), we find that

L′(χ, 0) = −log(cχ)L(χ, 0) +

cχ∑
k=1

χ(k) log

(
Γ(k/cχ)√

2π

)
.

Recall that if χ is even, then L(χ, 0) = 0, while, if χ is odd, then L(χ, 0) 6= 0. If we assume
that E is a CM extension of F , then all of the characters χ ∈ XE\XF are odd (see Lemma 6.2).
Hence, using the orthogonality relations for group characters, we get

L′(χ, 0)

L(χ, 0)
= −log(cχ) +

1

L(χ, 0)

cχ∑
k=1

χ(k) log Γ

(
k

cχ

)
. (6.4)

Finally, substituting (6.4) into (6.1) yields

L′(χE/F , 0)

L(χE/F , 0)
= −

∑
χ∈XE\XF

log (cχ) +
∑

χ∈XE\XF

cχ∑
k=1

χ(k)

L(χ, 0)
log Γ

(
k

cχ

)
. (6.5)

Remark 6.1. Since the primitive Dirichlet character χ of conductor cχ which induces a Dirichlet
character χ ∈ XK is also a Dirichlet character modulo N , we have the following analog of (6.2),

L(χ, s) = N−s
N∑
k=1

χ(k)ζ

(
s,
k

N

)
. (6.6)

Then, by repeating the preceding calculation with (6.6) instead of (6.2), we get

L′(χE/F , 0)

L(χE/F , 0)
= −log(N)[F : Q] +

∑
χ∈XE\XF

N∑
k=1

χ(k)

L(χ, 0)
log Γ

(
k

N

)
, (6.7)

where we used #(XE\XF ) = [F : Q]. We will need (6.7) in the proof of Theorem 1.10.

It remains to prove the following result.

Lemma 6.2. If E/F is a CM extension, then all of the characters χ ∈ XE\XF are odd.

Proof. Let E/F be a CM extension. Then the non-trivial automorphism σc ∈ Gal(E/F ) is
complex conjugation, which, when viewed as an element of GN ∼= (Z/NZ)×, corresponds to the
residue class [−1]N ∈ (Z/NZ)×. Clearly, [−1]N ∈ HF but [−1]N /∈ HE and, by Galois theory, we
have HF = 〈HE ∪{[−1]N}〉. Let χ ∈ XE\XF . Then χ is trivial on HE but non-trivial on HF , so
we must have χ([−1]N ) = −1, which implies that χ is odd. 2
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7. Taylor coefficients of Dedekind zeta functions

In this section we evaluate the logarithmic derivative of ζ
(n−1)
F (s) at s = 0 and prove Theorem 1.1.

The evaluation we obtain is analogous to (6.5), the difference being that log(Γ(x)) is replaced by
Deninger’s R-function R(x). Let F be a totally real field of degree n over Q. Write the Laurent
expansion of ζF (s) at s = 1 as

ζF (s) =
A−1

s− 1
+A0 +O(s− 1).

Lemma 7.1. We have the Taylor expansion

ζF (s) = −
√
dFA−1

2n
sn−1 +

√
dF

2n
(A0 +A−1 log(dF )− nA−1{γ + log(2π)})sn +O(sn+1),

where γ is Euler’s constant.

Proof. From the functional equation ζ∗F (s) = ζ∗F (1− s), we have

ζF (s) = d
1/2−s
F

(
ΓR(1− s)

ΓR(s)

)n
ζF (1− s),

where ΓR(s) := π−s/2Γ(s/2). Then the lemma follows by multiplying the Taylor expansions

d
1/2−s
F =

√
dF −

√
dF log(dF )s+O(s2),(

ΓR(1− s)
ΓR(s)

)n
=

(
s

2
+

1

2
(γ + log(2π))s2 +O(s3)

)n
=
sn

2n
+

n

2n
(γ + log(2π))sn+1 +O(sn+2),

and

ζF (1− s) = −A−1

s
+A0 +O(s). 2

From Lemma 7.1, we have

ζ
(n−1)
F (0)

(n− 1)!
= −
√
dFA−1

2n

and

ζ
(n)
F (0)

n!
=

√
dF

2n
(A0 +A−1 log(dF )− nA−1{γ + log(2π)}),

which give

ζ
(n)
F (0)

ζ
(n−1)
F (0)

= −n
(
A0

A−1
+ log(dF )− nγ − n log(2π)

)
. (7.1)

Assume now that F is abelian. Then we have the factorization

ζF (s) = ζ(s)
∏
χ∈XF
χ 6=1

L(χ, s).
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Substituting the Laurent expansions

ζ(s) =
1

s− 1
+ γ +O(s− 1)

and

L(χ, s) = L(χ, 1) + L′(χ, 1)(s− 1) +O((s− 1)2)

into this factorization yields

ζF (s) =

(
1

s− 1
+ γ +O(s− 1)

) ∏
χ∈XF
χ 6=1

(L(χ, 1) + L′(χ, 1)(s− 1) +O((s− 1)2)).

Then expanding the right-hand side and comparing coefficients yields

A−1 =
∏
χ∈XF
χ 6=1

L(χ, 1)

and

A0 = γ
∏
χ∈XF
χ 6=1

L(χ, 1) +

( ∏
χ∈XF
χ 6=1

L(χ, 1)

) ∑
χ∈XF
χ 6=1

L′(χ, 1)

L(χ, 1)
= γA−1 +A−1

∑
χ∈XF
χ 6=1

L′(χ, 1)

L(χ, 1)
.

It follows that

A0

A−1
= γ +

∑
χ∈XF
χ 6=1

L′(χ, 1)

L(χ, 1)
. (7.2)

Each of the characters χ ∈ XF is even, since [−1]N ∈ HF and

XF = {χ ∈ ̂(Z/NZ)× | χ|HF ≡ 1}.
Therefore, we must evaluate L′(χ, 1) for χ an even, primitive Dirichlet character. This problem
was solved by Deninger [Den84] in the following way. Let χ be an even, primitive Dirichlet
character of conductor cχ. Then the functional equation for the Dirichlet L-function is

L(χ, 1− s) =
2cs−1
χ Γ(s)

(2π)s
cos

(
πs

2

)
τ(χ)L(χ, s),

where

τ(χ) :=

cχ∑
k=1

χ(k)ζkcχ , ζcχ := e2πi/cχ

is the Gauss sum of χ. A calculation with the functional equation yields

L′(χ, 1) =
2τ(χ)

cχ

((
γ − log

(
cχ
2π

))
L′(χ, 0)− 1

2
L′′(χ, 0)

)
.

Because

L(χ, s) = c−sχ

cχ∑
k=1

χ(k)ζ

(
s,
k

cχ

)
,

to evaluate L′(χ, 0) and L′′(χ, 0), it suffices to evaluate the coefficients in the Taylor expansion

ζ(s, x) = ζ(0, x) + ζ ′(0, x)s+ ζ ′′(0, x)s2 +O(s3), x > 0.

Recall the logarithmic form of the Bohr–Mollerup theorem.
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Theorem 7.2 (Bohr–Mollerup). Let f : R+
→ R be a function such that

f(x+ 1)− f(x) = log(x),

f(1) = 0, and f(x) is convex on R+. Then f(x) = log(Γ(x)).

Deninger [Den84, Theorem 2.2] proved the following result.

Theorem 7.3 (Deninger). The function

fα(x) := (−1)α+1(∂αs ζ(0, x)− ζ(α)(0)), x > 0, α = 0, 1, 2, . . .

is the unique function such that:

(1) fα(x+ 1)− fα(x) = logα(x);

(2) fα(1) = 0;

(3) fα(x) is convex on (exp(α− 1),∞).

Let α = 1 in Theorem 7.3. Then f1(x) is convex on (1,∞) (hence convex on R+ by virtue of
(1)), so, by the Bohr–Mollerup theorem, f1(x) = log(Γ(x)) or, equivalently,

ζ ′(0, x) = log

(
Γ(x)√

2π

)
,

where we used ζ ′(0) = −(1/2) log(2π). This gives a conceptual proof of Lerch’s identity (6.3)
(a beautiful account of this approach to Lerch’s identity is given by Weil [Wei76, ch. VII]).
Moreover, using the limit

Γ(x) = lim
n→∞

n!nx

x(x+ 1) · · · (x+ n)
, x > 0

one has

log

(
Γ(x)√

2π

)
= lim

n→∞

(
ζ ′(0) + x log(n)− log(x)−

n−1∑
k=1

(log(x+ k)− log(k))

)
.

Next, let α = 2 in Theorem 7.3 and define R(x) := −ζ ′′(0, x). Then R(x) is the unique
function such that:

(1′) R(x+ 1)−R(x) = log2(x), x > 0;

(2′) R(1) = −ζ ′′(0);

(3′) R(x) is convex on (e,∞).

Moreover, by [Den84, Lemma 2.1, Equation (2.1.2)], one has

R(x) = lim
n→∞

(
−ζ ′′(0) + x log2(n)− log2(x)−

n−1∑
k=1

(log2(x+ k)− log2(k))

)
. (7.3)

These facts show that R(x) is analogous to log(Γ(x)/
√

2π) (see [Den84, § 2] for more details
concerning this analogy).

Remark 7.4. Alternatively, one could define R(x) by the limit (7.3) and then verify directly that
R(x) satisfies conditions (1′)–(3′). Then, by uniqueness, one has the identity R(x) = −ζ ′′(0, x).
This is analogous to the conceptual proof of Lerch’s identity just described.
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Using the preceding facts, Deninger [Den84, § 3] established the formula

L′(χ, 1) = (γ + log(2π))L(χ, 1) +
τ(χ)

cχ

cχ∑
k=1

χ(k)R

(
k

cχ

)
. (7.4)

Substituting (7.4) into (7.2) yields

A0

A−1
= γ +

∑
χ∈XF
χ 6=1

{
(γ + log(2π)) +

τ(χ)

cχ

cχ∑
k=1

χ(k)

L(χ, 1)
R

(
k

cχ

)}
. (7.5)

Since XF
∼= ĜN/HF

∼= GN/HF
∼= Gal(F/Q), we have #XF = [F : Q] = n. Then substituting

(7.5) into (7.1) and simplifying yields the formula

ζ
(n)
F (0)

ζ
(n−1)
F (0)

= −n
(
−log(2π) + log(dF ) +

∑
χ∈XF
χ 6=1

τ(χ)

cχ

cχ∑
k=1

χ(k)

L(χ, 1)
R

(
k

cχ

))
. (7.6)

Proof of Theorem 1.1. By combining (5.4), (6.5), and (7.6), we obtain Theorem 1.1 after a short
calculation with the conductor–discriminant formula

dL =
∏
χ∈XL

cχ, (7.7)

where dL denotes the absolute value of the discriminant of a number field L. 2

8. The group of characters of a multiquadratic extension

In this section we determine the group of characters associated to a multiquadratic extension.
Let d1, . . . , dt be squarefree, pairwise relatively prime integers and define the multiquadratic
extension K = Q(

√
d1, . . . ,

√
dt). The absolute value of the discriminant of the quadratic subfield

Q(
√
di) is given by

Di =

{
|di| if di ≡ 1 (mod 4),

4|di| if di ≡ 2, 3 (mod 4).

One has Q(
√
di) ⊆ Q(ζDi), so, by taking compositums, we obtain

K = Q(
√
d1, . . . ,

√
dt) ⊆ Q(ζD1 , . . . , ζDt) ⊆ Q(ζD1···Dt) = Q(ζD),

where D := D1 · · ·Dt.
Recall that the group of characters associated to K is given by

XK = {χ ∈ ̂(Z/DZ)× | χ|HK ≡ 1},

whereHK is the subgroup ofGD := Gal(Q(ζD)/Q) which fixesK. Letm= de11 · · · dett for (0, . . . , 0)
6= (e1, . . . , et) ∈ {0, 1}t, and define the quadratic subfield

Q(
√
m) = Q(

√
de11 · · · dett ) ⊂ K.

Let χ1 be the trivial character of (Z/DZ)×, and χ′m be the Dirichlet character of (Z/DZ)×

induced by the Kronecker symbol χm associated to the quadratic field Q(
√
m).

467

https://doi.org/10.1112/S0010437X15007629 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X15007629


A. Barquero-Sanchez and R. Masri

Proposition 8.1. The group of characters associated to K is given by

XK = {χ1} ∪ {χ′m : m = de11 · · · dett for (0, . . . , 0) 6= (e1, . . . , et) ∈ {0, 1}t}.
Proof. For notational convenience, let Gm := Gal(Q(

√
m)/Q), and let Hm := HQ(

√
m) be the

subgroup of GD which fixes Q(
√
m). Define the integers

M = Mm :=

{
|m| if m ≡ 1 (mod 4),

4|m| if m ≡ 2, 3 (mod 4).

Clearly, the primitive Dirichlet characters χm : (Z/MZ)× → {±1} induce 2` − 1 Dirichlet
characters χ′m : (Z/DZ)× → {±1} by composing with the projections π : (Z/DZ)× → (Z/MZ)×.
Thus, to show that χ′m ∈ XK , it suffices to show that χ′m|HK ≡ 1. In fact, because HK 6 Hm, it
suffices to show that χ′m|Hm ≡ 1. We have the diagram

HK 6 Hm 6 GD
sD //

res

��

(Z/DZ)×

π

��
χ′m

��

GM
sM //

res

��

(Z/MZ)×

χm

��
Gm

' // {±1}
where res is the restriction map, and sD and sM are the canonical isomorphisms. We will prove
that

χ′m([sD(σ)]D) =
σ(
√
m)√
m

for all σ ∈ GD. (8.1)

Then (8.1) implies that χ′m|Hm ≡ 1, since

σ(
√
m)√
m

= 1 for all σ ∈ Hm.

That is, an automorphism σ ∈Hm restricts to the identity in Gm. Because the following diagram
commutes (see [KKS11, Proposition 5.14])

GM

res

��

sM // (Z/MZ)×

χm

��
Gm

' // {±1}
we have

χm([sM (σ)]M ) =
σ(
√
m)√
m

for σ ∈ GM .

Thus, to prove (8.1), it suffices to show that

χ′m([sD(σ)]D) = χm([sM (res(σ))]M ) for σ ∈ GD.
Let σ ∈ GD. Then, since χ′m = χm ◦ π, we have χ′m([sD(σ)]D) = χm(π([sD(σ)]D)) =
χm([sD(σ)]M ). Thus, it suffices to show that [sD(σ)]M = [sM (res(σ))]M or, equivalently,
sD(σ) ≡ sM (res(σ)) (mod M). Since M |D, there is an integer k such that ζM = ζkD. Thus,

σ(ζM ) = σ(ζkD) = σ(ζD)k = ζ
ksD(σ)
D = ζ

sD(σ)
M . On the other hand, σ(ζM ) = res(σ)(ζM ) =

ζ
sM (res(σ))
M ; thus, sD(σ) ≡ sM (res(σ)) (mod M). 2
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9. Proof of Theorem 1.4

In this section we prove Theorem 1.4. We first recall the setup in the theorem. Let d1, . . . , d`+1 be
squarefree, pairwise relatively prime integers with di > 0 for i = 1, . . . , ` and d`+1 < 0, where ` = 1
or 2. Assume that F = Q(

√
d1, . . . ,

√
d`) has narrow class number 1, and let E = F (

√
d`+1).

Let χα (respectively χβ) be the Kronecker symbol associated to the quadratic field Q(
√
α)

(respectively Q(
√
β)), where α = de11 · · · de`` d`+1 (respectively β = de11 · · · de`` ) for (e1, . . . , e`) ∈

{0, 1}`. Now, the field F is totally real of degree n = 2` over Q, and E is a CM extension of F . We
have F ⊂ E ⊂ Q(ζD), where D = D1 · · ·D`+1 (see § 8 for the notation). Then, by Proposition 8.1,

XF = {χ1} ∪ {χ′β ∈ ̂(Z/DZ)× : β = de11 · · · de`` , (0, . . . , 0) 6= (e1, . . . , e`) ∈ {0, 1}`}

and

XE = {χ1} ∪ {χ′α ∈ ̂(Z/DZ)× : α = de11 · · · d
e`+1

`+1 , (0, . . . , 0) 6= (e1, . . . , e`+1) ∈ {0, 1}`+1}.
It follows that

XE\XF = {χ′α ∈ ̂(Z/DZ)× | α = de11 · · · de`` d`+1, (e1, . . . , e`) ∈ {0, 1}`}.
Using the class number formulas

L(χα, 0) =
2hα
wα

and L(χβ, 1) =
2hβ log εβ√

cβ
,

along with the evaluation τ(χβ) =
√
cβ, we deduce Theorem 1.4 from Theorem 1.1. 2

10. Proof of Theorem 1.6

In this section we prove Theorem 1.6, which amounts to using the assumptions in Theorem 1.6
to give an explicit version of the formula appearing in Theorem 1.4 for a particular choice of CM
point zOE . We first recall the setup in the theorem. Let p = 2 or p ≡ 1 mod 4 be a prime such
that F = Q(

√
p) has narrow class number 1. Let d < 0 be a squarefree integer relatively prime

to p such that E = Q(
√
p,
√
d) has class number 1. Let ∆p,∆d, and ∆pd be the discriminants of

Q(
√
p),Q(

√
d), and Q(

√
pd), respectively, and assume that ∆p and ∆d are relatively prime. The

four embeddings of E are given by

id :
√
p 7−→ √

p,
√
d 7−→

√
d,

σ :
√
p 7−→ −√p,

√
d 7−→

√
d,

τ :
√
p 7−→ √

p,
√
d 7−→ −

√
d,

στ :
√
p 7−→ −√p,

√
d 7−→ −

√
d.

These embeddings occur in the complex conjugate pairs {id, τ} and {σ, στ}. Fix the choice of
CM type Φ = {id, σ}. We now determine a CM point of type (E,Φ) associated to the ideal class
[OE ]. Define θp and θd by

θp :=


1 +
√
p

2
if p ≡ 1 (mod 4)

√
2 if p = 2

and θd :=


1 +
√
d

2
if d ≡ 1 (mod 4),

√
d if d ≡ 2, 3 (mod 4).

The integer rings OF = OQ(
√
p) and OQ(

√
d) have integral bases {1, θp} and {1, θd}, respectively.

Since ∆p and ∆d are relatively prime, and E = Q(
√
p,
√
d) is the compositum of Q(

√
p) and
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Q(
√
d), it follows that OE has the integral basis {1, θp, θd, θpθd} and dE = ∆2

p∆
2
d (see [Lan94,

ch. 3, Theorem 17]). Recall from § 4 that to determine a CM point zOE of type (E,Φ) associated
to the ideal class [OE ], we need a decomposition OE = OFα + OFβ for some α, β ∈ OE with
β/α ∈ E× ∩H2 = {z ∈ E× : Φ(z) ∈ H2}. We have

OE = Z + θpZ + θdZ + θpθdZ = (Z + θpZ) + (Z + θpZ)θd = OF +OF θd.
Letting α = 1 and β = θd, we get a CM point zOE = β/α = θd, since Φ(θd) = (id(θd), σ(θd)) =
(θd, θd) ∈ H2. Then, with our convention of identifying a CM point with its image under the CM
type Φ, we have

zOE = Φ(θd) =


(
√
d,
√
d), d ≡ 2, 3 (mod 4),(

1 +
√
d

2
,
1 +
√
d

2

)
, d ≡ 1 (mod 4).

To determine the constant c1(E,F, 2), recall that dE = ∆2
p∆

2
d, dF = ∆p, and hE = 1; thus,

c1(E,F, 2) =

(
∆p

8π
√

∆2
p∆

2
d

)1/2

=
1

2
√

2π|∆d|
.

The groups of characters associated to the fields F and E are XF = {χ1, χp} and XE =

{χ1, χp, χd, χpd}, respectively, so that XE\XF = {χd, χpd}. The character χp = (
∆p

· ) has

conductor ∆p, the character χd = (∆d
· ) has conductor |∆d|, and the character χpd = (

∆pd

· )
has conductor |∆pd|. The characters χp and χd generate XE . The following diagrams show the
correspondence between subfields and associated groups of characters.

E = Q(
√
p,
√
d)

F = Q(
√
p) Q(

√
d) Q(

√
pd)

Q

XE = 〈χp, χd〉

XF = 〈χp〉 〈χd〉 〈χpd〉

{χ1}
Since F = Q(

√
p) has narrow class number 1, we have hp = 1. Then, recalling that εp denotes

the fundamental unit in F , the result follows by substituting the quantities determined in this
section into the identity in Theorem 1.4. 2

11. Faltings heights of CM abelian varieties

In this section we review Colmez’s conjecture and prove Theorem 1.7 and Proposition 1.8. We
first recall the definition of the Faltings height following [Col93, p. 667, (II.2.12.1)]. Let E be
a CM extension of a totally real field F of degree n over Q. Let A be an abelian variety with
complex multiplication by E which is defined over Q. Let K ⊂ Q be a number field over which
A is defined and let ωA ∈ H0(A,Ωn

A) be a Néron differential. The Faltings height of A is defined
by

hFal(A) := − 1

[K : Q]

( ∑
σ∈Hom(K,Q)

1

2
log

(∫
Aσ(C)

|ωσA ∧ ωσA|
)
−
∑
p<∞

∑
σ∈Hom(K,Q)

vp(ω
σ
A) log(p)

)
,

where vp(ω
σ
A) is a certain rational number defined using the p-adic valuation on Qp (see [Col93,

p. 659]).
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Let Φ(E) be the set of CM types for E and, given a type Φ ∈ Φ(E), let AΦ be a CM abelian
variety of type (OE ,Φ) defined over Q. Colmez [Col93, Equation (3)] conjectured the following
identity for the average of the Faltings heights of the abelian varieties AΦ,

1

2n

∑
Φ∈Φ(E)

hFal(AΦ) = −1

2

{
L′(χE/F , 0)

L(χE/F , 0)
+

1

2
log(fχE/F ) + n log(2π)

}
, (11.1)

where fχE/F is the analytic Artin conductor of the quadratic character χE/F (here we have
corrected a minor typographical error in the statement of [Col93, Equation (3)]). When E/Q
is abelian, Colmez [Col93, Théorème 5] proved the identity (11.1), up to addition by a possible
rational multiple of log(2). Obus [Obu13] recently completed Colmez’s proof by eliminating this
possible term.

We have the following result.

Proposition 11.1. Let F/Q be a totally real field of degree n and E/F be a CM extension
with E/Q abelian. Given a CM type Φ ∈ Φ(E), let AΦ be a CM abelian variety of type (OE ,Φ)
defined over Q. Then

∏
Φ∈Φ(E)

exp(hFal(AΦ)) =

((2π)ndF
√
fχE/F

dE

)−2n−1 ∏
χ∈XE\XF

cχ∏
k=1

Γ

(
k

cχ

)−2n−1χ(k)/L(χ,0)

.

Proof. From (11.1) and (6.5), we have

∑
Φ∈Φ(E)

hFal(AΦ) = −2n−1

{
log

((2π)ndF
√

fχE/F

dE

)
+

∑
χ∈XE\XF

cχ∑
k=1

χ(k)

L(χ, 0)
log Γ

(
k

cχ

)}
,

where we used the conductor–discriminant formula (7.7) to write

−
∑

χ∈XE\XF

log(cχ) = log

(
dF
dE

)
.

The result follows by exponentiating. 2

Proof of Proposition 1.8. This follows by combining Proposition 11.1 with an argument similar
to that in § 9. 2

Finally, we combine our results with (11.1) to prove Theorem 1.7, which evaluates the product
of CM values

∏
[a]H(za) in terms of Faltings heights. This provides a geometric interpretation

of the CM values by relating them to volumes of the complex manifolds AσΦ(C).

Proof of Theorem 1.7. From (11.1), we have

L′(χE/F , 0)

L(χE/F , 0)
= − 1

2n−1

∑
Φ∈Φ(E)

hFal(AΦ)− log((2π)n
√

fχE/F ). (11.2)

On the other hand, by (5.4) and (7.6), we have

L′(χE/F , 0)

L(χE/F , 0)
=

2

hE

∑
[a]∈CL(E)

log(H(za))− log

( √
dE

2n+1πd2
F

)

−
∑
χ∈XF
χ 6=1

τ(χ)

cχ

cχ∑
k=1

χ(k)

L(χ, 1)
R

(
k

cχ

)
. (11.3)

The result follows by equating (11.2) and (11.3) and then exponentiating. 2
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12. Faltings heights and the Lang–Rohrlich conjecture

In this section we review the Koblitz–Ogus criterion and prove Theorem 1.10. Recall that the
Koblitz–Ogus criterion gives a sufficient condition for a product of gamma values at rational
numbers to be algebraic, modulo an explicit rational power of π. Let N be a positive integer and
consider the set (1/N)Z. One can define an equivalence relation on (1/N)Z by

a

N
∼ b

N
⇐⇒ a

N
− b

N
∈ Z.

Write the corresponding quotient space as

1

N
Z
/
∼=

{[
a

N

]
: 0 6 a 6 N − 1

}
.

Let AN be the set of non-zero equivalence classes. The group UN = (Z/NZ)× acts on the set
AN by

ū ·
[
a

N

]
:=

[
ua

N

]
, ū ∈ UN .

Given a function f : AN → C, define the function 〈f〉 : UN → C by

〈f〉(ū) :=
N−1∑
a=1

a

N
f

([
ua

N

])
.

We can now state the Koblitz–Ogus criterion (see the Appendix to [Del79]).

Theorem 12.1 (Koblitz–Ogus). If f : AN → Q is a function such that 〈f〉 ≡ k ∈ Q is constant,
then

Γ(f) := π−k
N−1∏
a=1

Γ

(
a

N

)f([a/N ])

∈ Q.

The converse of the Koblitz–Ogus theorem is the following conjecture of Lang and Rohrlich
(see e.g. [Lan90, Appendix to § 2, p. 66] and the introduction to [ABP04]).

Conjecture 12.2 (Lang–Rohrlich). If f : AN → Q is a function such that 〈f〉 is not constant,
then

Γ(f) /∈ πkQ
for any k ∈ Q.

We may now prove Theorem 1.10.

Proof of Theorem 1.10. We first explain how to obtain an alternative version of the identity in
Proposition 1.8. Let χα be the Kronecker symbol associated to the quadratic subfield Q(

√
α),

where α = de11 · · · de`` d`+1 for e = (e1, . . . , e`) ∈ {0, 1}`. From § 8, we know that F ⊂ E ⊂ Q(ζD),

where D = D1 · · ·D`+1, and that each character χα induces a Dirichlet character χ′α modulo D.
We use the identity (6.7) (with N = D) instead of (6.5) in the proof of Proposition 11.1 and
then argue as in the proof of Proposition 1.8 to obtain

∏
Φ∈Φ(E)

exp(hFal(AΦ)) =

((2π)2`
√
fχE/F

D2`

)−22
`−1 ∏

e∈{0,1}`
α=d

e1
1 ···d

e`
` d`+1

D∏
a=1

Γ

(
a

D

)−22
`−2χα(a)wα/hα

.
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Now, we have

∏
e∈{0,1}`

α=d
e1
1 ···d

e`
` d`+1

D∏
a=1

Γ

(
a

D

)−(22
`−2χα(a)wα)/hα

=

D−1∏
a=1

Γ

(
a

D

)−22
`−2

∑
e∈{0,1}`

α=d
e1
1 ···d

e`
` d`+1

χα(a)wα/hα

. (12.1)

Define a function f : AD → Q by

f

([
a

D

])
:= −22`−2

∑
e∈{0,1}`

α=d
e1
1 ···d

e`
` d`+1

χα(a)wα
hα

.

Since χα is periodic modulo D, this function is well defined. Write the product (12.1) as

Γ(f) :=
D−1∏
a=1

Γ

(
a

D

)f([a/D])

.

Then, assuming the Lang–Rohrlich conjecture, to complete the proof it suffices to show that
〈f〉 : UD → Q is not constant. We will do this by showing that 〈f〉(1̄) > 0 and 〈f〉(−1) < 0.

We calculate

〈f〉(ū) =
1

D

D−1∑
a=1

af

([
ua

D

])
=
−22`−2

D

D−1∑
a=1

∑
e∈{0,1}`

α=d
e1
1 ···d

e`
` d`+1

aχα(u)χα(a)wα
hα

=
−22`−2

D

∑
e∈{0,1}`

α=d
e1
1 ···d

e`
` d`+1

χα(u)wα
hα

SD,α,

where

SD,α :=

D−1∑
a=1

aχα(a).

We now show that SD,α < 0 for each α. The absolute value of the discriminant of Q(
√
α) is given

by

Mα =

{
|α| if α ≡ 1 (mod 4),

4|α| if α ≡ 2, 3 (mod 4).

By the Dirichlet class number formula, we have

hα = − wα
2Mα

Mα∑
a=1

aχα(a).
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Since Mα|D, we may write D = bαMα for some integer bα > 1. Then, using the decomposition

[1, D] =

bα−1⋃
j=0

[jMα + 1, (j + 1)Mα],

we get

SD,α =

D−1∑
a=1

aχα(a) =

D∑
a=1

aχα(a) =

bα−1∑
j=0

(j+1)Mα∑
a=jMα+1

aχα(a),

where we used that χα is a Dirichlet character modulo Mα. The orthogonality relations for group
characters yield

(j+1)Mα∑
a=jMα+1

aχα(a) =

Mα∑
a=1

(a+ jMα)χα(a+ jMα) =

Mα∑
a=1

(a+ jMα)χα(a) =

Mα∑
a=1

aχα(a).

Therefore, we get

SD,α = bα

Mα∑
a=1

aχα(a) = −2hα(bαMα)

wα
= −2hαD

wα
< 0.

Finally, we have

〈f〉(1̄) = −22`−2

D

∑
e∈{0,1}`

α=d
e1
1 ···d

e`
` d`+1

wα
hα
SD,α > 0

and, since the characters χα are odd, we have χα(−1) = −1, so that

〈f〉(−1) =
22`−2

D

∑
e∈{0,1}`

α=d
e1
1 ···d

e`
` d`+1

wα
hα
SD,α < 0.

We conclude that 〈f〉 : UD → Q is not constant. 2
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