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We study coherent structures in subsonic turbulent jets subject to a flight stream.
A thorough characterisation of the effects of a flight stream on the turbulent field
was recently performed by Maia et al. (Phys. Rev. Fluids, vol. 8, 2023, 063902) and
fluctuation energy attenuations were observed over a broad range of frequencies and
azimuthal wavenumbers. The Kelvin–Helmholtz, Orr and lift-up mechanisms were all
shown to be weakened by the flight stream. Here we expand upon that study and
model the changes in the dynamics of jets in flight using global resolvent analysis. The
resolvent model is found to correctly capture the main effects of the flight stream on the
dynamics of coherent structures, which are educed from a large-eddy simulation database
using spectral proper orthogonal decomposition. Three modifications of note are: the
damping of low-frequency streaky/Orr structures that carry most of the fluctuation energy;
a degradation of the low-rank behaviour of the jet in frequencies where modal instability
mechanisms are dominant; and a rank decrease at very low Strouhal numbers. The latter
effect is underpinned by larger gain separations predicted by the resolvent analysis, due to
a reduction in the wavelength of associated flow structures. This leads to a clearer relative
dominance of streaky structures generated by the lift-up mechanism, despite the fact that
the lift-up mechanism has been weakened with respect to the static jet.
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1. Introduction

The effect of forward flight on jet aeroacoustics has been a matter of industrial and
scientific interest for decades. On the one hand, characterising and quantifying the acoustic
field of jets in the presence of a flight stream is important for the certification of aircraft
flyover noise (Viswanathan & Czech 2011). On the other hand, understanding how the
flight stream modifies the acoustic field can help improve sound-source models (Crighton,
Ffowcs & Cheeseman 1977). Numerous experimental studies have been performed in order
to understand sound radiation from jets in flight (Von Glahn, Groesbeck & Goodykoontz
1973; Bushel 1975; Cocking & Bryce 1975; Packman, Ng & Paterson 1975; Plumbee 1975;
Bryce 1984; Viswanathan & Czech 2011). More recently, large-eddy simulation (LES) has
been used to investigate the acoustics of jets with flight streams in free (Wang, Naqavi &
Tucker 2017) and installed (Tyacke, Wang & Tucker 2018) configurations.

Where the turbulent jet is concerned, Tanna & Morris (1977) studied the effects
of forward flight on flow statistics and observed that the flight stream modifies the
development of the mean flow, producing a stretching of the potential core, and a reduction
of both shear-layer thickness and turbulent kinetic energy. The latter effect underpins the
reduction of radiated sound pressure levels. Michalke & Hermann (1982) recognised that
the mean-flow modification leads to a stabilising effect on the Kelvin–Helmholtz (KH)
instability. This was recently confirmed by Soares et al. (2020) using a stability model
based on the parabolised stability equations (PSE) for different flight stream velocities.
The effect of the flight stream on coherent structures is of some interest given their now
recognised importance for jet dynamics and sound radiation (Jordan & Colonius 2013;
Cavalieri, Jordan & Lesshafft 2019). Motivated by this, Maia et al. (2023) performed a
characterisation of the effect of a flight stream on the frequency-azimuthal wavenumber
spectrum, using time-resolved particle-image velocimetry (PIV) and LES databases. The
study showed that the reduction in fluctuating energy, observed in early experiments
(Tanna & Morris 1977), is distributed over a broad region of frequency-azimuthal
wavenumber space and that the attenuation of coherent structures is associated with
a weakening of Orr, KH and lift-up instability mechanisms. Streaky structures with
azimuthal wavenumbers in the range 1 ≤ m ≤ 4, that carry most of the fluctuation energy
downstream of the end of the jet potential core, are the most strongly impacted by the flight
stream. A locally parallel, linear mean-flow model was used to investigate whether those
changes were associated with linear instability mechanisms. The use of local analysis in
jets is certainly appealing, due to the weak variation of the mean flow in the streamwise
direction. It has been successfully used in previous studies to understand many aspects
of coherent structure dynamics, including in the jet far field, where the jet is self-similar
(Kuhn, Soria & Oberleithner 2021).

In Maia et al. (2023) the local model was also found to predict the overall attenuation
trend of linear mechanisms observed in the data with the flight stream. However, it
displayed a few shortcomings. First of all, the shape of gain spectrum computed with
resolvent analysis at a given streamwise position did not reflect the modal energy spectrum
from spectral proper orthogonal decomposition (SPOD). In the initial jet region the model
predicted gains that decayed monotonically for m ≥ 1, whereas the peak energy in the
SPOD energy maps occurred at higher m. This is a limitation of the local model that
predicts the gain and shape of optimally forced structures that, from a given streamwise
position, will grow downstream as they are convected with the parallel mean flow. The
highest gain computed for the model is for m = 1. Indeed, further downstream the m = 1
mode does become dominant; but because the local model does not take into account the
upstream amplification of higher wavenumbers, it is not equipped to provide the correct
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shape of the energy spectrum at that position. Secondly, studying the Orr mechanism with
the local model is not straightforward, because it requires knowledge of the streamwise
wavenumber, which is an input parameter to the model. But the streamwise wavenumber
is unknown a priori. This was found to be particularly troublesome for the comparison of
jets in static and flight conditions, because the low-frequency Orr/streaky structures suffer
a change in wavenumber due to the flight stream. This leads to a third issue, which is an
interesting rank decrease in jet dynamics in flight, observed at low Strouhal numbers (St)
in the SPOD results, but that could not be explained by the local model. As will be shown
later, this issue is associated with the change in wavenumber, and is found to affect the
dynamics of coherent structures significantly. In this work we perform a global resolvent
analysis to overcome these issues and to assess the extent to which linear mean-flow
analysis can be used to explain the impact of a flight stream on the organisation of a
turbulent jet.

Resolvent analysis has been widely used to model the mechanisms underpinning
coherent structures observed in jets, both in locally parallel (Tissot et al. 2017; Nogueira
et al. 2019; Kuhn et al. 2021) and global (Garnaud et al. 2013; Jeun, Nichols & Jovanovic
2016; Schmidt et al. 2018; Lesshafft et al. 2019; Pickering et al. 2021) frameworks. In the
case of turbulent jets, linearisation is performed about the mean flow. In ‘static’ conditions,
the resolvent framework has been used to model and classify coherent structures according
to the underlying growth mechanisms. Kelvin–Helmholtz wavepackets are underpinned by
convective modal instability, whereas Orr-like structures arise when multiple, convectively
stable modes, forced by ambient turbulence, combine linearly to produce transient growth
on account of their non-normality. These structures have been characterised by the studies
of Garnaud et al. (2013), Jeun et al. (2016), Tissot et al. (2017), Schmidt et al. (2018)
and Lesshafft et al. (2019). More recently, resolvent analysis has revealed the existence
of the lift-up mechanism in turbulent jets (Nogueira et al. 2019; Pickering et al. 2020;
Wang et al. 2021). This mechanism, characterised by higher azimuthal wavenumbers than
the Orr mechanism, can also be understood in the linear mean-flow framework as arising
from a non-normal linear combination of forced, convectively stable modes. The cited
studies thus provide an explanation for streak-like structures that have been observed in
numerous previous studies (Becker & Massaro 1968; Browand & Laufer 1975; Yule 1978;
Dimotakis, Miake-Lye & Papantoniou 1983; Agüí & Hesselink 1988; Jung, Gamard &
George 2004).

For certain frequencies, the turbulent jet exhibits a low-rank behaviour (Schmidt et al.
2018; Lesshafft et al. 2019), where the dynamics is largely dominated by the leading
forcing and response modes. In that case, resolvent response modes are generally in
good agreement with coherent structures educed from measurement or simulation data.
When the dynamics is not low rank, there is no clear distinction between the leading
and sub-optimal modes, and the leading response modes tend do differ substantially from
empirical coherent structures. In that case, the nonlinear Reynolds stresses, treated as
an endogenous forcing term in the resolvent framework, must be considered in order
to achieve a complete picture of the coherent structure dynamics. But that term is
experimentally inaccessible, and even in high-fidelity simulations, its eduction is a delicate
task (Karban et al. 2022).

In an attempt to improve the agreement between resolvent response modes and observed
coherent structures, many recent studies have considered eddy-viscosity models. An eddy
viscosity can partially account for the nonlinear effects of turbulence that attenuate the
growth of coherent structures via a gradient-diffusion-like sink mechanism. Such models
have been used for a variety of flows, both in the framework of stability (Crouch, Garbaruk
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& Magidov 2007; Oberleithner, Paschereit & Wygnanski 2014; Rukes, Paschereit &
Oberleithner 2016; Tammisola & Juniper 2016; Kuhn et al. 2021) and resolvent analysis
(Hwang & Cossu 2010; Morra et al. 2019; Towne, Lozano-Durán & Yang 2020; Heidt
et al. 2021; Pickering et al. 2021). A caveat of these models is that the modified forcing
term loses its physical interpretability as the frequency-dependent Reynolds stresses and
the resulting system of equations is no longer exact. However, the improved agreement
between resolvent and SPOD modes that is observed when an eddy-viscosity model is
used (Pickering et al. 2021) makes them appealing from the point of providing a basis
suitable for description of empirical coherent structures and that would allow these and
the mechanisms that drive them to be better understood.

The main contribution of the present work is the study of subsonic turbulent jets in the
presence of a flight stream through global resolvent analysis. We analyse how coherent
structures associated with different linear mean-flow mechanisms (characterised in static
conditions by the studies cited above) are modified by the flight stream. While we focus
here on the effect of the flight stream on the turbulent field, the results can be used to
inform sound-source models, such as those developed by Karban et al. (2023), Maia et al.
(2019) and Cavalieri et al. (2011). The remainder of the paper is organised as follows. In
§ 2 we present the numerical databases used for the study. In § 3 we describe the SPOD and
resolvent frameworks used to educe and model coherent structures in the jet, respectively.
In § 4 we present modal energy and amplification maps, and discuss how they are modified
by the flight stream. This is followed in § 5 by a detailed analysis of coherent structures
at different regions of the frequency–wavenumber plane. Finally, in § 6 we summarise the
main conclusions of the study.

2. Numerical database

We explore two high-fidelity LES databases of subsonics jets at Mach number Mj = 0.9
with and without flight streams. The simulations were performed using the compressible
flow solver ‘CharLES’ (Brès et al. 2017), developed at Cascade Technologies, now part
of Cadence Design Systems. Results for the case without the flight stream, Mf = 0, were
initially reported by Brès et al. (2018). The present database are extensions of that study
for both Mf = 0 and 0.15 with longer databases and a higher sampling frequency. All the
LES feature localised adaptive mesh refinement, synthetic turbulence and wall modelling
on the internal nozzle surface (and external nozzle surfaces at Mf = 0.15) to match the
fully turbulent nozzle-exit boundary layers in the experiments. The LES methodologies,
numerical set-up and comparisons with measurements are described in more details in
Brès et al. (2018) and Maia et al. (2023).

The nozzle pressure ratio and nozzle temperature ratio are NPR = Pt/Pf = 1.7 and
NTR = Tt/Tf = 1.15, respectively, and match the experimental conditions. The jet is
isothermal (Tj/Tf = 1.0) and the jet Mach number is Mj = Uj/c = 0.9. The subscript t
refers to total conditions, j refers to jet exit conditions and f to the flight stream. For both
experiment and simulation, the Reynolds number is Re = UjD/νj ≈ 1 × 106, where ν is
the kinematic viscosity, Uj is the jet exit velocity and D is the nozzle diameter, which
is 50 mm. Synthetic turbulence boundary conditions are applied inside and outside the
nozzle surfaces to model the boundary layer trip used in the experiments 3D upstream
of the nozzle exit. Simulation parameters and LES settings are shown in table 1. To
facilitate postprocessing and analysis, the LES data are interpolated from the original
unstructured LES grid onto structured cylindrical grids in the jet plume and in the nozzle
pipe. These structured cylindrical grids were originally designed for the grid with 16M

985 A21-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

30
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.301


Resolvent analysis of turbulent jets in flight

Case name Mesh size Mj Mf Tj/Tf Re dtc/D �tc/D tsimc/D

BL16M_M09 15.9 × 106 0.9 0 1.0 1 × 106 0.001 0.1 3000
BL22M_M09_Mf015 21.8 × 106 0.9 0.15 1.0 1 × 106 0.001 0.1 2000

Table 1. Operating conditions and simulation parameters of the main LES, where tsim is the simulation time
and �t is the sampling period of the database recording.

control volumes, such that the resolution approximately corresponds to the underlying
LES resolution. For both structured grids, the points are equally spaced in the azimuthal
direction to enable a Fourier series decomposition in azimuth. A detailed validation of the
databases was carried out by Maia et al. (2023) through comparisons with extensive PIV
experiments.

3. Tools

3.1. Spectral proper orthogonal decomposition
Spectral proper orthogonal decomposition is now a widely used tool for the study
of turbulent flows. It decomposes the data into an orthogonal basis ranked in terms
of an energy norm, and can provide a useful basis for the description of empirical
coherent structures, particularly when the leading eigenvalue is substantially larger than
its subdominante counterparts.

In the framework of SPOD, given the state vector, q = [ρ, ux, ur, uθ , T]T, subject to a
Reynolds decomposition,

q(x, r, θ, t) = q̄(x, r, θ) + q′(x, r, θ, t), (3.1)

optimal modes for a given azimuthal wavenumber and Strouhal number pair, Ψ m,ω, are
obtained through eigendecomposition of the cross-spectral density (CSD) matrix, Ŝm,ω,

Ŝm,ωWΨ m,ω = Ψ m,ωΛm,ω. (3.2)

The CSD matrix is computed as Ŝm,ω = Q̂m,ωQ̂H
m,ω, where Q̂m,ω = [q̂(1)

m,ω q̂(2)
m,ω · · · q̂(Nblk)

m,ω ]
is the ensemble of Nblk flow realisations at (m, ω), with q̂(l)

m,ωk denoting the lth Fourier
realisation of the turbulent fluctuations, q′, in time and azimuthal direction at the frequency
ω and wavenumber m. The superscript H denotes Hermitian transpose.

The eigenvalues, [λ(1)
m,ω, λ

(2)
m,ω · · · λ(nblk)

m,ω ] corresponding to the modal energy are
organised in decreasing order in the diagonal matrix Λm,ω. The modes so obtained are
orthogonal with respect to a given inner product,

〈q1, q2〉 = qH
1 W q2. (3.3)

Here we consider a weighting matrix, W , describing Chu’s compressible energy norm
(Chu 1965),

〈q1, q2〉E =
∫∫∫

qH
1 diag

(
T̄

γ ρ̄M2
j
, ρ̄, ρ̄, ρ̄,

ρ̄

γ (γ − 1)T̄M2
j

)
q2r dx dr dθ. (3.4)

The CSDs are computed using Welch’s periodogram method. The data was segmented
into blocks of 512 samples with 75 % overlap, resulting in a frequency resolution of
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�St = 0.0217. Convergence of the SPOD modes was checked by varying the number and
length of the blocks in the Welch algorithm, while keeping a suitable frequency resolution.
We found that the parameters we used are sufficient to attain converged modes, including
in the St → 0 limit. Using larger blocks of 1024 yielded almost identical SPOD modes,
although the uncertainty was larger due to the reduced number of blocks. Furthermore,
we have also tried the time-shifting SPOD technique recently introduced by Blanco
et al. (2022). The main idea of the technique is to align cross-correlations inside each
block according to the convection velocity of the underlying flow structures. This helps
improving convergence of SPOD modes by increasing the number of blocks available for
a given time series, which can be useful for large datasets that usually have a limited
number of snapshots. However, application of this technique to our databases did not yield
any noticeable improvement on convergence, which indicates that the chosen block size
and the number of blocks was already sufficient.

3.2. Resolvent analysis
Since the works of Hwang & Cossu (2010) and McKeon & Sharma (2010), resolvent
analysis has been extensively used to identify optimal forcing and response mechanisms in
laminar and turbulent flows and to model coherent structures. The analysis starts with the
linearised Navier–Stokes equations in frequency domain, expressed in input–output form
(Schmidt et al. 2018),

(iωI − Am)q̂m,ω = Bf̂ m,ω, (3.5)

ŷm,ω = Cq̂m,ω, (3.6)

where Am is the linearised Navier–Stokes operator, q̂m,ω is the Fourier-transformed state
vector and f̂ m,ω is a term representing the nonlinear Reynolds stresses, which are treated
as an endogenous forcing term. The subscript m,ω, with m the azimuthal wavenumber and
ω the frequency, denotes Fourier transform in the azimuthal and time directions. Here ŷm,ω

defines the desired response, or output, as a function of the state; I is the identity matrix
and B and C are matrices that can be used to restrict forcing and observation to specific
regions of space and/or to a limited number of forcing and response terms.

Input and output are related through

ŷm,ω = Rm,ω f̂ m,ω, (3.7)

where Rm,ω is the resolvent operator,

Rm,ω = C(iωI − Am)−1B. (3.8)

We then define a weighted resolvent operator, R̃m,ω, by introducing Chu’s compressible
energy norm through the matrix W ,

R̃m,ω = W 1/2Rm,ωW −1/2. (3.9)

The goal of resolvent analysis is to seek an optimal forcing that maximises the norm of
the associated flow response,

σ 2
1 = max

‖ f̂m,ω‖=1

‖R̃m,ω f̂ m,ω‖2
W

‖ f̂ m,ω‖2
W

. (3.10)
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This can be achieved through singular-value decomposition of the resolvent
operator,

R̃m,ω = UΣV H. (3.11)

Forcing (ui) and response (vi) modes are defined as vi = (W −1/2)HV i and ui =
(W −1/2)HU i, with i denoting the ith column of V and U . The singular values associated
with each forcing-response pair, σi, are arranged in descending order in the diagonal matrix
Σ . Optimal forcings and responses for each m, ω pair are then given by vi and u1, and
their associated energy gain is the square of the leading singular value, σ 2

1 . As in Schmidt
et al. (2018), the governing equations are discretised using fourth-order summation by
parts finite differences (Mattsson & Nordström 2004), the polar singularity is treated
as in Mohseni & Colonius (2000), and non-reflecting boundary conditions/sponges
are employed at the domain boundaries. The dominant resolvent modes are computed
using randomised linear algebra methods (Martinsson 2019) that allow for the efficient
computation of dominant singular values/vectors.

As mentioned above, we focus on the characterisation of the flight stream effect on
the turbulent field, rather than the acoustic field, as done by many previous studies (Von
Glahn et al. 1973; Bushel 1975; Cocking & Bryce 1975; Packman et al. 1975; Plumbee
1975; Morfey & Tester 1977; Bryce 1984; Viswanathan & Czech 2011). To that end, we
restrict the forcing and observation fields to the hydrodynamic region via the matrices
B and C. This is done by setting the elements of those matrices to one within the jet
shear layer, delimited by the region where Ūx/Ūj ≥ 0.05, and gradually reducing them to
zero for larger r. Here we also enforce a mask on the forcing field inside the jet potential
core. The reason for this is that the jet supports trapped acoustic waves that resonate,
producing a tonal dynamics in the potential core (Schmidt et al. 2017; Towne et al. 2017).
The resonant mechanism at Mj = 0.9 is such that the jet is marginally globally stable at
certain frequencies, and the resolvent analysis thus identifies this resonance mechanism as
a leading candidate for optimal growth. This mechanism is not dominant in the SPOD
analysis, as we will briefly show, and therefore, we choose to mask it, so as to focus
on the dominant turbulent structures. In Appendix A we briefly discuss their presence
in the forcing and response modes. Regarding the fact that the trapped waves are more
pronounced in the resolvent modes, Schmidt et al. (2018) attributes this to two factors: the
first is the choice of an effective Reynolds number, which, in our case, corresponds to the
choice of the eddy viscosity. In mean-flow-based resolvent models, different mechanisms
respond differently to changes in Reynolds number/eddy viscosity, and the choice of these
parameters might highlight one mechanism to the detriment of the other (for instance,
accentuating trapped waves to the detriment of KH waves). Secondly, the resonance
provides an optimal forcing mechanism in the resolvent model; but in the real flow the
resonance mechanism might not be forced so efficiently, which would attenuate these
waves. Analysis of the effect of nonlinear forcing on trapped waves is outside the scope of
this work. We emphasise that these issues are minor in the context of the present work and,
as we show in Appendix A, the suppression of these waves does not affect the analysis of
the other linear instability mechanisms.

Figure 1 shows the resulting mean-flow masks applied to the forcing and response fields.
The goal of the resolvent analysis is therefore to seek an optimal forcing that maximises
the compressible energy norm of the associated flow response in the highlighted
region.
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Figure 1. Example of mean-flow masks applied to (a) the forcing and (b) the response for the static case,
Mf = 0.

3.2.1. Eddy-viscosity model
The effects of eddy viscosity on the predictive capabilities of linear analysis have been
explored in a number of recent studies (Crouch et al. 2007; Hwang & Cossu 2010;
Oberleithner et al. 2014; Rukes et al. 2016; Tammisola & Juniper 2016; Schmidt et al. 2018;
Morra et al. 2019; Kuhn et al. 2021; Pickering et al. 2021). The study of Pickering et al.
(2021) showed substantial improvements in the agreement between resolvent response
modes and coherent structures educed from flow data through SPOD.

Here we adopt the mean-flow-consistent eddy-viscosity model of Pickering et al. (2021),
which is useful in cases where experimental and numerical databases do not provide
an eddy-viscosity field directly, as is the case with the LES database used here. The
molecular viscosity, μ, is replaced by the sum μ + μT in the linearised equations, and
a suitable spatial structure for the eddy viscosity, μT , is determined, as described below.
The resolvent operator can then be rewritten as

Rm,ω = C(iωI − Am − Am,T(μT))−1B, (3.12)

where Am,T only possess terms including μT . The reader is referred to Pickering
et al. (2021) for the equations for the modified operator. The eddy-viscosity field,
μT(x, r), is found by minimising the error by which the mean flow satisfies the
zero-frequency, zero-azimuthal wavenumber linearised Navier–Stokes equations, modified
with the addition of an eddy-viscosity field. The forcing term, which represents
frequency-dependent Reynolds stresses, is approximated through an eddy-viscosity model,
and subsequently lumped on the linear operator on the left-hand side. For ω = 0 and
m = 0, q̂m,ω becomes the mean flow itself, q̄, which leads to the equation

(A + AT )q̄ = f̄ , (3.13)

where f̄ is a residual term. Note that, if the eddy-viscosity approximation were exact, the
left-hand side of (3.13) would be identically zero; but since the model is not exact, there
is a residual. We then find the eddy-viscosity field through an optimisation procedure that
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Figure 2. Mean-flow-consistent eddy-viscosity fields computed at zero frequency and azimuthal wavenumber
for (a) the static case, Mf = 0, and (b) the flight stream case, Mf = 0.15.

minimises the following cost function:

J = −f̄ W f̄ . (3.14)

Details about the optimisation algorithm can be found in Pickering et al. (2021). The
optimisation provided order-of-magnitude reductions in the residual. Figure 2 shows the
mean-flow-consistent eddy-viscosity fields for the Mf = 0 and Mf = 0.15 jets. Their
shapes are similar to those obtained previously at lower Mach number (Pickering et al.
2021). Some streamwise waviness can be seen in the fields obtained for both cases.
Optimisation of the entire eddy-viscosity field at once leads to a stiff problem prone to
numerical errors. To alleviate this, the domain is broken into overlapping subsections,
and a block-by-block optimisation is performed. This generates the observed streamwise
waviness between adjacent blocks. These differences are numerical artifacts and while
they could be carefully tuned and smoothed away, these improvements would only create
marginal improvements to the resolvent analysis.

The amplitude of the eddy-viscosity model was scaled by a constant, μ̃T = cμT . This
constant is used as a frequency-independent tuning parameter that allows us to improve
the alignment between resolvent and SPOD modes (Pickering et al. 2021). Physically,
c is necessary as the eddy-viscosity field found through the mean-flow optimisation
considers both large- and fine-scale fluctuations. Thus, we consider small values, 0.1–0.2,
to represent only the fine-scale eddy-viscosity contribution and effect in modelling
the large-scale structures. Here we found c = 0.15 to provide the best alignment with
respect to leading SPOD modes at different frequencies and azimuthal wavenumbers. The
physical consistency of this value was verified through a comparison with the Boussinesq
approximation, as done by Kuhn et al. (2021). Using a nonlinear least square algorithm,
we have computed the constant values that give the best fit of μT(x, r) to the Boussinesq
eddy-viscosity field, given by

μTB = − u′
xu′

r

dŪ/dr
. (3.15)
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This best fit was obtained for values of c = 0.16 and c = 0.12 in the static and flight
stream cases, respectively, which are quite close to the constant value used in this study.
Furthermore, the shapes of the eddy-viscosity fields of the two models were found to be
in fair qualitative agreement, which further supports the consistency of the eddy-viscosity
model adopted here. We emphasise, though, that the model displays limited sensitivity
to the scaling constant, and similar model results can be obtained with other choices of
c (albeit with a reduced alignment with respect to SPOD). In Appendix B we explore
resolvent analyses conducted with c = 0.10 and c = 0.20. Overall, the trends are similar
to the results presented in §§ 4 and 5 for c = 0.15, indicating that the main results of this
study (and its main conclusions) are not restricted to a specific choice of scaling parameter.
Furthermore, this constant was also found to be remarkably robust between different cases
of the same jet. For instance, Heidt et al. (2021) showed that a constant tuned for a natural
jet at Ma = 0.4 could be used, with the same level of accuracy, when the jets are forced at
different frequencies and amplitudes.

4. Modal energy and amplification maps

Leading SPOD modes reveal coherent structures, as mentioned above, that can frequently
be associated with linear mean-flow mechanisms in jets (Cavalieri et al. 2019; Nogueira
et al. 2019; Pickering et al. 2020). We compare the modal energy of leading SPOD modes,
λ1(ω, m), and the optimal resolvent gains, σ1(ω, k). The association of leading SPOD
modes with a given mechanism can be made according to the regions of dominance of
each mechanism in frequency–wavenumber space, as characterised in previous studies
(Garnaud et al. 2013; Jeun et al. 2016; Tissot et al. 2017; Schmidt et al. 2018; Lesshafft
et al. 2019; Nogueira et al. 2019; Pickering et al. 2020) (figure 6 roughly delimits those
regions, based on the work of Pickering et al. 2020).

Figure 3 shows maps of modal energy and leading resolvent gains in St-m space for
static, Mf = 0, and flight, Mf = 0.15, conditions. The modal energy maps reveal that
most of the flow energy is in the St → 0 zone of the spectrum, and is carried by streaky
structures (Nogueira et al. 2019; Pickering et al. 2020). The map of the flight stream
case shows a striking attenuation in that region of the spectrum, especially for azimuthal
modes m = 1–4. At higher St, mode m = 1 is the most energetic, for both flow conditions.
The resolvent gain spectrum is similar to the SPOD modal energy maps. The regions of
high SPOD energy correspond, to a great extent, to the zones of maximum amplification
predicted by the resolvent model. Modes m = 1–4 possess the largest amplification rates
in the Mf = 0 case and are those most impacted by the flight stream, in agreement with
what is observed in the flow data. This is a first indication that the resolvent analysis
correctly captures the leading-order effect of flight on the turbulent kinetic energy. A slight
discrepancy exists for the axisymmetric mode, for which the resolvent model predicts
large gains in the range 0.4 ≤ St ≤ 0.8, which is not mirrored in the SPOD energy maps.
This large-gain region highlights the signature of KH wavepackets, and this discrepancy
is partly due to the fact that the KH mechanism is dominant in the initial region (first
5–6 jet diameters), where the jet is convectively unstable, and the details of the nonlinear
forcing are less important. Downstream of the end of the potential core, on the other hand,
nonlinearity, expressed through the endogenous forcing term, plays a major role in the
jet dynamics (Jordan et al.; Tissot et al. 2017), overwhelming the signature of the linear
mechanism. This effect is naturally present in the data; but it is absent in the resolvent
maps, which only consider the optimal response mechanism. The SPOD/resolvent maps
shown in figure 3 are based on calculations that consider the full computational domain
(which extends up to 30D in the streamwise direction), and, therefore, they reflect the
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Figure 3. Modal energy maps from SPOD and resolvent analysis. (a,b) Modal energy of the leading SPOD
mode, λ1. (c,d) Leading resolvent gain, σ 2

1 . Contours are in logarithmic scale.

dominance of low-frequency Orr/streaky structures far downstream. One way to highlight
the signature of the axisymmetric mode is to truncate the domain. In Appendix C
we present results of resolvent analyses performed with domains truncated at x/xc = 1
and x/xc = 1.5, where xc is the potential core length, which increases with the flight
stream. The truncations highlight the zone where KH wavepackets are dominant, and
the results show how the energy/gain of the axisymmetric mode is enhanced (albeit not
being dominant). Alternatively, the signature of KH wavepackets can be highlighted by
normalising the modal energies and gains at each (St, m) pair by the sum of the energy/gain
across all wavenumbers,

∑
m λ(St, m),

∑
m σ(St, m). This was done by Pickering et al.

(2020) and Maia et al. (2023), but is not shown here for the sake of conciseness.
Furthermore, in § 5 we show that the alignment between leading resolvent and SPOD is
almost perfect at KH-dominated frequencies. This is consistent with previous modelling
studies cited above, and indicates that the linear model correctly captures the dominant
KH mechanism, despite the discrepancy in the gain/energy maps.

Figure 4 shows contours of the ratio between the leading and second SPOD eigenvalues,
λ1/λ2, and the ratio between the optimal and first suboptimal resolvent gains, σ 2

1 /σ 2
2 .

The eigenvalue separation map for the Mf = 0 case shows large peaks for the first three
azimuthal wavenumbers around St = 0.4–0.5, due to the KH modal instability mechanism.
The flight stream reduces the peak values, but produces a broader region of low-rank
behaviour, and a slight shift of that region towards higher St. These trends were shown
by Maia et al. (2023) to be consistent with a larger range of unstable frequencies in the
flight case, and a shift of the most unstable KH mode towards higher frequency. The
low-rank behaviour is found to be more pronounced in the resolvent model, including
a large gain separation region for the m = 1 mode at low St, which is not observed in
the data. Unlike the SPOD maps, no weakening of the low-rank behaviour is observed
in the resolvent model in the zone 0.3 � St � 1, which is dominated by modal instability
mechanisms for low azimuthal mode order. In Appendix C we show that, by truncating the
domain, a reduction in gain separation in flight condition becomes apparent, revealing a
weakening of the low-rank behaviour in the KH-dominated zone, which is not clear when
the computation considers the full domain.
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Figure 4. Maps of eigenvalue separation, λ1/λ2, from SPOD (a,b) and gain separation, σ 2
1 /σ 2

2 , from
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Figure 5. Resolvent gain separation, σ 2
1 /σ 2

2 , close to the St → 0 limit.

Interestingly, in the St → 0 zone, the flight stream produces an increase in the ratio
λ1/λ2. This trend is found to be captured by the resolvent model. This can be seen in
figure 5, which shows the low St zone in more detail. The σ 2

1 /σ 2
2 is clearly enhanced for

the helical modes in that zone as a result of the mean-flow modification in the flight stream
case. An interpretation for this behaviour is provided in the following sections.

5. Mode shapes

In this section we perform a detailed comparison of coherent structures, educed through
SPOD, and optimal resolvent modes in the static and flight cases. We define a projection
coefficient,

β = |uH
1 WΨ 1|, (5.1)
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Figure 6. Maps of alignment, measured by the β metric, between leading SPOD and resolvent modes. The
black lines are from Pickering et al. (2020), and approximately delimit the regions of dominance of the KH,
Orr and lift-up mechanisms.

that quantifies the alignment between SPOD and resolvent response modes. The metric
varies between 0, in which case the modes are orthogonal to each other, to 1, for
perfect alignment. Figure 6 shows β as a function of St and m. The maps are divided
in regions that roughly delimit the regions of dominance of the linear mechanisms
studied. These regions are hypothesised based on inspection of the forcing-response
pairs conducted at several frequency–wavenumber pairs by Pickering et al. (2020). Based
on the characteristics shared by forcing and response modes within a given zone, a
specific instability mechanism was assigned as dominant. Forcing and response modes
in the KH-dominated zone are characterised by a spatial separation; forcing modes are
concentrated near the nozzle lip, whereas response modes display a rapid exponential
growth in the initial jet region, followed by saturation and decay after the end of the
potential core. In the lift-up-dominated zone, forcing modes display a dominance of radial
and azimuthal velocity components (characterising rolls), whereas the response modes
are largely dominated by the streamwise component, typical of streaks. The Orr region is
characterised by spatially extended forcing and response modes, with lower phase speeds
than KH structures and slower growth rates in the streamwise direction. The characteristics
of the forcing-response pair of each mechanism will be discussed in more detail briefly.
These zones are useful for the purpose of discussing each mechanism separately, but
we emphasise that they are not intended to suggest that such a clear demarcation exists
between the different mechanisms.

Good alignment is obtained between SPOD and response modes in KH-dominated
zones, for both flow conditions. A frequency shift is observed in the peak values of
β with the flight stream, following the changes in the modal stability characteristics
discussed above. The alignment is noticeably worse at St < 0.2, in the Orr-dominated and
lift-up-dominated zones. A similar trend was observed by Pickering et al. (2021), even with
optimal eddy-viscosity models. Due to the small gain separation in this region, suboptimal
modes are as important as the leading mode, and the details of the nonlinear forcing
projection on the input space are necessary for a correct description of the dynamics.
We note, however, an improved alignment in the St → 0 region in the Mf = 0.15 case.
This region of improved alignment overlaps with the region where higher eigenvalue
and gain separations were observed with the flight stream (figures 4 and 5). Due to the
larger gain separation in that zone, the optimal response mode is likely more amplified
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Figure 7. Alignment between leading modes in the static and flight cases, measured by the β metric. The left
chart represents the alignment between SPOD modes and the right chart represents the alignment between
resolvent modes. Modes and mean flow are scaled by xc prior to the computation of the projection.

by the nonlinear forcing and is likely to become more dominant in the flow. As a result,
the coherent structures associated with that mechanism are more clearly observed in the
SPOD mode, as can be inferred from the improved SPOD/resolvent alignment. This, in
turn, translates into a stronger dominance of the leading SPOD mode, which is consistent
with the larger eigenvalue separation. In static conditions, on the other hand, the dynamics,
which is more high rank, is underpinned by a mixture of mechanisms, which are amplified
to a similar degree. In this sense, the clearer dominance of the leading modes lead to
the low-frequency dynamics being more organised in flight condition, despite the global
weakening of linear, mean-flow growth mechanisms.

Maia et al. (2023) characterised the alignment between SPOD modes in the static and
flight cases using the same metric defined above, but scaling the mean flows by the
potential core length, xc, which increases in the presence of the flight stream. It was
shown that β assumes high values in the KH-dominated zone, showing that the change
in organisation of KH structures is largely dictated by the stretching of the potential
core. The static-flight alignment in the Orr-dominated and lift-up-dominated zones, on
the other hand, was found to be much poorer. Here we extend that comparison to the
leading resolvent modes in static and flight conditions, and compare it with SPOD results.
The results, which are displayed in figure 7, also take into account the rescaling of
the modes and mean flow by the potential core length, xc. The agreement between KH
wavepackets in static and flight conditions is even more striking in the model; throughout
the KH-dominated zone, the alignment is virtually perfect. As in the SPOD map, the
alignment between resolvent modes deteriorates in the Orr and lift-up regions, showing
that their reorganisation by the flight stream is more subtle than a simple mean-flow
stretching.

In the following we analyse separately the shapes of coherent structures associated
with the three instability mechanisms with and without the flight stream. As mentioned
above, previous studies have provided extensive characterisations of such structures in
static conditions. Therefore, here we focus mainly on the modifications observed in flight
condition. In what follows, the streamwise coordinate is scaled by the potential core length,
as done by Maia et al. (2023).
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Figure 8. (a) Leading forcing and response modes of the axisymmetric wavenumber m = 0 and Strouhal
number St = 0.6 for the static case, Mf = 0. Leading SPOD mode is also shown for comparison. The modes are
shown with contours corresponding to ±0.7‖ux,r‖. (b) Component-wise amplitudes as a function of streamwise
coordinate, computed through the compressible energy norm.

5.1. KH mechanism
The modal KH mechanism is dominant over a broad frequency range, St � 0.2 (Schmidt
et al. 2018; Lesshafft et al. 2019; Pickering et al. 2020), and can be observed up to
St = 4 and m = 4 near the nozzle region (Sasaki et al. 2017). Here we present results
for the axisymmetric azimuthal mode at St = 0.6 as a representative case where KH
wavepackets are clear in the jet response. Similar trends were found for other azimuthal
wavenumbers and Strouhal numbers within the KH-dominated region of the spectrum,
indicated in figure 6. Figures 8 and 9 show leading forcing, v1, and response, u1, modes
for the static and flight cases, respectively. The leading SPOD mode of streamwise velocity
is also shown for comparison, and is in striking agreement with the leading response
mode in both cases, consistent with the alignment metric shown in figure 6. The forcing
modes exhibits Orr-like structures localised in the vicinity of the nozzle lip, and are
in agreement with observations made at lower-Mach-number jets (Garnaud et al. 2013;
Schmidt et al. 2018; Lesshafft et al. 2019). Similar structures have also been observed
within the nozzle boundary layer (Kaplan et al. 2021). Figures 8(b) and 9(b) show the
streamwise evolution of the response and forcing amplitudes for each velocity component.
The curves correspond to the local compressible inner products, |uH

1 W u1| and |vH
1 Wv1|

for the resolvent, and |Ψ H
1 WΨ1| for the SPOD modes, at each streamwise position. Note

that the uθ component is null for the axisymmetric mode. The amplitudes of those curves
is arbitrary, as SPOD and resolvent modes are not scaled by modal energy and gains,
respectively (this also applies to figures 10–13). The growth rates of the resolvent response
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Figure 9. Leading forcing and response modes of the axisymmetric wavenumber m = 0 and Strouhal number
St = 0.6 for the flight case, Mf = 0.15. Legend is as in figure 8.

modes are found to be significantly larger than those of the SPOD modes (the modes are
scaled so as to have the same amplitudes at x/xc = 0). However, they attain saturation at
roughly the same streamwise position. Furthermore, as mentioned above, the shapes are in
very good agreement, indicating that the main mechanism is well captured by the model.
The forcing amplitudes display a noisy behaviour in the initial jet region, as opposed to the
smooth decay observed at a lower Mach number (Pickering et al. 2020). This behaviour
is due to the signature of trapped waves. Despite the mask in the potential core being able
to significantly attenuate these waves (see, for instance, the results of figure 17 without
the core mask), it does not eliminate them altogether. A more efficient way to suppress
them completely would be to also restrict the response at the jet core; but this would
also impact the growth of KH waves in that zone and, therefore, it has not been done
here. The structure of KH wavepackets in static and flight conditions are found to be quite
similar (which can also be inferred from the alignment maps of figure 7). With the potential
core scaling, the regions of exponential, growth, stabilisation and decay are found to be
quite similar. Note that the SPOD modes do not display clear signs of trapped waves,
although no mask has been applied in the SPOD computation. In Appendix A we show
that the mechanism of the trapped waves is present in the SPOD as well, but their energy
is much smaller than that of KH wavepackets. They can be clearly seen in the response
modes if the amplitude of the KH waves is artificially reduced, as shown in figure 17.
Moreover, they appear more clearly in the second SPOD mode, which is not considered in
this section.
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Figure 10. Leading forcing and response modes of the axisymmetric wavenumber m = 0 and Strouhal
number St = 0.2 for the static case, Mf = 0. Legend is as in figure 8.

5.2. Orr mechanism
The Orr mechanism is dominant for the axisymmetric wavenumber and low Strouhal
numbers (St � 0.2), where the flow dynamics is high rank (Schmidt et al. 2018; Lesshafft
et al. 2019), and the KH mechanism is weak. As pointed out by Pickering et al. (2020),
it also exists for m > 0, but is overwhelmed either by streaky structures generated by the
lift-up mechanism in the St → 0 limit or by KH wavepackets at higher St. Figures 10 and
11 show forcing and response modes for (m, St) = (0, 0.2) without and with the flight,
respectively. In static conditions the response modes grow over the first 1.5 potential
core lengths. This feature is consistent with the SPOD mode, but the growth process is
clearly different between model and data; the rank-1 model is not sufficient for a detailed
discussion of the data. The forcing modes also present an overall growth with streamwise
distance, after a slight decay in the initial region.

The flight stream changes these trends. Instead of presenting monotonic growth, the
response modes saturate around x/xc ≈ 0.5 and propagate with constant amplitude further
downstream, as shown in figure 11. The forcing amplitude remains essentially constant
for 1.5xc, in contrast with the gradual increase seen in the static case. It can be seen that,
despite sharing general traits, there is a significant discrepancy between leading SPOD and
response modes for both jets, as indicated by the β metric shown in figure 6. Notably, the
SPOD modes have a much slower spatial growth than the model. Improving the agreement
between model and flow data would probably require taking the suboptimals into account,
since at this Strouhal number their gain is comparable to that of the optimal mode. Here
the potential core scaling provides little help in explaining the modifications produced by
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Figure 11. (a) Leading forcing and response modes of the axisymmetric wavenumber m = 0 and Strouhal
number St = 0.2 for the flight case, Mf = 0.15. Legend is as in figure 8.

the flight stream (see also figure 7), showing that they involve effects other than mean-flow
stretching.

5.3. Lift-up mechanism
We now focus on the St → 0, m > 0 region of the frequency–wavenumber plane, whose
associated coherent structures are underpinned by streaks generated via the lift-up
mechanism. These structures are streamwise elongated and forced by counter-rotating
streamwise vortices. Figures 12 and 13 show the spatial structure and amplitudes of the
forcing and response modes of the static case for (m, St) = (3, 0.02), with St = 0.02 being
the first frequency bin obtained with the fast Fourier transform resolution chosen for the
SPOD computation. The SPOD and resolvent response modes display spatially extended
structures that follow the shear layer development and reach their maximal amplitudes
far downstream. In the static case, SPOD and resolvent modes display some similar
features. For instance, their amplitude envelopes exhibit the same streamwise increase
behaviour and their wavelength is roughly the same. However, far downstream of the end
of the potential core, x/xc > 2.5, the wavelengths of the flow structures in the SPOD
and resolvent modes differ, which explains their poor alignment, as seen in figure 6.
Forcing structures for the three velocity components are spatially extended and inclined
with respect to the mean flow, similar to an Orr-type behaviour. However, inspection
of the model amplitude curves shows that the lift-up mechanism is dominant. The
radial and azimuthal components of the forcing are orders of magnitude higher than the
streamwise component in the initial jet region (although this difference disappears further
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Figure 12. Leading forcing and response modes of the axisymmetric wavenumber m = 3 and Strouhal
number St = 0.02 for the static case, Mf = 0. Legend is as in figure 8.

downstream), as opposed to the comparable contributions of the streamwise and radial
components that characterise the Orr mechanism. The radial and azimuthal components
form the streamwise rolls that optimally force the flow, producing positive and negative
regions of fluid ‘lifting’ via the streamwise component. As a result, the streamwise velocity
component becomes dominant in the flow response, as can be observed in the response
amplitude curve.

Figure 13 presents m = 3 streaky structures in flight condition. The SPOD mode reveals
a structure with a larger wavelength with respect to the static case, which is a consequence
of the higher phase velocity produced by the flight stream. This behaviour is correctly
captured by the model, which displays larger wavelengths both in the forcing and response
modes. Note that with the flight stream the SPOD and resolvent modes are clearly in
better agreement, as also indicated by the β metric shown earlier. Analysis of the forcing
amplitude envelope reveals a more marked dominance of the radial and azimuthal velocity
components over the streamwise component. While that is the case in the first 1.5 potential
core lengths in the static case, it occurs for approximately 2.5xc with the flight stream,
suggesting clearer and stronger rolls in the forcing mechanism in flight condition. As a
consequence, the streamwise component is reinforced in the response, and its separation
to the other two components increases with respect to the static case. These trends
suggest that, despite the global weakening of the linear mean-flow growth mechanisms
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Figure 13. Leading forcing and response modes of the axisymmetric wavenumber m = 3 and Strouhal
number St = 0.02 for the flight case, Mf = 0.15. Legend is as in figure 8.

in flight condition, due to the reduction in shear, there is a relative reinforcement of the
lift-up mechanism, which becomes more clearly distinguishable in the optimal forcing
and response modes. The amplitude envelopes of the SPOD modes also exhibit a larger
dominance of the streamwise component, showing that the relative reinforcement of
the lift-up mechanism predicted by the model is also manifest in the flow. The flight
stream response modes also display slower beyond x/xc ≈ 2, indicating streaks that remain
energetic for longer streamwise distances. Note that, also for the streaks, the potential core
scaling alone is not sufficient to correct for the modifications of the flight stream case.

All of these trends were observed for other azimuthal wavenumbers in the St → 0 limit.
Figure 14 shows a direct comparison between amplitudes of forcing and response modes in
the static and flight cases for m = 1, 3, 5. For all azimuthal wavenumbers, the flight stream
leads to a more pronounced predominance of streamwise rolls in the optimal forcing. In the
associated leading response modes the separation between the streamwise component and
the ur-uθ (which compose the streamwise response rolls) components is systematically
larger than in the static condition. It is important to emphasise that, although they are
not dominant, the Orr and KH mechanisms are also active at low frequencies, and the
associated coherent structures for m > 0 are likely a mixture of Orr structures, streaks
and weak KH wavepackets. The results presented above suggest that in flight condition, in
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Figure 14. Component-wise amplitude of leading response (a) and forcing (b) modes at St = 0.02 for
different azimuthal wavenumbers.

spite of the overall energy attenuation, the lift-up mechanism is strengthened with respect
to the other two. This is a direct consequence of the rank decrease at St → 0 shown in
figure 5. As the resolvent model predicts a larger gain separation, the more discernible
streaky structures of the leading response modes are also more likely to be excited by
the nonlinear forcing, and therefore, more likely to be observed in the flow data. This
is consistent with the improved alignment between leading SPOD and resolvent modes
obtained in the flight case (figure 6), and with the larger eigenvalue separation observed in
the SPOD (figure 4).

The explanation for the larger gain separation and clearer dominance of the streak
mechanism comes from the larger phase velocities, and smaller associated streamwise
wavenumbers, in the flight stream case. Strictly speaking, streaky structures are
characterised by zero streamwise wavenumbers, developing parallel to the jet axis. This is
the case at St = 0. For small, but non-zero frequencies, the flow structures have non-zero
streamwise wavenumbers (in which case they become helical), but they still bear most of
the characteristics of streaks (Pickering et al. 2020). However, they acquire an azimuthal
phase velocity, Uθ = ω/m, which makes them rotate slightly around the jet axis as they
evolve downstream. This can be seen in figure 15, which shows a cross-plane cut, made at
x/xc = 2.5, of m = 3 SPOD and resolvent modes at St = 0.02. Resolvent modes computed
at St = 0 are also shown for comparison. In the flight stream case, the streamwise phase
velocity, Uc = ω/α, with α the streamwise wavenumber, at a given frequency is higher.
The higher phase velocity induces a smaller streamwise wavenumber of the associated
structures, which has a direct impact on the gain separation. This can be demonstrated
using a locally parallel model, which takes α as input. In Appendix D we use the model
explored by Maia et al. (2023) to show that, at St = 0, reducing the wavenumber indeed
leads to a higher non-normality/gain separation. This agrees with the results obtained in
the global analyses and explains the better agreement with SPOD modes in the flight

985 A21-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

30
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.301


I.A. Maia and others

4
SPOD Resolvent Resolvent

St = 0.02

SPOD

St = 0.02

St = 0.02

Resolvent
St = 0.02

St = 0

Resolvent

St = 0

2

0z/D

z/D

–2

–4 –2 0 2 4 –2 0 2 4 –2 0 2 4

–2 0

y/D y/D y/D
2 4 –2 0 2 4 –2 0 2 4

4

2

0

–2

–4

4

2

0

–2

–4

4

2

0

–2

–4

4

2

0

–2

–4

4

2

0

–2

–4

(a)

(b)

Figure 15. Cross-plane cut of leading SPOD and resolvent modes at m = 3 and taken at x/xc = 2.5. The real
part of the streamwise velocity modes are shown, with contours scaled to ±‖ux‖. (a) Static case, Mf = 0,
(b) flight case, Mf = 0.15.

stream case. Furthermore, the total phase velocity, given as the sum of the azimuthal and
streamwise component, is more aligned with the streamwise direction in flight conditions.
Note how, in figure 15, the rotation/swirling effect is much less marked with the flight
stream. Besides from being more aligned with the jet axis, coherent structures in flight are
also underpinned by a clearer signature of the lift-up mechanism, as discussed above. This
makes them more similar to ‘classic’ ω = 0, α = 0 streaks.

6. Conclusions

We study coherent structures in turbulent subsonic jets subject to a uniform external flight
stream. This work builds on the recent study of Maia et al. (2023), which presented a
comprehensive characterisation of the frequency–wavenumber energy spectrum in flight
condition using time-resolved PIV and high-fidelity LES databases. Here we extend their
analysis by modelling coherent structures educed from the flow with global resolvent
analysis. Spectral proper orthogonal decomposition is used to characterise empirically
the effect of the flight stream on the most energetic flow structures. The mode energies
and spatial structures are systematically compared with gains and shapes of resolvent
response modes. The alignment between SPOD and resolvent modes is high for a
broad range of Strouhal number and azimuthal wavenumbers, thanks to the use of the
mean-flow-consistent eddy-viscosity model in the linear operator. The model is found to
correctly describe a number of important effects of flight on the jet dynamics, and it is
demonstrated that the most prominent modifications are associated with linear mean-flow
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mechanisms, rather than the effects of nonlinear interactions. We highlight three important
effects:

(i) Both the frequency-azimuthal wavenumber distribution of SPOD modal energy and
the change in this distribution with flight is correctly mirrored by the distribution of
resolvent gains. These distributions show how low-frequency streaky/Orr structures,
which carry the bulk of the fluctuation energy, are those most damped by the flight
stream. The trend is faithfully reproduced by the resolvent model.

(ii) At intermediate Strouhal numbers, 0.4 � St � 0.8, the low-rank behaviour of the
flow is degraded by the flight stream, as evidenced by the smaller eigenvalue
separation between leading and second SPOD modes. A similar reduction in gain
separation is observed in the resolvent spectrum. This effect is enhanced when the
computation domain is truncated to the first 1, 1.5 potential core lengths, which
highlights the region where the KH mechanism is active.

(iii) In the St → 0 frequency limit, SPOD shows an enhanced low-rank behaviour in
flight condition, despite the large attenuation of the dominant streaky structures:
the low-frequency dynamics in flight are less energetic but more organised than
they are in static conditions. This behaviour is reproduced by the resolvent model.
Analysis of the response modes and their component-wise amplitude curves reveals
that the lift-up mechanism is more marked with the flight stream. Streamwise
vortices emerge more clearly in the forcing modes with respect to the streamwise
forcing component, and streamwise velocity streaks are more marked in the flow
response with respect to the radial and azimuthal components. The latter trend is
also manifested in the empirical structures educed from SPOD. These results reveal
that the lift-up mechanism stands out more clearly for a jet in flight. We show that
this effect is associated with the higher phase velocity/smaller wavenumber of the
flow structures with the flight stream, which produces low-frequency streamwise
velocity structures that are more aligned with the jet axis, and are thus more similar
to standard zero-frequency streaks. The smaller wavelengths also result in larger gain
separations predicted by the resolvent analysis, which explains the rank decrease
observed at low St. In summary, the results show that coherent structures associated
with linear instability mechanisms are globally weakened, due to a reduction in
shear; but the extra convection effect of flight nonetheless makes streaks stand out
more clearly than the Orr and KH structures at low St.

The results described here may be used to guide future sound-source models of jets in
flight. The acoustic field of such jets present broadband changes with respect to the static
case (Viswanathan & Czech 2011), which are likely associated to changes in coherent
structures (and associated instability mechanisms) in the turbulent field. Resolvent analysis
is shown here to be clearly equipped to reproduce, to a great extent, these changes;
therefore, it might provide a useful framework to explore sound-radiation mechanisms.
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Appendix A. Trapped waves in the potential core

This appendix presents results of resolvent analyses carried out with the mean-flow mask
shown in figure 1(b) applied to both the forcing and response fields, thus removing the
restriction in the forcing field inside the jet potential core. Figure 16 shows the leading
gain maps for the two flow conditions studied. Overall, the maps are quite similar to those
shown in § 4, obtained with the core mask. The highest optimal amplification occurs at
the St → 0 limit and concerns streaky/Orr structures that dominate the flow in the jet
far field. These are the structures most affected by the flight stream, which significantly
reduces their associated gains. Note, however, the spike that emerges for the axisymmetric
mode around St = 0.4 (and that cannot be clearly seen in the SPOD modal energy maps).
This frequency matches the location of branches of trapped acoustic modes in the jet core
(Schmidt et al. 2017) identified through global stability analysis. The signature of these
trapped waves can be clearly seen in the forcing and response modes at that Strouhal
number, which are reported in figure 17 for the Mf = 0 jet. These waves are also found
to be present in the SPOD modes; but their energy is small, and they are overwhelmed
by KH wavepackets. In figure 17(e, f ) the amplitude of KH wavepackets in the SPOD
modes is artificially decreased by 95 % in order to highlight the trapped waves. They are
clearly present in the jet core, and are more pronounced in the first suboptimal mode. Their
signature, however, is not apparent in the eigenvalue spectrum.

Appendix B. Scaling parameter in the eddy-viscosity model

In this section we present results of resolvent analyses carried out using different values
of the scaling constant, c, in the eddy-viscosity model, in order to assess the sensitivity
of the model to changes in this parameter. Figure 18 shows resolvent gains for the static
and flight cases computed with c = 0.10 and c = 0.20. Overall, the maps display features
that are very similar to those shown in figure 3 for c = 0.15. The zones of maximum
energy/amplification are the same, and the attenuation of low-frequency Orr/streaky
structures is well captured in all cases. A slight discrepancy with respect to the SPOD
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Figure 18. Resolvent gain maps for the static and flight cases computed with (a) c = 0.10 and (b) c = 0.20.

energy maps is seen in the St → 0 limit with c = 0.10: the map is quite flat in that zone,
as the model predicts similar amplifications for all wavenumbers, whereas in the SPOD
mode the peak energy is clearly between m = 1 and m = 2.

Figure 19 shows SPOD/resolvent alignment maps computed with c = 0.10 and c = 0.20
using the β metric introduced in (5.1). Again, the main trends are essentially the same as
those reported earlier for c = 0.15. High alignment is always seen in the KH-dominated
zone, and improved alignment at St → 0 in the flight stream case is also present for all
constant values considered, further demonstrating that those are physical trends, and not
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Figure 19. Maps of SPOD/resolvent alignment, measured by the β metric, computed with (a) c = 0.10 and
(b) c = 0.20.

an artefact of a particular choice of scaling constant. Note, however, that with c = 0.20 the
alignment is poorer for m > 0 in a broad range of frequencies in the KH-dominated region.
In light of these small deficiencies observed with c = 0.10 and c = 0.20, the value of c =
0.15 was adopted in order to conduct the main SPOD/resolvent comparisons throughout
the study.

Appendix C. SPOD and resolvent analysis with truncated domains

When performing SPOD and resolvent analysis with the full computational domain, which
extends up to 30D in the streamwise direction, modal energy and resolvent gains are
biased towards low-frequency structures that dominate the jet far downstream, and that are
underpinned by the non-modal Orr and lift-up mechanisms. This inevitably masks most
of the contribution of the KH mechanism to the global energy/gain spectrum, as they are
convectively unstable in the initial jet region, approximately up to the end of the potential
core. As KH wavepackets are highly efficient acoustic radiators (Jordan & Colonius 2013),
the initial jet region is of fundamental important for understanding jet noise. In this
appendix we present results of resolvent analyses performed with domains truncated at
x/xc = 1 and x/xc = 1.5, with a view to highlighting the changes produced by the flight
stream on the zones of the spectrum underpinned by modal instability. Modal energy
and gain maps are shown in figures 20 and 21. The spectra are much more broadband
with respect to those obtained with the full domain and include, in addition to the
high energy/amplification zone near the St → 0 limit, considerable enegy/amplification
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Figure 20. Eigenvalue and resolvent gain spectra computed with domains truncated at x/xc = 1.
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Figure 21. Eigenvalue and resolvent gain spectra computed with domains truncated at x/xc = 1.5

in intermediate frequencies, 0.2 � St � 0.8. The signature of the m = 0 wavepackets,
peaking toward St = 0.4–0.8 are also more clear in the truncated maps (more so in
the resolvent results). The clearest effect of the flight stream is still the attenuation of
the St → 0 zone, as seen previously for the full domain, but with the attenuation now
concentrated at higher m, as when going upstream the peak energy evolves towards higher
m (Maia et al. 2023).

Figure 22 shows the gain separation, σ 2
1 /σ 2

2 in the truncated domain. A reduction in
gain separation in flight condition becomes apparent, highlighting the weakening of the
low-rank behaviour in the KH-dominated zone. This trend is also consistent with a smaller
growth rate of the KH instability, whose mechanism is mainly manifest in the leading
resolvent mode.
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Figure 22. Resolvent gain separation, σ 2
1 /σ 2

2 , computed with a domain truncated at (a) x/xc = 1 and
(b) x/xc = 1.5.

Appendix D. Locally parallel model: gain separation at St = 0 and low α

Here we consider a locally parallel model to explore the effect of decreasing wavenumber
on the gain separation of the resolvent operator.

In the locally parallel framework, we assume flow perturbations of the form

q′(x, r, θ, t) = q̂(r) expi(αx−ωt+mθ), (D1)

where the radial structure of the perturbations is given by q̂(r), α and m are streamwise
and azimuthal wavenumbers, respectively, and ω is the frequency. Fourier transforming
the Navier–Stokes equations and introducing the above ansatz yields

q̂α,ω,m = C(iωI − A0 − αA1 − α2A2)
−1
q̄ Bf̂ α,ω,m, (D2)

where the linear operators A0, A1 and A2 contain terms issuing from zeroth-, first- and
second-order derivatives in x, respectively. The superscripts ˆdenote Fourier-transformed
quantities. Matrices B and C can be used to restrict forcing and response to a desired
subspace. In a more compact form, we can write

q̂α,ω,m = Rq̄,α,ω,m f̂ α,ω,m, (D3)

where Rq̄,α,ω,m = C(iω − A0 − αA1 − α2A2)
−1
q̄ B is the resolvent operator. The

discretisation in the radial direction is carried out using Chebyshev collocation points.
The domain is extended to the far field by mapping the original domain r ∈ [−1, 1]
to r ∈ [0, ∞) using a mapping. The reader is referred to Maia et al. (2023) for details
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Figure 23. Resolvent gain separation, (σ1/σ2)
2, computed with the locally parallel model at St = 0 and low

values of the streamwise wavenumber, α.

about the matrices and boundary conditions. The locally parallel resolvent analysis is
carried out at a fixed streamwise position using the mean flow, α, ω and m as inputs.
The mean-flow profile is based on the LES data, fitted with the hyperbolic tangent profile
proposed by Michalke & Hermann (1982) for the static case. Here we consider a profile
taken at x/xc = 0.7. We consider a Reynolds number of Re = 50, which is consistent
with the eddy-viscosity model used in the global resolvent framework. Since we are
interested in the behaviour of streaky structures, we set ω = 0. The azimuthal wavenumber
considered is m = 3. Figure 23 shows the resolvent gain separation computed for different
values of α. It can be observed that, although the largest gain separation is not strictly at
ω = 0, approaching zero streamwise wavenumber (‘classic’ streaky structures) can lead to
substantially larger gain separations. This explains why this behaviour is observed in the
global framework, and why it leads to a clearly distinguishable streak mechanism in the
forcing and response modes.
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