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Almost Sure Global Well-posedness for the
Fractional Cubic Schrödinger Equation on
the Torus

Seckin Demirbas

Abstract. In a previous paper, we proved that the 1-d periodic fractional Schrödinger equation
with cubic nonlinearity is locally well-posed in Hs for s > 1 − α/2 and globally well-posed for
s > 10α − 1/12. In this paper we deûne an invariant probability measure µ on Hs for s < α − 1/2, so
that for any є > 0 there is a set Ω ⊂ Hs such that µ(Ωc) < є and the equation is globally well-posed
for initial data in Ω. We see that this ûlls the gap between the local well-posedness and the global
well-posedness range in an almost sure sense for 1−α

2 < α − 1
2 , i.e., α > 2

3 in an almost sure sense.

1 Introduction

We consider the cubic periodic fractional Schrödinger equation

(1.1)
⎧⎪⎪
⎨
⎪⎪⎩

iut + (−∆)αu = γ∣u∣2u, x ∈ [0, 2π], t ∈ R,
u(x , 0) = u0(x) ∈ Hs([0, 2π]),

where α ∈ (1/2, 1) and γ = ±1. _e equation is called focusing for γ = 1 and defocusing
for γ = −1

On a real line, this equation arises as a model in the theory of fractional quan-
tum mechanics; see [15]. In [14], Kirkpatrick, Lenzmann, and Staõlani derived it
as a continuum limit of a model for the interaction of quantum particles on lattice
points. Allowing the nearest point interaction gives the usual cubic Schrödinger equa-
tion, whereas allowing long range interactions gives rise to the fractional Schrödinger
equations with paremeter α.
For α = 1, Bourgain [1] proved periodic Strichartz estimates and showed L2 local

and global well-posedness for the cubic Schrödinger equation. In [6], Burq, Gerard,
and Tzvetkov noted that this result is sharp, since the solution operator is not uni-
formly continuous on Hs for s < 0.

_e fractional Schrödinger equation on the real line was recently studied in [9].
For α ∈ (1/2, 1), the equation is less dispersive, so one would not expect to be able
to get local well-posedness on L2 level. Indeed, they proved that there is local well-
posedness on Hs for s ≥ 1−α

2 . _ey also showed that the solution operator fails to be
uniformly continuous in time for s < 1−α

2 .
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In [12], we proved that the periodic fractional equation is locally well-posed in Hs ,
for s > 1−α

2 using direct X s ,b estimates. Further, we proved a Strichartz estimate of the
form

∥e i t(−∆)
α
f ∥L4

t∈RL4
x∈T

≲ ∥ f ∥Hs ,

for s > 1−α
4 , which also gives local well-posedness for s > 1−α

2 , using the methods in
[8, 11].

Moreover, we proved in [12] that the defocusing equation is globally well-posed
for s > 10α+1

12 , using Bourgain’s high-low frequency decomposition introduced in [2].
_is method uses the decomposition of the equation into the evolutions of the high
and the low frequencies of the initial data. Since the low frequency part is smooth,
its evolution is global due to the conservation of the energy. But the same cannot
be said for the high frequency part. To overcome this problem we showed that the
nonlinear evolution of the high frequency part is smoother than the initial data. We
should mention that for α = 1, it coincides with the smoothing estimate for the NLS
that was recently obtained in [13].
A�er obtaining these local and global well-posedness results, the natural question

that arises is how much we can push the global well-posedness range. For example,
the cubic periodic Schrödinger equation (α = 1) in 1-d is locally well-posed in L2

(see [1]), and with the mass conservation, we know that the equation is globally well-
posed. _at is, conservation law on the local well-posedness level may give rise to
global well-posedness. But then one can ask whether we can show that the equation
is globally well-posed whenever it is locally well-posed. Although there are no con-
servation laws on the local well-posedness level, it is not trivial that the statement is
true; we can still make sense of the question in a diòerent way. _e idea relies on
the intuition that the set of “bad” initial data, where the solutions of the equation
with those initial data, may have arbitrarily large norm, should be negligible. _is ap-
proach of looking at the problem in an “almost sure” sense originated from the work
of Lebowitz, Rose, and Spear [16]. _ey were trying to understand the general behav-
ior of a system containing a large number of particles by looking at the values of the
observables by taking averages over certain probability distributions containing only
a few parameters instead of looking at the individual initial value problems. With this
in mind, they constructed probability measures on Sobolev spaces and proved some
basic properties of these measures.

Later, Bourgain [3] proved that the Schrödinger equation with power nonlinearity,

⎧⎪⎪
⎨
⎪⎪⎩

iut − ∆u = −∣u∣p−2u, x ∈ [0, 2π], t ∈ R,
u(x , 0) = u0(x) ∈ Hs([0, 2π]),

where 4 < p ≤ 6 is locally well-posed in Hs with s > 0. But for 0 < s < 1 there is no
conservation law thatwould easily allowus to extend the local solutions to global ones.
He used the idea of Lebowitz, Rose, and Spear to construct a probabilitymeasure, also
known as the Gibbs measure, on Hs for s < 1

2 , which is invariant under the solution
�ow. _en he showed that for any є > 0, there is global in time Hs norm bounds on
the solutions with the initial data in Hs up to a set of measure less than є; i.e., the
equation is almost surely globally well-posed in Hs for 0 < s < 1

2 .
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_e idea of the Gibbs measures and almost sure global well-posedness have been
used to prove similar results for diòerent equations by [4, 5, 7, 10, 17, 18, 20–22] and
many others.

Our main result here is the explicit construction of Gibbs measure for 1-d frac-
tional periodic cubic Schrödinger equation and the proof of almost sure global well-
posedness. More precisely, we deûne an invariant probability measure µ on Hs , for
s < α − 1

2 such that for any є > 0 we can ûnd a set Ω ⊂ Hs satisfying µ(Ωc) < є and
the solution to the equation (1.1) exists globally for all initial data in Ω.
For that, we are going to truncate equation (1.1) and use the idea of invariant mea-

sures on ûnite dimensional Hamiltonian systems. Namely, if we look at the equation

(1.2)
⎧⎪⎪
⎨
⎪⎪⎩

iuN
t + (−∆)αuN = γPN ∣uN ∣2uN ,

uN(x , 0) = PNu0(x),

where PN is the projection operator onto the ûrst N frequencies, we see that (1.2) is a
ûnite dimensional Hamiltonian system, with the Hamiltonian

HN(u)(t) = 1
2
∑

n≤N
∣ ∣n∣α ûn(t)∣

2
+

γ
4 ∫T

∣ ∑
n≤N

e inx ûn(t)∣
4
.

By Liouville’s theorem, we know that the Lebesguemeasure∏∣n∣≤N dûn is invariant
under the Hamiltonian �ow. _us, by the conservation of the Hamiltonian and the
invariance of the Lebesgue measure under the �ow, we see that the ûnite measure,

dµN = e−HN(u) ∏
∣n∣≤N

dûn ,

is invariant under the solution operator; call it S(t).
We see that equation (1.1) is an inûnite-dimensional Hamiltonian system on the

Fourier side with the Hamiltonian

H(u(t)) = 1
2
∑
n
∣ ∣n∣α ûn(t)∣

2
+

γ
4 ∫T

∣∑
n
e inx ûn(t)∣

4
= H(u0).

We then deûne the limiting measure µ on Hs as

dµ = e−H(u)
∏
n
dûn = e−

1
2 ∑n ∣ ∣n∣

α ûn(t)∣
2
−

γ
4 ∫T ∣∑n e

inx ûn(t)∣4
∏
n
dûn

and show that the measure µ is indeed the weak limit of µN .
To construct this measure µ on appropriateHs spaces, we use the theory of Gauss-

ianmeasures onHilbert spaces following Zhidkov’s arguments in [23], and ûrst deûne

dw = e−
1
2 ∑n ∣ ∣n∣

α ûn(t)∣
2

∏
n
dûn .

_enwe show that themeasure µ is absolutely continuouswith respect to theGaussian
measure w under certain conditions and ûnish the proof of almost sure global well-
posedness by constructing the set Ω ⊂ Hs as stated above. For the second part, we
will mainly use Bourgain’s arguments in [3].
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2 Notation and Preliminaries

Recall that for s ≥ 0, Hs(T) is deûned as a subspace of L2 via the norm

∥ f ∥Hs(T) ∶=

√

∑
k∈Z

⟨k⟩2s ∣ f̂ (k)∣2 ,

where ⟨k⟩ ∶= (1 + k2)1/2 and f̂ (k) = 1
2π ∫

2π
0 f (x)e−ikxdx are the Fourier coeõcients

of f . We use ( ⋅ )+ to denote ( ⋅ )є for all є > 0 with implicit constants depending on є.
We denote the linear propogator of the equation as e−i t(−∆)α , which is deûned on

the Fourier side as
̂(e−i t(−∆)α f )(n) = e i t∣n∣

2α
f̂ (n),

and ∣∇∣α is deûned as (∣̂∇∣α f )(n) = ∣n∣α f̂ (n).
When we say equation (1.1) is locally well-posed in Hs , we mean that there exist

a time TLWP = TLWP(∥u0∥Hs) such that the solution exists and is unique in X s ,b
TLWP

⊂

C([0, TLWP),Hs) and depends continuously on the initial data. We say that the equa-
tion is globallywell-posedwhenTLWP can be taken arbitrarily large. Here, X s ,b denote
the Bourgain spaces, which are deûned via the restriction in time, of the norm,

∥u∥X s ,b =̇∥e i t(−∆)
α
u∥Hb

t (R)Hs
x(T) = ∥⟨τ − ∣n∣2α⟩b⟨n⟩s û(n, τ)∥L2

τ l 2(m ,n)

and ⟨x⟩ = (1 + ∣x∣2)1/2

By Duhamel’s Principle, we know that the smooth solutions of (1.1) satisfy the in-
tegral equation

u(t, x) = e−i t(−∆)αu0(x) − iγ∫
t

0
e−i(t−τ)(−∆)α

∣u∣2u(τ, x)dτ.

We note that alongwith theHamiltonian conservation, the equation enjoysmass con-
servation, namely,

M(u)(t) = ∫
T
∣u(t, x)∣2 = M(u)(0).

3 Almost Sure Global Well-posedness

_emain result of this paper is the following theorem.

_eorem 3.1 For 1−α
2 < s < α − 1

2 and є > 0, there exists an invariant probability
measure µ on Hs such that equation (1.1) is globally well-posed for any initial data u0 ∈

Ω ⊂ Hs such that µ(Ωc) < є with

∥u(t)∥Hs ≲ ( log (
1 + ∣t∣
є

))
s+

.

As we mentioned above, in the proof of this theorem, we ûrst deûne the ûnite di-
mensional measures µN , which are invariant under the solution operator of the trun-
cated equation (1.2), and we deûne µ as the weak limit of these measures. But then
we have to show how equation (1.1) and the truncated equation (1.2) are related, so we
have the following lemma.
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Lemma 3.2 Let A ∈ R and u0 ∈ Hs be such that ∥u0∥Hs < A, and assume that the
solution, uN , of (1.2) satisûes ∥uN(t)∥Hs < A for t ≤ T . _en equation (1.1) is well-
posed in [0, T], and moreover, for any 1−α

2 < s′ < s, we have

∥u(t) − uN(t)∥Hs′ ≤ eC1(1+A)C2 TN s′−s ,

where C1 and C2 independent of s.

Proof We have that

u(t) − uN(t) =

e−i t(−∆)α
(u0 − PNu0) + i

t

∫
0

e−i(t−τ)(−∆)α( ∣u∣2u(τ) − PN(∣uN
∣
2uN

)(τ))dτ,

and, taking the L∞([0, T];Hs′) norms of both sides for b > 1
2 , since X s′ ,b ⊂

L∞([0, T],Hs′) for b > 1
2 , we get

∥u − uN∥L∞([0,T],Hs′)

≤ ∥u0 − PNu0∥Hs′ + ∥

t

∫
0

e−i(t−τ)(−∆)α( ∣u∣2u(τ) − PN(∣uN
∣
2uN

)(τ))dτ∥ X s′ ,b

≤ ∥u0 − PNu0∥Hs′ + (TLWP)
1−b−b′∥ ∣u∣2u − PN ∣uN

∣
2uN∥ X s′ ,b′

≤ (TLWP)
1−b−b′

(∥ ∣u∣2u − PN(∣u∣2u)∥ X s′ ,b′ + ∥PN( ∣u∣2u − ∣uN
∣
2uN)∥ X s′ ,b′ )

+ ∥u0 − u0,N∥Hs′

≤ I + II + III

for b′ < 1
2 such that b + b′ < 1.

Term III is easier to estimate

III = ∥ ∑
∣n∣>N

e inx (̂u0)n∥Hs′ ≤ N s′−s
∥u0∥Hs ≤ N s′−sA.

For term I, we ûrst observe that PN( ∣v∣2v) = ∣v∣2v for v = PN
3
u, from the convolu-

tion property of frequency restriction. _en we write

I ≤ ∥ ∣u∣2u − PN(∣v∣2v)∥ X s′ ,b′ + ∥PN(∣v∣2v − ∣u∣2u)∥ X s′ ,b′

= ∥ ∣u∣2u − ∣v∣2v∥ X s′ ,b′ + ∥PN(∣v∣2v − ∣u∣2u)∥ X s′ ,b′

= I1 + I2 ≤ 2I1 .

Estimating term I1 using X s ,b estimates and local well-posedness theory (see [12,
Lemma 3 and Proposition 5]), we see that

I1 ≲ (TLWP)
1−b−b′(∥u∥X s′ ,b + ∥v∥X s′ ,b)

2
∥u − v∥X s′ ,b

≲ (TLWP)
1−b−b′A2

∥u − PN
3
u∥X s′ ,b

≲ (TLWP)
1−b−b′A2

∥u0 − PN
3
u0∥Hs′ ≲ (TLWP)

1−b−b′A3N s′−s .
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_us we get I ≲ (TLWP)
1−b−b′A3N s′−s . Similarly, for the second term we have

II ≲ (TLWP)
1−b−b′(∥u∥X s′ ,b + ∥uN

∥X s′ ,b)
2
∥u − uN

∥X s′ ,b

≲ (TLWP)
1−b−b′A2

∥u − uN
∥X s′ ,b ,

and collecting all the terms, we get

∥u − uN∥X s′ ,b ≤ CN s′−sA+ C2(TLWP)
1−b−b′A2

∥u − uN
∥X s′ ,b

+ C1(TLWP)
1−b−b′A3N s′−s

≤ CAN s′−s
+

1
2
∥u − uN

∥X s′ ,b ≤ 2CAN s′−s

for TLWP small enough independent of N , s, and s′. Repeating this argument, since
the implicit constant C can be taken independent of TLWP and N , we see that at any
TLWP time, the norm at most doubles, and thus, at time T we get

∥u − uN∥Hs′ ≲ 2
T

TLWP CAN s′−s
≈ eC

′
(1+A)δTAN s′−s ,

which gives the result.

Now, we deûne a probability measure on Hs using the Hamiltonian. For that we
will mainly follow Zhidkov’s arguments; see [23].

3.1 Construction of the Measure on Hs

First we ûx the notation that we will use for the rest of the paper. Let F = (−∆)α−s on
Hs . We see that F has the orthonormal eigenfunctions en = e inx/⟨n⟩s in Hs with the
eigenvalues ∣n∣2α−2s . We also denote un = (u, en)Hs .

Deûnition 3.3 A set M ⊂ Hs is called cylindrical if there exists an integer k ≥ 1 such
that,

M = {u ∈ Hs
∶ [u−k , . . . , u−2 , u−1 , u1 , u2 , . . . , uk] ∈ D},

for a Borel set D ⊂ R2k .

We denote byA the algebra containing all such cylindrical sets. _enwe deûne the
additive normalized measure w on the algebraA as follows. For M ⊂ A, cylindrical,

w(M) = (2π)−k
k
∏
∣n∣=1

∣n∣α−s
∫
D
e−

1
2 ∑

k
n=1 ∣n∣

2α−2s
∣un ∣

2 k
∏
∣n∣=1

dun .

By the deûnition of the cylindrical sets, we see that the minimal σ-algebraA con-
taining A is the Borel σ-algebra; see [23]. Although the measure is additive by deû-
nition, it does not necessarily follow that it is countably additive.
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_eorem 3.4 _e Gaussian measure w is countably additive on A if and only if
∑n ∣n∣2s−2α < ∞, i.e., s < α − 1

2 .

Proof (cf. [23]) Let∑n ∣n∣2s−2α < ∞. We ûrst show that for any є > 0, there exists a
compact set Kє ⊂ Hs with w(M) < є for any cylindrical set M such that M ∩ Kє = ∅.

Let bn = ∣n∣є̃ such that a = ∑n ∣n∣2s−2α+є̃ < ∞. _en for an arbitrary R > 0, take
the cylindrical sets of the form

M = {u ∈ Hs
∶ [u−k , . . . , u−2 , u−1 , u1 , . . . , uk] ∈ D, where

k
∑

∣n∣=1
∣n∣є̃u2

n > R2
} .

_en we see that

w(M) = (2π)−k
k
∏
∣n∣=1

∣n∣α−s
∫
∑

k
n=1 ∣n∣є̃u2

n>R2
e−

1
2 ∑

k
n=1 ∣n∣

2α−2s
∣un ∣

2 k
∏
∣n∣=1

dun

≤ (2π)−k
k
∏
∣n∣=1

∣n∣α−s
∫
Rn

k
∑
n=1

(
∣n∣є̃

R2 u2
n) e−

1
2 ∑

k
n=1 ∣n∣

2α−2s
∣un ∣

2 k
∏
∣n∣=1

dun

≤ R−2
∑
n
∣n∣2s−2α+є̃

= aR−2 .

Here, to pass to the third line we used integration by parts with

f = −un

∣n∣2α−2s and dg = −∣n∣2α−2sune−
1
2 ∣n∣

2α−2su2
ndun .

_en, for R >
√ a

є , we have w(M) < є.
Hence, if we take Kє = {u ∈ Hs ∶ ∑n ∣n∣є̃u2

n ≤ R2}, we get the desired compact set.
Now let A1 ⊃ A2 ⊃ ⋅ ⋅ ⋅ ⊃ Am ⊃ ⋅ ⋅ ⋅ be a sequence of cylindrical sets in Hs such

that ⋂∞m=1 Am = ∅. _en for any є > 0, there exists closed cylindrical sets Cm ⊂ Am
for all m such that w(Am/Cm) < є2−m−2. Let Dm = ⋂

m
k=1 Ck . _en w(Am/Dm) ≤

w(⋃
m
k=1(Ak/Ck)) < є/2. Let Em = Dm ∩ Kє/2; then Em ’s are compact with Em ⊂ Am

and w(Am/Em) < є. Since ⋂m Am = ∅, ⋂m Em = ∅, and since (Em) is a nested
sequence of compact sets, we see that Em = ∅ for all m > m0 for some m0 ∈ N.

Hence, w(Am) < w(Em) + є < є, for all m > m0. _us, w(Am) → 0, i.e., w is
countably additive.
For the converse, assume w is countably additive and also ∑n ∣n∣2s−2α = ∞, i.e.,

s ≥ α − 1
2 . _en consider two cases.

Case 1: (s ≤ α). In this case we see that ∣n∣2s−2α ≤ 1 for any n. Consider the cylindrical
sets of the form,

Mk = {u ∈ Hs
∶ ∣

k
∑

∣n∣=1
(u2

n) − λk ∣ < 2
√

λk} ,

where λk = ∑
k
∣n∣=1 ∣n∣2s−2α .
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_en we have

w(Mc
k) = w({u ∈ Hs

∶ ∣
k
∑

∣n∣=1
(u2

n) − λk)∣ ≥ 2
√

λk})

≤ ∫
R2n

( ∑
k
∣n∣=1(u2

n) − λk)
2

4λk
e−

1
2 ∑

k
∣n∣=1 ∣n∣

2α−2s
∣un ∣

2 k
∏
∣n∣=1

dun

=
1

4λk
∫
R2n

((
k
∑

∣n∣=1
u2

n)
2
− 2(

k
∑

∣n∣=1
u2

n) λk + λ2
k) e

− 1
2 ∑

k
∣n∣=1 ∣n∣

2α−2s
∣un ∣

2 k
∏
∣n∣=1

dun

=
1

4λk
(( λ2

k + 2
k
∑

∣n∣=1
∣n∣4s−4α) − 2λk .λk + λ2

k)

≤
1
2
∑

k
∣n∣=1 ∣n∣4s−4α

λk
≤

1
2
,

where to pass from the third line to the fourth line we used integration by parts again.
Since λk → ∞ as k → ∞, there exist balls Bλk−2

√
λk
(0) of arbitrarily large radii with

w(Bλk−2
√

λk
(0)) ≤ w(Mc

k) ≤ 1
2 , which contradicts with the countably additivity of

w.

Case 2: (s > α). In this case, for each n ≥ 1, consider the cylindrical set

Mk = {u ∈ Hs
∶ ∣u i ∣ ≤ k, ∣i∣ = 1, 2, . . . , ak},

where ak > 0 is an integer. _en by a change of variables, we have

w(Mk) = (2π)−ak
ak

∏
∣n∣=1

( ∫

k∣n∣α−s

−k∣n∣α−s
e−

1
2 ∣un ∣

2
dun) ≤ [(2π)−1

∫

k

−k
e−

1
2 ∣x ∣

2
dx]

ak
,

since s > α. By choosing ak large enough, we can take w(Mk) ≤ 2−k−1 for each k
and that ak → ∞ as k → ∞. _en ⋃∞k=1 Mk = Hs and w(Hs) = 1, since Hs is a
cylindrical set with full measure. But then w(⋃

∞
k=1 Mk) ≤ ∑

∞
k=1 w(Mk) ≤

1
2 , which is

a contradiction. Hence, the theorem follows.

Now we deûne the sequence of ûnite dimensional measures (wk) as follows: For
any ûxed k ≥ 1, we take the σ-algebra, An , of cylindrical sets in Hs of the form Mk =

{u ∈ Hs ∶ [u−k , . . . , u−2 , u−1 , u1 , . . . , uk] ∈ D} for some Borel set D ⊂ R2k . _en

wk(Mk) = (2π)−k
k
∏
∣n∣=1

∣n∣α−s
∫
D
e−

1
2 ∑

k
∣n∣=1 ∣n∣

2α−2s
∣un ∣

2 k
∏
∣n∣=1

dun .

Hence we get the sequence of ûnite-dimensional countably additive measures wk on
the σ-algebra Ak . We can also extend these measures to the σ-algebra A in Hs , by
setting

wk(A) = wk(A∩Hs
k), for A ∈ A,

where Hs
k = span(e−k , . . . , e−1 , e1 , . . . , ek), since A ∩ Hs

k is a Borel subset of Hs
k for

A ∈ A; see [23].
_e following proposition answers the immediate question as to whether or not

the inûnite dimensional Gaussian measure w and the ûnite measures wk are related.
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Proposition 3.5 _esequencewk convergeweakly to themeasurew onHs for s < α− 1
2

as k →∞.

Proof (cf. [23]) First, recall that a sequence of measures υm is said to converge to
a measure υ weakly on Hs if and only if for any continuous bounded functional ϕ
on Hs ,

∫ ϕ(u)dυm(u) → ∫ ϕ(u)dυ(u).

Also recall that for any є > 0, if we take Kє ⊂ Hs as in the _eorem 3.4, we see that
w(Kє) > 1 − є, and moreover, wm(Kє) > 1 − є for all n ≥ 1. Now let ϕ be an arbitrary
continuous bounded functional on Hs with B = supu∈Hs ϕ(u). _en for any є > 0
there exists δ = δ(є) > 0 such that

(3.1) ∣ϕ(u) − ϕ(v)∣ < є for any u ∈ Kє and v ∈ Hs satisfying ∥u − v∥Hs < δ.

For any m, call Km = Kє ∩ Hs
m . _en by the deûnition of the measures wm on A, we

see that

(3.2) ∣ ∫
Hs

ϕ(u)dwm(u) − ∫
Km

ϕ(u)dwm(u)∣ < єB,

for any m ≥ 1. Deûne

Km ,є = {v ∈ Hs
∶ v = v1 + v2 , v1 ∈ Hs

m , v⊥2 ∈ Hs
m , ∥v2∥Hs <

δ
2
, dist(v1 ,Km) <

δ
2
}.

_en Kє ⊂ Km ,є for all suõciently large m’s. _us, for m large enough

(3.3) ∣ ∫
Hs

ϕ(u)dwm(u) − ∫
Km ,є

ϕ(u)dwm(u)∣ < єB.

We now deûne the measure w⊥m on (Hs
m)⊥ as follows:

For a cylindrical set

M⊥
= {u ∈ (Hs

m)
⊥
∶ [u−m−k , . . . , u−m−2 , u−m−1 , um+1 , um+2 , . . . , um+k] ∈ F},

where F ⊂ R2k is a Borel set, and

w⊥m(M⊥
) = (2π)−k

m+k
∏

∣n∣=m+1
∣n∣α−s

∫
F
e−

1
2 ∑

m+k
∣n∣=m+1 ∣n∣

2α−2s
∣un ∣

2 m+k
∏

∣n∣=m+1
dun .

_en we see that w⊥m is a probability measure on (Hs
m)⊥ and w = wm ⊗w⊥m .

_us, we get

∫
Km ,є

ϕ(u)dw(u) = ∫
um∈Km ,є

dwm(um)∫
u⊥m∈K⊥m ,є(um)

ϕ(um + u⊥m)dw⊥m(u⊥m),

where K⊥m ,є(um) = Km ,є ∩ {u ∈ Hs ∶ u = um + y, y ∈ (Hs
m)⊥}. _en by (3.1),

∫
Km ,є

ϕ(u)dw(u) = ∫
um∈Km ,є

dwm(um)∫
u⊥m∈K⊥m ,є(um)

(ϕ(um + u⊥m) − ϕ(um))

+ ϕ(um)dw⊥m(u⊥m)

≤ Cє + ∫
um∈Km ,є

ϕ(um)dwm(um)

for C independent of m and є.
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Hence,

(3.4) ∫
Km ,є

ϕ(u)dw(u) − ∫
um∈Km ,є

ϕ(um)dwm(um) ≤ Cє.

_erefore, combining (3.2), (3.3), and (3.4), we get the result.

Now, we show that the measure µ is absolutely continuous with respect to the
Gaussian measure w. Recall that

dµN = (2π)−N
N
∏
∣n∣=1

∣n∣α−se−
1
2 ∑∣n∣≤N ∣ ∣n∣

α−sun(t)∣
2
−

γ
4 ∫T ∣∑∣n∣≤N

e inx
⟨n⟩s un(t)∣4du0

∏
1≤∣n∣≤N

dun

= e−
γ
4 ∫T ∣∑∣n∣≤N

e inx
⟨n⟩s un(t)∣4(2π)−N

N
∏
∣n∣=1

∣n∣α−se−
1
2 ∑0<∣n∣≤N ∣n∣2α−2s

∣un(t)∣2du0

∏
1≤∣n∣≤N

dun ,

and thus, µN is a weighted Gaussian measure.
For the defocusing NLS, since

∣u0∣
2
≤ ∫

T
∣u∣2 ≲ ( ∫

T
∣u(t)∣4)

1
2
,

we have

∫
u0∈C

e−
1
4 ∫T ∣∑n

e inx
⟨n⟩s un(t)∣4du0 ≲ ∫

u0∈C
e−

1
4 ∣u0 ∣

4
du0 ≲ C

uniformly in N . _us, instead of working with the full measure µN it is enough to
work with the measure wN , which is also known as the Wiener measure.
For the focusing NLS, though, we do not have an a priori control over the weight

e 1
4 ∫T ∣∑n≤N e

inx ûn(t)∣4 . We can overcome this problem by using a lemma of Lebovitz et
al. (see[16]), which applies an L2 cut-oò to the set of initial data.

Lemma 3.6 e 1
4 ∫ ∣∑1≤∣n∣≤N e

inx ûn(t)∣4 χ{∥u∥L2≤B} ∈ L1(dwN) uniformly in N for all B <

∞.

Proof (cf. [21])

∫ e
1
4 ∫ ∣∑1≤∣n∣≤N e

inx ûn(t)∣4 χ{∥u∥L2≤B}dw

= ∫

(∫ ∣
N
∑
∣n∣=1

e inx ûn(t)∣4≤K)

e
1
4 ∫ ∣∑1≤∣n∣≤N e

inx ûn(t)∣4 χ{∥u∥L2≤B}dw

+
∞

∑
i=0

∫

(∫ ∣
N
∑
∣n∣=1

e inx ûn(t)∣4∈(2iK ,2i+1K])

e
1
4 ∫ ∣ ∑

1≤∣n∣≤N
e inx ûn(t)∣4

χ{∥u∥L2≤B}dw

≤ e
1
4 K4

+
∞

∑
i=0
e

1
4 (2

i+1K)
4
w({∫ ∣

N
∑

∣n∣=1
e inx ûn(t)∣

4
> 2iK , ∥u∥L2 < B}) .
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Now to estimate the second term on the right hand side, choose N0 dyadic, to be
speciûed later. Now call N i = N0 .2i and let a i be such that∑i a i =

1
2 . _en

w({∥u∥L4 > K , ∥u∥L2 < B}) ≤
∞

∑
i=1

w({∥P{∣n∣≈N i}u∥L4 > a iK}) ,

and since we have

∥P{∣n∣≈N i}u∥L4 ≲ N
1
4
i ∥P{∣n∣≈N i}u∥L2 ,

by the Sobolev embessing, we see that

w({(∥u∥L4 > K , ∥u∥L2 < B}) ≤
∞

∑
i=1

w({∥P{∣n∣≈N i}u∥L4 > a iK})

≤
∞

∑
i=1

w({∥P{∣n∣≈N i}u∥L2 ≳ a iN
− 1

4
i K}) .

Letting a i = CNє
0N−є

i and N0 such that K ≈ N
1
4
0 B, i.e., N0 ≈ K4B−4, we get,

w({(∥u∥L4 > K , ∥u∥L2 < B}) ≤
∞

∑
i=1

w({( ∑
∣n∣≈N i

∣ûn ∣
2)

1
2 ≳ a iN

− 1
4

i K})

≈
∞

∑
i=1

w({( ∑
∣n∣≈N i

∣un ∣
2)

1
2 ≳ a iN

− 1
4+s

i K}) ,

and by the estimation of the tail of the Gaussian measure, (cf. (3.6)), we have

w({(∥u∥L4 > K , ∥u∥L2 < B}) ≲
∞

∑
i=1
e−

1
4 a

2
i N
(2α−2s)+2s− 1

2
i K2

≤
∞

∑
i=1
e−

1
4 N2є

0 N
2α− 1

2 −2є
i K2

≤
∞

∑
i=1
e−

1
4 N

2α− 1
2

0 2(2α−
1
2 −2є)iK2

≤ e−
1
4 K2N

2α− 1
2

0

≈ e−
1
4 K2+4(2α− 1

2 )B2−4s
.

Collecting terms, we obtain

∫ e
1
4 ∫ ∣u∣4 χ{∥u∥L2≤B}dw ≤ e

1
4 K4

+
∞

∑
i=0
e

1
4 (2

i+1K)
4
w({(∥u∥L4 > 2iK , ∥u∥L2 < B})

≤ e
1
4 K4

+
∞

∑
i=0
e

1
4 (2

i+1K)
4
e−

1
4 (2

iK)
2+4(2α− 1

2 )B2−8α
< ∞,

since α > 1
2 , which proves the lemma.

Moreover, observe that for ∥u∥L2 < B, we get ∣u0∣
2 ≤ ∑n

∣un ∣
2

⟨n⟩2s ≤ B
2. Hence, L2 cut

oò also restricts u0 to the ball {u0 ∈ C ∶ ∣u0∣ ≤ B}, uniformly in N . _erefore, com-
bining these two results, we get that the measure µN is a weighted Gaussian measure
with weight being uniformly in L1 with respect to the Gaussian measure.
By the construction of the Gaussian measure, we see that for any compact set E ⊂

Hs , we havewN(E∩Hs
N) → w(E). _us, using the result above we get µN(E∩Hs

N) →

µ(E).

https://doi.org/10.4153/CMB-2015-025-7 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2015-025-7


482 S. Demirbas

Proof of_eorem 3.1 For the proof of the theorem and the invariance of the mea-
sure µ, we follow Bourgain’s arguments in [3]. First, for any є we will construct the
sets ΩN ⊂ Hs such that µN(Ωc

N) < є and,

(3.5) ∥uN
(t)∥Hs ≲ ( log (

1 + ∣t∣
є

))

1
2
.

For that, we ûx a large time T and let [−TLWP , TLWP] be the local well-posedness
interval for equation (1.1). _en consider the set

ΩK
= {u ∈ Hs

N ∶ ∥u∥Hs ≤ K},

where, again, Hs
N = span{en ∶ ∣n∣ ≤ N}. We see that

wN((ΩK
)
c
) = (2π)−

N
2

N
∏
∣n∣=1

∣n∣α−s
∫

{u∈Hs
N ∶∥u∥Hs>K}

e−
1
2 ∑

N
∣n∣=1 ∣n∣

2α−2s
∣un ∣

2 N
∏
∣n∣=1

dun .

= (2π)−
N
2

N
∏
∣n∣=1

∣n∣α−s
∫

{u∈Hs
N ∶∑∣n∣≤N ∣un ∣2>K2}

e−
1
2 ∑

N
∣n∣=1 ∣n∣

2α−2s
∣un ∣

2 N
∏
∣n∣=1

dun

= (2π)−
N
2 ∫

{∑∣n∣≤N
∣vn ∣2

⟨n⟩2α−2s >K2}

e−
1
2 ∑

N
∣n∣=1 ∣vn ∣

2 N
∏
∣n∣=1

dvn .

≤ (2π)−
N
2 ∫

{∑∣n∣≤N ∣vn ∣2>K2}

e−
1
2 ∑

N
∣n∣=1 ∣vn ∣

2 N
∏
∣n∣=1

dvn

= (2π)−
N
2 ∫

S2N

∞

∫

K

r2N−1e−
1
2 r

2
drdS2N

= (2π)−
N
2 ∫

S2N

∞

∫

K

r r2N−2e−є(r−є)−
1
2 є

2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤C

e−
1
2 (r−є)

2
drdS2N

≲ (2π)−
N
2 ∫

S2N

∞

∫

K

re−
1
2 (r−є)

2
drdS2N

≲ (2π)−
N
2 ∫

S2N

∞

∫

K

(r − є)e−
1
2 (r−є)

2
drdS2N ≤ e−

1
2 (K−є)

2
≲ e−

1
4 K2

(3.6)

for є small enough. _us, µN((ΩK)c) ≲ e− 1
4 K2

.
Since µN is invariant under the solution operator, SN of the truncated equation, if

we deûne the set,

Ω′
N = ΩK

∩ S−1
N (ΩK

) ∩ S−2
N (ΩK

) ∩ ⋅ ⋅ ⋅ ∩ S
− T

TLWP
N (ΩK

),

Ω′
N satisûes the property µN((Ω′

N)c) ≤ T
TLWP

µN((ΩK)c) < TKθ e− 1
4 K2

, since the
local well-posedness interval [−TLWP , TLWP] depends uniformly on the Hs norm
of the initial data. _us, if we pick K = ((4 + 2θ) log( T

є ))
1
2 for є small, we get
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µN((Ω′
N)c) < є, and by the construction of the set Ω′

N we have

∥uN
(t)∥Hs ≲ ( log (

T
є
))

1
2
,

for all ∣t∣ < T . Moreover, if we take Tj = 2 j and є j =
є

2 j+1 , and construct ΩN , j ’s, we see
that ΩN = ⋂

∞
j=1 ΩN , j satisûes (3.5).

Also by Lemma 3.2, we see that for any s′ < s, we have

∥u(t)∥Hs′ < 2A ≤ Cs′( log (
T
є
))

1
2
.

Again by taking an increasing sequence of times, we get

∥u(t)∥Hs′ ≤ Cs′( log (
1 + ∣t∣
є

))

1
2
.

Hence, if we intersect this result with an increasing sequence of s < α − 1
2 , and taking

Ω = ⋂N ΩN where (ΩN)s are deûned as above with µN(Ωc
N) < є

2N , we get that
µ(Ω) < є and that the solutions to equation (1.1) has the norm growth bound

∥u(t)∥Hs ≤ Cs( log (
1 + ∣t∣
є

))

1
2
,

for initial data u0 ∈ Ω. Moreover, interpolating this bound with ∥u(t)∥L2 = ∥u0∥L2 ,
we have

∥u(t)∥Hs ≤ C( log (
1 + ∣t∣
є

))
s+
,

which proves _eorem 3.1.

3.2 Invariance of µ Under the Solution Flow

Let K be a compact set and Bє denote the є ball in Hs . Let S be the �owmap for equa-
tion (1.1) and let SN be the �owmap for equation (1.2). _en by the weak convergence
of the measure

µ(S(K) + Bє) = lim
N→∞

µN((S(K) + Bє) ∩Hs
N) .

Also, by the uniform convergence of the solutions of (1.2) to (1.1) in Hs1 for any s1 < s,
we get SN(PNK) ⊂ S(K) + Bє/2, for N ≥ N0 suõciently large. _en for є1 small
enough,

SN((K + Bє1) ∩Hs
N) ⊂ SN(PNK) + Bє/2 ⊂ S(K) + Bє .

Hence,
µN(SN((K + Bє1) ∩Hs

N)) ≤ µN(S(K) + Bє) ,
and by the invariance of µN , we get

µN((K + Bє1) ∩Hs
N) ≤ µN(S(K) + Bє) ,

and letting N →∞, by the convergence of the measures µN to µ,

µ(K) ≤ µ(K + Bє1) ≤ µ(S(K) + Bє),
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which say, by the arbitrariness of є, that µ(K) ≤ µ(S(K)). By the time reversibil-
ity, we also have the inverse inequality and, thus µ(K) = µ(S(K)), which gives the
invariance of µ under the solution operator.
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