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Abstract

We present an example of an isometric subspace of a metric space that has a greater metric dimension.
We also show that the metric spaces of vector groups over the integers, defined by the generating set of
unit vectors, cannot be resolved by a finite set. Bisectors in the spaces of vector groups, defined by the
generating set consisting of unit vectors, are completely determined.
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1. Vector groups

Let G be a group and S ⊆ G be a generating set for G such that 1 < S and S −1 = S .
Define the Cayley graph X = X(G, S ) by the specification of the set of vertices and the
set of edges of X:

V(X) = G, E(X) = {gh : g, h ∈ G, gh−1 ∈ S }.

This definition is classical (see, for example, [4, page 34]). A more general concept
of a graph of a semigroup was given in [1, page 56]. It was pointed out in [1] that the
class of Cayley graphs and the class of Toeplitz graphs are subclasses of semigroup
graphs, while the class of semigroup graphs contains graphs that are neither Cayley
nor Toeplitz (for example, Cayley graphs of vector semigroups).

In the definition of a Cayley graph, the condition S −1 = S implies that the resulting
graph is undirected and the condition 1 < S implies that the graph has no loops. The
condition that S is a generating set of G ensures that X is connected. Connectivity is
imposed for the simple reason that our interest in this paper is in metric properties of
a special family of Cayley graphs. A graph is a metric space with its intrinsic path
metric. We study a basic metric space property of these graphs.

Let G be a group. If for x ∈ G there exists n ∈ N such that xn = 1 then, by the
well ordering principle, there exists a smallest positive integer n such that xn = 1. The
smallest positive integer n for which xn = 1 is called the order of x and x is called a
torsion element. Note that the identity element is always a torsion element of order 1.
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If for every x ∈ G with x , 1, there is no n ∈ N such that xn = 1, then G is called
torsion-free. For any finite group G, every element is of finite order. If G is torsion-
free then G is necessarily infinite. Examples of torsion-free abelian groups are Z, Q, R
and C under addition and vector groups over these groups. Torsion-free abelian groups
of finite rank are determined in [7]. As is customary, we use additive notation in an
additive abelian group. The identity element for addition is called the zero element
and is denoted 0. The binary operation is denoted + and the inverse of an element
x is its negative and is denoted −x. The condition imposed on the generating set S
now becomes 0 < S and −S = S . We consider locally finite Cayley graphs (in which
the degree of every vertex is a finite nonnegative integer). Thus it is assumed that the
torsion-free abelian group is finitely generated with S a generating set. The torsion
condition in additive notation is: there exists n ∈ N such that nx = x + x + · · · + x︸            ︷︷            ︸

n

= 0.

The concepts of a metric space, distance and geodesic are basic (see, for example,
[3, 8]). The concept of metric dimension was introduced in [3] and has been
widely studied for graphs, usually with a motivation from applications in radio and
telecommunication technology. A recent application is to global positioning systems
(GPS). As in [2], let X be a metric space with distance function ρ : X × X → [0,+∞).
Let A be a nonempty subset of X with finite or countably infinite cardinality. Thus we
may write A = {a1, a2, . . . , an, . . .}. If for every x, y ∈ X with x , y, there is at least one
index i such that ρ(ai, x) , ρ(ai, y), then A is said to resolve X and is called a resolving
set or briefly a resolver for X. A resolving set of minimum cardinality is called a metric
basis for X. The cardinality of a minimum resolving set is called the metric dimension
of X and is denoted β(X). The condition for A to be a resolver may be written in a
logically equivalent form: for all i ∈ {1, 2, . . . , n, . . .}, ρ(ai, x) = ρ(ai, y)⇒ x = y.

Let X be a metric space with distance function ρ. For x, y ∈ X, the bisector of x, y is
defined to be B(x, y) = {z ∈ X : ρ(x, z) = ρ(y, z)}. Note that B(y, x) = B(x, y). In Rn, the
bisector of x, y is B(x, y) = {z : |z − x| = |z − y|} in the usual Euclidean metric.

In [2], the metric dimensions of the three classical geometric spaces were
determined and the metric dimension of Riemann surfaces was shown to be 3.
In [5, 6], metric dimensions of geometric spaces and geometric manifolds were
determined. The present paper is on Cayley graphs of vector groups over Z. We
focus on spaces of vector groups over the integers. These graphs are metric spaces
with their natural path metrics. Consider G = Z × Z. Then G is a vector group
and a generating set satisfying the conditions (0, 0) < S and −S = S is given by
S = {u ∈ G : |u| = 1} = {(−1, 0), (0, −1), (0, 1), (1, 0)}. Let X = X(G, S ). If x, y ∈ X
with x = (x1, y1) and y = (x2, y2), then the distance in X(G, S ) is explicitly given by
ρ1(x, y) = |x2 − x1| + |y2 − y1|.

Let X be a metric space with distance function ρ. A subset A ⊆ X is not a resolver
of X if and only if there exist u, v ∈ X such that u , v and ρ(a, u) = ρ(a, v) for every
a ∈ A. Hence A ⊆ X resolves X if and only if A is not contained in any bisector. This
shows that a determination of bisectors is directly relevant to the investigation of metric
dimensions.
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2. Monotonicity

In this section, we consider monotonicity of metric dimension. An example was
presented in [2, page 296] with an intention to show that metric dimension is not
monotonic. If X,Y are metric spaces with distance functions ρX , ρY , then monotonicity
states that X ⊆ Y ⇒ β(X) ≤ β(Y). Monotonicity is a natural assumption for a well-
defined concept of a dimension.

Let X, Y be metric spaces with distance functions ρX and ρY . Let f : X → Y be
a mapping. If ρY ( f (x), f (y)) = ρX(x, y) for x, y ∈ X, then the mapping f is called an
isometry. If f is also injective, then we say that f is an isometric embedding of X in Y ,
X may be considered as an isometric subspace of Y and the metric in X is a restriction
of that in Y , that is, ρX = ρY |X .

We can now see the simple reason for the proposed counterexample to monotonicity
given in [2]. In that example, a metric space X ⊆ R2 was given such that β(X) is
unbounded, while β(R2) was shown to be 3. However, the metric ρX is the intrinsic
path metric of X while ρR2 is the Euclidean metric which is intrinsic in R2. The metric
ρX is not a restriction of the Euclidean metric of R2. Therefore, X is not an isometric
subspace of the metric space R2.

Let G = Z × Z and S = {u ∈ Z × Z : |u| = 1}. Let X = X(G, S ). This space is usually
called the grid plane or the Gaussian integers. We now show that β(X) is unbounded.

Theorem 2.1. Let G = Zn, S = {u ∈ Zn : |u| = 1} and X = X(G, S ). If A ⊆G is any finite
set, then there exist x, y ∈ G such that A ⊆ B(x, y).

Proof. For x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn), the distance in X(G, S ) is
explicitly given by

ρ(x, y) = |y1 − x1| + |y2 − x2| + · · · + |yn − xn|.

Let A ⊆ G be any finite set. Then there exists u = (a1, a2, . . . , an) ∈ G such that if
x = (x1, x2, . . . , xn) ∈ A then xi ≤ ai for 1 ≤ i ≤ n and, subject to this condition, each ai

is minimal. Consider p = (a1 + 1,a2, . . . ,an) and q = (a1,a2 + 1, . . . ,an). Then p,q ∈G
and pu, qu ∈ E(X), and so ρ(p, u) = 1 = ρ(q, u). For each c ∈ A,

ρ(c, p) = (a1 + 1 − c1) + (a2 − c2) + · · · + (an − cn)
ρ(c, q) = (a1 − c1) + (a2 + 1 − c2) + · · · + (an − cn)
ρ(c, u) = (a1 − c1) + (a2 − c2) + · · · + (an − cn).

Hence, ρ(c, p) = ρ(c, u) + ρ(u, p) and ρ(c, q) = ρ(c, u) + ρ(u, q). Each geodesic
connecting c and p passes through u and each geodesic connecting c and q passes
through u. This shows that

ρ(c, p) = ρ(c, u) + 1 = ρ(c, q).

Thus c ∈ B(p, q) for each c ∈ A, that is, A ⊆ B(p, q). �

Theorem 2.1 may be restated in the following way.

https://doi.org/10.1017/S0004972719000807 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972719000807


356 S. Bau and Y. Lei [4]

Figure 1. An isometric subspace with a higher dimension.

Corollary 2.2. Let G = Zn, S = {u ∈ Zn : |u| = 1} and X = X(G, S ). If A ⊆ G is a finite
set then A does not resolve X.

The metric of X is an isometric restriction of the metric

ρ1(x, y) =

n∑
i=1

|yi − xi|

of Rn. However, under this metric the metric dimension of Rn is also unbounded. The
metric space X is an isometric subspace of Rn under the metric ρ1. Moreover, β(X)
and β(Rn) under ρ1 are both unbounded. Therefore, the monotonicity holds and this X
does not form a counterexample to the monotonicity of dimension.

We now properly address the question of whether for X ⊆ Y with ρX = ρY |X and X
an isometric subspace of Y , we have β(X) ≤ β(Y). We provide an example to show that
this is not true. It is this example that shows that monotonicity fails to hold in general
for the metric dimension.

Theorem 2.3. There exist metric spaces X and Y such that X is an isometric subspace
of Y and β(X) > β(Y).

Proof. Consider the circle shown in Figure 1. Let t > 0 and X = {x1, x2, x3} with

ρX(x1, x2) = ρX(x1, x3) = ρX(x2, x3) = 3t,

and Y = X ∪ {y} with

ρY (x1, x2) = ρY (x1, x3) = ρY (x2, x3) = 3t,

and
ρY (x1, y) = t, ρY (x2, y) = 4t, ρY (x3, y) = 2t.

Then X is isometrically embedded in Y , {y} is a metric basis for Y , no set with one
element resolves X and {x1, x2} resolves X.

Hence we have shown that β(X) = 2 and β(Y) = 1. �
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3. Bisectors

Let G = Z × Z and S = {u ∈ Z × Z : |u| = 1}. In this section we obtain a complete
characterisation of bisectors in X = X(G, S ). First, we give an algebraic verification of
a basic geometric fact.

Lemma 3.1. Suppose x = (x1, x2) and (a, b) ∈ Z × Z. Let

f1(x) = (x2,−x1), f2(x) = (−x1, x2), f(a,b)(x) = (x1 + a, x2 + b).

Then f1, f2, f(a,b) are isometries of X.

Proof. Let x = (x1, x2), y = (y1, y2) and (a, b) ∈ Z × Z. By the definition of the three
mappings,

ρ( f1(x), f1(y)) = ρ((x2,−x1), (y2,−y1))
= |x2 − y2| + |−x1 − y1| = |x1 − y1| + |y1 − y2|

= ρ((x1, x2), (y1, y2)) = ρ(x, y);
ρ( f2(x), f2(y)) = ρ((−x1, x2), (−y1, y2))

= | − x1 − y1| + |x2 − y2| = |x1 − y1| + |y1 − y2|

= ρ((x1, x2), (y1, y2)) = ρ(x, y);
ρ( f(a,b)(x), f(a,b)(y)) = ρ((x1 + a, x2 + b), (y1 + a, y2 + b))

= |x1 + a − y1 − a| + |x2 + b − y2 − b| = |x1 − y1| + |y1 − y2|

= ρ((x1, x2), (y1, y2)) = ρ(x, y).

Hence f1, f2, f(a,b) are isometries of X. �

By the definition of isometry, if X,Y are any metric spaces, f : X→ Y any isometry
and A ⊆ X, then A and f (A) possess the same metric properties. This observation gives
the following lemma.

Lemma 3.2. If x, y ∈ Z × Z and f is an isometry of X, then f (B(x, y)) = B( f (x), f (y)).

By Lemmas 3.1 and 3.2, it suffices to determine bisectors of O = (0, 0) and any
point p = (p1, p2) ∈ Z × Z. Since f(a,b) is an isometry, one of the two points may be
chosen to be the origin. Since f1, f2 are isometries, the other point is chosen arbitrarily
in the first quadrant not above the line y = x. In the proof of the main result of this
section, we distinguish two cases according as p1 ≡ p2 (mod 2) or not. Choosing the
point in the first quadrant not above y = x amounts to the condition p1 ≥ p2 ≥ 0.

Take p1, p2 ∈ Z with p1 ≥ p2 ≥ 0 and p1 ≡ p2 (mod 2). Then 1
2 (p2 ± p1) ∈ Z. For

p1 > p2, define

L1 =

{( p1 − p2

2
+ i, p2 − i

)
: 0 ≤ i ≤ p2, i ∈ Z

}
L2 =

{( p1 − p2

2
, p2 + i

)
: i > 0, i ∈ Z

}
L3 =

{( p1 + p2

2
+ i,−i

)
: i > 0, i ∈ Z

}
,
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Figure 2. An illustration of bisectors B((2, 3), (7, 6)) and B((3, 3), (6, 6)).

and for p1 = p2 define

M = {(p1 − i, i) : 0 < i < p1, i ∈ Z}
Q1 = {(−i, p1 + j) : i ≥ 0, j ≥ 0, i, j ∈ Z}
Q2 = {(p1 + i,− j) : i ≥ 0, j ≥ 0, i, j ∈ Z}.

For two pairs of points, the bisectors L1 ∪ L2 ∪ L3 and M ∪ Q1 ∪ Q2 are illustrated in
Figure 2. The pairs of points are shown in grey and the points in their bisectors are
shown as solid points. With a slight abuse of notation, the point (0, 0) may be denoted
by 0, while we use the former if clarity is required.

Lemma 3.3. B(0, p) = ∅ if and only if p1 . p2 (mod 2).

Proof. Suppose that p1 . p2 (mod 2). Let x = (x1, x2) ∈ G. Then

ρ((x1, x2), (0, 0)) = |x1| + |x2|, ρ((x1, x2), (p1, p2)) = |x1 − p1| + |x2 − p2|.

If p1 ≡ 0 (mod 2) and p2 ≡ 1 (mod 2), then |x1| ≡ |x1 − p1| (mod 2) and |x2| . |x2 − p2|

(mod 2). It follows that ρ((x1, x2), (0, 0)) , ρ((x1, x2), (p1, p2)) and (x1, x2) < B(0, p).
The proof is almost verbatim if p1 ≡ 1 (mod 2) and p2 ≡ 0 (mod 2).

For the converse, suppose that p1 ≡ p2 (mod 2). Then 1
2 (p1 + p2) ∈ Z. Consider

(0, 1
2 (p1 + p2)) ∈ Z × Z. Then

ρ
((

0,
p1 + p2

2

)
, (0, 0)

)
=

p1 + p2

2
= ρ

((
0,

p1 + p2

2

)
, (p1, p2)

)
,

that is (0, 1
2 (p1 + p2)) ∈ B(0, p) so that the bisector is nonempty. �

Lemma 3.4. If p = (p1, p2) and p1 > p2 ≥ 0, then B(0, p) = L1 ∪ L2 ∪ L3.

Proof. We first show that L1 ∪ L2 ∪ L3 ⊆ B(0, p).
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By the definition of the set L1, for any x = (x1, x2) ∈ L1, we have 0 ≤ x1 ≤ p1 and
0 ≤ x2 ≤ p2. Hence there is i ∈ Z with 0 ≤ i ≤ p2 such that x1 = 1

2 (p1 − p2) + i and
x2 = p2 − i. It follows that

ρ(x, 0) =

∣∣∣∣∣ p1 − p2

2
+ i − 0

∣∣∣∣∣ + |p2 − i − 0| =
p1 − p2

2
+ i + p2 − i =

p1 + p2

2

and
ρ(x, p) =

∣∣∣∣∣ p1 − p2

2
+ i − p1

∣∣∣∣∣ + |p2 − i − p2|

= p1 −
p1 − p2

2
− i + p2 − p2 + i =

p1 + p2

2
= ρ(x, 0).

Hence L1 ⊆ B(0, p).
Let x = (x1, x2) ∈ L2. By the definition of L2, 0 ≤ x1 ≤ p1 and x2 ≥ p2 ≥ 0. Hence

there exists a positive integer i such that x1 = 1
2 (p1 − p2) and x2 = p2 + i. Then

ρ(x, 0) =

∣∣∣∣∣ p1 − p2

2

∣∣∣∣∣ + |p2 + i| =
p1 − p2

2
+ i + p2 =

p1 + p2

2
+ i

and
ρ(x, p) =

∣∣∣∣∣ p1 − p2

2
− p1

∣∣∣∣∣ + |p2 + i − p2|

= p1 −
p1 − p2

2
+ i + p2 − p2 =

p1 + p2

2
+ i = ρ(x, 0).

Hence L2 ⊆ B(0, p).
Let x = (x1, x2) ∈ L3. By the definition of L3, 0 ≤ x1 ≤ p1 and x2 ≤ 0 ≤ p2. Then

there exists a positive integer i such that x1 = 1
2 (p1 + p2) and x2 = −i. Then

ρ(x, 0) =

∣∣∣∣∣ p1 + p2

2

∣∣∣∣∣ + | − i| =
p1 + p2

2
+ i

and

ρ(x, p) =

∣∣∣∣∣ p1 + p2

2
− p1

∣∣∣∣∣ + | − i − p2| = p1 −
p1 + p2

2
+ i + p2 =

p1 + p2

2
+ i = ρ(x, 0).

Hence L3 ⊆ B(0, p). Therefore, we have shown that L1 ∪ L2 ∪ L3 ⊆ B(0, p).
We now show that B(0, p) ⊆ L1 ∪ L2 ∪ L3. Let x = (x1, x2) ∈ B(0, p). Suppose that

x < L1 ∪ L2 ∪ L3. Denote a = (0, p2) and b = (p1, 0).
If x1 ≤ 0, then

ρ(x, 0) ≤ ρ(x, a) + ρ(0, a) < ρ(x, a) + ρ(p, a) = ρ(x, p).

If x1 ≥ p1, then

ρ(x, p) ≤ ρ(x, b) + ρ(p, b) < ρ(x, b) + ρ(0, b) = ρ(x, 0).

Now let 0 < x1 < p1. Since the set L1 ∪ L2 ∪ L3 is the set of integral points on the
union of two vertical half lines and a line segment connecting their end points and since
y = x2 is a horizontal line, the intersection of y = x2 and L1 ∪ L2 ∪ L3 is a single integral
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point. Let this point be denoted z = (z1, z2). Then z2 = x2 and z1 , x1. If z1 > x1, then
ρ(x, 0) < ρ(z, 0) = ρ(z, p) < ρ(x, p). If z1 < x1, then ρ(x, 0) > ρ(z, 0) = ρ(z, p) > ρ(x, p).
Hence ρ(x, 0) , ρ(x, p). That is, x < B(0, p). This contradicts the assumption that
x ∈ B(0, p). Hence B(0, p) ⊆ L1 ∪ L2 ∪ L3.

Therefore, B(0, p) = L1 ∪ L2 ∪ L3. �

Lemma 3.5. If p1 = p2 > 0 then B(0, p) = M ∪ Q1 ∪ Q2.

Proof. We first show that M ∪ Q1 ∪ Q2 ⊆ B(0, p). By the definition of M, if x =

(x1, x2) ∈ M then 0 < x1 < p1. Then there exists i ∈ Z with 0 < i < p1, such that
x1 = p1 − i and x2 = i. Consequently,

ρ(x, 0) = |p1 − i| + |i| = p1 − i + i = p1

and
ρ(x, p) = |p1 − i − p1| + |i − p1| = i + p1 − i = p1 = ρ(x, 0).

Hence M ⊆ B(0, p).
By the definition of Q1, if x = (x1, x2) ∈ Q1, then x1 ≤ 0 < p1 and x2 ≥ p1 > 0. Hence

there exist positive integers i, j such that x1 = −i and x2 = p1 + j. Then

ρ(x, 0) = | − i| + |p1 + j| = p1 + i + j

and
ρ(x, p) = | − i − p1| + |p1 + j − p1| = p1 + i + j = ρ(x, 0).

Hence Q1 ⊆ B(0, p).
By the definition of Q2, if x = (x1, x2) ∈ Q2 then x1 ≥ p1 > 0 and x2 ≤ 0 ≤ p1. Hence

there exist positive integers i, j such that x1 = p1 + i and x2 = − j. Then

ρ(x, 0) = |p1 + i| + | − j| = p1 + i + j

and
ρ(x, p) = | − i − p1| + |p1 + j − p1| = p1 + i + j = ρ(x, 0).

Hence Q2 ⊆ B(0, p). We have shown that B(0, p) ⊇ M ∪ Q1 ∪ Q2.
We next show that B(0, p) ⊆ M ∪ Q1 ∪ Q2. Let x = (x1, x2) ∈ B(0, p). Suppose that

x < M ∪ Q1 ∪ Q2. Denote a = (0, p1) and b = (p1, 0). If x1 ≤ 0, then x2 < p1 by the
definition of Q1. Denote z = (0, x2). Then

ρ(x, 0) = ρ(x, z) + ρ(z, 0),
ρ(x, p) = ρ(x, z) + ρ(z, a) + ρ(a, p),

ρ(x, p) − ρ(x, 0) = ρ(z, a) − ρ(z, 0) + p1 = (p1 − x2) − |x2| + p1

= 2p1 − x2 − |x2| > 0.

If x1 ≥ p1, then by the definition of Q2, x2 > 0. Let u = (p1, x2). Hence

ρ(x, 0) = ρ(x, u) + ρ(u, b) + ρ(b, 0)
ρ(x, p) = ρ(x, u) + ρ(u, p)

ρ(x, 0) − ρ(x, p) = ρ(u, b) − ρ(u, p) + p1 = x2 − |x2 − p1| + p1

= x2 + p1 − |x2 − p1| > 0.
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If 0 < x1 < p1 then p1 , 1 since x1 ∈ Z. The set of integral points on the vertical
line x = x1 intersects M in exactly one point. Let this point be z = (z1, z2). Then
z2 = x2 and z1 , x1. If z1 > x1, then ρ(x, 0) < ρ(z, 0) = ρ(z, p) < ρ(x, p). If z1 < x1, then
ρ(x, 0) > ρ(z, 0) = ρ(z, p) > ρ(x, p). Hence x < B(0, p). This contradicts the assumption
that x ∈ B(0, p). Hence B(0, p) ⊆ M ∪ Q1 ∪ Q2.

In summary, we have B(0, p) = M ∪ Q1 ∪ Q2. �

The conjunction of Lemmas 3.3–3.5 gives the main result of this section.

Theorem 3.6. Let p = (p1, p2) ∈ Z × Z with 0 ≤ p2 ≤ p1.

(1) B(0, p) = ∅ if and only if p1 . p2 (mod 2).
(2) If p1 ≡ p2 (mod 2) and p2 < p1, then B(0, p) = L1 ∪ L2 ∪ L3.
(3) If p1 ≡ p2 (mod 2) and p1 = p2 then B(0, p) = M ∪ Q1 ∪ Q2.
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