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Abstract

It is proved that the free topological vector space V([0, 1]) contains an isomorphic copy of the free
topological vector space V([0, 1]n) for every finite-dimensional cube [0, 1]n, thereby answering an open
question in the literature. We show that this result cannot be extended from the closed unit interval [0, 1]
to general metrisable spaces. Indeed, we prove that the free topological vector space V(X) does not
even have a vector subspace isomorphic as a topological vector space to V(X ⊕ X), where X is a Cook
continuum, which is a one-dimensional compact metric space. This is also shown to be the case for a
rigid Bernstein set, which is a zero-dimensional subspace of the real line.
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1. Introduction and preliminary results

In 1976 Nickolas [25] proved that the free topological group on the closed unit interval
[0, 1] has a topologically isomorphic copy of the free topological group on the n-
dimensional cube [0, 1]n as a closed subgroup, for every finite n. The analogous
problem for free abelian topological groups remained open for two decades until it
was shown to be true by Leiderman et al. [18] using the powerful Kolmogorov
superposition theorem which answered Hilbert’s 13th problem. The analogous
problem for free topological vector spaces was the subject of the open question in [8].
Theorem 2.4, which is one of the main results of our paper, answers this question
positively: for any finite-dimensional metrisable compact space X, the free topological
vector space V(X) is isomorphic as a topological vector space to a closed vector
subspace of V[0, 1]. The proof depends on a 2011 result of Levin [19] which is also
closely related to the Kolmogorov superposition theorem. Observe that the closed unit
interval [0, 1] in Theorem 2.4 cannot be replaced by any zero-dimensional metrisable
compact space, in view of Theorem 2.7.

All vector spaces considered in this paper are vector spaces over the field of real
numbers. While we do consider non-Hausdorff topological groups and non-Hausdorff
topological vector spaces, our focus will always be on those which are Hausdorff.
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Definition 1.1 [22, 23]. A class V of not necessarily Hausdorff topological groups is
said to be a variety of topological groups if it is closed under the operations of taking
subgroups, not necessarily Hausdorff quotient groups, and arbitrary products with the
Tychonoff product topology.

The class of all topological groups and the class of all abelian topological groups are
both varieties of topological groups as is the class of all boolean topological groups,
that is, those topological groups G with the property that x2 = 1, the identity, for all
x ∈ G.

Definition 1.2 [6, 24]. A class V of not necessarily Hausdorff topological vector
spaces is said to be a variety of topological vector spaces if it is closed under
the operations of taking subspaces, not necessarily Hausdorff quotient spaces, and
arbitrary products with the Tychonoff product topology.

The following varieties are the object of extensive research: the variety of all
topological vector spaces, the variety of all locally convex spaces and the variety of all
locally convex spaces with the weak topology.

Definition 1.3 [4]. If C is a class of topological groups (or a class of topological vector
spaces), then the variety generated by C is the smallest variety of topological groups
(or topological vector spaces) that contains C.

Important examples include the variety of all locally convex spaces with the weak
topology, which is the variety of topological vector spaces generated by R, and the
variety of locally convex spaces generated by each of the classical Banach spaces, `p,
c0, and so on.

Definition 1.4. IfV is a variety of topological groups (or a variety of topological vector
spaces), then the free topological group (or free topological vector space) of V on a
Tychonoff space X is a topological group (or topological vector space) F(X,V) in V
containing the space X such that every continuous mapping f from X to a G ∈ V gives
rise to a unique continuous homomorphism (linear operator) f̄ : F(X,V)→ G with f̄
agreeing with f on X.

Definition 1.5 (See [6, 7, 28, 29]).

(i) If V is the variety of all topological vector spaces, F(X,V) is said to be the free
topological vector space on X and is denoted by V(X).

(ii) IfV is the variety of all locally convex spaces, thenV is said to be the free locally
convex space on X and is denoted by L(X).

(iii) If V is the variety of all locally convex spaces with the weak topology, then
F(X,V) is denoted by Lp(X).

(iv) If V is the variety of all topological groups, then F(X,V) is the free topological
group on X and is denoted by F(X).

(v) If V is the variety of all abelian topological groups, then F(X,V) is the free
abelian topological group on X and is denoted by A(X).
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(vi) If V is the variety of all boolean topological groups, then F(X,V) is the free
boolean topological group on X and is denoted by B(X).

Remark 1.6. By the adjoint functor theorem [20] and Theorem 2.6 of [22], for any
Tychonoff space X and variety V which has a member containing X as a subspace,
F(X,V) exists and is essentially unique (that is, unique up to isomorphism). Note that
any variety which contains RX has such a member. Further, V(X), L(X), Lp(X), F(X),
A(X) and B(X) are Hausdorff (see [7, 28, 29]).

If X is compact, then clearly it is a closed subset of Lp(X), L(X), V(X), F(X),
A(X) and B(X). Indeed by the Stone–C̆ech compactification argument in [10], for any
Tychonoff space X, the space X is a closed subset of each of these. (For example, if X is
any Tychonoff space and φ : X → βX is the canonical one-to-one continuous map into
its Stone–C̆ech compactification, there is a continuous linear operator Φ from V(X) to
V(βX) which extends φ. As βX is compact, it is a closed subspace of V(βX) and then
Φ−1(βX) = X implies that X is a closed subspace of V(X).)

Definition 1.7. For a Tychonoff space X, let Cp(X) denote the topological vector space
of all continuous real-valued functions defined on X equipped with the pointwise
convergence topology (or weak topology), that is, the topology it inherits as a subspace
of the product space RX .

Notation 1.8. Let A be a subset of a vector space E and n ∈ N. The subset spn(A) of E
is defined by

spn(A) := {λ1x1 + · · · + λnxn : λi ∈ [−n, n], xi ∈ A for all i = 1, . . . , n};

and the subset SPn(A) of E is defined by

SPn(A) := {λ1x1 + · · · + λnxn : xi ∈ A for all λi ∈ R and i = 1, . . . , n}.

Clearly, spn(A) ⊆ SPn(A). The span of A in E is the vector subspace sp(A) of E given
by sp(A) :=

⋃
n∈N spn(A) =

⋃
n∈N SPn(A).

Remark 1.9. By definition, the underlying vector space of V(X), L(X) and Lp(X) is the
vector space with the Hamel basis X. Further, the topology τ(V(X)) of V(X) is finer
than the topology τ(L(X)) of L(X) which is, in turn, finer than the topology τ(Lp(X)) of
Lp(X). Thus, if X is compact, spn(X) is a compact subspace of V(X) and so spn(X) has
precisely the same topology as a subspace of each of V(X), L(X) and Lp(X). Further,
by the Stone–C̆ech compactification argument used in Remark 1.6, we see that, for
any Tychonoff space X, spn(X) is a closed subspace of V(X), L(X) and Lp(X). Indeed,
if V is any variety of locally convex spaces, spn(X) is a closed subspace of the free
topological vector space F(X,V) of V.

Definition 1.10. A Hausdorff topological space X is said to be a kω-space if X is the
union of an increasing sequence X1, X2, . . . , Xn, . . . of compact subspaces, with the
property that a subset A ⊂ X is closed in X if (and only if) A ∩ Xn is a closed subspace
of Xn for each n ∈ N. Further, in such a case, X is said to have kω-decomposition
X =

⋃
n∈N Xn.
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Theorem 1.11 [7]. If X is a kω-space with kω-decomposition X =
⋃

n∈N Xn, then V(X)
is a kω-space with kω-decomposition V(X) =

⋃
n∈N spn(Xn).

Corollary 1.12. Let Y be a kω-space and let X be a closed subspace of Y. Then sp(X),
with the topology induced on it as a subspace of V(Y), is isomorphic as a topological
vector space to V(X).

Corollary 1.13. Let X be a kω-space with kω-decomposition X =
⋃

n∈N Xn. If K is a
compact subspace of V(X), then K ⊆ spn(Xn) for some n ∈ N.

Proposition 1.14. If X is any Tychonoff space, then SPn(X) is a closed subspace of
V(X) and also a closed subspace of L(X). Indeed, if V is any variety of locally convex
spaces, then SPn(X) is a closed subspace of the free topological vector space F(X,V)
of V.

Proof. Proposition 0.5.16 of [2] says that SPn(X) is closed in Lp(X). Therefore, it is
closed in every finer topology on the underlying vector space. Thus SPn(X) is closed in
V(X) and in L(X). Indeed, as V(R) is the smallest nontrivial variety of locally convex
spaces [6], SPn(X) is a closed subspace of F(X,V). �

Remark 1.15. Clearly, it is important to describe explicitly, for any Tychonoff space X,
the topology of spn(X) in V(X). Joiner [12] gave a useful description of the topology
of the words of (reduced) length n in the free topological group and the free abelian
topological group on a Tychonoff space X. A simpler proof of this result was given by
Hardy, Morris and Thompson in [10] using Stone–C̆ech compactifications. Unknown
to Joiner, Hardy, Morris and Thompson, A.V. Arhangel’skii proved a slightly different
result much earlier but it appeared in a somewhat obscure rotary-printed book in
Russian [1] and has not been translated into English. For further commentary, see [28].

It is natural to seek a similar result for free topological vector spaces. We address
firstly the compact case.

Proposition 1.16. Let X be a compact Hausdorff space. Consider an element
w ∈ SPn(X) \ SPn−1(X) ⊆ V(X) for n ∈ N, where w = λ1x1 + λ2x2 + · · · + λnxn, each
λi , 0, each xi ∈ X and xi , x j for i , j ∈ {1, . . . , n}. Put M = |λ1| + · · · + |λn|. A base
of open neighbourhoods of w in SPn(X) is the family of all subsets of the form V1U1 +

V2U2 + · · · + VnUn, where the sets Ui are pairwise disjoint open neighbourhoods of xi

in X, and 0 < Vi is an open neighbourhood of λi in [−M,M] for i = 1, . . . , n.

Proof. Let U be any open neighbourhood in SPn(X) of w. Then U = U′ ∩ SPn(X)
for U′ an open neighbourhood of w in V(X). Since V(X) is a topological vector
space, there exist an open neighbourhood 0 < Vi of λi in [−M, M] and U′i an open
neighbourhood of xi in V(X), for i = 1, . . . , n, with V1U′1 + V2U′2 + · · ·VnU′n ⊆ U′. Put
Ui = U′i ∩ X for i = 1, . . . , n. Then V1U1 + V2U2 + · · · + VnUn ⊆ U′ ∩ SPn(X) = U.

To complete the proof we show that every set of the form V1U1 + · · · + VnUn, where
Ui is an open neighbourhood of xi in X, the Ui are pairwise disjoint and 0 < Vi is an
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[5] Embeddings of free topological vector spaces 315

open neighbourhood of λi in [−M, M], for i = 1, . . . , n, is an open neighbourhood in
SPn(X) of w.

Define the compact set Z = [−M,M] × X × [−M,M] × X × · · · × [−M,M] × X (that
is, the product of n copies of [−M, M] × X) and the surjective continuous map
ψ : Z → SPn(X) by ψ(γ1, y1, γ2, y2, . . . , γn, yn) = γ1y1 + γ2y2 + · · · + γnyn.

Let P be the set of all permutations of the finite set of integers 1, 2, . . . , n. Put

A =
⋃
p∈P

Vp(1) × Up(1) × · · · × Vp(n) × Up(n).

Then A is an open subset of the compact space Z and A is saturated with respect
to the mapping ψ. As ψ is surjective and ψ(A) = V1U1 + · · · + VnUn, it follows that
V1U1 + · · · + VnUn is an open subset of SPn(X), as required. �

Next we generalise Proposition 1.16 from the compact case to a Tychonoff space X
by applying the standard Stone–C̆ech compactification argument of [10].

Theorem 1.17. Let X be a Tychonoff space and let w ∈ SPn(X) \ SPn−1(X) ⊆ V(X), for
n ∈ N, where w = λ1x1 + λ2x2 + · · · + λnxn, each λi , 0, each xi ∈ X and xi , x j for
i , j ∈ {1, . . . , n}. Put M = |λ1| + · · · + |λn|. A base B of open neighbourhoods of w in
SPn(X) is the family of all subsets of the form V1U1 + V2U2 + · · · + VnUn, where the
sets Ui are pairwise disjoint open neighbourhoods of xi in X, and 0 < Vi is an open
neighbourhood of λi in [−M,M] for i = 1, . . . , n.

Proof. Recall that we defined the space Z as the product of n copies of [−M, M] × X
and that ψ is the surjective continuous map ψ : Z → SPn(X) which is defined by
ψ(γ1, y1, γ2, y2, . . . , γn, yn) = γ1y1 + γ2y2 + · · · + γnyn.

Let βX be the Stone–C̆ech compactification of the Tychonoff space X, so that there
exists an embedding β : X → βX. As V(X) is a free topological vector space, the map
β extends to a continuous linear operator β : V(X)→ V(βX).

Define the compact space

Y = [−M,M] × βX × [−M,M] × βX × · · · × [−M,M] × βX

(that is, the product of n copies of [−M, M] × βX), and let i be the natural embedding
of the topological space Z into the compact space Y . Consider SPn(βX) ⊆ V(βX) and
SPn(X) ⊆ V(X). Let j : SPn(X)→ SPn(βX) be the restriction of β to SPn(X). So we
have the commutative diagram:

Y SPn(βX)

Z SPn(X)

-φ

6
i

-
ψ

6
j

By Proposition 1.16, the family of all V1U′1 + V2U′2 + · · · + VnU′n, where all
U′i are open pairwise disjoint neighbourhoods of xi in βX and all 0 < Vi are
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open neighbourhoods of λi in [−M, M], for i = 1, . . . , n, forms a basis of open
neighbourhoods in SPn(βX) of w = λ1x1 + · · · + λnxn in SPn(βX). As

j−1(V1U′1 + V2U′2 + · · · + VnU′n) = V1β
−1(U′1) + V2β

−1(U′2) + · · · + Vnβ
−1(U′n),

the required result immediately follows. �

Remark 1.18. It follows from Remark 1.9 that Proposition 1.16 remains true if V(X)
is replaced by L(X) or Lp(X). The proof of Theorem 1.17 is easily modified to show
that it also remains true if V(X) is replaced by L(X) or Lp(X).

Remark 1.19. Arhangel’skii proved an analogous result to Theorem 1.17 for Lp(X).
(See Proposition 0.5.17 of [2].) From Arhangel’skii’s result for Lp(X), one can derive
an alternative proof of Theorem 1.17.

Corollary 1.20. In the notation of Theorem 1.17, consider the projection maps
φi : V1U1 + V2U2 + · · · + VnUn ∩ (SPn(X) \ SPn−1(X))→ Ui ⊆ X, where the maps φi

are defined by φi(λ1z1 + λ2z2 + · · · + λnzn) = zi and each zi ∈ Ui. Then the φi are
continuous mappings.

Definition 1.21. A topological space is said to be a continuum if it is a compact
metrisable connected space.

All continua considered in this paper are nondegenerate, meaning that they contain
at least two points.

Definition 1.22 [5, 11]. A continuum X is said to be a Cook continuum if, for every
subcontinuum K ⊆ X, the only continuous maps of K into X are the identity map and
the constant maps.

Proposition 1.23 [16, Section 47, III.1]. Every nonempty open subset of a continuum
X contains a nondegenerate subcontinuum.

Corollary 1.24. Every nonempty open subset of a Cook continuum X contains a
nondegenerate subset M such that M is a Cook continuum.

A Cook continuum is a one-dimensional topological space. We shall also consider
another special topological space known as a rigid Bernstein set B in the real line R.
The set B does not contain any interval and therefore, it is zero-dimensional. A detailed
description of the properties of B and its construction can be found in [21, Example
6.13.1] (see also [14, 27]). According to Pol, the standard method of construction of
B was originated by Kuratowski in 1925. The following strong rigidity property of B
is, in fact, a consequence of [14, Corollary 3.3].

Proposition 1.25 [15]. If G is an uncountable Gδ-subset of the rigid Bernstein set B,
then, for each finite collection of continuous functions f j : G → B, j ∈ {1, 2, . . . , n},
there exists an uncountable Gδ-subset G′ of G such that the restriction f j �G′ is either
the identity or constant, for every j ∈ {1, 2, . . . , n}.
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2. Embedding into the free topological vector space on [0, 1]

We begin with a lemma which follows easily from Theorem 1.11.

Lemma 2.1. Let Y be a compact Hausdorff space and let X be a compact subspace of
V(Y) such that:

(i) the members of X are linearly independent; and
(ii) sp(X) is a closed vector subspace of V(Y).

Then sp(X), with the topology induced as a subspace of V(Y), is isomorphic as a
topological vector space to V(X).

Proposition 2.2. Let X and Y be compact Hausdorff spaces. Consider the following
three properties.

(i) Lp(X) is isomorphic as a topological vector space to a closed vector subspace of
Lp(Y) and there exists an n ∈ N with X ⊆ spn(Y).

(ii) L(X) is isomorphic as a topological vector space to a closed vector subspace of
L(Y) and there exists an n ∈ N with X ⊆ spn(Y).

(iii) V(X) is isomorphic as a topological vector space to a closed vector subspace of
V(Y).

Then (i)⇐⇒ (ii) =⇒ (iii).

Proof. Without the additional assumption that there exists an n ∈ N with X ⊆ spn(Y),
the equivalence of (i) and (ii) has been proved in [17] and [18].

Now assume that (i) is true. We note that, by Theorem 1.11, spn(Y) is a compact
subspace of V(Y). Therefore, by Remark 1.9, spn(Y) has precisely the same compact
topology as a subspace of each of V(Y), L(Y) and Lp(Y). So, by (i), X has the same
compact topology as a subspace of spn(Y) in both spaces Lp(Y) and V(Y). Further, by
(ii), sp(X) is a closed subspace of Lp(Y) and so sp(X) is a closed subspace of V(Y) as
V(Y) has a finer topology than Lp(Y). Lemma 2.1 now implies that (iii) is true. �

Recall that dim X stands for the covering dimension of a Tychonoff space X.

Proposition 2.3. Let X and Y be any Tychonoff spaces. If the free topological vector
spaces V(X) and V(Y) are isomorphic, then dim X = dim Y.

Proof. For every Tychonoff space X, the topological vector spaces V(X) and L(X)
have the same continuous linear functionals [7]. Therefore, the dual space to V(X)
equipped with the weak topology is isomorphic to Cp(X). The function spaces Cp(X)
and Cp(Y) are linearly homeomorphic, and hence dim X = dim Y by the celebrated
Pestov result [26]. �

We denote by I the closed unit interval [0, 1]. Below we resolve positively the open
problem posed in [8]. This result strikingly contrasts with Proposition 2.3.

https://doi.org/10.1017/S000497271900090X Published online by Cambridge University Press

https://doi.org/10.1017/S000497271900090X


318 A. Leiderman and S. A. Morris [8]

Theorem 2.4. Let X be a finite-dimensional metrisable compact space. Then the free
topological vector space V(X) is isomorphic as a topological vector space to a closed
vector subspace of V(I).

Proof. According to Levin’s theorem [19], for every n-dimensional metrisable
compact space X there exists a linear continuous and open mapping T from Cp(I) onto
Cp(X). As Lp(X) is the dual space of Cp(X), the dual mapping T ∗ is an isomorphic
linear embedding of Lp(X) into Lp(I).

Since T is an open mapping, T ∗ is a closed mapping. So, as has been observed in
[17], we can identify Lp(X) with a closed linear subspace of Lp(I). Furthermore, an
analysis of the mapping T constructed in [19] shows that T ∗(X) is contained in the
subspace

Mk(I) = {λ1t1 + · · · + λktk} ⊂ Lp(I),

where each λi ∈ [−1, 1], ti ∈ I and k = k(n) depends only on the dimension n.
Therefore, condition (i) of Proposition 2.2 is satisfied with Y = I. Thus, by

Proposition 2.2, condition (iii) is satisfied, that is, V(X) is isomorphic as a topological
vector space to a closed vector subspace of V(I). �

We immediately obtain the following result of [8].

Corollary 2.5. Let Sk be the k-dimensional unit sphere. Then the free topological
vector space V(Sk) is isomorphic as a topological vector space to a closed vector
subspace of V(Ik).

Corollary 2.6. Let X =
⊕

i∈N Xi be the free union of a countable family of the finite-
dimensional metrisable compact spaces Xi. Then the free topological vector space
V(X) is isomorphic as a topological vector space to a closed vector subspace of V(I).

Proof. For each i ∈ N, let Ii be a homeomorphic copy of I. Then, by Theorem 2.4, there
is a topological vector space embedding of V(Xi) into V(Ii). Therefore, V(

⊕
i∈N Xi)

embeds as a topological vector space into V(
⊕

i∈N Ii), which then embeds into V(R),
which, in turn, embeds into V(I), by [8]. �

Theorem 2.7 [8]. Let X and Y be compact metrisable spaces and suppose that V(X)
is isomorphic as a topological vector space to a vector subspace of V(Y). If Y is
zero-dimensional, then X is zero-dimensional as well.

Thus, the segment I in Theorem 2.4 cannot be replaced by any zero-dimensional
metrisable compact space. Note also that, for L(X), a more general result is known: if
X and Y are compact spaces such that L(X) is isomorphic as a topological vector space
to a vector subspace of L(Y), then dim Y = 0 implies that dim X = 0 [13].

Recall the following theorem which was proved in [18].

Theorem 2.8. For a Tychonoff space X, the following are equivalent.

(i) A(X) embeds isomorphically as a topological subgroup into A(I).
(ii) F(X) embeds isomorphically as a topological subgroup into F(I).
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(iii) X is a kω-space such that every compact subspace of X is finite-dimensional and
metrisable.

The statements of Theorems 2.4 and 2.8 suggest the following very interesting
problem.

Problem 2.9. Let X be a Tychonoff space. Is it true that V(X) embeds isomorphically
as a topological vector space into V(I) if and only if X is a kω-space such that every
compact subspace of X is finite-dimensional and metrisable?

The necessity in Problem 2.9 is known.

Remark 2.10. Let X be the one-point compactification of the disjoint union of the
Euclidean cubes In for n ∈ N. Then L(X) embeds as a topological vector space into
L(I) (see [18, Remark 4.6] and [9]), but V(X) does not embed as a topological vector
space into V(I) because X is not contained in spn(I) for any n ∈ N.

Example 2.11. Here we will discuss the conditions of Proposition 2.2. Denote by
I′ = I′′ = [0, 1]. Define a mapping T : Cp(I′)→ Cp(I′′) by

T f (x) = 2 f (x) − f
( x + 1

2

)
.

Clearly, T is linear and continuous. It is proved in [17] that T is also a surjective and
nonopen mapping. Therefore, the dual mapping T ∗ isomorphically embeds Lp(I′′) into
Lp(I′) as a nonclosed vector subspace. For convenience, we identify T ∗(Lp(I′′)) with
Lp(I′′) and T ∗(I′′) with I′′. Note that the second condition of item (i) in Proposition 2.2
is evidently fulfilled: I′′ ⊆ sp2(I′). However, we show that sp(I′′) with the topology
induced from V(I′) is not isomorphic to V(I′′), which is opposite to the conclusion
of Proposition 2.2. It is proved in [17] that, for every m ∈ N, x ∈ [0, 1], f ∈ C(I′), the
following formula holds:

m∑
n=0

1
2n T f

( x + 2n − 1
2n

)
= 2 f (x) −

1
2m f

( x + 2m+1 − 1
2m+1

)
.

It means that sp2(I′) ∩ sp(I′′) is not closed in V(I′), and hence sp(I′′) is not closed in
V(I′). Therefore, sp(I′′) with the topology induced from V(I′) is not isomorphic to
V(I′′) because V(I′′) is a complete topological vector space, so V(I′′) is closed in any
topological vector space containing it.

It is natural now to ask the following questions.

Problem 2.12. Let X and Y be metrisable compact spaces. Consider the following
conditions.

(i) The free abelian topological group, A(Y), on Y is isomorphic as a topological
group to a closed subgroup of A(X).

(ii) The free boolean topological group, B(Y), on Y is isomorphic as a topological
group to a closed subgroup of B(X).
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(iii) The free topological vector space, V(Y), on Y is isomorphic as a topological
vector space to a closed vector subspace of V(X).

Does (i) =⇒ (ii)? Does (ii) =⇒ (i)? Does (i) =⇒ (iii)? Does (iii) =⇒ (i)?

To the best of our knowledge, Problem 2.12 is open even for Tychonoff spaces X
and Y .

Problem 2.13. Let X be a finite-dimensional metrisable compact space. Is B(X)
isomorphic as a topological group to a subgroup of B(I)?

3. Embedding of V(X ⊕ X) into V(X)

Denote by X × X (X ⊕ X) the square (the free topological sum) of two copies
of a topological space X, respectively. The following proposition is an immediate
consequence of Theorem 2.4 and Corollary 1.12.

Proposition 3.1. For every finite-dimensional metrisable compact space X containing
a homeomorphic copy of the closed unit interval I, the free topological vector space
V(X × X) is isomorphic as a topological vector space to a closed vector subspace of
V(X).

Proposition 3.2. For every infinite zero-dimensional metrisable locally compact space
X, the free topological vector spacesV(X) andV(X ⊕ X) are isomorphic as topological
vector spaces.

Proof. It is easy to deduce from the main result of [3] that F(X) and F(X ⊕ X) (and,
therefore, also A(X) and A(X ⊕ X)) are isomorphic as topological groups for every
infinite zero-dimensional metrisable locally compact space X.

Denote Y = X ⊕ X. It follows that A(X) and A(Y) are isomorphic as topological
groups. Let α : A(X)→ A(Y) be a witnessing isomorphism. Note that A(X) and
A(Y) are topological subgroups of V(X) and V(Y), respectively. Then the restriction
α�X : X → A(Y) ⊂ V(Y) is a continuous mapping, and thus it can be lifted to a
continuous linear operator T : V(X)→ V(Y). It is easy to see that T is surjective since
α is surjective. Analogously, the inverse isomorphism α−1 : A(Y)→ A(X) gives rise to
a continuous linear operator S : V(Y)→ V(X). The mappings T−1 and S coincide on Y
and so T−1 and S coincide on V(Y), which means that T is a topological isomorphism
between V(X) and V(Y). �

It is perhaps surprising, then, that there exists a one-dimensional metrisable
compact space X such that A(X ⊕ X) does not embed isomorphically into A(X). In
view of Proposition 3.2 a metrisable compact space X having such a property cannot be
zero-dimensional. Nevertheless, a zero-dimensional space X which is a subspace of the
reals R, and such that A(X ⊕ X) does not embed isomorphically into A(X), does exist.

These results have been proved in [15]. We shall now proceed to prove, in
Theorem 3.4, the analogous result for free topological vector spaces. The proof is very
similar to the free abelian topological group case of [15], but a little more complex.
We include the details for completeness. However, we also point out clearly for the
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first time that the proof gives rather more than the bland statement that V(X ⊕ X) does
not embed into V(X); it shows that X ⊕ X cannot be embedded homeomorphically in
V(X) in such a way that it is a Hamel basis for the vector subspace it spans. This
allows the result to be extended to L(X) and Lp(X).

Lemma 3.3. Let α : M → V(X) be a homeomorphic embedding, where:

(a) M ⊆ X and both X and M are Cook continua; or
(b) X is a rigid Bernstein set and M is an uncountable Gδ-subset of X.

Then in case (a) there exists a Cook continuum M1 ⊆ M and in case (b) there exists an
uncountable Gδ-subset M1 of M, such that the following hold.

(i) For some n ∈ N, α(M1) ⊆ SPn(X) \ SPn−1(X).
(ii) α(M1) ⊆ V1U1 + V2U2 + · · · + VnUn, where the latter set V1U1 + · · · + VnUn is a

fixed member of the basis B, as in the notation of Theorem 1.17.
(iii) For precisely one i ∈ {1, 2, . . . , n} and all x ∈ M1, we have xi(x) = x, where

α(x) = λ1(x)x1(x) + λ2(x)x2(x) + · · · + λn(x)xn(x) ∈ V1U1 + V2U2 + · · · + VnUn.
Without loss of generality one can assume that this is the case for i = 1.

(iv) For each i ∈ {2, . . . , n}, there exists an element zi ∈ X such that, for all x ∈ M1,
we have xi(x) = zi.

(v) Denote by T the vector subspace sp{z2, z3, . . . , zn} ⊂ V(X), where all zi are fixed
by the previous item (iv). Then, for all x ∈ M1, there is a real number λ(x) and
an element t(x) ∈ T such that α(x) = λ(x)x + t(x).

Proof. Case (a). By Corollary 1.13, as α(M) is compact, we can choose the
smallest natural number n such that α(M) ⊂ SPn(X). Define the set Wn ⊂ M as
Wn = α−1(α(M) ∩ (SPn(X) \ SPn−1(X))). Since α(M) ∩ (SPn(X) \ SPn−1(X)) is an open
subspace of the connected compact space α(M), the set Wn is uncountable and open
in M. Further, consider the open cover of Wn by the sets Wn ∩ α−1(α(M) ∩ U), where
U ∈ B, as in the notation of Theorem 1.17. As Wn is a separable metrisable space, this
cover has a countable subcover. Since Wn is uncountable, at least one member G of
the subcover must also be uncountable. So G is a nontrivial open subset of the Cook
continuum M.

By Corollary 1.24, there exists a subspace M1 of G ⊆ M such that M1 is a Cook
continuum. Clearly, (i) and (ii) are true, namely, α(M1) ⊂ U ∩ (SPn(X) \ SPn−1(X))
and U = V1U1 + V2U2 + · · · + VnUn ∈ B.

Let φ j : V1U1 + V2U2 + · · · + VnUn → X, for each j ∈ {1, 2, . . . , n}, be defined by
the following rule: if x = λ1x1 + λ2x2 + · · · + λnxn ∈ V1U1 + V2U2 + · · · + VnUn, then
φ j(x) = x j. Then every composition map φ j ◦ α �M1 : M1 → X is a continuous map of
the Cook continuum M1 ⊆ X into X, where α �M1 is the restriction of α to M1.

Since M1 is a Cook continuum, each φ j ◦ α �M1 is either the identity map or a
constant map. Further, as α is a homeomorphism, so too α �M1 is a homeomorphism
of M1 onto its image. Thus, not all φ j ◦ α �M1 can be constant maps. As the open
neighbourhoods Ui are assumed to be disjoint, we conclude that φi ◦ α �M1 is the
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identity map, that is, xi(x) = x for all x ∈ M1, for precisely one i ∈ {1,2, . . . ,n}. Without
loss of generality, one can assume that i = 1. So x1(x) = x for all x ∈ M1. This
proves (iii).

Now, for each j ∈ {2, . . . , n}, φ j ◦ α �M1 (M1) = {z j} for some fixed z j ∈ X. This
proves (iv). Finally, α(x) = λ1(x)x + λ2(x)z2 + · · · + λn(x)zn = λ(x)x + t(x), where
λ(x) = λ1(x), t(x) ∈ T . Thus, we obtain (v), which completes the proof of the Lemma
in case (a).

Case (b). For each n ∈ N, consider Wn = α−1(α(M) ∩ (SPn(X) \ SPn−1(X))). The set
Wn can be expressed as the difference of two closed subsets in a separable metrisable
set. Therefore, every Wn is a Gδ-subset of M.

Since M is uncountable, we can choose n such that Wn is uncountable. Exactly as
in case (a) we find an open uncountable G ⊆ Wn such that α(G) is contained in some
U ∈ B.

Now the finite collection of continuous functions φ j ◦ α �G: G→ X, j ∈ {1, 2, . . . , n}
is correctly defined. Therefore, by Proposition 1.25, there exists an uncountable Gδ-
subset M1 of G ⊆ M such that every φ j ◦ α �M1 is either the identity map or a constant
map. It is easy to see that (i) and (ii) are true, and we complete the proof of (iii)
exactly as in case (a). Items (iv) and (v) also can be proved without any change in the
arguments, which finishes the proof of the Lemma in case (b). �

Theorem 3.4. Let X be either a Cook continuum or a rigid Bernstein set. Then the
free topological vector space V(X ⊕ X) is not isomorphic as a topological vector
space to a vector subspace of V(X). Indeed, the topological space X ⊕ X cannot be
homeomorphically embedded inV(X) such that it is a Hamel basis for the vector space
it spans.

Proof. Consider case (a): X is a Cook continuum; case (b): X is a rigid Bernstein set.
In both cases let Y ′ and Y ′′ be two copies of the space X and denote by h′ : X→ Y ′ and
h′′ : X→ Y ′′ the witnessing homeomorphisms. Assume that Z = Y ′ ∪ Y ′′ is a subspace
of V(X) with Y ′ ∩ Y ′′ = ∅: that is, Z is homeomorphic to the free sum X ⊕ X. We shall
prove that Z is not a Hamel basis for the vector subspace of V(X) that it generates.

Firstly, we apply Lemma 3.3 with M = X. So there are:

• a natural number n and a Cook continuum M1 ⊆ M (in case (a)); and
• an uncountable Gδ-subset M1 of M (in case (b));

such that, for all x ∈ M1, h′(x) = λ(x)x + t(x), where λ(x) is a real number, and t(x) ∈ T .
Note that T is a fixed n − 1-dimensional vector subspace of V(X).

Next we apply Lemma 3.3, with M = M1. So there are

• a natural number k and a Cook continuum M2 ⊆ M1 (case (a));
• an uncountable Gδ-subset M2 of M1 (case (b))

such that, for all x ∈ M2, h′′(x) = γ(x)x + q(x), where γ(x) is a real number and
q(x) ∈ Q. Here Q is a fixed (k − 1)-dimensional vector subspace of V(X). Denote
also by S the vector subspace T + Q of V(X). Then dim S ≤ n + k − 2.
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Let m be any point in M2. Put w′ = h′(m) ∈ sp(Y ′), w′′ = h′′(m) ∈ sp(Y ′′).
Then γ(m)w′ − λ(m)w′′ = γ(m)λ(m)m + γ(m)t(m) − λ(m)γ(m)m − λ(m)q(m) =

γ(m)t(m) − λ(m)q(m). Thus, s = γ(m)w′ − λ(m)w′′ ∈ S . Now we take at least n + k − 1
distinct points m1,m2, . . . ,mD in M2. Put w′i = h′(mi) ∈ sp(Y ′), w′′i = h′′(mi) ∈ sp(Y ′′)
for each i = 1, 2, . . . , D. Then we obtain D distinct points si = γ(mi)w′i − λ(mi)w′′i
in the vector subspace S . Since D ≥ dim S + 1, we conclude that the elements
{si : i = 1, 2, . . . ,D} are not linearly independent.

Therefore, the elements w′1,w
′′
1 , . . . ,w

′
D,w

′′
D are not linearly independent as well.

But all w′1,w
′′
1 , . . . ,w

′
D,w

′′
D are distinct points in Z = Y ′ ∪ Y ′′. Hence Z is not a Hamel

basis for the vector subspace that it spans. So sp(Y ′ ∪ Y ′′) is not isomorphic as a
topological vector space to V(Y ′ ⊕ Y ′′). �

We note that Theorem 3.4 says more than V(X ⊕ X) is not isomorphic as a
topological vector space to a vector subspace of V(X). It says that any topological
vector space which has the topological space X ⊕ X as a Hamel basis is not isomorphic
as a topological vector space to a vector subspace of V(X).

As a corollary to Theorem 3.4 and its proof we obtain the following strengthening
of the result from [15].

Theorem 3.5. Let X be either a Cook continuum or a rigid Bernstein set. Then
L(X ⊕ X) is not isomorphic as a topological vector space to a vector subspace of L(X)
and Lp(X ⊕ X) is not isomorphic as a topological vector space to a vector subspace of
Lp(X). Indeed the topological space X ⊕ X cannot be homeomorphically embedded in
L(X) or Lp(X) in such a way that it is a Hamel basis for the vector space it spans.
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