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On Dirichlet Spaces With a Class of
Superharmonic Weights

Guanlong Bao, Nihat Gökhan Göğüş, and Stamatis Pouliasis

Abstract. In this paper, we investigate Dirichlet spaces Dµ with superharmonic weights induced
by positive Borel measures µ on the open unit disk. We establish the Alexander–Taylor–Ullman
inequality for Dµ spaces and we characterize the cases where equality occurs. We deûne a class of
weightedHardy spaces H2

µ via the balayage of themeasure µ. We show thatDµ is equal to H2
µ if and

only if µ is a Carleson measure for Dµ . As an application, we obtain the reproducing kernel ofDµ
when µ is an inûnite sum of point-mass measures. We consider the boundary behavior and inner-
outer factorization of functions in Dµ . We also characterize the boundedness and compactness of
composition operators on Dµ .

1 Introduction

LetD be the open unit disk in the complex planeC. Denote byH(D) the space of ana-
lytic functions onD. Let ν be a positive Borel measure on the unit circleT. Motivated
by the study of cyclic analytic two-isometries, S. Richter [28] introduced Dirichlet
spaces D(ν) with harmonic weights. Namely, the space D(ν) consists of functions
f ∈ H(D) with ∫D ∣ f ′(z)∣2Pν(z) dA(z) <∞, where dA denotes the areameasure on
D and

Pν(z) = ∫
T

1 − ∣z∣2

∣ζ − z∣2
dν(ζ)

is a positive harmonic function on D. _e theory of D(ν) spaces attracted much
attention and has been very well developed in recent years. We refer to the recent
monograph [15] for a general exposition on D(ν) spaces.
A. Aleman [3] introduced Dirichlet spaces with superharmonic weights. By the

Riesz decomposition theorem [6, p. 105–106], for every positive superharmonic func-
tion ω on D, there are positive Borel measures µ (the Riesz measure of ω) on D and
ν on T such that ω is equal to the sum of the Green potential of µ and the Poisson
integral of ν. More speciûcally,

ω(z) = ∫
D
log ∣

1 −wz
z −w

∣ dµ(w) + ∫
T

1 − ∣z∣2

∣ζ − z∣2
dν(ζ) ∶= Uµ(z) + Pν(z).

A function f ∈ H(D) belongs to the Dirichlet space Dω induced by the positive su-
perharmonic function ω if ∫D ∣ f ′(z)∣2ω(z) dA(z) < +∞. (See A. Aleman [3] for the
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general theory ofDω spaces.) Recently,Dω was identiûed [14] as de Branges–Rovnyak
spaces with equal norms, for certain weights ω. For more results on Dω spaces, see
[12,33,34].

It is well known [3, 14] that Dω spaces are always subsets of the Hardy space H2.
Recall that theHardy space H2 is the class of analytic functions f (z) = ∑+∞n=0 anzn on
D such that ∥ f ∥2

H2 = ∑
+∞
n=0 ∣an ∣

2 < +∞. It is well known that the norm in H2 can be
expressed via an area integral in the following way:

∥ f ∥2
H2 = ∣ f (0)∣2 + 2

π ∫D
∣ f ′(z)∣2 log 1

∣z∣
dA(z).

_e theory ofDω depends only on the corresponding weighted functions Uµ and
Pν . As previously mentioned, Dirichlet spaces D(ν) with harmonic weights Pν have
been studied extensively. _e aim of this paper is to focus on Dirichlet spaces with
superharmonic weights Uµ induced by positive Borel measures µ on D. Namely, we
investigate the spaceDµ consisting of functions f ∈ H(D) with

∫
D
∣ f ′(z)∣2Uµ(z) dA(z) < +∞.

A normonDµ can be deûned by ∥ f ∥2
Dµ

= ∥ f ∥2
H2 +

2
π ∫D ∣ f ′(z)∣2Uµ(z) dA(z). Equip-

ped with this norm,Dµ is a Hilbert space. It is well known (see [6, p. 98]) that Uµ /≡

+∞ if and only if

(1.1) ∫
D
(1 − ∣z∣) dµ(z) < +∞.

_us, throughout this paper, we always assume that µ satisûes condition (1.1). It is
worth mentioning that Dµ spaces include radial Dirichlet spaces Dω , where ω(z) =
K(∣z∣) and K is a decreasing concave positive function on [0, 1)with limx→1 K(x) = 0
(see §5). Of course, there exists a Dµ that is not equal to any radial Dirichlet space
(see Corollary 5.6).

_e paper is organized as follows. In Section 2we establish the Alexander–Taylor–
Ullman inequality for Dµ spaces. It means that the norm of every function f in Dµ
is dominated by the product of the area of the image of f and the total mass µ(D) of
µ. We also describe the cases where equality holds in the Alexander–Taylor–Ullman
inequality for Dµ . Note that Dµ spaces are always subsets of H2. _en it is natural
to ask if someDµ can be identiûed as weightedHardy spaces with equivalent norms.
For this purpose, in Section 3 we deûne the weightedHardy space H2

µ induced by the
balayage of µ and we show that Dµ = H2

µ if and only if µ is a Carleson measure for
Dµ . As an application, we obtain the reproducing kernels ofDµ spaces when µ is an
inûnite sum of point-mass measures. In Section 4 we consider the boundary behav-
ior and inner-outer factorization of functions in Dµ spaces. In the last section, we
characterize the boundedness and the compactness of composition operators on Dµ
spaces. We use two equivalent conditions to describe the boundedness of composi-
tion operators onDµ spaces. In general, one of the two corresponding conditions for
D(ν) spaces with harmonic weights cannot be used to describe the boundedness of
composition operators on D(ν) [31, p. 447].

In this paper,wewillwrite a ≲ b if there exists a constant C such that a ≤ Cb. Also,
the symbol a ≈ b means that a ≲ b ≲ a.
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2 The Alexander–Taylor–Ullman Inequality for Dµ Spaces

In this section, we establish the Alexander–Taylor–Ullman inequality for Dµ spaces
and we characterize the cases where equality holds.

H.Alexander, B.A.Taylor, and J. L.Ullman [5] showed that the normof a function
f in H2 is dominated by the area of the image of f . Namely, if f ∈ H2 with f (0) = 0,
then

(2.1) ∥ f ∥2
H2 ≤

A( f (D))

π
.

Later, H. Alexander and R. Osserman [4] proved that the equality in (2.1) holds if
and only if f is of the form f = CI, where C is a complex constant and I is an inner
function with I(0) = 0. Here we recall that a bounded analytic function g on D is
called inner if ∣g(ζ)∣ = 1 for almost every ζ ∈ T.

_e Alexander–Taylor–Ullman inequality (2.1) for H2 attracted much attention
andmanydiòerentproofswere given[9,21,30,36]. Note thatDµ spaces are always sub-
sets of H2. _e purpose of this section is to consider the Alexander–Taylor–Ullman
inequality for Dµ spaces.

We will denote by GΩ the Green function of a Greenian domain Ω ⊆ C, that is, a
domain having aGreen function [6, p. 89]. Let f be a non-constant analytic function
on a Greenian domain Ω such that f (Ω) is Greenian. We will denote by m(a) the
multiplicity of the zero of f (z) − f (a) at a ∈ Ω and by v(y) = ∑ f (a)=y m(a) the
valency of f at y ∈ f (Ω). _e following inequality is known as the Lindelöf Principle

G f (Ω)(y0 , f (z)) ≥ ∑
f (a)=y0

m(a)GΩ(a, z),

where z ∈ Ω and y0 ∈ f (Ω). It is well known [23, _eorem 2.5] that if f ∶D → D is
an inner function, then the equality holds in the Lindelöf Principle for every y0 ∈ D
except on a set of zero logarithmic capacity. See [9] for a complete characterization of
the equality cases in the Lindelöf Principle.
Denote by δa the unit point-mass measure at a ∈ D. We obtain the Alexander–

Taylor–Ullman inequality for Dµ spaces as follows.

_eorem 2.1 Let µ be a ûnite positive Borel measure on D and let f ∈Dµ . _en

(2.2)
2
π ∫D

∣ f ′(z)∣2Uµ(z) dA(z) ≤
µ(D)A( f (D))

π
.

Also, if f (0) = 0, then

(2.3) ∥ f ∥2
Dµ ≤ (1 + µ(D))

A( f (D))

π
and the equality holds in (2.3) if and only if themeasure µ is of the form

µ = a0δ0 +
+∞
∑
n=1
anδzn , an > 0, zn ∈ D,

and f is of the form f = cϕ,where c ∈ C and ϕ is an inner functionwith ϕ(0) = ϕ(zn) =
0 for every n ∈ N.
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Proof From the change of variables formula [2, p. 98] and Lindelöf ’s principle, we
have that for every w ∈ D,

∫
D
GD(z,w)∣ f ′(z)∣2 dA(z) = ∫

f (D)
∑

f (a)=x
GD(a,w) dA(x)

≤ ∫
f (D)

G f (D)(x , f (w)) dA(x).

Also, it is well known ([9, p. 104] or [21, p. 752]) that for every w ∈ D,

∫
f (D)

G f (D)(x , f (w)) dA(x) ≤ 1
2
A( f (D)).

_erefore,
2
π ∫D

∣ f ′(z)∣2Uµ(z) dA(z) =
2
π ∫D ∫D

∣ f ′(z)∣2GD(z,w) dA(z)dµ(w)

≤
2
π ∫D

1
2
A( f (D)) dµ(w)

=
µ(D)A( f (D))

π
,

and (2.2) is proved. _e inequality (2.3) then follows from the inequalities (2.1) and
(2.2).

Suppose that f (0) = 0. _en the equality holds in (2.3) if and only if equalities
hold in (2.1) and (2.2). _e equality in (2.1) holds if and only if f = cϕ, where c ∈ C
and ϕ is an inner function with ϕ(0) = 0 [4]. _e least harmonic majorant of the
subharmonic function ∣ϕ∣2 on D is

hϕ(z) =
1
2π ∫T

1 − ∣z∣2

∣ζ − z∣2
∣ϕ(ζ)∣2∣ dζ ∣ = 1

2π ∫T
1 − ∣z∣2

∣ζ − z∣2
∣dζ ∣ = 1, z ∈ D.

From the Riesz decomposition theorem we obtain that
1
2π ∫D

GD(z,w)∣ϕ′(z)∣2 dA(z) = 1 − ∣ϕ(w)∣
2 , w ∈ D.

_erefore,
2
π ∫D

∣cϕ′(z)∣2Uµ(z) dA(z) = ∣c∣2 2
π ∫D ∫D

∣ϕ′(z)∣2GD(z,w) dA(z)dµ(w)

= ∣c∣2 ∫
D
1 − ∣ϕ(w)∣

2 dµ(w).

Also, since D ∖ ϕ(D) has zero logarithmic capacity [23,_eorem 2.5], we have

A(cϕ(D)) = A(cD) = ∣c∣2π.

_erefore, the equality in (2.2) holds for f = cϕ if and only if ∫D ∣ϕ(w)∣2 dµ(w) = 0,
which holds if and only if ϕ = 0 µ-almost everywhere. Since the zeros of ϕ are isolated,
the above equality holds if and only if µ is of the form

µ = a0δ0 +
+∞
∑
n=1
anδzn , an > 0, zn ∈ D,

and the inner function ϕ satisûes ϕ(0) = ϕ(zn) = 0, for every n ∈ N.
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From _eorem 2.1 it follows that if f is an analytic function onD with A( f (D)) <

∞, then f ∈Dµ for every ûnite positive Borel measure µ. We point out that this is not
true for some Dµ where µ is inûnite. For example, let Dω be the weighted Dirichlet
space corresponding to the superharmonic function ω(z) = (1− ∣z∣2)p , p ∈ (0, 1) and
note that ω(z) = Uµω , where dµω(z) = −∆ω(z)dA(z) (see [2, p. 99]) and ∆ denotes
the Laplace operator. Let f (z) = ∑

∞
n=0 anzn ∈ H(D). _en, by [38, p. 23], f ∈ Dω

if and only if ∑∞n=0(n + 1)1−p ∣an ∣
2 < ∞. _erefore, for g(z) = ∑∞n=0 n−2z2n

, we have
that g /∈ Dω , while A(g(D)) <∞, since g is a bounded analytic function on D. _is
happens because µω(D) = − ∫D ∆ω(z) dA(z) =∞.

3 Dµ Spaces and a Class of Weighted Hardy Spaces

SinceDµ spaces are always subsets of theHardy space H2, it is natural to ask if some
Dirichlet spaces Dµ are equal to certain weighted Hardy spaces. In this section, we
give a positive answer to this question. We deûne a class ofweightedHardy spaces H2

µ
via the balayage of ûnite positive Borelmeasures µ onD. We show thatDµ = H2

µ if and
only if µ is a Carlesonmeasure forDµ . Applying this relation,we give the reproducing
kernel ofDµ when µ is an inûnite sum of point-mass measures. Ameasure µ0 is also
constructed such that Dµ0 = H2

µ0 andDµ0 /= H2.

3.1 A Class of Weighted Hardy Spaces

In this subsection,we deûneweightedHardy spaces H2
µ via the balayage of ûnite posi-

tive Borel measures µ onD andwe considerCarlesonmeasures for H2
µ spaces. Before

doing that, we recall the balayage of µ and outer functions for H2 as follows.
Let µ be a ûnite positive Borel measure on D. _e balayage of µ is the function

Sµ(ζ) =
1
2π ∫D

1 − ∣z∣2

∣ζ − z∣2
dµ(z), ζ ∈ T.

From Fubini’s theorem it follows that

(3.1) ∫
T
Sµ(ζ) ∣dζ ∣ = µ(D) < +∞.

Let r ∈ (0, 1) with µ(rD) > 0, where rD = {z ∈ D ∶ ∣z∣ < r}. _en

(3.2) Sµ(ζ) ≥
1
2π ∫rD

1 − ∣z∣2

∣ζ − z∣2
dµ(z) ≥ 1 − r

2π(1 + r)
µ(rD) > 0,

for every ζ ∈ T. From Fatou’s Lemma, we have Sµ(ζ) ≤ lim inf ζn→ζ Sµ(ζn) for every
sequence {ζn} ⊆ T converging to a point ζ ∈ T. _us, Sµ is a positive lower semi-
continuous function on T such that Sµ ∈ L1(T). In fact, by [18, 26], we see that for
every lower semicontinuous function ϕ on T such that ϕ ∈ L1(T) and ϕ > c for some
constant c > 0, there exists a ûnitemeasure µ on D such that ϕ = Sµ on T.
An outer function for theHardy space H2 is a function of the form

O(z) = η exp(∫
T

ζ + z
ζ − z

logψ(ζ) ∣dζ ∣
2π

) , η ∈ T,
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where ψ > 0 almost everywhere on T, logψ ∈ L1(T), and ψ ∈ L2(T). See [13] for the
theory of outer functions. By (3.1) and (3.2),

Oµ(z) = exp(∫
T

ζ + z
ζ − z

log
1

√
Sµ(ζ)

∣dζ ∣
2π

) , z ∈ D,

is an outer function for H2 with ∣Oµ(ζ)∣ = 1/
√

Sµ(ζ), a.e. ζ ∈ T.
Now we are ready to deûne a class of weighted Hardy spaces H2

µ . Let N+ denote
the well-known subset of the Nevanlinna class in [13]. Namely N+ is the space of
functions f ∈ H(D) such that

lim
r→1 ∫T

log+ ∣ f (rζ)∣ ∣dζ ∣ = ∫
T
log+ ∣ f (ζ)∣ ∣dζ ∣.

Note that every f ∈ N+ has nontangential limit f (ζ) for almost every ζ ∈ T. _e
weightedHardy spaceH2

µ corresponding to a ûnitepositive Borelmeasure µ isdeûned
by H2

µ = { f ∈ N+ ∶ ∫T ∣ f (ζ)∣2Sµ(ζ) ∣dζ ∣ < +∞}. Equipped with the norm

∥ f ∥2
H2

µ
= ∫

T
∣ f (ζ)∣2Sµ(ζ) ∣dζ ∣,

H2
µ is aHilbert space. It is well known [10, p. 68] that, if

OµH2
= {Oµ f ∶ f ∈ H2

},

then H2
µ = OµH2 and ∥Oµ f ∥H2

µ
= ∥ f ∥H2 for every f ∈ H2. Note that Oµ is a bounded

function onD. Clearly,H2
µ ⊆ H2. If ν is a (possibly inûnite) positive Borel measure on

D, it follows from Littlewood’s theorem [16, p. 94] that limr→1 Uν(rζ) = 0 for almost
every ζ ∈ T. For ûnite positive Borel measures µ such that the above limit is zero
everywhere on T, the space H2

µ coincideswith the space introduced by E.A. Poletsky
and M. I. Stessin [27] via plurisubharmonic exhaustion functions on hyperconvex
domains in Cn (see also [1,29,35]).

Let X be a Hilbert space of analytic functions on D. A positive Borel measure
ν on D is a Carleson measure for X if there exists a positive constant C such that
∥ f ∥L2(ν) ≤ C∥ f ∥X for all f ∈ X. Carleson measures for H2 have been characterized
by L. Carleson via a geometric condition (see [13, p. 157] or [16, p. 31]). For every
arc I ⊆ T let S(I) = {re iθ ∈ D ∶ e iθ ∈ I, 1 − ℓ(I)

2π < r < 1} be the corresponding
Carleson box, where ℓ(I) is the length of the arc I. _en ν is a Carleson measure
for H2 if and only if there exists a positive constant C such that ν(S(I)) ≤ Cℓ(I) for
every arc I ⊆ T. Using the representation H2

µ = OµH2, we obtain a characterization
of Carleson measures for H2

µ . In the next subsection, we will show that some Dµ
spaces are equal to H2

µ . _e following theorem also characterizes Carleson measures
for someDµ spaces (see Corollary 3.5).

_eorem 3.1 Let ν be a positive Borel measure on D. _en ν is a Carleson measure
for H2

µ if and only if ∣Oµ ∣
2dν is a Carleson measure for H2, that is, if and only if there

exists C > 0 such that ∫S(I) ∣Oµ ∣
2 dν ≤ Cℓ(I), for every arc I ⊆ T.

Proof We have that ν is a Carleson measure for H2
µ if and only if there exists a con-

stant C > 0 such that (∫D ∣ f ∣2 dν) 1/2
≤ C∥ f ∥H2

µ
, for every f ∈ H2

µ . From the equality
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H2
µ = OµH2 and the norm equality ∥Oµ f ∥H2

µ
= ∥ f ∥H2 , f ∈ H2, we obtain that the

above condition is equivalent with the condition (∫D ∣g∣2∣Oµ ∣
2 dν) 1/2

≤ C∥g∥H2 , for
every g ∈ H2, which is true if and only if ∣Oµ ∣

2dν is a Carleson measure for H2.

From the inequality

∥ f ∥2
H2

µ
= ∫

T
∣ f (ζ)∣2Sµ(ζ) ∣dζ ∣ ≥ ( inf

ζ∈T
Sµ(ζ))∥ f ∥H2 , f ∈ H2

µ ,

it follows that every Carleson measure for H2 is Carleson measure for H2
µ . _e con-

verse is not true. In order to give counterexamples, we will use the following the-
orem [17]. A sequence {zn} ⊆ D is called an interpolating sequence if, for every
bounded sequence {an}, there exists a bounded holomorphic function f on D such
that f (zn) = an , n ∈ N. Equivalently (see [13, p. 149] or [16, p. 278]), {zn} ⊆ D is an
interpolating sequence if and only if there exists δ > 0 such that

inf
k∈N ∏

n∈N∖{k}
∣
zn − zk
1 − zkzn

∣ ≥ δ.

It is well known [16, p. 278] that if {zn} ⊆ D is an interpolating sequence, then the
measure µ = ∑

+∞
n=1(1 − ∣zn ∣2)δzn is a Carleson measure for H2. For C > 0, γ ≥ 1, and

ξ ∈ T, let R(C , γ, ξ) = {z ∈ D ∶ ∣1 − ξz∣γ < C(1 − ∣z∣2)}.

_eorem 3.2 ([17, _eorems 4 and 5]) Let γ ≥ 2. _en there exist C > 0 and an
interpolating sequence {zn} contained in R(C , γ, 1) such that

+∞
∑
n=1

(1 − ∣zn ∣2)β < +∞, β ∈ ( 1 −
1
γ
,+∞)

and
+∞
∑
n=1

(1 − ∣zn ∣2)1− 1
γ = +∞.

As mentioned before, by [18,26], there exists a ûnite positive Borel measure µα on
D such that Sµα(ζ) = 1

∣1−ζ∣2α ∈ L1(T), α ∈ (0, 1/2). Note that ∣Oµα(z)∣ = ∣1− z∣α . In the
following propositionwe provide a family ofmeasures that are notCarlesonmeasures
for H2, while they are Carleson measures for H2

µα .

Proposition 3.3 Suppose that R(C , γ, 1) is as in _eorem 3.2. Let {zn} ⊆ R(C , γ, 1)
be an interpolating sequence satisfying

+∞
∑
n=1

(1 − ∣zn ∣2)1− 1
γ = +∞.

Consider themeasure λ = ∑∞n=1(1 − ∣zn ∣2)βδzn , β > 0. _en
(i) λ is not a Carleson measure for H2 for every β ∈ (1 − 1

γ , 1).
(ii) λ is a Carleson measure for H2

µα for every β ∈ [1 − 2α
γ , 1).
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Proof (i) Suppose that, for some 0 < є < 1
γ and β = 1− є, λ is a Carleson measure for

H2. Choose any α ∈ (
1−γє

2 , 1
2 ). Since {zn} ⊆ R(C , γ, 1) and 2α > 1 − γє, we have

∣1 − zn ∣2α ≤ ∣1 − zn ∣1−γє
≤ C

1
γ −є(1 − ∣zn ∣2)

1
γ −є .

Consider themeasure ν = ∑∞n=1(1 − ∣zn ∣2)1− 1
γ δzn . _en

∫
S(I)

∣Oµα(z)∣
2 dν = ∑

zn∈S(I)
∣1 − zn ∣2α(1 − ∣zn ∣2)1− 1

γ

≤ C
1
γ −є ∑

zn∈S(I)
(1 − ∣zn ∣2)1−є

= C
1
γ −єλ(S(I))

≲ C
1
γ −єℓ(I),

for every arc I ⊆ T, since λ is assumed to be a Carleson measure for H2. _erefore,
∣Oµα(z)∣2dν is a Carleson measure for H2 and from _eorem 3.1 we obtain that ν is a
Carleson measure for H2

µα . But ∥1∥H2
µα
= (∫T Sµα(ζ) ∣dζ ∣)1/2 < +∞, while

(∫
D
∣1∣2 dν)

1
2
= (

+∞
∑
n=1

(1 − ∣zn ∣2)1− 1
γ )

1
2
= +∞,

which contradicts the fact that ν is a Carleson measure for H2
µα . We obtain that λ is

not a Carlesonmeasure for H2 for β = 1−є. _erefore λ is not a Carlesonmeasure for
H2 for every β ∈ (1 − 1

γ , 1 − є). Since є can be arbitrary small, the conclusion follows.

(ii) Since {zn} ⊆ R(C , γ, 1), one gets that ∣1 − zn ∣2α ≤ C
2α
γ (1 − ∣zn ∣2)

2α
γ . Since {zn}

is an interpolating sequence, the measure ∑+∞n=1(1 − ∣zn ∣2)δzn is a Carleson measure
for H2. Note that 2α

γ + β ≥ 1. We deduce that

∫
S(I)

∣Oµα(z)∣
2 dλ = ∑

zn∈S(I)
∣1 − zn ∣2α(1 − ∣zn ∣2)β ≤ C

2α
γ ∑

zn∈S(I)
(1 − ∣zn ∣2)

2α
γ +β

≤ C
2α
γ ∑

zn∈S(I)
(1 − ∣zn ∣2) ≲ C

2α
γ ℓ(I),

for every arc I ⊆ T. _erefore, ∣Oµα(z)∣2dλ is a Carleson measure for H2 and from
_eorem 3.1weobtain that λ is aCarlesonmeasure forH2

µα for every β ∈ [1− 2α
γ , 1).

3.2 Dµ and H2
µ Spaces

In this subsection, we show that the equality Dµ = H2
µ holds if and only if µ is a

Carleson measure for Dµ . Using the relation, we compute the reproducing kernel of
Dµ when µ is an inûnite sum of point-mass measures on D.

_eorem 3.4 Let µ be a ûnite positive Borel measure on D. _en H2
µ = Dµ ∩ L2(µ)

and ∥ f ∥2
Dµ

= ∥ f ∥2
H2 + ∥ f ∥2

H2
µ
− ∥ f ∥2

L2(µ), for every f ∈ H2
µ . _e equality H2

µ =Dµ holds
if and only if µ is a Carleson measure for Dµ ; in this case, the norms ∥ ⋅ ∥Dµ and ∥ ⋅ ∥H2

µ

are equivalent.
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Proof Let f ∈ H2 and note that ∆∣ f (z)∣2 = 4∣ f ′(z)∣2, z ∈ D. It is well known [13, p.
28] that the least harmonic majorant of the subharmonic function ∣ f ∣2 on D is the
function

h f (z) =
1
2π ∫T

1 − ∣z∣2

∣ζ − z∣2
∣ f (ζ)∣2 ∣dζ ∣, z ∈ D.

From the Riesz decomposition theorem [6, p. 105–106] we obtain that

∣ f (z)∣2 = h f (z) −
1
2π ∫D

log∣
1 −wz
z −w

∣∆∣ f (w)∣
2 dA(w)(3.3)

= h f (z) −
2
π ∫D

log∣
1 −wz
z −w

∣ ∣ f ′(w)∣
2 dA(w).

From the above equality and Fubini’s theorem we obtain that

∫
T
∣ f (ζ)∣2Sµ(ζ)∣dζ ∣ = ∫

T
∣ f (ζ)∣2 1

2π ∫D
1 − ∣z∣2

∣ζ − z∣2
dµ(z)∣dζ ∣ = ∫

D
h f (z) dµ(z)

= ∫
D
∣ f (z)∣2 dµ(z)

+ ∫
D

2
π ∫D

log∣
1 −wz
z −w

∣ ∣ f ′(w)∣
2 dA(w)dµ(z)

= ∫
D
∣ f (z)∣2 dµ(z) + 2

π ∫D
∣ f ′(w)∣

2Uµ(w) dA(w).

_is implies that for every f ∈ H2
µ ,

∥ f ∥2
Dµ = ∥ f ∥2

H2 +
2
π ∫D

∣ f ′(z)∣2Uµ(z) dA(z)

= ∥ f ∥2
H2 + ∥ f ∥2

H2
µ
− ∥ f ∥2

L2(µ) ,

and H2
µ =Dµ ∩ L2(µ). _e equality H2

µ =Dµ holds if and only ifDµ ⊆ L2(µ). By the
closed graph theorem, Dµ ⊆ L2(µ) holds if and only if µ is a Carleson measure for
Dµ . _us the equality H2

µ = Dµ holds if and only if µ is a Carleson measure for Dµ .
In this case, by the closed graph theorem again, we obtain that the norms ∥ ⋅ ∥Dµ and
∥ ⋅ ∥H2

µ
are equivalent.

We will denote byM the family of ûnite positive Borel measures µ on D such that
Dµ = H2

µ . Equivalently, µ ∈M if and only if µ is a Carleson measure forDµ . We note
that if µ is a Carleson measure for H2, thenDµ ⊆ H2 ⊆ L2(µ) and from _eorem 3.4
we obtain that µ ∈ M. From _eorem 3.1 and _eorem 3.4 we obtain the following
corollary.

Corollary 3.5 Suppose that µ ∈ M. _en a positive measure ν on D is a Carleson
measure for Dµ if and only if ∣Oµ ∣

2dν is a Carleson measure for H2.

Applying _eorem 3.4 and following an argument of S. M. Shimorin [34, p. 281],
we compute the reproducing kernel ofDµ for certain measures µ as follows.
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_eorem 3.6 Let µ = ∑
+∞
n=1 anδzn be a ûnite positive measure on D, where zn ∈ D

and an > 0, n ∈ N. If µ ∈ M, then the reproducing kernel ofDµ for λ ∈ D with respect
to ∥ ⋅ ∥Dµ is

K(z, λ) = K0(z, λ) +
+∞
∑
n=1

anK0(z, zn)K0(zn , λ)
1 − anK0(zn , zn)

, z ∈ D,

where

K0(z, λ) =
Tµ(λ)
1 − λz

Tµ(z), z ∈ D,

Tµ(z) = exp(
1
2π ∫T

ζ + z
ζ − z

log
1

√
1 + Sµ(ζ)

∣dζ ∣) , z ∈ D.

Proof From _eorem 3.4, we see that Dµ = H2
µ and

∥ f ∥2
Dµ = ∥ f ∥2

H2 + ∥ f ∥2
H2

µ
− ∥ f ∥2

L2(µ)

= ∫
T
∣ f (ζ)∣2(1 + Sµ(ζ)) ∣dζ ∣ −

+∞
∑
n=1
an ∣ f (zn)∣2 .

For f ∈ Dµ , let ∥ f ∥2
0 = ∫T ∣ f (ζ)∣2(1 + Sµ(ζ)) ∣dζ ∣ and ∥ f ∥2

n = ∥ f ∥2
0 −∑

n
i=1 a i ∣ f (z i)∣

2.
Since ∥ f ∥2

n > ∥ f ∥2
Dµ

> 0, n ∈ N, for every f ∈Dµ ∖{0}, andDµ = H2
µ , ∥ ⋅ ∥0 and ∥ ⋅ ∥n ,

n ∈ N, deûne norms that makeDµ aHilbert space. _e reproducing kernel ofDµ for
λ ∈ D with respect to ∥ ⋅ ∥0 is [11,_eorem 3.1]

K0(z, λ) =
Tµ(λ)
1 − λz

Tµ(z), z ∈ D,

where Tµ ∈ H2 is the outer function on D such that ∣Tµ(ζ)∣ = 1/
√

1 + Sµ(ζ), ζ ∈ T,
and Tµ(0) > 0, that is,

Tµ(z) = exp(
1
2π ∫T

ζ + z
ζ − z

log
1

√
1 + Sµ(ζ)

∣dζ ∣) , z ∈ D.

_e reproducing kernel ofDµ for λ ∈ D with respect to ∥ ⋅ ∥1 is [34, p. 281]

K1(z, λ) = K0(z, λ) +
a1K0(z, z1)K0(z1 , λ)

1 − a1K0(z1 , z1)
.

Iterating the above formula and using the deûnition of the norms ∥ ⋅ ∥n ,we obtain that
the reproducing kernel ofDµ for λ ∈ D with respect to ∥ ⋅ ∥n is

Kn(z, λ) = K0(z, λ) +
n
∑
i=1

a iK0(z, z i)K0(z i , λ)
1 − a iK0(z i , z i)

.

_erefore, from the relations ∥ f ∥n+1 ≤ ∥ f ∥n , n = 0, 1, . . . and

∥ f ∥2
Dµ = ∫T

∣ f (ζ)∣2(1 + Sµ(ζ)) ∣dζ ∣ −
+∞
∑
n=1
an ∣ f (zn)∣2 = lim

n→+∞ ∥ f ∥2
n , f ∈Dµ ,
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we obtain that (see [34, Lemma 2.4] and references therein) the reproducing kernel
ofDµ for λ ∈ D with respect to ∥ ⋅ ∥Dµ is

K(z, λ) = lim
n→+∞Kn(z, λ) = K0(z, λ) +

+∞
∑
n=1

anK0(z, zn)K0(zn , λ)
1 − anK0(zn , zn)

.

_e proof is complete.

Let µ be a ûnite positive Borel measure on D. From [3, Proposition 2.6],Dµ = H2

if and only if supζ∈T Sµ(ζ) < ∞. Using this result we construct a measure µ0 such
that Dµ0 = H2

µ0 and Dµ0 /= H2. In fact, consider µ0 = ∑
∞
n=1(1 − ∣zn ∣)δzn , where

zn = 1 − 2−n . By [13,_eorem 9.2], {zn} is an interpolating sequence. Hence, µ0 is a
Carleson measure for H2. As mentioned before Corollary 3.5,M contains the family
of Carleson measures for H2. _us µ0 ∈M, that is,Dµ0 = H2

µ0 . A direct computation
gives that Sµ0(1) =∞. _erefore,Dµ0 /= H2.

4 Boundary Behavior and Inner-outer Factorization of Dµ Spaces

In this section, in light of the classical theory of the Hardy space H2, we consider
boundary behavior and inner-outer factorization of functions in Dµ spaces. It is
worth mentioning that themeasures µ in this and the next section can be inûnite.

It is well known [13] that the function f in theHardy space H2 has non-tangential
limit f (ζ) for almost every ζ on the unit circleT. One of themost essential properties
onH2 is thatH2 has an inner-outer factorization. Namely, every function f inH2 with
f /≡ 0 can be written as f = IO, where I is inner and O ∈ H2 is outer. Conversely,
such a function IO belongs to H2. Note that Dµ spaces are always subsets of H2. It is
natural to consider boundary behavior and inner-outer factorization of functions in
Dµ spaces.

_e following result gives a characterization ofDµ spaces by boundary values.

_eorem 4.1 Let f ∈ H2 and let µ be a positive Borel measure on D. _en f ∈ Dµ if
and only if

∫
D
∫
T
∫
T
∣ f (ζ) − f (η)∣2 1 − ∣z∣2

∣ζ − z∣2
1 − ∣z∣2

∣η − z∣2
∣dζ ∣ ∣dη∣dµ(z) <∞.

Proof Let f ∈ H2. From the equality (3.3), we know that

2
π ∫D

log∣
1 −wz
z −w

∣ ∣ f ′(w)∣
2 dA(w) =

1
2π ∫T

∣ f (ζ)∣2 1 − ∣z∣2

∣ζ − z∣2
∣dζ ∣ − ∣ f (z)∣2

for all z ∈ D. From [22, p. 221], one gets that

1
2π ∫T

∣ f (ζ)∣2 1 − ∣z∣2

∣ζ − z∣2
∣dζ ∣ − ∣ f (z)∣2

=
1
8π2 ∫T

∫
T
∣ f (ζ) − f (η)∣2 1 − ∣z∣2

∣ζ − z∣2
1 − ∣z∣2

∣η − z∣2
∣dζ ∣ ∣dη∣.
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Combining the above formulas and Fubini’s theorem, we see that

∫
D
∣ f ′(z)∣2Uµ(z) dA(z)

=
1

16π ∫D ∫T ∫T
∣ f (ζ) − f (η)∣2 1 − ∣z∣2

∣ζ − z∣2
1 − ∣z∣2

∣η − z∣2
∣dζ ∣ ∣dη∣dµ(z).

_e conclusion follows.

Checking the proof of _eorem 4.1, we get the following result immediately. See
[2, p. 99] for the same characterization of some radial Dirichlet spaces.

Proposition 4.2 Let f ∈ H2 and let µ be a positive Borel measure onD. _en f ∈Dµ
if and only if

∫
D
(

1
2π ∫T

∣ f (ζ)∣2 1 − ∣w∣2

∣ζ −w∣2
∣dζ ∣ − ∣ f (w)∣

2
) dµ(w) <∞.

Applying the above characterization ofDµ , we obtain the following description of
Dµ spaces via inner-outer factorization. See [8] for recent results related to inner-
outer factorization of functions in a class ofMöbius invariant spaces.

_eorem 4.3 Let µ be a positive Borel measure onD and let f ∈ H2 with f /≡ 0. _en
f ∈Dµ if and only if f = IO, where I is an inner function and O is an outer function in
Dµ for which

(4.1) ∫
D
∣O(w)∣

2
(1 − ∣I(w)∣

2
) dµ(w) <∞.

Proof Let f ∈ Dµ . Since f /≡ 0, f must be of the form IO, where I is an inner
function and O is an outer function for H2. Note that ∣I(z)∣ ≤ 1 for all z ∈ D and
∣I(ζ)∣ = 1 for almost every ζ ∈ T. _is together with Proposition 4.2 give that

∫
D
(

1
2π ∫T

∣O(ζ)∣2 1 − ∣w∣2

∣ζ −w∣2
∣dζ ∣ − ∣O(w)∣

2
) dµ(w)

≤ ∫
D
(

1
2π ∫T

∣O(ζ)∣2 1 − ∣w∣2

∣ζ −w∣2
∣dζ ∣ − ∣I(w)O(w)∣

2
) dµ(w) <∞.

By Proposition 4.2 again, one gets O ∈Dµ . Furthermore,

∫
D
∣O(w)∣

2
(1 − ∣I(w)∣

2
) dµ(w)

= ∫
D
(

1
2π ∫T

∣O(ζ)∣2 1 − ∣w∣2

∣ζ −w∣2
∣dζ ∣ − ∣I(w)O(w)∣

2
) dµ(w)

− ∫
D
(

1
2π ∫T

∣O(ζ)∣2 1 − ∣w∣2

∣ζ −w∣2
∣dζ ∣ − ∣O(w)∣

2
) dµ(w)

<∞.
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On the other hand, let O ∈Dµ and let (4.1) hold. Using Proposition 4.2, we obtain
that

∫
D
(

1
2π ∫T

∣O(ζ)∣2 1 − ∣w∣2

∣ζ −w∣2
∣dζ ∣ − ∣I(w)O(w)∣

2
) dµ(w)

= ∫
D
∣O(w)∣

2
(1 − ∣I(w)∣

2
) dµ(w)

+ ∫
D
(

1
2π ∫T

∣O(ζ)∣2 1 − ∣w∣2

∣ζ −w∣2
∣dζ ∣ − ∣O(w)∣

2
) dµ(w) <∞,

which shows that IO ∈Dµ . We ûnish the proof.

5 Composition Operators on Dµ Spaces

Let ϕ∶D→ D be an analytic self-map of theunit diskD. _e function ϕ induces a com-
position operator Cϕ acting on H(D) by the formula Cϕ f (z) = f (ϕ(z)), z ∈ D, for
every f ∈ H(D). In this section, we characterize the boundedness and the compact-
ness of composition operators onDµ spaces. In fact,Dµ spaces include radialDirich-
let spaces. Let K be a decreasing concave function on [0, 1) satisfying limr→1 K(r) = 0
and let ω(z) ∶= K(∣z∣), z ∈ D. _en ω is a radial superharmonic function on D and
ω = U−∆ω (see [2, p. 99]). _e corresponding Dirichlet spaces Dω with radial super-
harmonic weights have been studied by several researchers [7, 19, 20]. In particular,
for K(r) = rp , p ∈ (0, 1), we obtain the usual Dirichlet type space Dp . _erefore,
our results in this section cover the corresponding results for composition operators
acting on Dirichlet spaces with radial superharmonic weights [19, 25]. We will give
two equivalent conditions to describe the boundedness of composition operators on
Dµ spaces. From D. Sarason and J-N. O. Silva [31, p. 447], in general one of the two
corresponding conditions for D(ν) spaces with harmonic weights cannot be used to
describe the boundedness of composition operators on D(ν).

5.1 Preliminaries

In this subsection, we give an equivalent norm ofDµ spaces, which is convenient for
the computation. We also consider the submean value property for certain general-
izedNevanlinna counting functions. Some test functions inDµ spaces are also given.
For z, w ∈ D, denote by σz(w) = (z − w)/(1 − zw) theMöbius transformation of

the unit disk interchanging z and 0.

Lemma 5.1 Let µ be a positive Borel measure on D, let

Vµ(z) = ∫
D
(1 − ∣σz(w)∣

2
) dµ(w), z ∈ D,

and let f ∈ H2. _en f ∈Dµ if and only if ∫D ∣ f ′(z)∣2Vµ(z) dA(z) < +∞.

Proof It is well known that

∫
D
∣ f ′(z)∣2(1 − ∣σa(z)∣2) dA(z) ≈ ∫

D
∣ f ′(z)∣2( log

1
∣σa(z)∣

) dA(z),
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where a ∈ D and f ∈ H2 (see [16, p. 231]). _e conclusion follows by integrating the
above relation with respect to µ and applying Fubini’s theorem.

In this section, for f ∈Dµ , we use the following norm of f in Dµ .

∣∣∣ f ∣∣∣Dµ
= ( ∣ f (0)∣2 + ∫

D
∣ f ′(z)∣2Vµ(z) dA(z))

1/2
.

_e Nevanlinna counting function of ϕ is deûned by Nϕ(z) = ∑ϕ(a)=z log
1
∣a∣ , z ∈ D,

and theNevanlinna counting function of ϕ with respect to a Borel measure µ onD is
deûned by Nϕ ,µ(z) = ∑ϕ(a)=z Vµ(a), z ∈ D, where, in the above sums,multiplicities
are taken into account. Note that Nϕ ,µ(z) = 0 if z ∉ ϕ(D). By the change of variable
formula ([2, p. 98] or [31, p. 435]), if f ∈ H(D), then

∫
D
∣(Cϕ f )′(z)∣2Vµ(z) dA(z) = ∫

ϕ(D)
∣ f ′(z)∣2Nϕ ,µ(z) dA(z)

= ∫
D
∣ f ′(z)∣2Nϕ ,µ(z) dA(z).

_e following result gives the submean value property of Nϕ ,µ .

Lemma 5.2 Let µ be a positive Borel measure onD and let ϕ be an analytic self-map
of D. _en for every disk B ⊆ D ∖ {ϕ(0)} with center at z,

Nϕ ,µ(z) ≤
1

A(B) ∫B
Nϕ ,µ(w) dA(w).

Proof It follows from Fatou’s lemma that Vµ is lower semicontinuous on D. Note
that the function z → (1− ∣σw(z)∣2) is superharmonic onD for everyw ∈ D. _en Vµ
satisûes the supermean value inequality onD. Hence, Vµ is a positive superharmonic
function on D. Since

Vµ(z) = ∫
D
(1 − ∣σw(z)∣2) dµ(w) ≤ 2∫

D
log

1
∣σw(z)∣

dµ(w) = 2Uµ(z), z ∈ D,

and the greatest harmonic minorant of Uµ on D is the zero function [6, p. 98], the
greatest harmonicminorant of Vµ on D is the zero function. From the Riesz decom-
position theorem [6, p. 105]we obtain that there exists a positivemeasure ν onD such
that Vµ(z) = Uν(z), z ∈ D. Consequently,

Nϕ ,µ(z) = ∑
ϕ(a)=z

Uν(a) = ∫
D
∑

ϕ(a)=z
log

1
∣σa(w)∣

dν(w)

= ∫
D

∑
ϕ(σw(a))=z

log
1
∣a∣
dν(w) = ∫

D
Nϕ○σw (z) dν(w).

From the submean value inequality of the Nevanlinna counting function on
D ∖ {ϕ(0)} (see [32, p. 190]) and Fubini’s theorem we obtain that, for every disk
B ⊆ D ∖ {ϕ(0)} with center at z,

Nϕ ,µ(z) = ∫
D
Nϕ○σw (z) dν(w) ≤

1
A(B) ∫B ∫D

Nϕ○σw (a) dν(w)dA(a)

=
1

A(B) ∫B
Nϕ ,µ(a) dA(a).
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We also need the following useful inequality.

Lemma 5.3 ([24, Lemma 2.5]) Suppose that s > −1, r, t > 0, and r + t − s > 2. If
t < s + 2 < r, then

∫
D

(1 − ∣w∣2)s

∣1 −wz∣r ∣1 −wζ ∣t
dA(w) ≲

(1 − ∣z∣2)2+s−r

∣1 − ζz∣t
,

for all z, ζ ∈ D.

Recall that we always assume µ satisfy the condition (1.1). Otherwise, Dµ spaces
are trivial. We give some test functions in Dµ spaces as follows.

Lemma 5.4 Let µ be a positive Borel measure on D. For every w ∈ D, let

fw(z) =
σw(z)

√
Vµ(w)

−
σw(0)

√
Vµ(w)

, z ∈ D,

gw(z) =
1 − ∣w∣

(1 −wz)
√
Vµ(w)

, z ∈ D,

_en supw∈D ∣∣∣ fw ∣∣∣Dµ
< +∞, and supw∈D ∣∣∣gw ∣∣∣Dµ

< +∞.

Proof
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5.2 The Boundedness of Composition Operators on Dµ Spaces

In this subsection, we characterize the boundedness of composition operators onDµ
spaces. As an application, we construct a ûnite positive measure µ0 such that Cϕ is
not bounded on Dµ0 even when ϕ is a rotation.

Let I(z) = z be the identity function and let µ be a positive Borel measure on D.
_e condition (1.1) together with the superharmonicity of the function Vµ gives that

∫
D
∣I′(z)∣2Vµ(z) dA(z) = ∫

D
Vµ(z) dA(z) ≤ πVµ(0) = π∫

D
(1 − ∣z∣2) dµ(z) < +∞.

_us I ∈ Dµ . Consequently, ϕ ∈ Dµ is a necessary condition for Cϕ to be bounded
on Dµ .

We characterize the boundedness of composition operators on Dµ spaces as fol-
lows.

_eorem 5.5 Let µ be a positive Borel measure on D and let ϕ ∈ Dµ be an analytic
self-map of D. _en the following conditions are equivalent.
(i) Cϕ is bounded on Dµ .
(ii) Nϕ ,µ(w) = O(Vµ(w)), as ∣w∣→ 1.
(iii) 1

A(∆w) ∫∆w
Nϕ ,µ(z) dA(z) = O(Vµ(w)), as ∣w∣→ 1, where

∆w = { z ∈ D ∶ ∣z −w∣ <
1
2
(1 − ∣w∣)} .

Proof (i)⇒ (ii). Suppose that Cϕ is bounded on Dµ . _en

∫
D
∣ f ′(z)∣2Nϕ ,µ(z) dA(z) = ∫

D
∣(Cϕ f )′(z)∣2Vµ(z) dA(z)

≲ ∣ f (0)∣2 + ∫
D
∣ f ′(z)∣2Vµ(z) dA(z),

for all f ∈Dµ . For every w ∈ D, let

fw(z) =
σw(z)

√
Vµ(w)

−
σw(0)

√
Vµ(w)

, z ∈ D.

Applying the previous inequality to the functions fw and using Lemma 5.4,we obtain
that

∫
D

(1 − ∣w∣2)2

∣1 −wz∣4
Nϕ ,µ(z) dA(z) ≲ Vµ(w),

for all w ∈ D. Now consider ∣w∣ > (1 + ∣ϕ(0)∣)/2. _en ϕ(0) /∈ ∆w . It is well known
[25, p. 684] that ∣1−wz∣ ≈ (1− ∣w∣2) for z ∈ ∆w and A(∆w) ≈ (1− ∣w∣2)2. Combining
these with Lemma 5.2, we obtain that for ∣w∣ > (1 + ∣ϕ(0)∣)/2,

Vµ(w) ≳ ∫
D

(1 − ∣w∣2)2

∣1 −wz∣4
Nϕ ,µ(z) dA(z) ≳ ∫

∆w

(1 − ∣w∣2)2

∣1 −wz∣4
Nϕ ,µ(z) dA(z)

≈
1

A(∆w)
∫
∆w

Nϕ ,µ(z) dA(z)

≳ Nϕ ,µ(w).
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(ii)⇒ (i). Let condition (ii) hold. _en there exist C > 0 and r ∈ (0, 1) such that
Nϕ ,µ(z) ≤ CVµ(z) for all z ∈ D ∖ rD. For f ∈Dµ , one gets that

∫
D∖rD

∣ f ′(z)∣2Nϕ ,µ(z) dA(z) ≲ ∫
D
∣ f ′(z)∣2Vµ(z) dA(z) <∞.

Since ϕ ∈ Dµ , we have ∫D Nϕ ,µ(z) dA(z) = ∫D ∣ϕ′(z)∣2Vµ(z) dA(z) < ∞. Note that
Dµ ⊆ H2. _e Cauchy Formula and theHölder inequality yield that

∣ f ′(z)∣ = 1
2π

∣∫
T

f (ζ)
(ζ − z)2 dζ∣ ≲

1
(1 − ∣z∣)2 ∥ f ∥H2 ≲

1
(1 − ∣z∣)2 ∣∣∣ f ∣∣∣Dµ

,

for all z ∈ D. _us,

∫
rD

∣ f ′(z)∣2Nϕ ,µ(z) dA(z) ≲ (1 − r)−4
∣∣∣ f ∣∣∣2Dµ ∫D

Nϕ ,µ(z) dA(z) <∞.

Hence, ∫D ∣(Cϕ f )′(z)∣2Vµ(z) dA(z) = ∫D ∣ f ′(z)∣2Nϕ ,µ(z) dA(z) < ∞, which im-
plies that Cϕ f ∈Dµ for every f ∈Dµ . From the closed graph theorem, we know that
Cϕ is bounded on Dµ .

(ii)⇒ (iii). Let Nϕ ,µ(w) = O(Vµ(w)), as ∣w∣ → 1. Using the superharmonicity of
the function Vµ , we obtain that if ∣w∣→ 1, then

1
A(∆w)

∫
∆w

Nϕ ,µ(z) dA(z) ≲
1

A(∆w)
∫
∆w

Vµ(z) dA(z) ≲ Vµ(w).

(iii)⇒ (ii). Lemma 5.2 yields the desired result immediately.

Applying _eorem 5.5, we give the following example. Because any composition
operator induced by rotation is bounded on Dirichlet spaces with radial weights, the
following result also gives examples ofDµ spaceswhich are not equal to anyDirichlet
space with radial weight.

Corollary 5.6 Let Ω = D ∩ {z ∈ C ∶R(z) > 0}, and let

dµє(z) = χΩ(z)/∣1 − z∣1+єdA(z)

for some є ∈ (0, 1). Let θ ∈ ( π
2 ,

3π
2 ) and let ϕ(z) = e iθz be the rotation related to e iθ .

_en Cϕ is not bounded on Dµє .

Proof A direct computation gives that µє(D) < +∞. Let d = dist(e iθ ,Ω) > 0 and
set D(e iθ , d/2) = {z ∈ C ∶ ∣z − e iθ ∣ < d/2}. _en for every z ∈ D ∩ D(e iθ , d/2),

Vµє(z) = ∫
Ω
(1 − ∣σw(z)∣2) dµє(w) = (1 − ∣z∣2)∫

Ω

1 − ∣w∣2

∣1 −wz∣2
dµє(w)

≤ (1 − ∣z∣2)∫
Ω

1
∣z −w∣2

dµє(w)

≤ (1 − ∣z∣2)4µє(Ω)/d2 .
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Also, for r ∈ (0, 1),

Vµє(r) = (1 − r2)∫
Ω

1 − ∣w∣2

∣1 −wr∣2
dµє(w) ≥ (1 − r2)∫

∆r

1 − ∣w∣2

∣1 −wr∣2
1

∣1 −w∣1+є
dA(w)

≈ ∫
∆r

1
∣1 −w∣1+є

dA(w) ≈
1

(1 − r2)1+є A(∆r) ≈ (1 − r2)1−є .

From the above estimates and the fact that ϕ is univalent, we deduce that

lim
r→1

Nϕ ,µє(re iθ)
Vµє(re iθ)

= lim
r→1

Vµє(r)
Vµє(re iθ)

≳ lim
r→1

(1 − r2)1−є

1 − r2
= +∞.

By _eorem 5.5, one gets that Cϕ is not bounded on Dµє .

5.3 The Compactness of Composition Operators on Dµ Spaces

In this subsection, we characterize the compactness of composition operators onDµ
spaces.

_eorem 5.7 Let µ be a positive Borel measure on D and let ϕ∶D → D be analytic.
_en the following conditions are equivalent.
(i) Cϕ is compact on Dµ .
(ii) Nϕ ,µ(w) = o(Vµ(w)), as ∣w∣→ 1.
(iii) 1

A(∆w) ∫∆w
Nϕ ,µ(z) dA(z) = o(Vµ(w)), as ∣w∣→ 1, where

∆w = { z ∈ D ∶ ∣z −w∣ <
1
2
(1 − ∣w∣)} .

Proof Checking the proof of _eorem 5.5, it is enough to prove the equivalence
between conditions (i) and (ii).

(i)⇒ (ii). For each w ∈ D consider the functions

gw(z) =
1 − ∣w∣

(1 −wz)
√
Vµ(w)

, z ∈ D.

By Lemma 5.4, supw∈D ∣∣∣gw ∣∣∣Dµ
< +∞. Clearly,

∣gw(z)∣2 ≤
4(1 − ∣w∣2)

∣1 −wz∣2 ∫D(1 − ∣a∣2) dµ(a)
.

_en the functions gw converge to zero as ∣w∣ → 1 uniformly on compact subsets on
D. Note that Cϕ is compact on Dµ . By [37, Lemma 3.7], one gets that

lim
∣w∣→1

∣∣∣Cϕ gw ∣∣∣Dµ
= 0.
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Making the change of variables, gives that

∣∣∣Cϕ gw ∣∣∣2Dµ
= ∣gw(ϕ(0))∣2 + ∫

D
∣(gw)′(z)∣2Nϕ ,µ(z) dA(z)

= ∣gw(ϕ(0))∣2 +
∣w∣2(1 − ∣w∣)2

Vµ(w)
∫
D

Nϕ ,µ(z)
∣1 −wz∣4

dA(z)

≥ ∣gw(ϕ(0))∣2 +
∣w∣2(1 − ∣w∣)2

Vµ(w)
∫
∆w

Nϕ ,µ(z)
∣1 −wz∣4

dA(z).

Recall that ∣1 −wz∣ ≈ 1 − ∣w∣ for all z ∈ ∆w . _ese, together with Lemma 5.2, yield

∣∣∣Cϕ gw ∣∣∣2Dµ
≳ ∣gw(ϕ(0))∣2 +

∣w∣2Nϕ ,µ(w)

Vµ(w)
.

_us lim∣w∣→1
Nϕ ,µ(w)
Vµ(w) = 0.

(ii)⇒ (i). From [37, Lemma 3.7] it suõces to prove that for any bounded sequence
{ fn} in Dµ that converges to zero uniformly on compact sets of D,

lim
n→∞ ∣∣∣Cϕ fn ∣∣∣Dµ

= 0.

Note that lim∣w∣→1
Nϕ ,µ(w)
Vµ(w) = 0. For small є > 0, there exists a positive constant δ such

that if δ < ∣w∣ < 1, then Nϕ ,µ(w) < єVµ(w). _ere also exists a positive integer M
such that if n > M, then ∣ fn(ϕ(0))∣ < є and sup∣z∣≤δ ∣( fn)′(z)∣ < є. Consequently, for
n > M, we deduce that

∣∣∣Cϕ fn ∣∣∣2Dµ
= ∣ fn(ϕ(0))∣2 + ∫∣w∣≤δ

∣( fn)′(w)∣
2Nϕ ,µ(w) dA(w)

+ ∫
δ<∣w∣<1

∣( fn)′(w)∣
2Nϕ ,µ(w) dA(w)

≲ є2 + є2 ∫
D
Nϕ ,µ(w) dA(w) + є∣∣∣ fn ∣∣∣2Dµ

≲ є.

_us, limn→∞ ∣∣∣Cϕ fn ∣∣∣Dµ
= 0.

D. Sarason and J-N. O. Silva [31, _eorem 8] characterized the boundedness and
the compactness of composition operators onDirichlet spaceswith harmonicweights
as follows.

_eorem 5.8 Let ν be a positive Borel measure on the unit circle T and let ϕ ∈D(ν)
be an analytic self-map of D.
(i) Cϕ is bounded on D(ν) if and only if

(5.1)
1

A(∆w)
∫
∆w

( ∑
ϕ(a)=z

Pν(a)) dA(z) ≲ Pν(w)

for all w ∈ D.
(ii) Cϕ is compact on D(ν) if and only if

(5.2)
1

A(∆w)
∫
∆w

( ∑
ϕ(a)=z

Pν(a)) dA(z) = o(Pν(w)), as ∣w∣→ 1.
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D. Sarason and J-N. O. Silva’s conditions (5.1) and (5.2) correspond to our condi-
tions _eorem 5.5 (iii) and _eorem 5.7 (iii), respectively. But as pointed out [31, p.
447], in general the conditions corresponding to_eorem 5.5 (ii) and_eorem 5.7 (ii)
cannot be used to describe the boundedness and the compactness of Cϕ onD(ν), re-
spectively.
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