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SUMMARY

A stochastic epidemic model was applied to meningococcal disease outbreaks in defined small

populations such as military garrisons and schools. Meningococci are spread primarily by

asymptomatic carriers and only a small proportion of those infected develop invasive disease.

Bayesian predictions of numbers of invasive cases were developed, based on observed data

using a stochastic epidemic model. We used additional data sets to model both disease

probability and duration of carriage. Markov chain Monte Carlo sampling techniques were

used to compute the full posterior distribution which summarized all information drawn

together from multiple sources.

INTRODUCTION

Meningococcal disease is a serious, lifethreatening

acute illness caused by capsulated strains of Neisseria

meningitidis in which the bacteria invade the blood

stream and often the meninges, causing meningitis.

The disease occurs either at a low ‘endemic’ rate of

less than five cases per 100000 per year, or as local

outbreaks or large epidemics during which the

incidence may be 10–100 times higher [1]. Such

outbreaks typically occur in partly closed communities

such as military establishments or schools. Even in

such settings it is rare that a contact chain between

different cases can be established. More often cases

occur without any trace of the underlying chain of

individual infections in the population. This is because

invasive disease is a rare event, with transmissions of

the bacteria usually resulting in asymptomatic naso-

pharyngeal carriage. Due to the seriousness of the

disease, most cases are ascertained in national sur-

veillance systems, e.g. in Scandinavia and the UK. In

* Author for correspondence.

contrast, numbers and identities of infected but

asymptomatic carriers are not known and the number

of susceptibles is also unknown at any given time.

On the basis of the chemical structure of the

capsular polysaccharide, meningococci are divided

into serogroups of which only serogroups A, B and C

are common causes of disease. Typically serogroup A

strains cause large epidemics and serogroup C smaller

outbreaks, whereas serogroup B is mainly responsible

for endemic disease, although outbreaks and even

protracted epidemics have been described, caused by

virulent clones. Outside epidemics or outbreaks,

asymptomatic carriage of virulent clones is rare, and

endemic cases are caused by serogroup B strains of a

variety of clones [2–5]. This and other findings

strongly suggest that each epidemic and outbreak is

caused by one clone of the bacteria endowed with

specific virulence properties [2, 6]. Immunity to sero-

group A and C strains is largely based on antibodies

specific to the capsule of each group, whereas the basis

of immunity to serogroup B strains is not well

understood. An individual who is infected with
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serogroup A or C strains or vaccinated with the

corresponding capsular polysaccharide responds with

the development of such antibodies (an exception, not

relevant to the present analysis, being very young

children). The concentration of these antibodies

decreases with time unless a new exposure acts as a

restimulant. Immunization with capsular (serogroup

A and C) polysaccharide vaccines is efficacious in

preventing meningitis but has little effect on naso-

pharyngeal carriage of the bacteria [7–10], suggesting

that a relatively low concentration of serum antibodies

is needed to prevent disease, whereas a considerably

higher concentration is required to prevent mucosal

colonization (carriage). A similar situation holds for

another encapsulated bacterial pathogen, Haemo-

philus influenzae type b, and work in an experimental

animal model has shown that a 10–100 fold higher

concentration of serum antibodies is needed to prevent

colonization than meningitis [11, 12].

At the practical, health service level, a central

question is how to predict the size and time course of

an outbreak. For example, in an army training unit or

a school class in which one case of meningococcal

disease has occurred, the immediate question is how

likely it is that this is a start of an outbreak and how

large the outbreak might be. Such predictions would

be important contributions to decision making con-

cerning the use of prophylactic measures (vaccination,

antimicrobial prophylaxis or dispersal of the unit) and

the resources, both financial and human, to be

committed.

METHODS

Problem setting and objectives

We have modelled the spread of the carriage of a

virulent clone of meningococcus and disease incidence

in a partly closed community such as a military

garrison or a school. We assumed that once intro-

duced by the initial carriers, infections spread within

a subpopulation effectively isolated from the sur-

rounding population. We wished to forecast the

number of disease cases based on the observed history

of the epidemic. In addition to this, it was possible to

make use of published data on both the probability

that an infection leads to invasive disease and the

duration of asymptomatic carriage. Predictions are

thus based on various sources of background in-

formation, not only the observed component (data on

diseases cases) of an outbreak.

Bayesian analysis

An introduction to Bayesian analysis in medical

research, together with some motivation for a para-

digm shift in the statistical basis of public health

policy was given recently [13]. In our study, we used

Bayesian hierarchical models [14]. We were able to

pool all the scattered and partial information available

and to produce sound estimates of the unknown

quantities of interest. These quantities are best

described by their full posterior distributions which

show the amount of uncertainty, after having the

observations and our prior information at hand. The

posterior distribution is the conditional probability

density of a quantity θ, which may be a model

parameter or any other unknown variable, given the

observed data. This probability can be written, up to

a proportionality factor, as the product of the prior

density of θ, multiplied by the conditional density of

the observations, π(data r θ). The latter is usually

called the likelihood function, or the probability

model for the data, given parameter θ. Thus

π(θ rdata)¯π(data r θ)π(θ)¬c.

It is not necessary to determine the value of the

normalizing constant c for the purpose of sampling

from the posterior distribution. The probability model

may have much more structure than simply π(data r θ).

It is possible to construct hierarchical structures using

conditional distributions so that the joint posterior

distribution of unknowns θ and φ, say, becomes the

product.

π(θ,φ rdata)¯π(data r θ)π(θ rφ)π(φ)¬c«, (1)

where c« is the normalizing constant. Here θ has a

distribution that further depends on φ. The prior

distribution π(φ) expresses our a priori knowledge

about φ. If there is only scanty prior knowledge, it

should express that lack of knowledge, for example as

a uniform distribution. The posterior distribution

summarizes all available information in the form of a

conditional distribution. In principle, all inferences

concerning the unknown quantities can be based on

the corresponding posterior distribution. It may not

be possible to obtain the latter in an analytically

closed form, but posterior probabilities can always be

evaluated numerically by sampling methods. For

example, the probability P(θ! a rdata) can be easily

computed from the simulated sample from π(θ rdata).

Similarly, posterior probabilities concerning any func-

tional of θ, and virtually any statement about the
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relation between several unknowns, such as P(θ
"
!

θ
#
rdata) can be found. Posterior probabilities make

direct probability statements, conditional on what

was actually observed, about the quantities of interest.

These simple ideas form the backbone of Bayesian

hierarchical models [14] on which this analysis is

based. As the model grows more complicated, it

becomes useful to express it as a directed graph which

shows all variables, parameters and their inter-

dependencies. An example of similar ideas on un-

certainty and estimation of epidemiological par-

ameters, but without a formal analysis of joint

posterior distribution was published recently [15]. A

methodological discussion of the problems associated

with P-values and hypothesis testing was undertaken

by Goodman [16].

Unknown quantities : parameters and state variables

At any given time each individual is assumed to be in

one of the following three states : (1) susceptible, (2)

infected (asymptomatic carrier) or (3) removed (from

the epidemic process). Those diseased are removed

rapidly from the population for care in a hospital and

thus cannot spread infection thereafter. The number

of carriers (infected) at the beginning of week i is

denoted by I
i
. Similarly, R

i
represents the number of

removed individuals at the beginning of week i. By

removed, is meant those individuals who are no

longer infectious nor susceptible. They may be

temporarily or permanently immune after the in-

fectious period, or even dead. Their essential charac-

teristic is that they cannot contribute to the epidemic

process. Disease cases are also counted as removed,

due to their physical isolation from the population of

susceptibles. The number of susceptibles at the

beginning of week i is thus N®I
i
®R

i
. The population

size N is assumed to be fixed and known, and thus I
i

and R
i
are enough to determine the state of the whole

epidemic system. The number of new disease cases

during the ith week is denoted by D
i
. The number of

new infections during week i is IG

i
and the number of

infections that ended during week i is IH

i
. There is a

natural deterministic dependence between these state

variables that can be written as

I
i
¯ I

i−"
­IG

i−"
®D

i−"
®IH

i−"
, R

i
¯R

i−"
­IH

i−"
­D

i−"
.

The number of disease cases is the only variable

assumed to be regularly observed. In addition,

historical information from a number of garrisons

and from a school was used [17–19]. These additional

data sets gave the numbers of carriers and invasive

cases of two identified virulent clones cross sectionally

in time from the early stages of the epidemic. This

information was used to elicit a prior distribution

π(p
x
) for the chance p

x
for a carrier of clone x to

become an invasive case. Information about the

duration of carriage, which can be used to quantify

the probability r that an infection (carriage) terminates

during one week was utilized [20]. A final model

parameter was needed, namely the ‘avoidance’ prob-

ability q. This is connected to the probability qIi that

a susceptible avoids contracting an infection when

there are I
i

infectives in the population. This par-

ameter determines the probability of new infections,

given the numbers of carriers and susceptibles. No

strongly informative prior knowledge was assumed,

since each meningococcal clone has its own charac-

teristic virulence that is not possible to quantify

reliably in advance. Expressing somewhat more

informative prior knowledge about q is difficult due to

the fact that it is effectively a summary of the

properties of the clone, the acquisition capacity of the

susceptibles, and the contact intensities in the com-

munity. Therefore, it is natural to express stronger

prior knowledge about those parameters we think are

biologically more stable, i.e. p and r. However, a

rough lower bound for q can also be derived. All the

parameters p, q and r, together with the unknown

state variables, are treated as ‘unknown quantities ’

about which we wish to draw inferences from the

data.

In the analysis we concentrate only on two subtypes

of bacteria, namely virulent clones of serogroups A

and C. According to current knowledge, these

serogroups behave quite similarly with respect to

parameter p. Therefore it is legitimate to pool

information on disease probability from different

sources [17, 19]. Finally, the actual epidemic to be

modelled and predicted was caused by serogroup C

strains [21].

A stochastic model of the outbreak

In many epidemic studies, of which our application is

not an exception, the data are reported in discrete time

units rather than in continuous time. Therefore, we

found it useful to formulate the stochastic model in

discrete time. The sizes of the populations we are

concerned with can range from a few hundred to a few

thousand, which is much more than in so-called

family epidemic models. Thus we prefer the term
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‘subpopulation’ to (small) family or (large) popu-

lation. A larger population would be divided into

many subpopulations and the contact structures

between them would seriously violate the simple

random mixing assumed in our discrete time SIR-

epidemic chain model [23, 24]. Using the notation

introduced above, and given the initial state (I,R
"
) in

the beginning of the first week, we can now formulate

an epidemic chain model by using binomial dis-

tributions for each week i :

P(D
i
r IG

i
, p)¯Bin (p, IG

i
)

P(IG

i
rN, I

i
,R

i
, q)¯Bin (1®qIi,N®I

i
®R

i
)

P(IH

i
r I

i
, r)¯Bin (r, I

i
),

where p is the probability of invasive disease for each

new infected individual and qIi is the probability that

a susceptible individual avoids an infection when

there are I
i

infectives in the population. An as-

sumption was made that an individual may develop

an invasive disease only at the time of his}her

infection, not later during the bacterial carriage.

Parameter r is the probability that any ongoing

carriage ends during one week. This model corre-

sponds closely to the well known ‘mass action’ or

‘random mixing’ Reed-Frost epidemic model [23, 24].

If the data consist of observations D
i
from i¯ 1,…,

K weeks, the integrated likelihood will be of the form

P(D
"
,…,D

K
r p, q, r,N, I

"
,R

"
)

¯ 3
A(I

G
,I

H
)

0
K

i="

P(D
i
r IG

i
, p)P(IG

i
rN, I

i
,R

i
, q)P(IH

i
r I

i
, r),

where A(IG, IH) is the set of pairs (IG

i
, IH

i
), i¯ 1,…,K,

of positive integers satisfying the constraints

I
i
¯ I

i−"
­IG

i−"
®D

i−"
®IH

i−" (2)
R

i
¯R

i−"
­IH

i−"
­D

i−"
.

The marginal likelihood function from which the

unknown latent variables IG

i
and IH

i
are integrated

out, is quite cumbersome. Each week the variables

representing carriers and immunes depend on similar

variables from the previous week and on the random

changes that occurred. The likelihood function for the

model parameters p, q and r would be hard to evaluate

due to the chain dependencies between the unobserved

latent variables. However, it is relatively easy to set

down a conditional distribution, up to a normalizing

constant, for any variable, given the values of the rest.

By reference to the graph of the model in Figure 1, it

is possible to derive those terms of the full conditional

posterior distribution which are required for Monte

Carlo computation (Metropolis-Hastings algorithm,

Prior

r

I 1
H I 2

G I i
H

I 1
G I 2

G

D1 D2

p q

Prior Prior

Di

I i
G

I1 R1 I2 R2 Ii Ri

Fig. 1. Directed acyclic graph of the hierarchical model.

Unknown parameters are written in ellipsoids and observed

or given data (parameters) in square boxes. Solid arrows

denote stochastic dependence, for example:P(IG

"
r q, I

"
,R

"
)¯

Bin (1®qI
",N®I

"
®R

"
). For clarity, the (fixed) size N of

the population is excluded from the graph. Dotted arrows

denote deterministic dependence, for example: I
#
¯

I
"
­IG

"
®IH

"
®D

"
. I

i
and R

i
denote the number of infected

and the number of removed by the beginning of week i,

respectively. IG

i
and IH

i
denote the number of new infections

and the number of terminating infections during week i,

respectively. D
i
denotes the number of disease cases during

week i. p, q and r are model parameters. Variables to be

predicted are the rightmost IH

i
, I

i
, R

i
, IG

i
and D

i
.

see appendix). The initial number of infected indi-

viduals I
"

can be assumed to be equal to the

population prevalence of asymptomatic carriers,

which is approx. 1%. The initial value of removed R
"

is harder to determine and a plausible choice is

required. It might be assumed that the epidemic strain

of bacteria is completely new for the subpopulation at

the beginning of the outbreak so that initially there

are no immunes or otherwise resistant individuals.

Assuming prior independence, we need to define the

three prior distributions π(r), π(p) and π(q). For that,

exploitation of any other available data sources is

permissible, together with any previous medical-

epidemiological experience. Deriving the priors for r

and p is the topic of the next two sections. For q we

need to define a uniform prior over a sufficiently wide
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range to express lack of knowledge a priori when

facing an outbreak with unknown virulence.

RESULTS

Deriving a prior distribution for p

Our prior knowledge about the disease probability is

based on observations from eight garrisons [17] and

one elementary school [19]where anoutbreak occurred

and the number of carriers was observed immediately

after the first disease case(s). It is a plausible

assumption that the observed number of carriers at

that moment was the same as the number of infections

that had occurred until then. This number is of

interest, because infections can be interpreted as

independent Bernoulli trials with some probability of

invasive disease. In seven garrisons the disease was of

serogroup A and the carriers of that same serogroup

were detected. In one garrison and the school the

disease was of serogroup C. In addition to these,

information from other garrisons was available [18] In

one of them, one invasive case occurred, but in the

other five there were no invasive cases, yet there were

some carriers of serogroup A strains. In two garrisons

the number of men (93, 102) and the number of

carriers (8±6%, 8±8%) was known, but in four

garrisons the exact number of individuals was missing.

Fortunately,it was known that there were 405 men in

total in those four garrisons. Of the 600 evaluable

recruits altogether 3±2% were carriers at the time of

invasive cases. This gives an approximation of the

carrier percentage in the remaining 405 individuals

as 0±55% (600¬3±2%¯ 93¬8±6%­102¬8±8%­
405¬0±55%). This is approx. 2 carriers, and they can

be either from the same garrison or from different

garrisons. Taking into account the origin of these two

Bernoulli trials would contribute so little that these

four garrisons can be discarded without any noticeable

effect on the result. The numbers of cases and

individuals, and the percentages of carriers and the

point estimates of p are shown in Table 1. This

ensemble of point estimates is likely to overestimate

the disease probability. There may be other garrisons

where infections occurred, but none of them resulted

in disease cases and thus we do not know of them.

Two of the garrisons were further divided into two

groups from which we have separate measurements

for carriers. However, the number of disease cases, 2*

and 1*, was reported for the whole garrison in both

cases. The point estimates vary between 0 and 0±333

Table 1. The number of disease cases and

indi�iduals, carrier percentage, and the point estimate

of the disease probability p in 11 subpopulations. Two

garrisons were further di�ided into two groups. From

these the common total number of disease cases was

recorded, 2* and 1*. In four garrisons the number of

indi�iduals at risk and the carrier percentage were

missing, but it was possible to calculate the total

number of men as 405 and the joint carrier

percentage as 0±55

Cases

No. at

risk

Carrier

% pW

Serogroup A 2 190 3 0±333

2* 110

­128

19

30

0±034

1* 89

­79

32

35

0±018

2 207 23 0±042

2 85 33 0±071

1 90 3 0±333

1 77 30 0±044

0 93 8±6 0

1 102 8±8 0±111

0

0

0

0

5

6
7

8

405 0±55

0

0

0

0

Serogroup C 1 485 7 0±029

5 144 17 0±208

(mean 0±11). There is no evidence to support the

hypothesis that p
A
1 p

C
. According to current knowl-

edge, both serogroups A and C are equally invasive.

In the following analysis we can therefore use the

whole data set as if it were a representative sample of

invasiveness of one type of bacteria.

After combining all the information from the 10

garrisons and 1 school, we obtain 11 pairs (d
i
, n

i
) of

the number of disease cases d
i

and the number of

infections n
i
: (2, 6), (2, 59), (1, 56), (2, 48), (2, 28), (1,

3), (1, 23), (0, 8), (1, 9), (1, 34), (5, 24). Assuming a

common disease probability p for all subpopulations,

a simple likelihood function for these data would be

the product of binomial probabilities

P(d
"
,…, d

""
r p, n

"
,…, n

""
)¯ 0

""

i="

0ni

d
i

1 pdi(1®p)ni−di.

From the graph of this function we obtained the

approximate maximum likelihood estimate to be pW E
0±06 and the likelihood function was almost zero for

values less than 0±02 or larger than 0±12. However, this
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simple model can be criticized, because the obser-

vations d
i

and n
i

are from a number of different

environments. Therefore, it seems inadequate to

assume exactly the same underlying distribution (i.i.d.)

for all d
i
. Environmental differences can arise, for

example, because in some garrisons (but not all) there

might well be some other concurrent infection. If an

individual is infected by both meningococci and some

other pathogen, then the probability of invasive

disease is higher. There might also have been other

forms of heterogeneity between the subpopulations of

different garrisons that might have caused differences

in the disease probability.

An alternative to the simple i.i.d. model above is to

construct a hierarchical model in which the sub-

population-specific parameters p
i

share a common

population distribution Beta(α,β). This expresses the

intuitive idea that the population is heterogeneous

and the subpopulations tend to be internally more

homogeneous with respect to the various conditions

affecting the disease probability. Such population

heterogeneity is naturally expressed by a population

distribution for the parameters p
"
,…, p

""
. Given the

value of p
i
and the size n

i
of the subpopulation, the

observed number of cases d
i
is then a conditionally

independent realization from the binomial distri-

bution Bin (p
i
, n

i
). We are interested in the posterior

distribution of the population parameters (α,β), since

that would be a sufficient characteristic for our

predictions concerning the p
i
s. Therefore, if we knew

the population distribution of p
i
s, we would no

longer need observations (d
i
, n

i
). To complete the

hierarchical model, prior knowledge about the popu-

lation parameters is expressed by assigning the Beta(2,

18) prior distribution to 0±1α and 0±01β, which gives

prior expectations E(α)¯ 1 and E(β)¯ 10, (0!α!
10, 0!β! 100). The hierarchical model is shown as

an acyclic graph in Figure 2.

Recalling formula (1) in the introduction of the

method of Bayesian analysis, the posterior distri-

bution of the unknown parameters is now pro-

portional to the product of the probabilities of d
i
s

(likelihood), the density of p
i
s, and the prior of (α,β) :

π(p
"
,…, p

""
,α,β r (d

"
, n

"
),…, (d

""
, n

""
))

£ 0
""

i="

0ni

d
i

1 (p
i
)di(1®p

i
)ni−di

Γ(α­β)

Γ(α)Γ(β)

¬pα−"
i

(1®p
i
)β−"π(α)π(β).

The prediction of p for any future subpopulation

should be based on the population distribution of ps,

which is characterized by parameters (α,β). Instead of

a point estimate (α# ,β# ), it is now possible to use the

entire posterior distribution of (α,β). Thus the

predictive distribution for p is expressed as the

probability density function of p, integrated over the

population parameters (α,β) weighted by its posterior

distribution:

π(p r (d
"
, n

"
),…, (d

""
, n

""
))¯ ! !π(p rα,β)

¬π(α,β r (d
"
, n

"
),…, (d

""
, n

""
)) dαdβ.

This can be computed numerically by sampling the

joint posterior distribution, using the Metropolis-

Hastings algorithm [14, 25]. The marginal posterior

distributions for each p
i
, i¯ 1,…, 11, together with

the predictive distribution, are shown in Figure 3. It

can be seen that the smaller the number of trials n
i
, the

flatter is the posterior distribution, reflecting the

amount of uncertainty about p
i
. The posterior

predictive distribution obtained is approx. Beta(1±1,

9±4) with mean 0±10 and .. 0±09, whereas the prior

predictive mean and .. were (0±16, 0±16). In order to

study the sensitivity of the result, three other priors

for α in a one-parameter model version π(p rα)¯
Beta(α, 10®α) were also considered: U(0, 10),

Gamma(0±1, 0±1) restricted to (0, 10), and Beta(1, 49)

scaled to (0, 10). These resulted in quite similar

posterior predictions despite their differences in prior

predictive means and standard deviations, ie (0±50,

0±28), (0±13, 0±19) and (0±03, 0±05), respectively.

Duration of carriage

Once infected by meningococci, an individual remains

infected for a time, during which he or she is able to

infect other susceptible individuals. From a previous

study [20] the half time of carriage was approx. 40

weeks, giving the parameter estimate for exponential

decay µ¯ ln(2)}40. From the same reference we

might derive an a priori range for the half times. A

wide range from the shortest durations to the longest

ones would be from 4 to 160 weeks, corresponding to

the parameter interval (ln(2)}160, ln(2)}4). Therefore,

the probability of carriage to end in a week,

conditional on the individual being a carrier at the

beginning of the week, is 1®exp (®µ) which gives the

range:

[1®e−ln(#)/"'!, 1®e−ln(#)/%]E [0±0043, 0±1591].

Due to the exponential decay of carriage, each

individual carrier has the same probability of elimin-

ating the bacteria each week regardless of his or her

past history. This gives an a priori range for the
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Prior

a    b

n1 p1 p11 n11 ppred

d1 d11

Fig. 2. Hierarchical model of disease probabilities p
i
, i¯ 1,

…, 11 in 11 subpopulations. Arrows denote a stochastic

dependence, for example P(d
i
r n

i
, p

i
)¯Bin (p, n

i
). n

i
and d

i

denote the number of infections and the number of disease

cases respectively. (α,β) denote the population parameters.

Observed variables and given priors are written in square

boxes, unknown parameters in ellipsoids. On the right is the

predicted value of p.

parameter r expressed with a uniform distribution

defined over that range. It should be noted that

although the range may seem wide enough, it is

categorical and rules out all values outside the interval

in the resulting posterior. Some other prior defined for

the entire range (0, 1) could therefore be a more

flexible choice.

Assumptions on immunity and the probability q of

escaping an infection

After an infective period individuals may be immune

against new infections for a while, but it is known that

asymptomatic carriage does not lead to immunity

against new infections, though it apparently gives full

protection against invasive disease. However, the

existence of some immune period is suggested by the

observed epidemic curve in [21], which is similar to the

epidemic curve of a so-called SIR(S)-type model.

Based on medical and biological knowledge, we

could in principle postulate a prior distribution for the

duration of immunity. However, in this analysis we

assumed that the immunity against new bacterial

colonization lasts at least over the time span being

studied, ie 10 weeks.

For the infection intensity q, one can calculate

speculatively that if p is around 0±1 and there are 5

disease cases during the first week of an outbreak in a

garrison, then there should have been approx. 50 new

infections. If the disease probability were smaller, eg

0±01 or less, then this number could be 500, or more.

However, since contacts between individuals in a

garrison are not homogeneously mixed, it is likely that

the number of new infections during the first week will

not exceed 500 in a population of 3000 men. From the

model specification, we find that E(IG

"
rN, I

"
,R

"
, q)¯

(1®qI) (N®I
"
®R

"
). Assuming I

"
¯ 30 and R

"
¯ 0,

we find bounds

0¯E
prior

(min IG

"
)! (1®qI)

¬(N®I
"
®R

"
)!E

prior
(max IG

"
)¯ 500,

and thus

0±9936! q! 1.

We might then choose a uniform prior U(0±9936, 1).

The above upper bound does not make restrictions

directly on the number of new infections IG

"
. It may

well take values larger than the prior upper bound

which is only used here to impose a restriction on

parameter values q.

Predictions

The purpose of this modelling exercise was to express

the relevant structures of the biological phenomenon

together with uncertainties involved by using a

probabilistic approach, and then to use the model to

predict the course of an outbreak, ie the weekly

number of disease cases. These kinds of longitudinal

data were recorded in [21], where an outbreak of

serogroup C disease in military recruits (1970–1) was

studied. The occurrence times of the invasive cases

were recorded in weeks from the beginning of training.

The total number of men in the garrison was 2870.

Over 10 weeks, the epidemic resulted in 36 disease

cases altogether. These were distributed successively

as 0, 3, 7, 14, 6, 0, 2, 1, 1, 2. We used the data from the

first weeks of the outbreak to predict the remaining

number of disease cases and compared the result with

what was observed. The initial number of carriers was

given the value corresponding to the low prevalence of

1% and the initial number of removed individuals

(immunes) was held at zero. The initial number of

carriers is important for the predictions. If there were

considerably more carriers already in the beginning,

the resulting dynamics could be very different. In a

recent study of meningococcal carrier dynamics in

Danish military recruits [22], 40% were carriers

initially, but there was no outbreak during the

following months, nor any case of invasive disease.

We computed our predictions starting from 40%

initial carriage, with no invasive cases observed during

the first 2 weeks. The results were surprisingly similar
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Fig. 3. Posterior distributions of the disease probabilities p
"
,…, p

""
of 11 subpopulations and the predictive distribution of

p (down right).
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Fig. 4. 95% posterior probability intervals for the weekly number of disease cases D
i
(top), the weekly number of new

infections IG

i
(middle), and the weekly number of infected I

i
(bottom). Successive posterior means are connected with a solid

line. The circles denote the true number of cases that occurred.

to the Danish follow-up [22] no significant predicted

outbreak.

Predictions concerning the US military recruits for

the last 8 weeks, using the data from the first 2 weeks,

are given for three variables. The disease cases D, the

number of weekly infections IG, and the number of

infected individuals I (Fig. 4). In each case, the 95%

posterior probability intervals are given. Posterior
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Fig. 5. Posterior distributions of the disease probability p (top), the probability r for the carriage to end in a week (middle)

and the avoidance probability q (bottom). Note that the prior of r was uniform from 0±0043 to 0±1591. Consequently, the

posterior of r is also restricted to the same range. Distribution of p is truncated in the figure at 0±1.

40

30

20

10

0
0 1 2 3 4 5 6 7 8 9 10 11

1000

500

0
0 1 2 3 4 5 6 7 8 9 10 11

2000

1000

0

3000

0 1 2 3 4 5 6 7 8 9 10 11

Fig. 6. 95% posterior probability intervals for the weekly number of disease cases D
i
(top), the weekly number of new

infections IG

i
(middle), and the weekly number of infected I

i
(bottom). Successive posterior means are connected with a solid

line. The circles denote the true number of cases that occurred.

distributions of the model parameters p, r and q are

shown in Figure 5. Similarly, results obtained by using

the first 4 weeks as the data and predicting the

remaining 6 weeks, are shown in Figures 6 and 7. In

any case, the information on r in the data of disease

cases obviously cannot be very decisive. This is
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Fig. 7. Posterior distributions of the disease probability p (top), the probability r for the carriage to end in a week (middle)

and the avoidance probability q (bottom). Note that the prior of r was uniform from 0±0043 to 0±1591. Consequently, the

posterior of r is also restricted to the same range. Distribution of p is truncated in the figure at 0±08.

reflected by the posterior distribution of r which

remains nearly the same as the prior.

The predictive distributions of D
i
have quite heavy

and long tails. Therefore, the probability intervals are

not centred around the mean. The predictions behave

reasonably and estimate the outbreak to end, as it

should, in a stable population assuming an SIR-type

of epidemic. In this application and for these data, a

simple SIR epidemic model is admissible. For larger

populations and longer time periods, other model

structures might be better.

Convergence of the MCMC algorithm

We computed 2500000 iterations of the MCMC

algorithm and discarded the first 500000 sampled

values for a ‘burn in’ period. From the remaining

iterations, every tenth value was stored for final

evaluation, thus consisting of 200000 parameter

vectors. Three more samples were computed similarly

but with different starting values. These three parallel

MCMC sequences, each of size 200000, were used for

assessing the convergence. Convergence was diag-

nosed by monitoring visually the MCMC paths of the

parameters and by computing Gelman & Rubin scale

reduction statistic [14, 26] for each parameter using

the CODA program [27]. The values of the statistic

were all below 1±11, some almost 1, indicating

convergence.

DISCUSSION

Outbreaks of meningoccal infections have been a

concern in semi-closed subpopulations such as mili-

tary garrisons and schools. During such outbreaks the

number of carriers can rise to a high proportion of the

subpopulation, whereas the number of invasive cases

is usually small. The total size of an outbreak in a

small subpopulation is often truncated due to inter-

ventions launched quickly after the initial cases. It is

of some interest to try to assess how many cases there

might be without any intervention. The behaviour of

an outbreak is a highly stochastic process and it has

been difficult to give sound predictions for the course

of such phenomena where only the ‘tip of the iceberg’,

ie the number of invasive cases, is observed. It is

known that a higher number of carriers by itself does

not explain the emerging disease cases. The acquisition

rate is crucial. This is so because the epidemic process

is a dynamic system where disease cases can only

emerge from new carriers. This number is different

from the prevalent number of carriers and has,
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perhaps, received too little attention in the past.

Therefore, for sound predictions we need to ac-

knowledge such processes by using a dynamic prob-

ability model as a description of the outbreak.

Markov chain Monte Carlo simulation techniques

(Metropolis-Hastings algorithm) were needed to com-

pute the posterior distributions. Due to the fairly

complex structure of our model and the limited

information in the data, the sampling algorithm was

slow to converge to the posterior distribution. How-

ever, using Matlab or similar software on a modern

workstation these computations can be done in a few

hours, and faster still with C-code. It would also be

worth utilizing BUGS-software [28] for computation

of the posteriors, although our model cannot be

implemented within the Gibbs sampling scheme and

the current versions of BUGS do not support general

forms of Metropolis-Hastings algorithm.

Our results show that predictions based on disease

cases, though crude, resemble the epidemic model

adding valuable additional information about the

typical longitudinal outbreak behaviour. This con-

firms that data based solely on serious cases are a

coarse summary of the underlying epidemic process

whereas the prior makes an important additional

contribution to the results. This could have an impact

on the planning of medical interventions. Our analysis

shows what kind of information is important to

collect and what could be achieved with it. The initial

state of the process, the number of susceptibles

(individuals at risk), and the number of carriers

compared with the number of disease cases are clearly

the most relevant factors. Perhaps not surprisingly,

the predictions of a dynamic system are sensitive to

initial conditions, and prior distributions. This is

partly reflected in the wide probability intervals.

Comparison of ‘pessimistic ’ and ‘optimistic ’

scenarios would permit a better understanding of the

range of potential outcomes. For example, holding

the number of initially immune individuals at zero

would give a pessimistic prediction since there is a

maximal number of susceptibles to a new infection,

whereas if those immune and initially infected, or

otherwise protected from new infective contacts, were

given a higher initial group size, then there would be

a more optimistic scenario. The plausibility of the

random mixing assumption should be re-evaluated in

new circumstances. In practice it would often be

difficult (or impossible) to obtain measurements of all

of these factors. Therefore, the best predictions can be

obtained by combining several information sources

and prior knowledge coherently, using a probabilistic

approach.

The number of new infections per time unit depends

on the state of the epidemic system and the prob-

ability, qIi, for escaping an infection from I
i
infectives

for each susceptible. If the disease probability p, the

probability q, and the state of the system are all

unknown, it is difficult to estimate such quantities

only from the observed disease cases without some

prior information. In a classical frequentist setting

these parameters are unidentifiable, because the

expectation of the disease cases D
i
, is a product, pIG

i
,

and multiplication of the parameter p by a constant

can be compensated by dividing the number of new

infections IG

i
by the same constant. There is no single

value of p that would be ‘the best ’ considering the

data on disease cases alone. The range of plausible

values is described by a posterior distribution sum-

marizing all the available information. It is thus

important how prior knowledge is utilized and how

new observations are exploited as they appear

sequentially during the epidemic process.
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APPENDIX

Computation of the posterior distributions

We used Monte Carlo techniques specifically the

Metropolis-Hastings algorithm, to draw samples from

the posterior distribution. For example, if our target

distribution is π(θ rdata), then the general algorithm

produces a sample path θ", θ#,… which after sufficient

iterations represents a sample from the desired

distribution. The general algorithm is written as

follows:

0° Set nB 1 and give an initial value θn.

1° Draw a candidate value θ* from a proposal

distribution Q(θ* r θn).

2° Compute the Hastings ratio:

ρ¯
π(θ* rdata)Q(θn r θ*)

π(θn rdata)Q(θ* r θn)
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¯
π(θ*)π(data r θ*)Q(θn r θ*)

π(θn)π(data r θn)Q(θ* r θn)

3° Set θn+"B θ* with probability min²ρ, 1´,
otherwise set θn+"B θn.

4° Set nB n­1 and return to 1°.

In our epidemic model, all the unknown parameters,

p, q, r, (IG

i
, IH

i
), i¯ 1,…,K are sampled by random

scan algorithm until convergence in distribution. The

number of new infections IG

i
and removals IH

i
are

sampled jointly for any i. Random scanning means

that at each step we randomly choose one of the K­3

parameters to be updated. From the graph of the

model it can be seen immediately which terms of the

whole posterior we need to include when writing the

Hastings ratio for each one of the parameters. Those

terms which are constants with respect to the

parameter being updated cancel out. Therefore, we

can locally update each one of the parameters in the

algorithm. Assume that we use data from the first K

weeks. If the proposal distribution Q is uniform and

centred around the previous value (as is adopted in

the sequel), the Hastings ratio becomes as follows for

each of the parameters. For parameter p we assume a

Beta(α,β) prior which leads to

ρ¯0K

i="
P(D

i
r IG

i
, p*)π(p*)¬Q(p)

0K

i="
P(D

i
r IG

i
, p)π(p)¬Q(p*)

¯ 90K
i="

0p*

p 1
Di 01®p*

1®p 1
I

G

i −Di: 0p*

p 1
α−" 01®p*

1®p 1
β−"

,

and p* is accepted with probability min ²ρ, 1´. Simi-

larly, for q, assuming a uniform prior π(q) :

ρ¯0K

i="
P(IG

i
r q*, I

i
,R

i
,N)π(q*)¬Q(p)

0K

i="
P(IG

i
r q, I

i
,R

i
,N)π(q)¬Q(p*)

¯ 0
K

i="

01®(q*)Ii

1®qIi
1I

G

i 0q*

q 1
Ii(N−Ii−Ri−I

G

i )

.

For r we obtain, with a uniform prior π(r) :

ρ¯0K

i="
P(IH

i
r r*, I

i
)π(r*)¬Q(r)

0K

i="
P(IH

i
r r, I

i
)π(r)¬Q(r*)

¯ 0
K

i="

0r*r 1
I

H

i 01®r*

1®r 1
Ii−I

H

i

.

Updating of the weekly new infections IG

i
and the

removals IH

i
is done simultaneously by proposing new

values from independent proposal distributions.

However, the updating of IG

i
and IH

i
affects all the rest

I
j
’s and R

j
’s, j" i, since I

i
¯ I

i−"
­IG

i−"
®D

i−"
®IH

i−"
and

R
i
¯R

i−"
­IH

i−"
­D

i−"
. Therefore, the corresponding

terms of the joint posterior need to be included when

computing the Hastings ratio

ρ¯
P(IG

$
i

r q, I
i
,R

i
,N)P(IH

$
i

r r, I
i
)P(D

i
r p, IG

$
i

)

P(IG

i
r q, I

i
,R

i
,N)P(IH

i
r r, I

i
)P(D

i
r p, IG

i
)

¬0K

j"i
P(IG

j
r q, I$

j
,R$

j
,N)P(IH

j
r r, I$

j
)¬Q(IG

i
)Q(IH

i
)

0K

j"i
P(IG

j
r q, I

j
,R

j
,N)P(IH

j
r r, I

j
)¬Q(IG

$
i

)Q(IH
$

i
)

¯
IG

i
!

IG
$

i
!

(N®I
i
®R

i
®IG

i
) !

(N®I
i
®R

i
®IG

$
i

) !

¬(1®qIi)I
G
$

i −I
G

i (qIi)I
G

i −I
G
$

i

¬
IH

i
!

IH
$

i
!

(I
i
®IH

i
) !

(I
i
®IH

$
i

) !
rI

H
$

i −I
H

i (1®r)I
H

i −I
H
$

i

¬
IG

$
i

!

IG

i
!

(IG

i
®D

i
) !

(IG
$

i
®D

i
) !

(1®p)I
G
$

i −I
G

i

¬0
K

j"i

9(N®I$
j
®R$

j
) !

(N®I
j
®R

j
) !

(N®I
j
®R

j
®IG

j
) !

(N®I$
j
®R$

j
®IG

j
) !

¬01®qI$j

1®qIj
1I

G

j qI$j (N−I$j −R$

j −I
G

j )

qIj(N−Ij−Rj−I
G

j )

¬
I$
j
!

I
j
!

(I
j
®IG

j
) !

(I$
j
®IG

j
) !

(1®r)I$j −Ij: .

Then IG
$

i
and IH

$
i

are accepted with probability

min ²ρν, 1´, where ν¯ 1 if the constraints (2) are

satisfied, otherwise ν¯ 0. These constraints need to be

satisfied for all weeks 1,…,K but for the K­1th week

we only need to require that the state variables I and

R are consistent :

0% I
K+"

%N, 0%R
K+"

%N.

This ensures that there is a valid ‘ initial condition’

when the predictions are computed starting from

week K­1 onwards. After the number of new

infections IG

i
and removals IH

i
are updated, the same

must be done for I
j
’s and R

j
’s for j¯ i­1,…,K.

After the parameters are updated by random

scanning the predictions for the remaining weeks are

easily computed as follows. First, we update I
K+"

and

R
K+"

deterministically from

I
K+"

¯ I
K
­IG

K
®D

K
®IH

K
,

R
K+"

¯R
K
­IH

K
­D

K
,

and these are now valid because that was required

above. Then, we sample IG

K+"
from Bin (1®qIK+",

N®I
K+"

®R
K+"

) after which D
K+"

can be sampled

from Bin (p, IG

k+"
). If we want to predict further on, we

sample IH

k+"
from Bin (r, I

K+"
) and update I

K+#
and

R
K+#

to sample the next IG

K+#
, etc.
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