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Abstract. Let X be a Banach function space over a nonatomic probability space.
We investigate certain martingale inequalities in X that generalize those studied by
A. M. Garsia. We give necessary and sufficient conditions on X for the inequalities to
be valid.
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1. Introduction. It is well known that, for each p ∈ [1, ∞), the Hardy space Hp

of martingales consists of those f = ( fn)n∈�+ for which S f ∈ Lp, where S f denotes the
square function of f . It is also known to many researchers of martingale theory that,
for each q ∈ [2, ∞], the space Kq consists of those f = ( fn)n∈�+ for which there exists a
random variable γ ∈ Lq satisfying

�[ | f∞ − fn−1|2 |Fn ] ≤ �[ γ 2 |Fn ]

almost surely (a.s.) for all n ∈ �+, where f−1 ≡ 0. The norm of f ∈ Kq is defined to be
the infimum of ‖γ ‖q over all γ ∈ Lq satisfying the inequality above.

The spaceKq plays a crucial role in studying the dual space ofHp. In fact, Garsia [5]
proved that if 1 ≤ p ≤ 2 and q is the conjugate exponent of p, then the dual space of
Hp is isomorphic to Kq. Since K∞ coincides with BMO (the space of martingales of
bounded mean oscillation), Garsia’s result includes Fefferman’s duality theorem which
asserts that the dual space of H1 is isomorphic to BMO. On the other hand, Garsia
also proved that if 2 ≤ q < ∞, then Hq and Kq coincide, and for all f ∈ Kq,√

2/q ‖S f ‖q ≤ ‖f ‖Kq
≤ ‖S f ‖q. (1.1)

Moreover, combining (1.1) with the Burkholder square function inequality ([2,
Theorem 9]), we see that if 2 ≤ q < ∞, then there exists a constant Cq > 0 such that for
any f = ( fn) ∈ Kq,

C−1
q ‖f∞‖q ≤ ‖f ‖Kq

≤ Cq ‖f∞‖q, (1.2)

where f∞ := limn fn a.s.
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In this paper, we consider more general inequalities similar to those in (1.2).
Given a Banach function space X (see Definition 1 below) and a filtration F = (Fn),
we introduce a Banach space of martingales, which we denote by K(X, F), and give
necessary and sufficient conditions on X for the inequalities

C−1 ‖f∞‖X ≤ ‖f ‖K(X,F) ≤ C ‖f∞‖X

and

C−1limn→∞ ‖fn ‖X ≤ ‖f ‖K(X,F) ≤ C limn→∞ ‖fn ‖X

to be valid. For a fixed filtrationF = (Fn), the definition ofK(Lq, F) is slightly different
from that of Kq (cf. Definition 3 in Section 3). However, K(Lq, F) and Kq in fact
coincide for all q ∈ [2, ∞].

2. Preliminaries. We deal with martingales on a nonatomic probability space
(�, �, �). The assumption that � is nonatomic is essential. In addition, we have to
deal with another probability space; let I be the interval (0, 1] and let µ be Lebesgue
measure on the σ -algebra M consisting of all Lebesgue measurable subsets of I . The
reader may assume that these two probability spaces are the same. However, our
argument will not be very simple by doing so.

Let X and Y be normed linear spaces. We write X ↪→ Y if X is continuously
embedded in Y , that is, if X ⊂ Y and the inclusion map is continuous.

DEFINITION 1. Let (X, ‖ · ‖X ) be a Banach space of (equivalence classes of) random
variables on �, or measurable functions on I . We call (X, ‖ · ‖X ) a Banach function
space if it satisfies the following conditions:

(B1) L∞ ↪→ X ↪→ L1 ;
(B2) if |x| ≤ |y| a.s. and y ∈ X , then x ∈ X and ‖x‖X ≤ ‖y‖X ;
(B3) if 0 ≤ xn ↑ x a.s., xn ∈ X for all n, and supn ‖xn ‖X < ∞, then x ∈ X and

‖x‖X = supn ‖xn ‖X .
If x /∈ X , we let ‖x‖X := ∞.

Note that, in Definition 1, we may replace (B3) by the condition that
(B3′) if 0 ≤ xn ∈ X for all n and limn ‖xn ‖X <∞, then limnxn ∈ X and
‖ limnxn ‖X ≤ limn ‖xn ‖X .
Let x and y be random variables on �, or measurable functions on I . We write

x � d y to mean that x and y have the same distribution.

DEFINITION 2. A Banach function space (X, ‖ · ‖X ) is said to be rearrangement-
invariant (r.i.) provided that

(RI) if x � d y and y ∈ X , then x ∈ X and ‖x‖X = ‖y‖X .
A rearrangement-invariant Banach function space will be simply called a rearrange-
ment-invariant space or an r.i. space.

Typical examples of r.i. spaces are Lebesgue spaces Lp, Orlicz spaces L�, Lorentz
spaces Lp,q, and so on. An example of a Banach function space that is not r.i. is
a weighted Lebesgue space. Let w be a strictly positive random variable such that
�[w ] = 1, and let 1 < p < ∞. If w−1/( p−1) is integrable, then the Lebesgue space Lw

p with
respect to the measure w d� satisfies (B1)–(B3), and thus it is a Banach function space
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(with respect to �). It is known that Lw
p can be renormed so as to be r.i. if and only if

0 < ess infw ≤ ess supw < ∞ (cf. [6, Section 4]).
Let x be a random variable on �. The nonincreasing rearrangement of x, which we

denoted by x∗, is the nonincreasing right-continuous function on I = (0, 1] defined by

x∗(t) := inf{λ > 0 | �(|x| > λ) ≤ t} for all t ∈ I ,

with the convention that inf ∅ = ∞. Note that x∗ is characterized as the nonincreasing
right-continuous function that has the same distribution (with respect to µ) as |x|.

If φ is a measurable function on I , then the nonincreasing rearrangement φ∗ is
defined by regarding φ as a random variable on the probability space (I, M, µ).

Let x and y be integrable random variables on �, or measurable functions on I .
We write x ≺ y if ∫ t

0
x∗(s) ds ≤

∫ t

0
y∗(s) ds for all t ∈ I .

Then it is obvious that x � d y if and only if x ≺ y ≺ x.
A Banach function space (X, ‖ · ‖X ) is said to be universally rearrangement-invari-

ant (u.r.i) provided that

(URI) if x ≺ y and y ∈ X , then x ∈ X and ‖x‖X ≤ ‖y‖X .

Clearly condition (URI) implies condition (RI), while the converse is not true in
general. However, if the underlying measure space is nonatomic, then condition (RI)
implies condition (URI) (cf. [1, Theorem 4.6, p. 61]). Thus, in our argument, we need
not distinguish u.r.i. spaces from r.i. spaces.

Now let us recall Luxemburg’s representation theorem. If X is an r.i. space over
�, then there exists a unique Banach function space X̂ over I such that:

• x ∈ X if and only if x∗ ∈ X̂ ;
• ‖x‖X = ‖x∗ ‖X̂ for all x ∈ X .

In fact X̂ consists of those functions φ for which

‖φ‖X̂ := sup
{∫ 1

0
φ∗(s) y∗(s) ds| ‖y‖X ′ ≤ 1

}
< ∞,

where

‖y‖X ′ := sup{�[|xy| ] | x ∈ X, ‖x‖X ≤ 1}. (2.1)

We call (X̂, ‖ · ‖X̂ ) the Luxemburg representation of (X, ‖ · ‖X ). For example, the
Luxemburg representation of Lp(�) is Lp(I). For more details, see [1, pp. 62–64].

Now let Z1 and Z2 be r.i. spaces over I , and let T be a linear operator whose
domain contains Z1. We write T ∈ B(Z1, Z2) to mean that the restriction of T to
Z1 is a bounded operator on Z1 into Z2. If Z1 = Z2 = Z, we also write T ∈ B(Z) for
T ∈ B(Z, Z).

In order to state our results, we need the notion of Boyd indices, which are defined
as follows. Given a measurable function φ on I , we define a function Dsφ on I by
setting

(Dsφ)(t) :=
{

φ(st) if st ∈ I,

0 otherwise.
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If Z is an r.i. space over I , then Ds ∈ B(Z) and ‖Ds ‖B(Z) ≤ (1/s) ∨ 1 for all s > 0, where
‖Ds ‖B(Z) denotes the operator norm of Ds (restricted to Z). The lower and upper Boyd
indices of an r.i. space Z are defined by

αZ := sup
0<s<1

log ‖Ds−1 ‖B(Z)

log s
and βZ := inf

1<s<∞
log ‖Ds−1 ‖B(Z)

log s
,

respectively. Then we have

αZ = lim
s↓0

log ‖Ds−1 ‖B(Z)

log s
, βZ = lim

s↑∞
log ‖Ds−1 ‖B(Z)

log s

and

0 ≤ αZ ≤ βZ ≤ 1.

If X is an r.i. space over �, we define the Boyd indices of X by αX := αX̂ and βX := βX̂ ,
where X̂ is the Luxemburg representation of X . For instance, αLp

= βLp
= 1/p for all

p ∈ [1, ∞]. See [1, pp. 148–149] for details.
We conclude this section by introducing operators P , Q and R. For a measurable

function φ on I , we define

(Pφ)(t) := 1
t

∫ t

0
φ(s) ds, t ∈ I,

(Qφ)(t) :=
∫ 1

t

φ(s)
s

ds, t ∈ I,

and

(Rφ)(t) :=
∫ 1

0

φ(s)
s + t

ds, t ∈ I,

provided that these integrals exist for all t ∈ I . It is easy to verify that if φ is nonnegative
and integrable, then

1
2

(Pφ + Qφ) ≤ Rφ ≤ Pφ + Qφ on I , (2.2)

P(Qφ) = Pφ + Qφ on I , (2.3)

and

Q(Pφ) = Pφ + Qφ −
∫ 1

0
φ(s) ds on I . (2.4)

Note that each of the operatorsP andQ is the (formal) adjoint of the other. It is known
that P ∈ B(Z) (resp. Q ∈ B(Z)) if and only if βZ < 1 (resp. αZ > 0). Furthermore, by
(2.2) we have that R ∈ B(Z) if and only if αZ > 0 and βZ < 1. See [1, p. 150] for details
(cf. [10]).

3. Results. Let � denote the collection of all filtrations of (�, �, �), where by
filtration of (�, �, �) we mean a nondecreasing sequence of sub-σ -algebras of �.
Given F = (Fn)n∈�+ ∈ �, we denote by M(F) the space of all martingales with respect
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to F and �, and we denote by Mu(F) the linear subspace of M(F) consisting of all
uniformly integrable martingales. Recall that every f = ( fn) ∈ Mu(F) converges a.s.;
we let f∞ := limn fn a.s. for each f = ( fn) ∈ Mu(F).

Henceforth we adopt the convention that f−1 ≡ 0 for any f = ( fn) ∈ M(F).

DEFINITION 3. Let (X, ‖ · ‖X ) be a Banach function space over �. We denote by
�f (X, F) the set of all nonnegative, σ (

⋃∞
n = 0 Fn)-measurable random variables γ ∈ X

satisfying

sup
m≥n

�[ | fm − fn−1| |Fn ] ≤ �[ γ |Fn ] a.s., n ∈ �+. (3.1)

The space K(X, F) is defined to be the set of f = ( fn)n∈�+ ∈ M(F) for which
�f (X, F) �= ∅. The norm of f ∈ K(X, F) is given by

‖f ‖K(X,F) := inf{‖γ ‖X | γ ∈ �f (X, F)}.

For martingales f ∈ M(F) that are not in K(X, F), we let ‖f ‖K(X,F) := ∞.

Note that if f = ( fn) ∈ Mu(F), then (3.1) can be rewritten as

�[ | f∞ − fn−1| |Fn ] ≤ �[ γ |Fn ] a.s., n ∈ �+.

Note also that K(X, F) is a Banach space. Indeed, it is not hard to show that K(X, F)
has the Riesz-Fischer property, that is, that if { f (k)} is a sequence in K(X, F) such that∑∞

k = 1 ‖f (k)‖K(X,F) < ∞, then the series
∑∞

k = 1 f (k) converges in K(X, F). As is well
known, a normed linear space that has the Riesz-Fischer property is complete. Thus
K(X, F) is a Banach space.

We can now state the main result of this paper.

THEOREM 1. Let (X, ‖ · ‖X ) be a Banach function space over �. Then the following
are equivalent:

(i) there exists a positive constant C such that for any F = (Fn)n∈�+ ∈ � and any
f = ( fn)n∈�+ ∈ M(F),

C−1limn→∞ ‖fn ‖X ≤ ‖f ‖K(X,F) ≤ C limn→∞ ‖fn ‖X ; (3.2)

(ii) there exists a positive constant C such that for any F = (Fn)n∈�+ ∈ � and any
f = ( fn)n∈�+ ∈ Mu(F),

C−1 ‖f∞‖X ≤ ‖f ‖K(X,F) ≤ C ‖f∞‖X ; (3.3)

(iii) there exists a norm ||| · |||X on X which is equivalent to ‖ · ‖X and with respect to
which X is a rearrangement-invariant space such that αX > 0 and βX < 1.

REMARK 1. Suppose that (iii) of Theorem 1 holds. Then (3.2) can be rewritten as

K−1 sup
n∈�+

|||fn |||X ≤ ‖f ‖K(X,F) ≤ K sup
n∈�+

|||fn |||X , (3.4)

where K is a positive constant, independent of f . To see this, let F = (Fn) ∈ � and
f = ( fn) ∈ M(F). Then fn ≺ fn+1 for all n (see [7, Remark 4.3]), and hence (URI) with
‖ · ‖X replaced by ||| · |||X implies that |||fn |||X ≤ |||fn+1 |||X for all n. Thus we may replace
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both lim ‖fn ‖X and lim ‖fn ‖X in (3.2) with a constant multiple of sup |||fn |||X to obtain
(3.4).

As we shall see in the last section, Theorem 1 is a consequence of Propositions 1,
2, and 3 below.

PROPOSITION 1. Let (X, ‖ · ‖X ) be a Banach function space over �. Suppose that one
of the following four conditions holds:

(i) the first inequality of (3.2) holds for any F = (Fn)n∈�+ ∈ � and any f = ( fn)n∈�+ ∈
M(F);

(ii) the second inequality of (3.2) holds for any F = (Fn)n∈�+ ∈ � and any
f = ( fn)n∈�+ ∈ M(F);

(iii) the first inequality of (3.3) holds for any F = (Fn)n∈�+ ∈ � and any f = ( fn)n∈�+ ∈
Mu(F);

(iv) the second inequality of (3.3) holds for any F = (Fn)n∈�+ ∈ � and any
f = ( fn)n∈�+ ∈ Mu(F).

Then there exists a norm ||| · |||X on X which is equivalent to ‖ · ‖X and with respect to
which X is a rearrangement-invariant space.

PROPOSITION 2. Let (X, ‖ · ‖X ) and (Y, ‖ · ‖Y ) be rearrangement-invariant spaces
over �, and let (X̂, ‖ · ‖X̂ ) and (Ŷ , ‖ · ‖Ŷ ) be their Luxemburg representations. Then the
following are equivalent:

(i) there exists a positive constant C such that for any F = (Fn)n∈�+ ∈ � and any
f = ( fn)n∈�+ ∈ M(F),

‖f ‖K(X,F) ≤ C sup
n∈�+

‖fn ‖Y ; (3.5)

(ii) there exists a positive constant C such that for any F = (Fn)n∈�+ ∈ � and any
f = ( fn)n∈�+ ∈ Mu(F),

‖f ‖K(X,F) ≤ C ‖f∞‖Y ; (3.6)

(iii) P ∈ B(Ŷ , X̂).

REMARK 2. As mentioned before, P ∈ B(X̂) if and only if βX̂ < 1. Hence by
Propositions 1 and 2, the following are equivalent:

• the second inequality of (3.2) holds for any F = (Fn)n∈�+ ∈ � and any
f = ( fn)n∈�+ ∈ M(F);

• the second inequality of (3.3) holds for any F = (Fn)n∈�+ ∈ � and any
f = ( fn)n∈�+ ∈ Mu(F);

• X can be renormed so that it is an r.i. space with βX < 1.

PROPOSITION 3. Let (X, ‖ · ‖X ), (Y, ‖ · ‖Y ), (X̂, ‖ · ‖X̂ ), and (Ŷ , ‖ · ‖Ŷ ) be as in
Proposition 2.

(i) Suppose that R ∈ B(Ŷ , X̂). Then there exists a positive constant C such that for
any F = (Fn)n∈�+ ∈ � and any f = ( fn)n∈�+ ∈ M(F),

sup
n∈�+

‖fn ‖X ≤ ‖Mf ‖X ≤ C ‖f ‖K(Y,F) . (3.7)

Here Mf denotes the maximal function of f , that is, Mf := supn∈�+ |fn|.
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(ii) Suppose that there exists a positive constant C such that the inequality

sup
n∈�+

‖fn ‖X ≤ C ‖f ‖K(Y,F) (3.8)

holds for any F = (Fn)n∈�+ ∈ � and any f = ( fn)n∈�+ ∈ M(F). Then Q ∈ B(Ŷ , X̂).

REMARK 3. From (2.2), (2.3), and (2.4), we see that the hypothesis R ∈ B(Ŷ , X̂)
in (i) of Proposition 3 is equivalent to each of the following:

(a) P ∈ B(Ŷ , X̂) and Q ∈ B(Ŷ , X̂);
(b) PQ ∈ B(Ŷ , X̂);
(c) QP ∈ B(Ŷ , X̂).

Incidentally, in order to prove that (c) implies (a), we have to use the hypotheses
L∞(I) ↪→ X̂ and Ŷ ↪→ L1(I) (cf. (B1)).

REMARK 4. Let (X, ‖ · ‖X ) be an r.i. space over �. There is a characterization of
those r.i. spaces Y for which P ∈ B(Ŷ , X̂). Define H(X) to be the set of all x ∈ L1(�)
such that ‖x‖H(X) := ‖Px∗ ‖X̂ <∞. Then

(
H(X), ‖ · ‖H(X)

)
is an r.i. space and P ∈

B(Ĥ(X), X̂). Moreover P ∈ B(Ŷ , X̂) if and only if Y ↪→ H(X).
There is a similar result concerning the boundedness of Q . Define K(X) to be the

set of all x ∈ L1(�) such that ‖x‖K(X) := ‖Qx∗ ‖X̂ <∞. If the function t �→ − log t
belongs to X̂ , then K(X) is an r.i. space and Q ∈ B

(
K̂(X), X̂

)
. Moreover Q ∈ B(Ŷ , X̂)

if and only if Y ↪→ K(X), provided that − log t ∈ X̂ . See [7] for details.

4. Proof of Proposition 1. We begin with a lemma.

LEMMA 1. Let (X, ‖ · ‖X ) be a Banach function space over �, and let S+ be the set
of all nonnegative simple random variables on �. Then the following are equivalent:

(i) there is a constant c > 0 such that if x, y ∈ S+, x � d y, and x ∧ y ≡ 0, then
‖y‖X ≤ c ‖x‖X ;

(ii) there is a constant c > 0 such that if x, y ∈ X and x � d y, then ‖y‖X ≤ c ‖x‖X ;
(iii) there is a norm ||| · |||X on X which is equivalent to ‖ · ‖X and with respect to which

X is an r.i. space.

A complete proof of this lemma can be found in [8]. For convenience, we sketch
the proof here (cf. [9]).

Proof. (iii) ⇒ (i). Obvious.
(i) ⇒ (ii). Assume that (i) holds. We first show that if x, y ∈ X , x � d y, and

|x| ∧ |y| ≡ 0, then ‖y‖X ≤ c ‖x‖X . For such x and y, there are sequences {xn} and {yn}
in S+ such that xn � d yn for all n ∈ �+, and such that 0 ≤ xn ↑ |x| and 0 ≤ yn ↑ |y|. Since
by assumption ‖yn ‖X ≤ c ‖xn ‖X for all n, we can apply (B3) to obtain ‖y‖X ≤ c ‖x‖X .
Next we show that (ii) holds, or equivalently, that

sup{‖y‖X | x, y ∈ X, x � d y, ‖x‖X ≤ 1} < ∞. (4.1)

Suppose x, y ∈ X , x � d y, and ‖x‖X ≤ 1. We choose a positive number λ so that
�(|x| > λ) = �(|y| > λ) ≤ 1/3, and let x′ := |x|1{|x|>λ} and y′ := |y|1{|y|> λ}. Here, and in
what follows, 1A denotes the indicator function of A. Then, since �(x′ = 0, y′ = 0) ≥
1/3, there exists a random variable z such that {z �= 0} ⊂ {x′ = 0, y′ = 0} and
z � d x′ (cf. [4, (5.6), p. 44]). Since x′ ∧ z ≡ 0 and y′ ∧ z ≡ 0, we have that
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‖y′ ‖X ≤ c ‖z‖X ≤ c2‖x′ ‖X ≤ c2. Hence, letting 1 denote the constant function with
value one, we obtain

‖y‖X ≤ ‖y′ ‖X + λ ‖1‖X ≤ c2 + λ ‖1‖X ,

which proves (4.1).
(ii) ⇒ (iii). For each x ∈ L1(�), we define

|||x|||X := sup
{∫ 1

0
x∗(s) y∗(s) ds| ‖y‖X ′ ≤ 1

}
,

where ‖y‖X ′ is defined as in (2.1). Then the set of all x ∈ L1(�) such that |||x|||X < ∞
forms an r.i. space. Moreover, under the assumption that (ii) holds, one can show
that |||x|||X < ∞ if and only if x ∈ X , and in this case ‖x‖X ≤ |||x|||X ≤ c ‖x‖X for all
x ∈ X . �

Proof of Proposition 1. Suppose first that (ii) of Proposition 1 holds. We show that
(i) of Lemma 1 holds. Let x and y be nonnegative simple random variables such that
x � d y and x ∧ y ≡ 0. Then we can write

x =
�∑

j=1

αj1Aj and y =
�∑

j=1

αj1Bj ,

where αj > 0 for each j ∈ {1, 2, . . . , �}, and where {Aj}�j = 1 and {Bj}�j = 1 are sequences of
sets in � such that:

• �(Aj) = �(Bj) for each j ∈ {1, 2, . . . , �} ;
• Aj ∩ Ak = Bj ∩ Bk = ∅ whenever j �= k ;
• (⋃�

j = 1 Aj
) ∩ (⋃�

j = 1 Bj
)= ∅.

Let j := Aj ∪ Bj for each j ∈ {1, 2, . . . , �}. We define F = (Fn) ∈ � and f = ( fn) ∈
Mu(F) by

Fn :=
{

σ {j | j = 1, 2, . . . , �} if n = 0,

� if n ≥ 1.
and f := �[ x |Fn ], n ∈ �+.

Suppose that γ ∈ �f (X, F). Then since f0 = 2−1(x + y) and fn = x for n ≥ 1,

y
2

≤ f0 = �[|f1 − f0| |F1 ] ≤ �[ γ |F1 ] = γ a.s.

Hence ‖y‖X ≤ 2 ‖γ ‖X , which implies ‖y‖X ≤ 2 ‖f ‖K(X,F). Combining this with the
second inequality of (3.2), we obtain ‖y‖X ≤ 2C ‖x‖X . Thus (i) of Lemma 1 holds.

If (iv) of Proposition 1 holds, we can use exactly the same argument as above to
show that (i) of Lemma 1 holds.

Suppose next that (i) of Proposition 1 holds. Let x and y be as above, and let C
be the constant appearing in (3.2). Of course, we may assume that C ≥ 1. (In fact,
one can deduce that C ≥ 1.) For each j ∈ {1, 2, . . . , �}, we choose B′

j ∈ � so that
B′

j ⊂ Bj and �(B′
j) = C−1�(Bj). This is possible, since (�, �, �) is nonatomic. Now let

j := Aj ∪ B′
j for each j ∈ {1, 2, . . . , �}, and define F = (Fn) ∈ � and f = ( fn) ∈ Mu(F)
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as above. Then, letting y′ := ∑�
j = 1 αj1B′

j
, we have

fn =
{

C(C + 1)−1(x + y′) if n = 0,

x if n ≥ 1.

It is easy to see that (C + 1)−1(x + C2y′) ∈ �f (X, F). Since y′ ≤ y, we have

‖f ‖K(X,F) ≤ 1
C + 1

‖x‖X + C2

C + 1
‖y‖X .

On the other hand, the first inequality of (3.2) implies ‖x‖X ≤ C ‖f ‖K(X,F). Therefore

‖x‖X ≤ C
C + 1

‖x‖X + C3

C + 1
‖y‖X ,

which implies ‖x‖X ≤ C3 ‖y‖X . Thus (i) of Lemma 1 holds. Exactly the same argument
applies if (iii) holds, and Proposition 1 is proved. �

5. Proof of Proposition 2. In order to prove Proposition 2, we need four lemmas,
which will also be used in the proof of Proposition 3.

LEMMA 2. Let (X, ‖ · ‖X ), (Y, ‖ · ‖Y ), (X̂, ‖ · ‖X̂ ), and (Ŷ , ‖ · ‖Ŷ ) be as in
Proposition 2, and let f = ( fn)n∈�+ be a martingale.

(i) If f = ( fn)n∈�+ is uniformly integrable, then

‖f∞‖X = lim
n→∞ ‖fn ‖X = sup

n∈Z
‖fn ‖X .

(ii) If P ∈ B(Ŷ , X̂) and supn∈�+ ‖fn ‖Y < ∞, then Mf = supn∈�+ |fn| ∈ X and

‖Mf ‖X ≤ ‖P ‖B(Ŷ , X̂) · sup
n∈�+

‖fn ‖Y ,

where ‖P ‖B(Ŷ ,X̂) stands for the operator norm of P : Ŷ → X̂ .

Proof. (i) Assume that f = ( fn) is uniformly integrable. Then fn ≺ fn+1 ≺ f∞ for all
n ∈ �+ (see [7, Remark 4.3]). Hence, by (URI) and (B3′),

sup
n∈�+

‖fn ‖X ≤ ‖f∞‖X ≤ lim
n→∞ ‖fn ‖X = sup

n∈�+
‖fn ‖X ,

as desired. Of course, if f∞ /∈ X , then ‖f∞‖X = supn ‖fn ‖X = ∞.
(ii) As shown in the proof of [6, Proposition 3], for each n ∈ �+,

(Mnf )∗(t) ≤ (Pf ∗
n )(t), t ∈ I,

where Mnf := sup0≤m≤n |fm|. Therefore

‖Mnf ‖X = ‖(Mnf )∗ ‖X̂ ≤ ‖Pf ∗
n ‖X̂ ≤ ‖P ‖B(Ŷ , X̂) · sup

n∈�+
‖fn ‖Y < ∞.
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Since Mnf ↑ Mf , it follows from (B3) that Mf ∈ X and

‖Mf ‖X ≤ ‖P ‖B(Ŷ , X̂) · sup
n∈�+

‖fn ‖Y ,

as desired. �
LEMMA 3. Let (X, ‖ · ‖X ) and (Y, ‖ · ‖Y ) be r.i. spaces over �.

(i) If (3.6) holds for any F = (Fn)n∈�+ ∈ � and any f = ( fn)n∈�+ ∈ Mu(F), then
Ŷ ↪→ X̂ , or equivalently Y ↪→ X.

(ii) If (3.8) holds for any F = (Fn)n∈�+ ∈ � and any f = ( fn)n∈�+ ∈ M(F), then Ŷ ↪→
X̂ , or equivalently Y ↪→ X.

Proof. Let x ∈ Y . We define F = (Fn) ∈ � and f = ( fn) ∈ Mu(F) by

Fn :=
{ {∅, �} if n = 0,

� if n ≥ 1,
and fn := �[ x |Fn ], n ∈ �+.

Then, for any γ ∈ �f (X, F),

|x − �[x ]| = �[|f1 − f0| |F1 ] ≤ �[ γ |F1 ] = γ a.s.,

and hence |x| ≤ γ + ‖x‖1 ≤ γ + d ‖x‖Y a.s., where d is a positive constant such that
‖ · ‖1 ≤ d ‖ · ‖Y on Y . Therefore ‖x‖X ≤ ‖γ ‖X + d ‖1‖X ‖x‖Y , which implies

‖x‖X ≤ ‖f ‖K(X,F) + d ‖1‖X ‖x‖Y .

Suppose that (3.6) holds for this f = ( fn). Then

‖x‖X ≤ C ‖f∞‖Y + d ‖1‖X ‖x‖Y = (C + d ‖1‖X ) ‖x‖Y ,

which shows that Y ↪→ X . Moreover, if φ ∈ Ŷ , then there exists y ∈ Y such that
y∗ =φ∗ on I (see [4, (5.6), p. 44]). Hence ‖φ‖X̂ = ‖y‖X ≤ C′ ‖y‖Y = C′ ‖φ‖Ŷ , where
C′ := C + d ‖1‖X . This shows that Ŷ ↪→ X̂ and (i) is proved.

To prove (ii), suppose that (3.8) holds for f = ( fn) defined above. If we let η :=
|x| + ‖x‖1, then η ∈ �f (Y, F) and hence

‖f ‖K(Y,F) ≤ ‖η‖Y ≤ ‖x‖Y + ‖1‖Y ‖x‖1 ≤ (1 + d ‖1‖Y ) ‖x‖Y .

Then by (i) of Lemma 2 and (3.8),

‖x‖X = sup
n∈�+

‖fn ‖X ≤ C(1 + d ‖1‖Y ) ‖x‖Y .

Thus Y ↪→ X and Ŷ ↪→ X̂ . This completes the proof. �
Before stating the next lemma, we introduce the following notation: if Z is a

Banach function space over I , then D(Z) denotes the set of all functions in Z that are
nonnegative, nonincreasing, and right-continuous.

LEMMA 4. Let (Z1, ‖ · ‖Z1
) and (Z2, ‖ · ‖Z2

) be r.i. spaces over I.

(i) If there is a constant c > 0 such that ‖Pφ‖Z2
≤ c ‖φ‖Z1

for all φ ∈ D(Z1), then
P ∈ B(Z1, Z2) and ‖P ‖B(Z1, Z2) ≤ c.
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(ii) If there is a constant c > 0 such that ‖Qφ‖Z2
≤ c ‖φ‖Z1

for all φ ∈ D(Z1), then
Q ∈ B(Z1, Z2) and ‖Q ‖B(Z1, Z2) ≤ c.

Proof. (i) Suppose ‖Pφ‖Z2
≤ c ‖φ‖Z1

for all φ ∈ D(Z1), and let ψ ∈ Z1 be
arbitrary. According to [1, Lemma 2.1, p. 44], we have |Pψ | ≤Pψ∗. Since ψ∗ ∈ D(Z1),
it follows that

‖Pψ ‖Z2
≤ ‖Pψ∗ ‖Z2 ≤ c‖ψ∗ ‖Z1 = c ‖ψ ‖Z1

,

as desired.

(ii) Suppose ‖Qφ‖Z2
≤ c ‖φ‖Z1

for all φ ∈ D(Z1), and let ψ ∈ Z1 be arbitrary. As
shown in the proof of [6, Lemma 3], |Qψ | ≤Q|ψ | ≺ Qψ∗. Hence

‖Qψ ‖Z2
≤ ‖Qψ∗ ‖Z2 ≤ c

∥∥ψ∗∥∥
Z1

= c ‖ψ ‖Z1
,

as desired. �

Note that since (�, �, �) is nonatomic, there exists a random variable ξ such
that

ξ ∗(t) = 1 − t for all t ∈ I . (5.1)

It is easy to prove the following:

LEMMA 5. Let ξ be a random variable satisfying (5.1), and define a family of sets
{A(t) ∈ � | t ∈ [0, 1]} by setting

A(t) := {ω ∈ � | ξ (ω) > 1 − t} for each t ∈ [0, 1].

Let φ ∈ L1(I) and let x := φ(1 − ξ ). Then:

(i) x∗(t) = φ∗(t) for all t ∈ I ;
(ii) A(s) ⊂ A(t) whenever 0 ≤ s ≤ t ≤ 1;

(iii) �
(
A(t)

)= t for all t ∈ [0, 1];
(iv)

∫
A(t) x d� = ∫ t

0 φ(s) ds for all t ∈ [0, 1].

We are now ready to prove Proposition 2.

Proof of Proposition 2. (iii) ⇒ (i). Assume that P ∈ B(Ŷ , X̂). Let F = (Fn) ∈ � and
let f = ( fn) ∈ M(F). To prove (3.5), we may assume supn ‖fn ‖Y < ∞. Then by (ii) of
Lemma 2, Mf ∈ X and

‖Mf ‖X ≤ ‖P ‖B(Ŷ , X̂) · sup
n∈�+

‖fn ‖Y .

On the other hand, since 2Mf ∈ �f (X, F), we have that ‖f ‖K(X,F) ≤ 2 ‖Mf ‖X .
Therefore

‖f ‖K(X,F) ≤ 2 ‖P ‖B(Ŷ , X̂) · sup
n∈�+

‖fn ‖Y ,

as desired.
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(i) ⇒ (ii). This is an immediate consequence of (i) of Lemma 2.
(ii) ⇒ (iii). Assume that (3.6) holds for anyF = (Fn) ∈ � and any f = ( fn) ∈ Mu(F).

In view of Lemma 4, it suffices to show that for all φ ∈ D(Ŷ ),

‖Pφ‖X̂ ≤ k ‖φ‖Ŷ (5.2)

with some constant k > 0, independent of φ. Let φ ∈ D(Ŷ ) and define (Pφ)(0) :=
limt↓0(Pφ)(t). Then (Pφ)(0) is finite if and only if φ ∈ L∞(I), and in this case
(Pφ)(0) = ‖φ‖∞. Bearing this in mind, we define a nonincreasing sequence {tn}n∈�+ in
[0, 1] by setting

t0 := 1 and tn := inf{s ∈ [0, 1] | (Pφ)(s) ≤ 2(Pφ)(tn−1)}, n ≥ 1.

Then tn → 0 and

(Pφ)(tn) ≤ 2(Pφ)(tn−1) for all n ≥ 1. (5.3)

(In fact, equality holds if and only if 2(Pφ)(tn−1) ≤ (Pφ)(0).)
Let x and {A(t) | t ∈ [0, 1]} be as in Lemma 5. Define F = (Fn) ∈ � and f = ( fn) ∈

Mu(F) by

Fn := σ { \ A(tn) |  ∈ �}, n ∈ �+, and fn := �[x |Fn ], n ∈ �+. (5.4)

Then by Lemma 5

fn = 1A(tn)

�(A(tn))

∫
A(tn)

x d� + x 1�\A(tn) = (Pφ)(tn) 1A(tn) + x 1�\A(tn) (a.s.),

for each n ∈ �+. Since A(tn) ↓ ∅ a.s., we have f∞ = x a.s. and hence for each n ≥ 1,

{(Pφ)(tn−1) − |x|}1A(tn−1)\A(tn) ≤ | f∞ − fn−1| 1A(tn−1)\A(tn)

= �[ | f∞ − fn−1| |Fn ] 1A(tn−1)\A(tn) (a.s.). (5.5)

Now let γ ∈ �f (X, F). Then for each n ≥ 1,

�[ | f∞ − fn−1| |Fn ] 1A(tn−1)\A(tn) ≤ �[ γ |Fn ] 1A(tn−1)\A(tn)

= γ 1A(tn−1)\A(tn) (a.s.). (5.6)

From (5.5) and (5.6), it follows that

∞∑
n=1

(Pφ)(tn−1) 1A(tn−1)\A(tn) ≤ γ + |x| (a.s.).

We write η for the sum on the left-hand side (which is a finite sum if φ ∈ L∞(I)). Then
by (5.3), we have for each t ∈ I ,

(Pφ)(t) ≤
∞∑

n=1

(Pφ)(tn) 1[tn, tn−1)(t)

≤ 2
∞∑

n=1

(Pφ)(tn−1) 1[tn, tn−1)(t) = 2η∗(t) ≤ 2(γ + |x|)∗(t).
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Therefore

‖Pφ‖X̂ ≤ 2‖(γ + |x|)∗ ‖X̂ = 2‖γ + |x|‖X ≤ 2(‖γ ‖X + ‖x‖X ),

which implies

‖Pφ‖X̂ ≤ 2 ‖f ‖K(X,F) + 2 ‖x‖X .

By Lemma 3, we may replace ‖x‖X with d ‖x‖Y = d ‖φ‖Ŷ , where d is a positive
constant that is independent of x, and by (3.6) we may replace ‖f ‖K(X,F)
with C ‖f∞‖Y = C ‖φ‖Ŷ . Thus (5.2) holds with k = 2(C + d). This completes
the proof. �

6. Proof of Proposition 3. In addition to lemmas in the previous section, we need
one more lemma.

LEMMA 6. Let F = ( Fn)n∈�+ ∈ � and f = ( fn)n∈�+ ∈ M(F). If γ ∈ �f (L1, F) and
if g = (gn)n∈�+ is the martingale defined by gn = �[ γ |Fn ], n ∈ �+, then

�[ Mf ] ≤ 16 �[ Mg ].

Proof. Let 0 < δ < 1 < b < ∞ and let 0 < λ < ∞. We define stopping times ρ, σ ,
and τ by

ρ := min{n ∈ �+ | gn > δλ}, σ := min{n ∈ �+ | |fn| > λ},
and

τ := min{n ∈ �+ | | fn| > bλ}.
Here we follow the usual convention that min ∅ = ∞. Then, on the one hand,

{Mf > bλ, Mg ≤ δλ} = {τ < ∞, ρ = ∞} (6.1)

⊂ {| fτ − fσ−1| ≥ (b − 1)λ, σ < ρ}.
On the other hand, by assumption,

�[ | fτ − fσ−1| 1{σ<ρ} |Fσ ] ≤ gσ 1{σ<ρ} ≤ δλ1{σ<∞} = δλ1{Mf >λ} (a.s.). (6.2)

Using (6.1) and (6.2), we have that

�(Mf > bλ, Mg ≤ δλ) ≤ �(| fτ − fσ−1| ≥ (b − 1)λ, σ < ρ)

≤ 1
(b − 1)λ

�
[ | fτ − fσ−1| 1{σ<ρ}

]
≤ δ

b − 1
�(Mf > λ).

Hence, by [3, Lemma 7.1],

�[ Mf ] ≤ b(b − 1)
δ(b − bδ − 1)

�[ Mg ],

provided b − bδ − 1 > 0. Setting b = 2 and δ = 1/4 gives the desired result. �
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Let F = (Fn), f = ( fn), and g = (gn) be as in Lemma 6. Given n ∈ �+ and A ∈ Fn,
we define F ′

k := Fk+n, f ′
k := ( fk+n − fn−1) 1A, and g′

k := gk+n 1A = �[ γ 1A |F ′
k ] for each

k ∈ �+. Then F ′ = (F ′
k)k∈�+ ∈ �, f ′ = ( f ′

k)k∈�+ ∈ M(F ′), g′ = (g′
k)k∈�+ ∈ M(F ′), and

γ 1A ∈ �f ′(L1, F ′). Hence by Lemma 6,

�[(Mf − Mn−1f ) 1A ] ≤ �[ Mf ′ ] ≤ 16 �[ Mg′ ] ≤ 16 �[ (Mg) 1A ].

Thus, under the same assumption as Lemma 6,

�[ Mf − Mn−1f |Fn ] ≤ 16 �[ Mg |Fn ] a.s. for all n ∈ �+. (6.3)

Proof of Proposition 3. (i) The first inequality of (3.7) is obvious. To prove
the second inequality, suppose R ∈ B(Ŷ , X̂). Then QP ∈ B(Ŷ , X̂). Let f = ( fn) ∈
K(Y, F), let γ ∈ �f (Y, F), and let g = (gn) be the martingale defined as in Lemma 6.
Then (6.3) holds. According to [7, Theorem 3.3] (or [6, Lemma 4]), we have that
(Mf )∗ ≺ 16Q(Mg)∗. Furthermore we know that (Mg)∗ ≤ Pg∗

∞ =Pγ ∗ on I (see the
proof of [6, Proposition 3]). Therefore (Mf )∗ ≺ 16Q(Pγ ∗), which implies that

‖Mf ‖X = ‖(Mf )∗ ‖X̂ ≤ 16‖Q(Pγ ∗)‖X̂

≤ 16 ‖QP ‖B(Ŷ , X̂) ‖γ ∗ ‖Ŷ = 16 ‖QP ‖B(Ŷ , X̂) ‖γ ‖Y .

Thus the second inequality of (3.7) holds with C = 16 ‖QP ‖B(Ŷ , X̂).
(ii) Suppose that (3.8) holds for any F = (Fn) ∈ � and any f = ( fn) ∈ M(F). In

view of Lemma 4, it suffices to show that for all ψ ∈ D(Ŷ ),

‖Qψ ‖X̂ ≤ k ‖ψ ‖Ŷ (6.4)

with some constant k > 0, independent of ψ . To this end, we may assume that ψ �≡ 0;
then ψ > 0 on some interval (0, δ ], and hence (Qψ)(t) ↑ ∞ as t ↓ 0. Let ε > 0 be given.
Since (Qψ)(t) is continuous, we can find a sequence {tn}n∈�+ in I such that

t0 = 1 and (Qψ)(tn) = (Qψ)(tn−1) + ε n ≥ 1. (6.5)

It is obvious that {tn} is strictly decreasing and tn → 0. Let φ := (Qψ) − ψ , and let
x and {A(t)

∣∣ t ∈ [0, 1]} be as in Lemma 5. We again consider the martingale f = ( fn)
defined as in (5.4). Since Pφ =P(Qψ) − Pψ =Qψ , we now have

fn = (Qψ)(tn) 1A(tn) + x 1�\A(tn) (a.s.) for all n ∈ �+.

It then follows that

�[ |f∞ − fn−1| |Fn] = 1A(tn)

tn

∫
A(tn)

|x − (Qψ)(tn−1)| d�

+ |x − (Qψ)(tn−1)| 1A(tn−1)\A(tn) (a.s.) for all n ∈ �+. (6.6)

Since (Qψ)(1 − ξ ) 1A(tn) ≥ (Qψ)(tn) 1A(tn) > (Qψ)(tn−1)1A(tn), we have that

|x − (Qψ)(tn−1)| 1A(tn) ≤ {(Qψ)(1 − ξ ) − (Qψ)(tn−1) + ψ(1 − ξ )} 1A(tn),
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and hence

1
tn

∫
A(tn)

|x − (Qψ)(tn−1)| d�

≤ 1
tn

∫
{1−ξ<tn}

(Qψ)(1 − ξ ) d� + 1
tn

∫
{1−ξ<tn}

ψ(1 − ξ ) d� − (Qψ)(tn−1)

= 1
tn

∫ tn

0
(Qψ)(s) ds + 1

tn

∫ tn

0
ψ(s) ds − (Qψ)(tn−1).

By (6.5) the right-hand side is equal to

(P(Qψ))(tn) + (Pψ)(tn) − (Qψ)(tn−1)

= 2(Pψ)(tn) + (Qψ)(tn) − (Qψ)(tn−1) = 2(Pψ)(tn) + ε.

Thus
1A(tn)

tn

∫
A(tn)

|x − (Qψ)(tn−1)| d� ≤ {2(Pψ)(tn) + ε} 1A(tn). (6.7)

As for the second term on the right-hand side of (6.6), we have

|x − (Qψ) (tn−1)| 1A(tn−1)\A(tn)

≤ {(Qψ)(tn) − (Qψ)(tn−1) + ψ(1 − ξ )} 1A(tn−1)\A(tn) (6.8)

= {ψ(1 − ξ ) + ε} 1A(tn−1)\A(tn).

From (6.6), (6.7), and (6.8), we see that for each n ≥ 1,

�[ |f∞ − fn−1| |Fn ] ≤ 2(Pψ)(tn) 1A(tn) + ψ(1 − ξ ) 1A(tn−1)\A(tn) + ε (a.s.). (6.9)

If we set t−1 = 1, then (6.9) remains valid for n = 0. Indeed,

�[ |f∞| |F0 ] = ‖x‖1 ≤ ‖Qψ ‖1 + ‖ψ ‖1 = 2 ‖ψ ‖1 = 2(Pψ)(t0) (a.s.).

Let γε := 2ψ(1 − ξ ) + ε. Then γ ∗
ε = 2ψ + ε ∈ Ŷ and

�[ γε |Fn ] = 2(Pψ)(tn) 1A(tn) + 2ψ(1 − ξ ) 1�\A(tn) + ε (a.s.).

Comparing this with (6.9), we see that γε ∈ �f (Y, F). Thus

‖f ‖K(Y,F) ≤ ‖γε ‖Y ≤ 2 ‖ψ ‖Ŷ + ε ‖1‖Y . (6.10)

On the other hand, by (B3′) we have that

‖Qψ ‖X̂ − ‖ψ ‖X̂ ≤ ‖φ‖X̂ = ‖x‖X ≤ limn→∞ ‖fn ‖X ≤ sup
n∈�+

‖fn ‖X . (6.11)

Using (3.8), (6.10) and (6.11), we obtain

‖Qψ ‖X̂ ≤ C(2 ‖ψ ‖Ŷ + ε ‖1‖Y ) + ‖ψ ‖X̂ .

According to Lemma 3, there is a positive constant d such that ‖ · ‖X̂ ≤ d ‖ · ‖Ŷ on Ŷ .
Replacing ‖ψ ‖X̂ by d ‖ψ ‖Ŷ and letting ε ↓ 0, we see that (6.4) holds with k = 2C + d.
This completes the proof. �
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7. Proof of Theorem 1. We conclude the paper with the proof of our main
theorem.

Proof of Theorem 1. (i) ⇒ (iii). Suppose that (i) of Theorem 1 holds. Then by
Proposition 1, there exists a norm ||| · |||X on X which is equivalent to ‖ · ‖X and
with respect to which X is an r.i. space. If F = (Fn) ∈ � and f = ( fn) ∈ M(F), then
|||fn |||X ≤ |||fn+1 |||X for all n ∈ �+ (cf. Remark 1), and hence by (3.2),

K−1 sup
n∈�+

|||fn |||X ≤ |||f |||K(X,F) ≤ K sup
n∈�+

|||fn |||X . (7.1)

Here |||f |||K(X,F) = inf{|||γ |||X
∣∣ γ ∈ �f (X, F)} and K is a constant that is independent

of f . It then follows from Propositions 2 and 3 that P ∈ B(X̂) and Q ∈ B(X̂), where
X̂ stands for the Luxemburg representation of (X, ||| · |||X ). As mentioned at the end of
Section 2, this means that αX > 0 and βX < 1.

(iii) ⇒ (ii). Suppose that (iii) holds. This implies that P ∈ B(X̂) and R ∈ B(X̂).
It then follows from Propositions 2 and 3 that (7.1) holds for any F = (Fn) ∈ � and
any f = ( fn) ∈ M(F). If f = ( fn) is uniformly integrable, then |||f∞|||X = supn |||fn |||X by
(i) of Lemma 2. Since the norms ‖ · ‖X and ||| · |||X are equivalent, we obtain (3.3).

(ii) ⇒ (i). Given a martingale f = ( fn), we let f 〈n〉 denote the stopped martingale
( fn∧k)k∈�+ . Let F = (Fn) ∈ � and f = ( fn) ∈ M(F), and suppose that (ii) holds. Then,
by the first inequality of (3.3),

‖fn ‖X ≤ C‖f 〈n〉‖K(X,F) ≤ C ‖f ‖K(X,F) for all n ∈ �+,

where the second inequality follows from the fact that �f (X, F) ⊂ �f 〈n〉(X, F).
From the inequality above, we easily obtain the first inequality of (3.2). Hence, by
Proposition 1, there is a norm ||| · |||X on X which is equivalent to ‖ · ‖X and with
respect to which X is an r.i. space.

We now turn our attention to the second inequality of (3.2). Note that if f = ( fn) ∈
M(F) is uniformly integrable, then by the second inequality of (3.3) and (B3′),

‖f ‖K(X,F) ≤ C ‖f∞‖X ≤ Climn→∞ ‖fn ‖X ≤ Climn→∞ ‖fn ‖X . (7.2)

Thus the required inequality holds for uniformly integrable martingales. Moreover,
since the first inequality of (7.2) can be rewritten as |||f |||K(X,F) ≤ K|||f∞|||X ,
Proposition 2 implies that P ∈ B(X̂).

Finally, let f = ( fn) ∈ M(F) be such that limn ‖fn ‖X < ∞. Then, since
supn |||fn |||X < ∞, Lemma 2 shows that Mf ∈ X . Therefore f is uniformly integrable,
and satisfies (7.2). This completes the proof. �
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