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Abstract. Fitting the results of linear normal-mode analysis of the solar five-minute oscillations to the 
observed k- co diagram selects a class of models of the Sun's envelope. It is a property of all the models 
in this class that their convection zones are too deep to permit substantial transmission of internal g modes 
of degree 20 or more. This is in apparent conflict with Hill and Caudell's (1979) claim to have detected such 
modes in the photosphere. 

A proposal to resolve the conflict was made by Rosenwald and Hill (1980). They pointed out that despite 
the impressive agreement between linearized theory and observation, nonlinear phenomena in the solar 
atmosphere might influence the eigenfrequencies considerably. In particular, they suggested that a correct 
nonlinear analysis could predict a shallow convection zone. This paper is an enquiry into whether their 
hypothesis is plausible. 

We construct k - w diagrams assuming that the modes suffer local nonlinear distortions in the atmosphere 
that are insensitive to the amplitude of oscillation over the range of amplitudes that are observed. The effect 
of the nonlinearities on the eigenfrequencies is parameterized in a simple way. Taking a class of simple 
analytical models of the Sun's envelope, we compute the linear eigenfrequencies of one model and show 
that no other model can be found whose nonlinear eigenfrequencies agree with them. We show also that 
the nonlinear eigenfrequencies of a particular solar model with a shallow eonvective zone, computed with 
more realistic physics, cannot be made to agree with observation. We conclude, therefore, that the hypothesis 
of Rosenwald and Hill is unlikely to be correct. 

1. Introduction 

In the computation of solar five-minute acoustic oscillations it is usual to apply linearized 
theory out to some level high in the atmosphere. There boundary conditions are applied. 
The dynamical boundary condition normally chosen is either that the Lagrangian 
pressure perturbation vanishes or that the solution matches onto a causal linear eigen-
function of a plane parallel atmosphere. The causal eigenfunctions are those that 
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correspond to forcing from below; they exclude the possibility of incoming waves from 
infinity or evanescent motion produced by pressure perturbations from above. 

The eigenfrequencies of the five-minute oscillations, excepting the chromospheric 
modes, hardly depend on which of those boundary conditions is chosen. This is so even 
if the boundary condition is applied no higher in the atmosphere than at the temperature 
minimum, as has been demonstrated for the modes of high degree by Berthomieu et al. 
(1980) and for the modes of low degree by Christensen-Dalsgaard and Gough (1981a). 
The reason is clear, and is almost taken for granted in modern discussions of stellar 
pulsation (e.g., Unno et al., 1979; Cox, 1980): provided its eigenfrequency is substantially 
below the value of Lamb's acoustical cut-off frequency characteristic of the photospheric 
regions, a mode cannot propagate through the atmosphere, and the motion in the 
subphotospheric zone of propagation, where the oscillation is mainly controlled, is 
essentially decoupled from conditions high in the atmosphere. Of course, any mode 
whose frequency is great enough to permit trapping in the chromosphere is liable to be 
influenced by the atmospheric boundary conditions. We exclude these from our 
discussion. 

An alternative argument is the following: owing to the rapid decrease of density and 
pressure with height, the normal-mode equations resemble equations that have a 
singularity just above the level at which the boundary conditions are applied. The 
adiabatic wave equation, for example, admits only one regular solution at that singularity, 
as can easily be seen if one approximates the undisturbed solar envelope by a polytrope 
(Lamb, 1932). Even though pressure and density do not actually vanish in the true 
atmosphere, the eigenfunctions are qualitatively similar to their polytropic counterparts, 
and any boudary condition of the type mentioned above combines comparable amounts 
of the singular and regular solutions. In the propagation zone beneath the photosphere 
the singular solution has declined almost to zero. Thus in the region where the dynamics 
is controlled, the eigenfunction is essentially independent of the amount of singular 
solution admitted by the boundary conditions, and is therefore indistinguishable from 
the regular solution. For this reason it is common practice in stellar pulsation theory 
to dispense with the upper atmosphere, and simply select what is apparently the regular 
solution. 

These arguments rely on the validity of the linearization of the equations of motion. 
The amplitudes of the solar modes are low enough that linearized theory should be a 
good approximation beneath the photosphere. However, nonlinear processes are 
unlikely to be negligible in the atmosphere. Hill et al. (1978) have argued that nonlinear 
distortions of the eigenfunctions provide a substantial contribution to the oscillatory 
signal in the SCLERA diameter measurements, and Stebbins et al. (1980) have found 
that the height-dependence of the radial velocity amplitude deviates substantially from 
the prediction of linear theory (though in the opposite sense to that inferred by Hill et al, 
1978). What has not been established, however, is whether such distortions in the 
evanescent region are sufficient to influence the eigenfrequencies. 

Comparisons of the eigenfrequencies of linear theory with observations of five-minute 
oscillations are leading us to a model of ;he solar interior (Berthomieu et al., 1980; 
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Lubow et al, 1980; Christensen-Dalsgaard and Gough, 1981a, b). An important feature 
of this model is that the convection zone extends through some thirty percent, by radius. 
This is roughly equal to, though somewhat deeper than, what had commonly been 
inferred from stellar evolution calculations. However, it presents an embarassment to 
an interpretation of some of the SCLERA diameter measurements, and to that we now 
turn our attention. 

Hill (1978) and Hill and Caudell (1979) have claimed to have detected oscillation 
modes of degree between 20 and 40 with periods of 45 min and 66 min. At first sight 
the most obvious interpretation of such oscillations is that they are g modes trapped in 
the radiative interior. However, if the convection zone really is a deep as the five-minute 
oscillations indicate, it would attenuate high-degree g modes so severely that the 
observed amplitudes in the atmosphere would imply apparently implausible values in 
the radiative interior (Dziembowski and Pamjatnykh, 1978). If, on the other hand, one 
were to adopt a model with a shallow convection zone, one would not be faced with 
this difficulty. Moreover, one might even predict a neutrino flux in agreement with 
observation (Christensen-Dalsgaard et al, 1979). However, it would still not be easy to 
explain the precise values of the frequencies of the oscillations detected by Hill and 
Caudell (1979) using linearized normal-mode analysis (Christensen-Dalsgaard etai, 
1980); and furthermore, the agreement between theory and observation would be 
destroyed for the five-minute oscillations. 

It has been postulated by Rosenwald and Hill (1980) that the root of the problem lies 
in the linearization of the dynamics. If nonlinear processes are important in the upper 
part of the atmosphere it is not meaningful to apply boundary conditions to linear 
eigenfunctions there, however plausible the boundary conditions themselves might be. 
Consequently it is not out of the question that the ability of linearized theory to 
reproduce the observations of the five-minute oscillations is merely fortuitous. If that 
were the case we would have to rescind our conclusions about the structure of the Sun. 
It is therefore important to assess the credibility of the postulate. That is the purpose 
of the investigation reported in this paper. 

2. Formulation of the Problem 

We first assume that linearized theory is a good representation of the oscillations 
beneath the photosphere, as did Rosenwald and Hill (1980). We also adopt the adiabatic 
approximation; the computations of Berthomieu et al. (1980) provide adequate justifica­
tion for that. We confine attention to modes of high degree /. These decay rapidly with 
depth, provided they are taken to be regular at the centre of the Sun. Therefore it suffices 
to consider just the outer part of the envelope of the Sun, extending to a depth no greater 
than half the solar radius. Moreover, perturbations to the gravitational potential can be 
neglected. 

Subject to these approximations the linearized normal mode equations reduce to a 
second-order ordinary differential system (e.g. Unno et al, 1979; Cox, 1980). Normally, 
one homogeneous boundary condition is applied at the base of the envelope, and 
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another at the surface. Most commonly, the displacement eigenfunction is taken to 
vanish at the base of the envelope, though sometimes the solution is matched onto an 
asymptotic representation of the solution that decays with depth. We shall not address 
here the issue of whether the solution that is singular at the centre of the Sun can also 
be present. 

It is convenient for our discussion to take the outer boundary as the photosphere. In 
purely linear theory the boundary condition that must be applied there is simply that 
the envelope eigenfunction matches smoothly onto the corresponding causal eigen­
function in the atmosphere. But if nonlinearities are important in the atmosphere, this 
condition must be rejected. 

If that were all there is to say, a solution beneath the photosphere could be found for 
any frequency co, and the dispersion relation measured by Deubner etal. (1979), for 
example, could be rationalized with any model of the Sun. Therefore, if the class of 
acceptable solar models is to be restricted, the solutions of the oscillation equations must 
be constrained further. 

Beneath the photosphere ( r < / ? ) w e represent the perturbation by 

y(r, 0 = G w 2 ) = Re {[r-'tfr), (gpr)-lbp(r)]Slm(e, </>)e<«"} (2.1) 

with respect to spherical polar co-ordinates (r, 6, <f>), where g(r) is the gravitational 
acceleration, p(r) is the undisturbed density, ^ and bp are the oscillation eigenfunctions 
representing vertical displacement and Lagrangian pressure perturbation, Slm is a 
tesseral harmonic of degree / and order m, and t is time. Above the photosphere we 
represent the two linearly independent solutions by 

r = 0w 2 - ) , y+ ={yt,yl)- (2.2) 

These are what Hill etal. (1978) call /?_ and /?+ , and are respectively the causal and 
noncausal linear eigenfunctions. We suppose them to be normalized such that 
yi(R) = 1 andji+ (R) = 1. In the spirit of Rosenwald and Hill (1980) we now introduce 
a parameter X such that the actual nonlinear atmospheric solution evaluated at the 
photosphere (r = R) is 

y. = > ' 1 W [ ( i - ^ ) y - + ^ y + ] . (2.3) 

Continuity of displacement and Lagrangian pressure perturbation at the photosphere 
is then given by 

y = yx at r = R. (2.4) 

Notice that X merely parameterizes the result of performing an appropriate nonlinear 
analysis of the atmosphere, the details of which we do not specify. The ratio A/(l - X) 
of the contributions from y + and y ~ at the photosphere can thus be regarded as a formal 
measure of the degree of nonlinearity. Clearly a value of X exists for any frequency co. 
Linear theory results when X = 0. Our task now is to determine what reasonable 
restrictions on X should be imposed. 

It is certainly plausible that nonlinear processes in the atmosphere should depend on 
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the frequency co, the horizontal wavenumber k = [1(1 + l)]i/2R ~' and, of course, the 
amplitude A of the oscillations. However, since the scale height of the atmosphere is 
much less than k~', any localized nonlinearity cannot depend on k; in the atmosphere 
all p modes resemble radial oscillations. Moreover, the observations of Deubner et al. 
(1979) of five-minute oscillations of high degree, and the observations reported by Grec 
etal. (1980) of five-minute oscillations of low degree (Fossat and Grec, private 
communication) show no systematic frequency variation with changing amplitude*. 
Therefore, provided we confine our attention to those modes whose amplitudes are large 
enough to have been detected, we may safely infer that A is a function of co alone. Notice 
that the assumption about the dependence of X on A is not that X is independent of A 
for all A, but simply that its value does not vary substantially in the range of interest. 
In the analysis that follows, that value is permitted to be quite different from the value 
at A = 0. 

We recall that the observed diagnostic (k - co) diagram can be reproduced by the 
linear eigenfrequencies of a solar model with a substantial convection zone (Berthomieu 
ei ai, 1980; Lubow et al., 1980). This model we call model A. The question we must 
answer is whether for a model with a shallow convection zone (which we call model C), 
whose linear eigenfrequencies do not agree with observation, a function X(oS) exists such 
that 

o),Xk,0;A) = a)n(k,X;Q (2.5) 

for all n and k, where oon(k, X; M) denotes the/-mode eigenfrequency (n = 0) or p-mode 
eigenfrequency of order n > 0 of oscillations of solar model M, having horizontal 
wavenumber k in the photosphere and computed with linearized theory beneath the 
photosphere subject to the boundary condition (2.4). If such a function were to exist, 
it would not be implausible that model C is a good model of the Sun; then the postulate 
of Rosenwald and Hill would deserve further consideration. 

3. A Simple Illustrative Example 

We first approximate the outer layers of the Sun by an isothermal atmosphere of perfect 
gas supported by a polytrope of index \i. Because we are restricting attention to modes 
of high degree, we also make the plane-parallel approximation, and take the gravitational 
acceleration g to be constant. With respect to Cartesian co-ordinates x = (x, y, z), with 
z increasing downwards, the equilibrium state is defined by: 

P = Poe^», p = Mz/H (3-1) 

when z < 0, and 

p = p0(l + z/z0Y
+1 , p = (n + l)(gz0)- Vo(l + z/zoT (3-2) 

* We recognise that some of the apparent amplitude variation observed is a product of interference between 
modes with similar frequencies. That does not alter our conclusion. 
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when z > 0, where p and p are pressure and density, H = p0/gp0 is the scale height of 
the isothermal atmosphere, and p0, p0 and z0 are constants. 

The constant z0 is a measure of the depth of the transition between the isothermal 
and polytropic regions of the model; if the atmosphere were absent, p and p would 
vanish at z = - z 0 . Notice that we have not imposed the condition (p + l)p0 = gp0z0> 
which would imply continuity of density, and hence of temperature, at z = 0. We have 
in mind treating the superadiabatic boundary layer at the top of the solar convection 
zone simply as a temperature discontinuity. Our justification for so doing is the 
insensitivity of p-mode eigenfrequencies to details of the structure of that boundary layer 
(Berthomieu et al, 1980); it is upon the temperature jump across that boundary layer 
that the eigenfrequencies depend. Thus we assume that the polytrope is adiabatically 
stratified, taking p = (y - 1)" \ where y is the adiabatic exponent (d In p/8 In p)ad of the 
gas. Notice that z0 = (p + l)(T0/Ta)H, where T0 is the limit of the temperature in the 
polytrope as z -> 0, and Ta is the temperature of the isothermal atmosphere. Thus z0 and 
H have similar magnitudes. 

The polytropic layer is supposed to represent that part of the convection zone within 
which the p modes are trapped. In reality p. varies, due to ionization, and the value we 
adopt is intended to be representative of the trapping region. Changing the structure of 
the superadiabatic boundary layer in a realistic solar model, which can be achieved by 
changing the mixing length, for example, changes both the temperature jump across that 
boundary layer and the temperature stratification beneath. This changes the depth of 
the convection zone. It also moves the ionization zones, and so changes p.. Hence, in 
general, two distinct polytropic models should differ in both z0 and p. Nevertheless, to 
keep the analysis simple, we consider explicitly only the effect of changing z0. We do, 
however, allow for the possibility that y is different in the atmosphere and the convection 
zone. Thus we use y to specify the constant adiabatic exponent in the isothermal 
atmosphere, and use only p in the adiabatically stratified polytrope beneath. 

We next calculate the adiabatic normal modes of oscillation of the model. We adopt 
the divergence of the velocity, %, as dependent variable, and seek nontrivial separable 
solutions of the form 

X(x, i) = Re[X(z)eikx + lox]. (3.3) 

In so doing we are ignoring the / modes. The vertical component of the associated 
displacement eigenfunction can be written 

f (x, t) = (gk3) ~ ' / 2 Re [ E(z) eikx + iu" ] . (3.4) 

We observe that the equation of continuity and the linearized adiabatic equation of state 
together imply icabp = -yp%. Thus continuity of dp and i; at z = 0 is obtained by 
requiring that 3 and X be continuous. Derivations of the equations of motion and 
discussions of some aspects of their solutions for isohermal and polytropic atmospheres 
are given by Lamb (1932). The problem treated here is just a straightforward generali­
zation of Lamb's analysis. 

https://doi.org/10.1017/S0252921100095671 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100095671


FIVE-MINUTE SOLAR OSCILLATIONS 349 

In the isothermal atmosphere, two independent solutions are 

X+=eK^/H, X^=eK-z/H, (3.5) 
where 

K± = - H l ± {\-^'W-{y-^-2]Hk + AH2k2Y/2i (3.6) 

and a2 = (gkylco2. The solutions X+ and X correspond respectively to the j?+ and 
/?_ solutions of Hill etal. (1978). The associated displacement amplitudes are 

3± = iya{a2 - 1)" '(*+ + 1 + c~2HK)eK^/H. (3.7) 

We confine attention to modes with u> < a>c, where co2 = yg/4His the square of Lamb's 
critical cutoff frequency for radial modes in the atmosphere. Thus K+ and K_ are real. 

In the polytropic envelope the disturbance is given by 

X = e - c [ / ( - a , J u + 2 , 2 0 , (3.8) 

(3.9) ,y<T le-
( M + l ) ( f f - l ) dC 

where 

2a = ^1a2-(fi + 2) (3.10) 

and I = k(z0 + z). Here U is the confluent hypergeometric function that vanishes as 
C-> oo (e.g. Abramowitz and Stegun, 1964). 

The eigenvalues cr„ of a are determined by demanding that at C = Co = ^2o the 
solutions (3.8) and (3.9) be continuous with an appropriate combination of (3.5) and 
(3.7). We take that combination as in (2.3). We recall that kH <| 1 for modes with w < u>c 

and that z0 is comparable with H. Hence £0 <̂  1. We can therefore expand K± in powers 
of kH, and U in powers of Co. retaining only the leading significant terms. The result 
is 

— 2 ^ + « + D 1 - V z o ) - , (3.H) 

where 

Hl\p + l)I\n + 2)I\n) K 

s2
n=l+2n/n, (3.12) 

K(n, X) = 1 - X- [(1 - 2X)y-\s2„-s-2) + 2{X- l)s~2]Hk, (3.13) 

n is a positive integer and Tis the gamma function. The second term on the right-hand 
side of Equation (3.11) is the change in a2 produced by replacing a complete polytrope, 
extending to z = -z 0 , with the composite model considered here. This change is small 
compared with a2. 

We specify our reference model A by setting z0 = zA. Its dimensionless eigen-
frequencies oAn are given by Equations (3.11) and (3.12) with 1 = 0, and we pretend that 
these agree with observation. We now consider model C, with z0 = zc. Its frequencies 
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aCn are determined by choosing X(oi) such that aCN = aAN for some N, which yields, to 
leading order in Hk, 

X = -\[\ + {2y-\)s-N
A] v-m (3.14) 

To assess how close the frequencies aCn of the presumed nonlinear modes are to aAn, 
we compare their differences with the corresponding differences (f^l - GAm where cr^,' 
are the linear eigenfrequencies of model C, computed with X = 0. The result is 

* & • 

(2y-l)fe4-y4) 
l+(2y- lK4 (3.15) 

Except when n = N, this is not zero. Thus the frequencies aCn cannot be made to 
coincide with the linear eigenfrequencies of model A. Moreover, it is evident that the 
magnitude of the deviation is comparable with the difference between the linear eigen­
frequencies of models A and C. This is true also if the polytropic index \i is permitted 
to be different in the two models. Moreover, it is not possible to vary both z0 and \i in 
such a way as to make the frequencies of the two models agree for all values of n. 

4. Analysis of a More Realistic Pair of Solar Models 

Two solar envelope models were computed using the fast numerical programme 
described by Belvedere et al. (1980). The models were integrated inwards from the 
'surface', where r = Rs and T = 4900 K, to r - R0 = R/2, adjusting the conditions at 
r = Rs to ensure that r = R and T = 5770 K at an optical depth of f. A mesh spacing 
of 0.05 electron pressure scale heights was used. Model A was chosen to have abun­
dances of helium and heavy elements: Y, Z = 0.25, 0.02, and a constant mixing length 
to pressure scale height ratio a = 1.65 was adopted. Its convection zone was 220 Mm 
deep. Model C was computed with the same composition, but with a = 0.65, and had 
a convection zone 40 Mm deep. The models resemble models A and C of Christensen-
Dalsgaard et al. (1979), the main difference being in the chemical composition of 
model C beneath the convection zone. 

The linearized adiabatic oscillation equations [Unno et al., 1979, Equations (17.9), 
(17.10); Cox, 1980, Equations (17.50), (17.51)] were integrated outwards from r = R0 

using a fourth-order Runge—Kutta algorithm. At r = Rs the solutions were matched onto 
the adiabatic solutions for a plane parallel isothermal atmosphere at T = 4900 K. For 
each integration a> was specified, and in cases where the boundary condition (2.4) had 
to be satisfied, the eigensolution was found by Newton—Raphson iteration on co. 

First, the eigenfrequencies coAn of model A were computed with X = 0. Then, for some 
value N of n, the frequencies coc„ of model C were forced to coincide with them. This, 
of course, required no iteration: the frequency coCN was chosen to be coAN, and 
subsequently X(to) was computed by insisting that the photospheric condition (2.4) be 
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0 0.5 1.0 1.5 
k(Mrrr') 

Fig. 1. Theoretical diagnostic diagrams for models A and C of the solar envelope; the frequencies to are 
the eigenfrequencies of the linear normal mode analysis {X = 0), and are expressed as continuous functions 
of the wave number k. Model A is our standard model; for the purposes of the argument presented in this 
paper its linear eigenfrequencies, indicated by the continuous curves, may be regarded as being in agreement 
with observation. Model C has a shallow convection zone; its eigenfrequencies are represented by the 
broken curves. In the frequency range plotted the /-mode frequencies of the two models differ by no more 

than a few parts per thousand. 

satisfied. Finally, the remainder of the frequencies of model C were computed, using the 
same function X{co) in condition (2.4). 

The linear eigenfrequencies of models A and C are shown in Figure 1. The frequencies 
of model A do not agree exactly with observation, due to the simplifying approximations 
used in the construction of the equilibrium model. Nevertheless, we shall pretend that 
they do. The linear p-mo&Q eigenfrequencies of model C differ from observation 
substantially. The /-mode frequencies do agree, because these are essentially indepen­
dent of stratification when kR h 1. 

In Figure 2 we show for several orders N our measures (1 - X)/X of the nonlinearity 
required to make the frequencies of model C coincide with the linear eigenfrequencies 
of model A. Infinities of (1 - X)/X signify a pure /?_ solution, and zeros signify a pure 
P+ solution. 

Finally we show in Figure 3 the complete diagnostic diagrams for model C con­
structed with the parameterized nonlinear boundary conditions (2.4) defined with the 
functions X(co) shown in Figure 2. Once again, the results are compared with the linear 
eigenfrequencies of model A, which we presume to be in agreement with observation. 
The deviations between the frequencies of the models are, in all cases, comparable with 
the deviations between the corresponding linear eigenfrequencies, as we found also for 
the simple model in Section 3. 
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1.0 1.5 2.0 2.5 , 3.0 
CU(x10z) 

Fig. 2. Examples of the measures (1 - X)/X of the nonlinearity that we have presumed to be present in the 
atmosphere of model C. They were constructed in such a way as to make the frequencies of oscillation of 
model C agree with the linear eigenfrequencies of model A for all p modes of order A' as indicated. Infinities 

of (1 - X)/X occur where the eigenfrequencies of models A and C intersect in Figure 1. 

5. Summary and Conclusion 

We have argued that the effects of atmospheric nonlinearities on the highest-amplitude 
five-minute oscillations depend only on frequency. Granted that this is so, we have 
shown that the oscillation frequencies of a particular solar model with a shallow 
convec'tive zone, no matter what form the nonlinearities take, cannot be made to 
coincide with the linear eigenfrequencies of another model constructed to be in fair 
agreement with observation. 

We have not demonstrated explicitly that this result is true for all solar models that 
differ substantially from our standard. Nevertheless, an analysis of a highly simplified 
model of the outer layers of the sun, consisting of an isothermal atmosphere on a 
polytropic envelope, suggests that this is indeed a general result. To find a nonlinear 
model whose frequencies agree with observation for n0 values of the order n of the modes 
is likely to require the adjustment of at least n0 parameters of the model to which the 
frequencies are sensitive, and possibly more. Sensitivity analyses of the linear eigen­
frequencies by Berthomieu et al. (1980) and Lubow et al. (1980) suggest that such 
parameters do not exist. That is why we have not pursued the matter further. 
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1 1 1 1 1 1 1 1 1 1 r 

k(Mm"') 

Fig. 3. Diagnostic diagrams for model C (broken curves) computed with the boundary condition (2.4) and 
the functions X(a>) represented in Figure 2. The linear eigenfrequencies (X = 0) of model A (continuous 

curves) are included for comparison. 

We contend that the evidence we have provided renders it extremely unlikely that 
nonlinearities in the solar atmosphere can influence the five-minute oscillation eigen­
frequencies to a noticeable extent, however much they may distort the eigenfunctions. 
We expect that this is so also for modes with longer periods, because for these the 
coupling between the atmosphere and the interior is even weaker that it is for the 
five-minute modes. Only the high-frequency modes that suffer trapping in the chromo­
sphere are liable to be affected. Therefore we conclude that inferences concerning the 
internal structure of the Sun based on linear eigenfrequencies are probably correct. 
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