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1. Introduction. Numerous studies have been made of groups, especially 
of finite groups, G which have a representation in the form AB, where A and 
B are subgroups of G. The form of these results is to determine various group-
theoretic properties of G, for example, solvability, from other group-theoretic 
properties of the subgroups A and B. 

More recently the structure of finite groups G which have a representation 
in the form ABA, where A and B are subgroups of G, has been investigated. In 
an unpublished paper, Herstein and Kaplansky (2) have shown that if A and 
B are both cyclic, and at least one of them is of prime order, then G is solvable. 
Also Gorenstein (1) has completely characterized ABA groups in which every 
element is either in A or has a unique representation in the form aba', where 
a, a' are in A, and b ^ 1 is in B. 

In this paper we shall analyse groups of the form ABA in which A and B 
are cyclic of relatively prime order. The techniques and methods used borrow 
heavily from those used in the aforementioned paper of Herstein and Kap
lansky. The authors became interested in the structure of ABA groups as an 
outgrowth of problems they considered while at a conference held at Bowdoin 
College in the summer of 1957 under the auspices of the Cambridge Research 
Center of the United States Air Force. 

In the body of the paper we shall use the following notation: If H is a 
subgroup of Gy o(H), i(H), and N(H) will denote respectively the order of H, 
the index of H in G, and the normalizer of H in G. 

2. Two preliminary lemmas. We shall need a result on the transfer homo-
morphism which is a slight extension of a result of Griin (3, p. 143); in fact, 
the result is essentially contained in Griïn's, but for the sake of completeness 
we present it here. 

LEMMA 1. Let G be a finite group, and A an Abelian subgroup of G for which 
(o(A), i(A)) — 1. Then the transfer of G into A maps the intersection of A with 
the centre of its normalizer onto itself. 

Proof. Since (o(A), i(A)) = 1 it is clear that for any p\o(A) the ^-Sylow 
subgroup of A is a £-Sylow subgroup of G. 

We first contend that if Ai is an Abelian subgroup of G and o(Ai) = o(A), 
then Ai is a conjugate of A. Let Sp 9e (1) be the ^-Sylow subgroup of Ai. 
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Since these are ^-Sylow subgroups of G, there is a y Ç G such that Sp = ySv'y~l. 
If we replace A\ by y A ±y~l we may, without loss of generality, assume that 
Sv CA and Sp C Ax. 

If N(SP) ^ G, our contention follows by induction and from the fact that 
both A and Ai, being Abelian, are contained in N(SP). If, on the other hand, 
N(SP) = G, we use induction on G = G/Sv to conclude that Â, Ai, the images 
of A and Ai in G are conjugate in G. Since both A and Ai contain SP, their 
conjugacy in G follows at once. 

From this, and the usual argument made on the centres of Sylow sub
groups, we can say that if two elements of A are conjugate in G then they are 
already conjugate in N(A). 

We are now able to prove the lemma. For let a,\ be an element in the inter
section of A with the centre of N(A), we compute the transfer, r, on a\. Since 
A is Abelian, 

r r 
T(ai) = FI XiOri'xû1 where S / t = i(A) and x^ix"1 £ A. 

1 = 1 Z=>1 

However, since 
af\ and x^x^ 

are conjugate in G and are in A they are conjugate in N(A); since d\ is in the 
centre of N{A) they must be equal. Thus 

r(0l) = f i o? = °iU) ! 
Z = l 

and since (o(^4), i(A)) = 1, the lemma follows. 
The second result we shall need is contained in the following lemma. 

LEMMA 2. Suppose a finite group G admits an automorphism a of order h 
such that every element of G can be expressed in the form a*(6;) for some fixed 
element b of G of order k. If {h, k) = 1, then G is either Abelian or is the direct 
product of an Abelian group of odd order with the quaternion group of order 8. 
If a leaves only the identity element of G fixed, then G is Abelian. 

Proof. We proceed by induction on the order of G. 
Suppose, first, that a leaves some element, ^ 1, of G fixed. Then for some 

e, t^ia'ib1)) = ae(bl), bl ^ 1. Thus a(bl) = b\ But then for all ij 

ai(b
j) . bl = a * ( ô > > W = a\bi+t) = bW^V), 

and so bl is in Z, the centre of G. 
Since the order of every element of G is a divisor of the order of b, then 

f or any prime p, p\o(G) implies p\k. We consider the cases when p % k/t and 
p\k/t separately. 

Suppose first that p \ k/t. Let G = G/(bl) and let â be the automorphism 
induced by a on G. If b is the image of b in G, then every element of G is 
clearly of the form â'(V)- By our induction hypothesis the p-Sylow subgroup 
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Sp of G is normal in G. Thus the inverse image of Sp in G, is normal in G and is 
of the form Sp- (b*) for some £-Sylow subgroup of G. If 5 G SPJ x 6 G, then 
xsx"-1 = i'fsi, 5i Ç 5P; since the order k/t of 5*, is relatively prime to p, this 
implies btj = 1, and so xSpX"1 = 5P, so Sp is normal in G. 

Furthermore 

{bl) -sPn(bl) °" 
by induction Spy and hence Sp, is either Abelian or isomorphic to the quaternion 
group of order 8. 

If, on the other hand, p\k/t then bk/p is in Z, and being of prime-power 
order, must be in all ^-Sylow subgroups of G. By induction, SP, the £-Sylow 
subgroup of G = G/{bk,p) is normal in G, so its inverse image, Spy must be 
normal in G. Thus Sp contains all elements of G whose order is a power of 
p. We claim Sp contains a unique subgroup of order p. For if ^(b*) is of order 
p, then j is a multiple of &/£, so ^(b*) = 6; since a(bk/p) = bk/p; thus the only 
subgroup of order p is (bk/p). It is well known that a group of prime-power 
order having only one subgroup of order p is cyclic if p is odd and is either 
cyclic or a generalized quaternion group of order 2n if p = 2. Now S2 is a 
normal subgroup of G invariant under a. Since by assumption (h, k) = 1 and 
since 2|& if 52 5̂  1, we conclude that a is of odd order. If a reduces to the 
identity on 52, S2 is cyclic. Hence if S2 is isomorphic to the generalized quater
nion group, a has odd order on 5"2. But for n > 3 the automorphism group of 
a generalized quaternion group of order 2n is of order 2n_1. Thus the only 
possibility in our case is n = 3, and 52 is isomorphic to the quaternion group 
of order 8. 

There remains the case when a leaves no element of G, other than 1, fixed. 
In this situation it is known that for each prime p, a must leave some £-Sylow 
subgroup, say, SPf fixed. Since an element of Sp is of the form ^(b0), it follows 
readily that Sp consists of all the elements of G whose order is a power of p. 
Sp is then the unique £-Sylow subgroup of G and so is normal in G, and G is 
the direct product of its Sylow subgroups. We still must show that SP is 
either Abelian or the quaternion group of order 8. Thus we may, without 
loss of generality, assume that Sp = G. 

Suppose then that k = ps. We compute the number of elements in G. 
Let Yi be the least positive integer such that 

ari(bpi) 6 (bpi). 

It is clear that the number of elements in G, of order exactly ps~\ is 
rtip—' - £*~<-1), i < s, and so 

(2.1) o(G) = pn = ro(ps-ps-1)+r1(p°-i-p>~*)+ . . . + r s _ 1 ( £ - l ) + l. 

However, the elements of order p in the centre of G form a characteristic 
subgroup of G, and so the elements of the form 
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(that is, all the elements of order p), form a subgroup of G (in Z) of order 
pm, containing rs-i(p —1) + 1 elements. So 

(2.2) p» = r ^ - l H l . 

Combining (2.1) and (2.2) we have 

Pn-Pm = r 0 ( ^ - p - 1 ) + • • • + r,_2(£
a-/>). 

If m > 1, then p2 divides the left-hand side, and so must divide the right-
hand side; but then p\rs-2. Since rs^2\h, and 1 = (h, k) = (h,ps), this is 
impossible. So m — 1, and we can conclude that G has exactly one subgroup 
of order p. We conclude, as above, that G is either cyclic or isomorphic to the 
quaternion group of order 8. 

The final statement of the lemma follows at once from the fact that the 
quaternion group has a unique element of order 2 and hence each of its 
automorphisms leaves this element fixed. 

3. The case A7(̂ 4) = A. In this section we shall prove the following result 
concerning the structure of ABA groups: 

THEOREM 1. Let G be an ABA group, in which A and B are cyclic subgroups 
of relatively prime orders h and k respectively. Then if A is its own normalizer 
in G, G contains a normal subgroup T with A C\ T = 1. Furthermore T is either 
A belian or the direct product of an A belian group of odd order with the quaternion 
group of order 8. In particular, G is solvable, and of order hkw, where w\kv for 
some integer v. 

Proof. We shall prove first that the Sylow subgroups of A are, in fact, 
Sylow subgroups of G. The proof is by induction on the order of G. 

Let Sp be a ^-Sylow subgroup of A. Since A is Abelian, N(SP) Z) A. If 
x = aibia2 e N(SP) with fa Ç B, au a2 G A, then clearly fa Ç N(SP) H B. If 
Bx = B C\ N(SP)} then obviously N(SP) is of the form ABXA\ thus if N(SP) 
is a proper subgroup of G, it follows by induction that the order of N(SP) 
is hkiWu where ki = o(Bi) and Wi\kiv for some integer v. Since (h, ki) = 1, 
we see then that Sp is a ^-Sylow subgroup of N(SP). But Sp must then be a 
^-Sylow subgroup of G, since the normalizer of a proper subgroup of a £>-group 
is always a strictly larger subgroup. 

On the other hand, if N(SP) = G, then Sp is normal in G, and we con
sider G = G/Sp = ÂBÂ, where Â, B are the images of A and B. Furthermore 
N(A) = A; for N(A) > A would clearly imply N(A) > A since Op is con
tained in A. Hence we can apply our induction hypothesis to G, and we 
obtain o(G) = hkw, where w\kv and h = o(A). Thus p\o{G), and so Sp is 
a Sylow subgroup of G. 

Since this holds for every p\h, it follows that the order and index of A are 
relatively prime. Since A is Abelian, we may apply Lemma 1 to conclude 
that the transfer r of G into A maps the intersection of A with the centre 
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of its normalizer onto itself. But by assumption, A is the centre of its nor
malize!*, and so r maps G homomorphically onto A. 

Let T be the kernel of r; since r maps A onto itself, i H T = 1; since 
the order of B is relatively prime to the order oi A, B (Z T.lla, b are generators 
of A j B respectively, it is clear that T consists precisely of the elements of G 
of the form aibja~i, where i, j are arbitrary. Now the mapping a defined on 
T by a(x) = axar1 is an automorphism of T, and every element of T is of 
the form a'(£')• Therefore by Lemma 2, T is of the form stated in the theorem. 

Since every element of T, being of the form a*(60» n a s order a divisor of k, 
o(T) = kw where w\kv for some integer v. Since G/T = A, and A is cyclic 
of order h, G is solvable of order hkw. This completes the induction and the 
proof of the theorem. 

COROLLARY. A Sylow subgroup of G is either Abelian or isomorphic to the 
quaternion group of order 8. 

4. The main theorem. 

THEOREM 2. Let G be an ABA group in which A and B are cyclic subgroups 
of relatively prime orders h and k respectively. Then 

1. G is solvable. 

2. The p-Sylow subgroups of G, for odd p, are Abelian; 

3. The 2-Sylow subgroup of G is either Abelian or isomorphic to the quaternion 
group of order 8. 

4. The order of G is hkw, where w\kv for some integer v. 

Proof. If N(A) = A, the theorem follows immediately from Theorem 1 
and its corollary. We may therefore assume that N(A) > A. If a} b denote, 
as above, generators of A and B, there is an element of the form aWa6 in 
N(A) with bj' ?*= 1, whence bj itself is in N(A). Let r be the least positive 
integer such that V 6 N{A). Then rjfe, and we have for some integer X 

(4.1) brab~r = a \ where \k/r = 1 (mod h). 

Let p be a prime dividing k/r and define yp as the least multiple of r such 
that k/r is a power of p. Set 

Bv = (JT,). 

In the first part of the proof we shall establish the following statement: 

The normalizer N(BP) of Bv is of the form AVBAV for a suitable subgroup Av 

of A, and furthermore Bv is in the centre of N (Bp). 

We shall need one preliminary result. Since r\yp, we have 

(4.2) frmb-yp = ax*>, \ / / x ? = 1 (mod h) 
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for some integer X„. Let uv = (Xp — 1, h). We assert that 

1. (**•£) 
For suppose a prime q\(\p — 1). It is sufficient to show that if qe\h, then 
qe\(\p — 1). Since k/yp = ps for some integer s, (4.2) implies that 

X£' s 1 (mod h) 

and hence 

Xj* = 1 (mod ge). 

Write XP = 1 + #g3, where (x, 5) = 1. Then (1 + xq8)p' = 1 (mod ge) and 
so p8xqs + 3>g25 = 0 (mod qe) for some integer y. Since £|£ and g|A, and 
(h, k) = 1, p 7e q and hence 8 ^ e. 

We now return to N(BP). Suppose that aVae Ç N(BP). Then 

aVaWa-b-'aT* = b7pm 

for some integer m. 
Applying (4.2) to this relation, we obtain 

(4.3) a W ( 1 - X p ) &-V < X p = ^ ( m _ 1 ) . 

Suppose first that 
h I 
— e. 
«J 

Since up\(\p — 1), (4.3) reduces to 
»(1-Xp) __ T-yp(m-l) 

and their common value is 1, since a and b have relatively prime order. But 
up = (1 — Xp, A), and so 

h 

moreover, 

m - l (mod iy , 
7P> 

and hence aVae commutes with ô7?. 
Conversely, every element of the form 

h_ . .h_ 
aUptbJ aUpC 

is in N(BP) and commutes with byP. To complete the proof of our assertion, 
we shall show that every element of N(BP) is of this form. We have just 
shown this to be the case if 

A I 
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Suppose, on the other hand, that e(l — \p) j£ 0 (mod h). Then (4.3) yields 
the relation 

bjaeil~Xp)b-j = aribypim-1)aiyp
1 

and hence bjae(1~x^b~j is in N(A). But this element has order dividing h; 
since (h, k) = 1, all the elements of N(A) of order dividing h are already 
in A. Thus 

(4.4) b}ae{1-Xp)b-j = ae{1-Xp)p 

for some integer p. 
Using (4.4), we can rewrite the element 

a oa = a b a v a 

as 
i-xe{l-\p)P^Jae+xe(l-\p) 

Since 

we can find an integer x such that 

e + xe(l — Xp) = Ol mod — ) . 

If, for this x, we set i' = i — xe(l — \p)p and ef = e + #e(l — Xp), we have 
aWa6 = a " i ' V , where 

e ; 

and hence 
h mh 

aibia\ = au'>biau> 

If 

^4P = (fl"p), 

we have thus proved that N(BP) = APBAPJ and that J5P is in the centre 
of N(BP). 

5. Continuation of the proof. The proof now proceeds by induction on 
the order of G, but we add the following statement to our induction hypo
thesis: if p\k then some ^-Sylow subgroup of G consists of all the elements 
of the form asibtja~si for suitable integers s, t where i,j are arbitrary. 

There are three cases to consider, which we take up in succession. 

Case 1. N(BP) = G. In this case Bp is in the.centre of G, and we define 
G = G/Bp = ÂBÂ, where Â has order h and B has order yp. By induction, 
G is solvable of order hypw, where w\yp

v; so G is solvable and its order is 
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(hypw) — = hkw 

where w\y/\kv. 
Hence the order of A is relatively prime to its index in G. Thus the Sylow 

subgroups of G, for any prime dividing h, are cyclic. 
Furthermore, the Sylow subgroups SQ of G for primes q which divide yp are 

of the form {â8ibtjâ~~8i} for suitable integers 5 and t. If q 9e p, then it follows 
as in the proof of Lemma 2 that the elements 

{a'ffi a"'} 
form a g-Sylow subgroup of G which maps isomorphically on SQ. If q = p, it 
follows again as in the proof of Lemma 2 that the complete inverse image of 
a suitable ^-Sylow subgroup Sp of G is a ^-Sylow subgroup of G and is of the 
form {asibHa~si} for suitable s, t. Thus for each prime p dividing k a p-Sylow 
subgroup Sp of G is of the required form. If a denotes the automorphism of 
Sp defined by a{x) — asxa~s for x in Sp, then every element of Sp is of the 
form a^b^). Hence by Lemma 2, Sp is either Abelian or isomorphic to the 
quaternion group of order 8. Our induction is therefore complete in the case 
N(BP) = G. 

We may therefore assume N(BP) < G. 

Case 2. p 9e 2. By our induction hypothesis some £-Sylow subgroup Sp 

of N(BP) is of the form 

{aUp b7lj a~h/Upai} 

for some integers a and 71, and is Abelian. Since Bp is in the centre of N(BP), 
Bp <ZSP and hence 7I |TP . We shall prove first that Sp is cyclic. Suppose byi has 
order p8. Then clearly Sp is Abelian of type (p5, p8, . . . , p8). But since 

an/up 

commutes with byp, Bp is the only subgroup of its order in Sp, and hence Sp 

is cyclic. 
Since Sp is cyclic, Bp is a characteristic subgroup of Sp, and so N(SP) C N(BP). 

If Sp were not a ^-Sylow subgroup of G, its normalizer would contain a strictly 
larger ^-group than Sp. But since Sp is a ^-Sylow subgroup of N(BP) and 
since N(SP) C N{BP), it must be that Sp is in fact a ^-Sylow subgroup of G. 

But now by a theorem of Grun (or by Lemma 1), the transfer r of G into 
the Abelian Sylow subgroup Sp maps G onto the intersection of Sp with the 
centre of its normalizer. But Bp is contained in the centre of its normalizer. 
Thus r maps G homomorphically on (b72) where 71I72I7P. Since the order of 
A is relatively prime to that of B, A is contained in the kernel H of r. Also H 
contains some proper subgroup J3* of B, and hence H is of the form AB*A. 
Since G/H has order k/y2, B* is of order 72. Thus for any prime different from 
p, the Sylow subgroups of H are Sylow subgroups of G, and hence by induction 
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are of the required form. As we have already seen Sp itself is cyclic and of the 
required form. By induction H is solvable and o(H) = hy2w where w\y2v for 
some integer v. Since H and G/H are solvable, G is solvable and the order of 
G is o(G/H)o(H). Thus o(G) = (hy2w)k/y2 = hkw, where w\y2

v\kv. It follows 
at once that the Sylow subgroups of G, for any prime dividing h, is cyclic. 
The proof is complete in this case. 

Case 3. p = 2. If 52 is Abelian, or if an odd prime divides k/r, the above 
proof holds without change. There remains then but one case to consider: 
namely, when k/r = 2s and the 2-Sylow subgroup S2 of N(B2) is isomorphic 
to the quaternion group of order 8. In this case yv = y2 = r and B2 = (br). 

Since the quaternion group has no element of order 8, 8 \ k. On the other 
hand, suppose 2 \ r. Then N = N(B2)/B2 is of the form Â2BÂ2l where B has 
order r. Then by our induction hypothesis, o(N) = o(Â2)o{B)w = o(Â2)rw, 
where w\rv, and so o{N) would be odd. But then S2 = B2, contrary to our 
assumption that S2 is the quaternion group. Hence we must have 2lr. Since 
k/r is a power of 2 and 8 \ k, it follows that r/2 is odd and k/r is 2. 

We are thus reduced to considering the following situation: 

(5.1) brab~r = a \ 2|r, r/2 is odd, and k/r = 2. 

Let (X - 1, h) = u. If u = 1, then N(B2) = B (since N(B2) is of the form 
{ah/u ibûarniu *}). But then again S2 would be cyclic. So we may assume that 
u > 1. 

We may further assume that no subgroup of A is normal in G, for the 
theorem follows easily by induction in this case. In particular, this implies, as 
in the proof of Theorem 1, that the order of A is relatively prime to its index. 

From (5.1),we have X2 — 1 = 0 (mod A), and hence u(\ + 1) = 0 (mod h). 
Thus braub~r = auX = a~u, and similarly bra~ubr = au. Now as we have already 
seen, bT commutes with ah/u. But N(A) is generated by a and br, and hence 
an/u -£ i j s j n t ] i e c e n t r e of N(A). Since the order of A is relatively prime to 
its index, it follows from Lemma 1 that the transfer of G into A maps the 
intersection of A with the center of its normalizer onto itself. Thus (ah/u) is 
mapped onto itself by the transfer map. Hence the kernel H of the transfer 
of G into A consists of all elements of the form aibja~i+eu. Suppose now that 
x = aWar**"1 is an element of order 2 in H. Thus 1 = x2 = aWa-^aWar***", 
whence 
(5.2) b}aeubj = a~eu. 

Conjugating this relation by br we obtain bja~eubj = aeu. Thus bjaeubjbja~eubJ 

= a~euaeu = 1, and so 
(5.3) aeub2ja-m = b~2j. 

Thus a2eub2ja~2eu = b2j. But (2,A) = 1, so that we must have aeub2ja~eu = £2'. 
Equation (5.3) now yields that bAj = 1. Consequently k\4j; that is k/4 = (r/2) | j 
Thus x2 = 1 implies that 

~ *i2 -i+eu 

x — a o a 
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Suppose next that j = r/2. Then (5.2) becomes b*Taeub*r = arm, so that 
frTaeub~*T = a~eub~r = a~eubr since k = 2r; but now the element on the right-
hand side of this relation is of order 2, while that on the left-hand side is 
not, which is a contradiction. Similarly, j => — \r is impossible. 

We have thus proved that if x = aibjari+eu is an element of order 2 in H, 
then j = r, and so x is of the form bTae'u. Since H is normal in G, and since 
¥au is of order 2, b{bTau)b~l is of order 2 and is in H. It follows that b(bTau)b-1 

= bTamu for some integer m, and hence baub~l = amu. Thus au generates a 
normal subgroup of G, in contradiction to our present assumption that no 
subgroup of A is normal in G. This contradiction completes the proof of the 
theorem. 
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