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The stability of liquid-film flows is essential in many industrial applications. In the
dip-coating process, a liquid film forms over a substrate extracted at a constant speed
from a bath. We studied the linear stability of this film considering different thicknesses
ĥ for four liquids, spanning an extensive range of Kapitza numbers (Ka). By solving
the Orr–Sommerfeld eigenvalue problem with the Chebyshev–Tau spectral method, we
calculated the threshold between growing and decaying perturbations, investigated the
instability mechanism, and computed the absolute/convective threshold. The instability
mechanism was studied by analysing the perturbations’ vorticity distribution and the
kinetic energy balance. It was found that liquids with low Ka (e.g. corn oil, Ka = 4)
are stable for a smaller range of wavenumbers compared with liquid with high Ka (e.g.
liquid zinc, Ka = 11 525). Surface tension has a stabilising and a destabilising effect. For
long waves, it curves the vorticity lines near the substrate, reducing the flow under the
crests. For short waves, it fosters vorticity production at the interface and creates a region
of intense vorticity near the substrate. In addition, we discovered that the surface tension
contributes to both the production and dissipation of perturbation’s energy depending on
the Ka number. Regarding the absolute/convective threshold, we identified a window in the
parameter space where unstable waves propagate throughout the entire domain (indicating
absolute instability). Perturbations affecting Derjaguin’s solution (ĥ = 1) for Ka < 17 and
the Landau–Levich–Derjaguin solution (ĥ = 0.945Re1/9Ka−1/6), are advected by the flow
(indicating convective instability).

Key words: absolute/convective instability, thin films

1. Introduction

The linear stability analysis of film-flow solutions predicts whether small disturbances
grow or decay in the long term. This is particularly important in the dip-coating industrial
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process, where growing disturbances make the coating layer uneven, reducing the quality
of the final product (Scriven 1988). The dip-coating process consists in applying a thin film
of protective material over a solid substrate (Weinstein & Ruschak 2004), with applications
ranging from food industry (Suhag et al. 2020), e.g. coating composed of hydrophilic
polymers dissolved in water (Jose, Pareek & Radhakrishnan 2020), to corrosion-protection
material, e.g. zinc coating in hot-dip galvanisation Kuklík & Kudlacek (2016, Chapter 2).
The substrate is coated by dipping and then withdrawing it from a liquid bath. Thereby,
a liquid film forms on the substrate surface, which then solidifies into a protective layer.
The thickness of this liquid film h̄ depends on the withdrawal velocity Up and the action
of external control actuators.

In the uncontrolled case, known as free-coating or drag-out problem (Wilson 1982), h̄
depends on the ratio between viscous drag forces over surface tension forces at the free
surface (capillary number Ca = Upμ/σ ). For small Reynolds numbers (Re), h̄ is given
by the Landau–Levich–Derjaguin (LLD) solution for Ca� 1 (Derjaguin 1943; Landau
& Levich 1988) and by the Derjaguin (1944) solution for Ca� 1. Both solutions define
a monotonically non-decreasing relation between h̄ and Up with thicker films for faster
substrates. This contrasts with industrial needs aiming at thin films and fast substrates. To
this end, in industrial lines, external actuators are used to remove the liquid excess from the
film, e.g. impinging gas jets in the hot-dip galvanisation (Buchlin 1997; Gosset & Buchlin
2006), allowing the thickness of the coating to be controlled regardless of the substrate
velocity (Mendez et al. 2021).

Tu & Ellen (1986) and Gosset (2007) studied the stability properties of the controlled
liquid film, finding that the cutoff wavenumber is ∝ h̄2Re1/2Ca1/2. They solved the
Orr–Sommerfeld eigenvalue problem with an asymptotic long-wave expansion at O(k),
valid for small Reynolds numbers (Benjamin 1957; Yih 1991). Other authors relied on
integral boundary layer models to extend the analysis to larger Re and short wavelengths.
Ivanova et al. (2022) found that the cutoff wavenumber is ∝ h̄3/2Re1/2Ca1/6, whereas
Barreiro-Villaverde et al. (2023) showed that the film is more stable to three-dimensional
(3-D) than to two-dimensional (2-D) disturbances. The disagreement between the
Orr–Sommerfeld approximated long-wave solution and integral models suggests that a
more thorough analysis of the full Orr–Sommerfeld eigenvalue problem is required, which
is still absent from the literature.

An essential aspect of unstable perturbations is the physical mechanism leading to their
growth. For a falling liquid film, asymptotic (Smith 1990), vorticity and energy arguments
(Kelly et al. 1989) showed that the motion induced by a small perturbation of the liquid
film’s free surface feeds the perturbation’s energy by the work of shear stresses at the free
surface. The extracted energy is stored in the disturbance’s kinetic and potential surface
tension energy. Understanding the growth mechanism in dip-coating conditions would
shed some light on the role of substrate motion.

Another significant result given by the linear stability analysis is the threshold between
absolutely and convectively unstable film flows (Kalliadasis et al. 2011, Subsection 7.1.2).
Knowing this threshold is essential for the design of control actions, which can affect
the whole liquid film or only a part of it (Pier 2003). The liquid film’s impulse response
can produce waves propagating along the flow direction (convectively unstable flow) or
everywhere in the domain (absolutely unstable flow). Experiments (Liu, Paul & Gollub
1993), analytical and numerical works (Brevdo et al. 1999) proved that the falling film
is convectively unstable, and the suspended film is absolutely unstable (Sterman-Cohen,
Bestehorn & Oron 2017). Between these two extremes, a critical inclination angle defines
the threshold between absolute and convective film flows (Brun et al. 2015; Scheid,
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Kofman & Rohlfs 2016; Pino, Scheid & Mendez 2024). Likewise, a critical liquid-film
thickness in dip coating defines the absolute/convective (AC) threshold (Pino, Mendez
& Scheid 2024). For small coating thicknesses, the entrainment due to the substrate
motion sweeps the instabilities upwards; for large coating thicknesses, the gravitational
effects push the instability downwards. For intermediate coating thicknesses, gravity and
viscous entrainment should compensate for each other, resulting in a window of absolute
instability. Knowing the position of this window in the parameters space is essential for
the design of control laws, which can affect the liquid film downstream, upstream or
everywhere. Despite its implications, this remains an open question that has not yet been
answered and which we address theoretically in this paper.

This work studies the stability of controlled and uncontrolled liquid-film-flow solutions
over a substrate moving against gravity. Given the wide variety of coating liquids, going
from vegetable oils (Sharmin et al. 2015) to liquid metals, this analysis focuses on four
liquids with a ratio of surface tension forces to inertial forces (Kapitza number Ka) in the
range between Ka ∼ O(1) and Ka ∼ O(104). We solve the Orr–Sommerfeld eigenvalue
problem via the Chebyshev–Tau spectral method (Ortiz 1969; Lanczos 1988; Johnson
1996, Chapter VII) and compare the neutral stability conditions for different values of
non-dimensional film thickness. Based on the Orr–Sommerfeld solution, we calculate the
components of the energy balance equations and compute the AC threshold. Although
this holds in linear analysis, it is worth noting that nonlinear mechanisms may affect the
spanwise development of initial perturbations, as observed by Barreiro-Villaverde et al.
(2023) in a coating film and by Ledda et al. (2021) in an inverted film with calcium
carbonate deposition.

The rest of the article is organised as follows. The problem set-up is described in
§ 2, and a description of the scaling quantities is given in § 2.1. Section 2.2 reports
the governing equations, the eigenvalue problem formulation and the instability energy
balance equation. The numerical implementation is reported in § 3 with methods used
to solve the Orr–Sommerfeld problem, calculate the energy balance equation and search
the AC threshold. Results are presented in § 5 with the stability curves, the perturbation’s
energy budget and the AC instability threshold. Conclusions and perspectives are given
in § 6.

2. Problem description

We consider a 2-D liquid film with density ρ, dynamic viscosity μ, kinematic viscosity
ν and surface tension σ , over a vertical substrate moving against gravity g at constant
speed Up. Table 1 reports the physical properties of the four liquids considered in this
work: liquid zinc, water, water–glycerol solution (glycerol concentration 45 % by volume)
and corn oil. These cover a broad range of conditions encountered in dip or slot coating
(Gosset, Mendez & Buchlin 2019; Barreiro-Villaverde et al. 2023). Figure 1(a) shows the
fixed reference system (Oxy) with x aligned with the plate and pointing in the direction of
the gravitational acceleration, y along the wall-normal direction towards the free-surface,
with the origin O on an arbitrary point of the substrate, given the translational invariance
of the problem.

2.1. Scaling quantities
For a given liquid, the two control parameters of the systems are the substrate
velocity Up and the liquid-film thickness h. We define as reference velocity Up and as
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ρ μ σ Ka Re
Liquid (kg m−3) (mPa s) (mN m−1)

Corn oil 1023 87.5 32 4 1–180
Water–glycerol solution 1120 8.1 65.4 195 4–616
Water 1000 1 72.8 3400 10–1659
Liquid zinc 6570 3.5 700 11 525 14–2272

Table 1. Properties of the four liquids considered in the analysis (density, dynamic viscosity and surface
tension from left to right), Kapitza number (Ka) and range of Reynolds numbers (Re) for substrate velocity
Up ∈ [0.1, 3] m s−1 for the four liquids considered in the analysis.
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Up
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o

(b)(a) (c)

Figure 1. (a) Schematic of the investigated configuration with a vertical liquid film over a substrate moving
with velocity Up, where the dimensional liquid-film height h can be scaled by href and decomposed into a
dimensionless base state h̄ and a dimensionless harmonic perturbation h̃ of O(1), with ε � 1. Liquid-film
response (red continuous curve) of a (b) convectively and (c) absolutely unstable base state solution to an
initial pulse (black dashed line).

reference length the film thickness resulting from the steady-state viscous-gravity balance
(see Mendez et al. 2021):

uref = Up, href =
√

νUp

g
, (2.1a,b)

where the subscript ‘ref ’ denotes reference quantities. We define the capillary length
�c, relating gravity and surface tension, and the viscous length �ν , relating gravity and
viscosity, as

�c =
√

σ

ρg
, �ν = 3

√
ν2

g
. (2.2a,b)

1000 A57-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

94
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.940


Linear stability of a liquid film over a moving substrate

Based on velocity and length scales in (2.1), the dependent and independent variables are
scaled accordingly:

(u, v)→ uref (û, v̂), (x, y)→ href (x̂, ŷ), h→ href ĥ, (2.3a)

t→ href

uref
t̂, p→ p∞ + ρghref p̂, (2.3b)

where the hat ·̂ denotes the non-dimensional quantities and p∞ the atmospheric pressure.
To make the non-dimensional thickness ĥ independent of Up and to have a clearer
understanding of the role of the control parameters, we introduce another non-dimensional
film thickness h̆ based on �ν :

h→ �ν h̆. (2.4)

The non-dimensional groups arising from our scaling are the Reynolds number:

Re = uref href

ν
=
√

U3
p

gν
, (2.5)

which is equivalent to the Froude number defined as

F =
u2

ref

ghref
=
√

U3
p

gν
. (2.6)

This means that Re represents the ratio of inertia over viscous forces and the ratio between
inertia and gravitational forces. The other non-dimensional group is the inverse of the
capillary number defined as the ratio between surface tension and gravity:

Ca−1 = σ

uref μ
= Ka

Re2/3 , (2.7)

where Ka is the Kapitza number defined as

Ka = σ

ρg1/3ν4/3 . (2.8)

Based on these non-dimensional groups, the non-dimensional capillary and viscous
wavenumbers read

k�c =
2π

�̂c
= 2πRe1/3

Ka1/2 , k�ν =
2π

�̂ν

= 2πRe1/3. (2.9a,b)

Using the scaling in (2.1), the Derjaguin (1944) flat film solution corresponds to ĥ = 1
and the LLD solution (Derjaguin 1943; Landau & Levich 1988; Snoeijer et al. 2008)
corresponds to

◦
h = 0.945Ca1/6. (2.10)
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Figure 2. (a) Relation between the non-dimensional liquid film ĥ and flow rate q̂ with the Derjaguin solution
(red circle), the maximum thickness ĥ = √3 (green square) and the thin film (orange shadowed) and thick film
(blue shadowed) regions with (b) the associated velocity profiles.

2.2. Mathematical formulation
The liquid film is governed by the incompressible 2-D Navier–Stokes equations, with
a velocity vector v = (u(x, y), v(x, y)) and a pressure field p(x, y). The equations are
accompanied by the non-slip condition at the substrate v(x, y = 0) = (−Up, 0) and a set
of kinematic and dynamic boundary conditions at the free surface (y = h), accounting for
the continuity of the interface, and the normal and tangential force balance (see Kalliadasis
et al. 2011, Chapter 2). The non-dimensional steady-state solutions (base states) are given
by a flat interface (ĥ = h̄) and the following velocity and pressure fields:

ū(ŷ) = −1
2 ŷ2 + h̄ŷ− 1, v̄(ŷ) = 0, p̄(ŷ) = 0, (2.11a–c)

where ·̄ denotes the base state quantities. The balance between wall shear stress and gravity,
along with the imposed velocity at the boundary, produce a non-monotonic relation
between non-dimensional flow rate q̂ = q/(uref href ) and ĥ:

q̄ = 1
3 h̄3 − h̄. (2.12)

As shown in figure 2(a), this relation entails two branches of steady-state solutions: a
thin one (h̄ < 1) (orange area) and a thick one (h̄ > 1) (blue area) with the Derjaguin’s
solution (red dot) and the solution h̄ = √3 (green square) defining the limit of zero net
flow rate, above which we enter the falling film regime, i.e. for h̄ >

√
3. Figure 2(b)

shows the non-dimensional streamwise velocity profile ū(ŷ) associated with Dejarguin’s
solution (continuous red line) and the thin (orange) and thick (blue) film solution (lines
with markers).

To analyse the stability of the base states given by (2.11), we decompose the dependent
variables as follows:

û = ū+ εũ, v̂ = v̄ + εṽ, p̂ = p̄+ εp̃, ĥ = h̄+ εh̃, (2.13a–d)

where ·̃ represents the perturbations of O(1) and ε � 1 a small parameter. Inserting (2.13)
into the governing equations with the kinematic and dynamic boundary conditions and
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collecting the term at O(ε) yields the linearised perturbation (Navier–Stokes) equations:

∂x̂ũ+ ∂ŷṽ = 0, (2.14a)

Re(∂t̂ ũ+ ū∂x̂ũ+ ṽDū) = −∂x̂p̃+ ∇2ũ, (2.14b)

Re(∂t̂ṽ + ū∂x̂ṽ) = −∂ŷp̃+∇2ṽ, (2.14c)

where D(·) = ∂ŷ(·) is the wall-normal differential operator. The boundary conditions at
the substrate (ŷ = 0) reads

ũ = ṽ = 0, (2.15)

and, at the free surface (ŷ = ĥ),

ṽ = ∂t̂ h̃+ ū∂x̂ũ, (2.16a)

p̃ = 2∂ŷṽ − Ca−1∂x̂x̂h̃, (2.16b)

h̃ = ∂ŷũ+ ∂x̂ṽ. (2.16c)

We concatenate the streamwise ũ and cross-stream ṽ perturbations, by recasting (2.14) in
terms of the stream function Ψ defined as

ũ = ∂ŷΨ, ṽ = −∂x̂Ψ, (2.17a,b)

and assuming a normal mode solution of the form

Ψ = ϕ(ŷ) exp(i(kx̂− ωt̂)), h̃ = η exp(i(kx̂− ωt̂)), (2.18a,b)

where ϕ(ŷ) = ϕr(ŷ)+ iϕi(ŷ) and η are the amplitudes of the stream function and the
film thickness, respectively, k = kr + iki is the wavenumber, ω = ωr + iωi the angular
frequency, and c = cr + ici = ω/k is the perturbation’s complex phase speed. This yields
the following Orr–Sommerfeld eigenvalue problem:

OS(k, c, Re)ϕ(ŷ) = [A(k, Re)− cB(k, Re)]ϕ(ŷ) = 0, (2.19)

where A(k, Re) is given by

A(k, Re) = (D2 − k2)2 − i Re k[ū(D2 − k2)+ 1] (2.20)

and B(k, Re) = ∂cOS(k, c, Re) is given by

B(k, Re) = −i Re k(D2 − k2), (2.21)

with boundary conditions OSBCϕ|0,ĥ = 0 defined as

ϕ(0) = Dϕ(0) = 0, (2.22a)

η = ϕ(ĥ)/(c− a), (2.22b)

[(D2 − 3k2)+ i Re k(c− a)]Dϕ(ĥ)− iη Ca−1 k3 = 0, (2.22c)

(D2 + k2)ϕ(ĥ)− η = 0, (2.22d)

where a = ū(h̄) = (h̄2/2− 1) is the base-state velocity at the interface.
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The solution of the eigenvalue problem sets a relation between the wavenumber k and
angular frequency ω. This is known as the dispersion relation and depends on three
parameters:

D(ω, k;Re, Ka, h̄) = 0. (2.23)

These solutions are linked to the system’s response to a local impulse, known as
Green’s function (Brevdo et al. 1999; Schmid & Henningson 2001, pp. 270–271). It can
be shown that these are the system’s poles (Charru 2011, p. 97) and, thus, control whether
a disturbance grows or vanishes.

The analysis of poles for varying ω with a fixed k is known as a temporal analysis,
whereas the analysis of poles for varying k and fixed ω is known as a spatial analysis. The
images of any straight lines ki = C, where C is an arbitrary constant, are called temporal
branches in the complex frequency space, whereas the images of any straight line ωi = E,
where E is an arbitrary constant, are called spatial branches in the complex wavenumber
space (Kupfer, Bers & Ram 1987). The points of intersection of spatial branches are called
spatial branch points.

For a real k, a base state is classified as temporally stable or unstable, depending on the
value of the growth rate (ωi): a state is unstable if ωi > 0, as this results in the unbounded
temporal growth of infinitesimal perturbation, whereas it is stable if ωi < 0, as this results
in the return of the perturbed liquid film to its steady-state equilibrium conditions for all k.
The locus of points with zero growth rate (ωi = 0) corresponds to the neutral curve, with
neither amplified nor damped perturbations.

A base state is absolutely unstable if the solution with zero group velocity
cg = ∂ω/∂k = 0 has ωi > 0 (Gaster 1968; Charru 2011). The condition cg = 0 is
equivalent to ∂ωr/∂kr = ∂ωi/∂kr = 0 or, because of the Cauchy–Riemann relation, to
∂ωi/∂ki = ∂ωr/∂ki = 0. Since both ωr and ωi must also satisfy the Laplace equation in
the wavenumber domain k for a differentiable (holomorphic) ω(k), this implies that the
condition cg = ∂ω/∂k = 0 corresponds to a saddle point in the wavenumber domain k.
However, not all saddle points are admissible; we return to this point in § 3.2.

3. Methodology

3.1. Numerical solution of the eigenvalue problem
Before presenting the numerical methods used to solve the Orr–Sommerfeld problem,
we remove η from the boundary conditions (2.22), substituting the kinematic condition
(2.22b) into the shear stress balance (2.22d) and the original shear stress balance (2.22d)
into the normal stress balance (2.22c) (Pelisson Chimetta, Hossain & de Moraes Franklin
2018). The Orr–Sommerfeld eigenvalue problem (2.19) with the modified boundary
conditions is solved using the Chebyshev–Tau spectral method (Johnson 1996; Canuto
et al. 2012, Section. 3.1). The eigenfunction ϕ(ŷ) is approximated with a combination of
N + 1 Chebyshev polynomials of the first kind, with the coefficients ai being collected in
the vector φ = [a0, a1, . . . , aN]T. The approximated eigenfunction is introduced in (2.19),
and the residual is projected onto another base of Chebyshev polynomials of the first
kind. This results in an algebraic system of N + 1 equations representing a generalised
eigenvalue problem with eigenvector φ and eigenvalue c:

(A(Re, k)− cB(Re, k))φ = 0, (3.1)

with matrices A and B representing the discretisation of the operators A in (2.20) and B
in (2.21). Replacing the last four rows of the system in (3.1) with the modified boundary
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conditions (Boyd 2001, Section 6.4) leads to the generalised eigenvalue problem:

Â(Re, k)φ = cB̂(Re, k)φ, (3.2)

with Â and B̂ representing matrices A and B in (3.1) with the enforced boundary
conditions. The eigenvalue problem is solved using Python’s function numpy.linalg.eig.
The approximation error decreases as the magnitude of the four τ coefficients is reduced
Lanczos (1988, Chapter 7, § 12).

To cope with the spurious eigenvalues (Dawkins, Dunbar & Douglass 1998; Bourne
2003), we solve (3.2) for N = 20 and N = 80, retaining the eigenvalues whose difference
in magnitude, using the Euclidean norm (‖·‖), is below 0.1 (Gardner, Trogdon & Douglass
1989). Among these, that with the largest growth rate ω1

i1 = c1
i1/k (most unstable) is

selected. To further improve the computational accuracy of the associated eigenvector φ1
1 ,

we run 10 iterations of the inverse power method (Trefethen & Bau 2022, Lecture 27):

φj+1 = (C − I/c1)
−1φ
{j}
1

||(C − I/c1)−1φ
{j}
1 ||

, (3.3)

where j ∈ {1, 2, . . . , 9} is the iteration count and C = Â−1B̂. We defined C in this way,
with the inverse of Â rather than the inverse of B̂, because B̂ is always singular.

Given Ka and ĥ, to compute the neutral stability curves in the k–Re space with k ∈ R,
we start from the long-wave most-unstable mode ((φ1, c1) with the largest ci), with
k{1} = 3.5× 10−6, and we march it along the discrete k axis running 20 iterations of
Rayleigh quotient iteration at every point k{j} and collecting the values of c{j}:

φ
{j+1}
1 = (C − I/c( j)

1 )φ
{j}
1

||(C − 1/c{j}1 )−1φ
{j}
1 ||

, I/c{j+1}
1 = φ

∗{j+1}
1 Cφ

{j+1}
1

φ
∗{j+1}
1 φ

{j+1}
1

, (3.4a,b)

where ·∗ denotes complex conjugate. Thereby, converting ci into ωi, we find the growth
rate as a function of k. The zero of this curve kf (k ∈ R : ωi(k) = 0 ∧ k /= 0), also known
as the cutoff frequency, belongs to the neutral curve. The neutral curve is constructed by
repeating this procedure varying Re.

3.2. Numerical method for zero group-velocity perturbation
To assess whether a base state is absolutely or convectively unstable, we follow Brigg’s
method (outlined in Schmid & Henningson 2001, Subsection 7.2.2). This consists of
mapping the complex k space into the complex ω space, identifying the saddle points,
and checking a posteriori if these respect the causality condition using the collision
criterion (Briggs 1964; Huerre & Monkewitz 1985; Thual, Thual & Dewitte 2013; Avanci,
Rodríguez & Alves 2019). According to this criterion, the only valid saddle points arise as
spatial branch points, pinching two spatial branches coming from the positive and negative
half-planes of the complex wavenumber space. Depending on the value of the growth rate
in these points, the base state is convectively (ωi < 0) or absolutely (ωi > 0) unstable.

Given a set of parameters (Re, Ka, ĥ), we explore a portion of the complex wavenumber
space ki ∈ [kimin, kimax] and kr ∈ [krmin, krmax], discretised with a uniform mesh of M ×M
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Figure 3. Position of the saddle point (red dot) for the zinc with ĥ = 0.8885, Re = 30 (a) in the complex k
space with the colourmap of ωi and (b) in the complex frequency space with the cusp (black dashed line) and
the spatial branches of the first four modes (coloured lines), sorted by ascending values of ωi, obtained solving
the Orr–Sommerfeld problem along the path ki = 0 in the complex wavenumber space.

elements with spacing �ki and �kr. Starting from the most-unstable mode (φ1, c1),
obtained solving the Orr–Sommerfeld problem (3.2) for a given pair (k{1}r , k{1}i ), we march
over the discretised wavenumber space running 20 iterations of Rayleigh quotient iteration
(3.4) at every point (k{j}r , k{j}i ) and collecting the values of c{j}. The solution at one point
of the grid serves as a starting point for the computation of the solution in the adjacent
one. We march over the wavenumber space with a spiral matrix algorithm to avoid
two consecutive steps falling outside the iterative method’s convergence region. Given
the computed mapping ωr(kr, ki), ωi(kr, ki), we calculate the saddle point location using
numerical differentiation and checking the collision condition.

Figure 3(a) presents an example of the mapping, with ωi colour plot and contour map as
a function of k, along with the position of the saddle point (red point). To check whether
the collision criterion is satisfied, we check the position of the saddle point in the complex
ω space. Figure 3(b) shows the saddle point position (red dot) in the complex ω space
and the temporal branches of the first five modes (coloured lines), sorted by ascending
values of ωi, along the path ki = 0. The collision criterion is respected if the saddle point
is surmounted by an odd number of spatial branches (Kupfer et al. 1987; Suslov 2006).

To determine the AC instability threshold (saddle point with ωi = 0), we explore the
parameter spaces (Ka–Re) and (ĥ–Re). We fix Re and run a line search along the other
parameter. A detailed pseudocode description is reported in Appendix A.

4. Energy balance and mechanism of the unstable perturbation

To understand the onset mechanism of unstable perturbations, we solve the linearised
Navier–Stokes equations via a long-wave asymptotic expansion up to O(k2) in § 4.1. In
addition, to gain a deeper insight into the growth mechanism of unstable perturbations for
any k, we derive the kinetic energy balance for the perturbations in § 4.2.
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4.1. Mechanism of long-wave instability in a moving reference frame
We consider a solution of (2.14) with boundary conditions (2.15) and (2.16) in the form of
normal modes given by

ũ = ú(ŷ) exp(ik(x̂− ct̂)), ṽ = v́(ŷ) exp(ik(x̂− ct̂)), (4.1a)

h̃ = η exp(ik(x̂− ct̂)), p̃ = ṕ(ŷ) exp(ik(x̂− ct̂)), (4.1b)

where the ·́ denotes the amplitudes. We consider a reference system moving with the
substrate velocity Up (û = −1), with the change of variables:

úm(ŷ) = ú(ŷ)+ 1, cm = c+ 1, ūm(ŷ) = ū(ŷ)+ 1 = −y2

2
+ ĥŷ, (4.2a–c)

where úm, cm and ūm are the streamwise velocity amplitude, the phase speed and the
base state velocity in the moving reference frame. We seek an approximated solution via
long-wave expansion of the amplitudes and the phase speed up to O(k) (Benjamin 1957;
Yih 1963; Smith 1990):

úm = úm0 + úm1k + O(k2), v́ = v́0 + v́1k + O(k2), ṕ = ṕ0 + ṕ1k + O(k2), (4.3a)

η = η0 + η1k + O(k2), cm = cm0 + cm1k + O(k2), (4.3b)

with the normalisation η0 = 1 and η1 = 0. Collecting the terms at O(1) gives the system

Dv́0(ŷ) = 0, v́0(ŷ)Dūm(ŷ)Re = D2úm0(ŷ), Dṕ0(ŷ) = D2v́0(ŷ), (4.4a–c)

with boundary conditions

úm0(0) = 0, v́0(0) = 0, (4.5a)

ṕ0(ĥ) = 2v́0(ĥ), v́0(ĥ) = 0 Dúm0(ĥ) = 1. (4.5b)

At O(k), we obtain the system

v́1(ŷ)+ i(úm0(ŷ)− 1) = 0, (4.6a)

−Re(úm0(ŷ)− 1)(cm0 − ūm(ŷ)+ 1)+ ṕ0(ĥ)− i Re v́1(ŷ)Dūm(ŷ)+ iD2úm1(ŷ) = 0,

(4.6b)

−icm0 Re v́0(ŷ)+ Dṕ1(ŷ)+ i Re ūm(ŷ)v́0(ŷ)− i Re v́0(ŷ)− Dv́1(ŷ) = 0, (4.6c)

with the boundary conditions

ú1(0) = 0 v́1(0) = 0, (4.7a)

v́1(ĥ) = −i(cm0 − ūm(ĥ)+ 1), (4.7b)

ṕ1(ŷ)− 2Dv́1(ĥ) = 0, Dú1m(ĥ)+ iv́0(ĥ) = 0. (4.7c)

The solution of these systems is presented in § 5.2.
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4.2. Energy balance of the perturbation
To study the instability mechanism, we analyse the contributions to the perturbation’s
kinetic energy equation as in Kelly et al. (1989) and Lin (1970). This equation is obtained
by summing up the product of (2.14b) by ũ and of (2.14c) by ṽ, averaging over a wavelength
λ, integrating over the liquid-film thickness ĥ and then using (2.14a) and the boundary
conditions (2.15) and (2.16c) to obtain

RKINE+ SURTE = SHEST+ REYNS+ DISSI, (4.8a)

with

RKINE = 1
2λ

d
dt

∫ λ
0

∫ ĥ

0
(ũ2 + ṽ2) dŷ dx̂, (4.8b)

SURTE = −Ca−1

Re λ

∫ λ
0

[ṽ|ĥ(∂x̂x̂h̃)] dx̂, (4.8c)

SHEST = 1
Re λ

∫ λ
0

ũ|ĥ(∂ŷũ|ĥ + ∂x̂ṽ|ĥ) dx̂, (4.8d)

REYNS = −1
λ

∫ λ
0

∫ ĥ

0
ũṽDū dŷ dx̂, (4.8e)

DISSI = DISSI1 + DISSI2 + DISSI3. (4.8f )

The terms on the left-hand side represent the energy stored in the perturbation in the
form of kinetic (RKINE) and surface tension potential (SURTE) energies. The terms on
the right-hand side represent the energy extracted from the base state through the work of
shear stress at the interface (SHEST), Reynolds stress (REYNS) and dissipative viscous
effects (DISSI). DISSI encompass the contribution of extensional (DISSI1 and DISSI3)
and shear terms (DISSI2), given by

DISSI1 = − 1
Re λ

∫ λ
0

∫ ĥ

0
2(∂x̂ũ)2 dŷ dx̂, (4.9a)

DISSI2 = − 1
Re λ

∫ λ
0

∫ ĥ

0
υ2 dŷ dx̂, (4.9b)

DISSI3 = − 1
Re λ

∫ λ
0

∫ ĥ

0
2(∂ŷṽ)2 dŷ dx̂, (4.9c)

where υ = ∂ŷũ+ ∂x̂ṽ is proportional to the strain rate. The perturbation quantities are
given by

ũ = (Dϕr cos(θ)− Dϕi sin(θ))E, (4.10a)

ṽ = k(ϕi cos(θ)+ ϕr sin(θ))E, (4.10b)

(∂ŷũ+ ∂x̂ṽ) = [(D2 + k2)(ϕr cos(θ)− ϕi sin(θ)]E, (4.10c)

ω̃ = [(D2 − k2)(ϕr cos(θ)− ϕi sin(θ)]E, (4.10d)

h̃ = (ηr cos(θ)− ηi sin(θ))E, (4.10e)
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Linear stability of a liquid film over a moving substrate

with
θ = k(x− crt), E = exp(kcit), ω̃ = ∂ŷũ− ∂x̂ṽ, (4.11a–c)

where ω̃ is the perturbation vorticity.
Using the kinematic condition (2.22b), the real ηr and imaginary ηi parts of surface

deflection are given by

ηr = (ϕr(ĥ)ĉ+ ϕi(ĥ)ci)/(ĉ2 + c2
i ), (4.12a)

ηi = (ϕi(ĥ)ĉ− ϕr(ĥ)ci)/(ĉ2 + c2
i ), (4.12b)

where ĉ = cr − a. To have an accurate computation of the terms in (4.8a), we calculate
the integral along x̂ analytically and along ŷ numerically, using the Simpson’s rule over
a grid of 104 equispaced points in the range [0, ĥ] such that the difference in magnitude
between the right-hand side and the left-hand side of (4.8a) is below 1 % of the kinetic
energy (RKINE) (Lin, Lian & Creighton 1990).

5. Results and discussion

In this section, we report the results of the linear stability analysis in terms of neutral
curves and growth rates (§ 5.1), instability mechanism (§ 5.2) and AC threshold (§ 5.3)
for the fluids in table 1. Moreover, we compute the threshold for the Derjaguin’s flat film
solution (ĥ = 1) in the (Ka–Re) parameter space.

The Orr–Sommerfeld eigenvalue problem (2.19) is solved using N = 20 Chebyshev
polynomials in the approximation of the stream function amplitude, and a grid spacing
for the saddle point search of �kr = 2.5× 10−4 and �ki = 3× 10−4 (see Appendix B.1).
To verify our implementation, we compare the dispersion relations and the eigenfunctions
against a long-wave asymptotic expansion of the Orr–Sommerfeld problem up to the third
order in k (see Appendix B.2).

5.1. Neutral stability curves and growth rates
First, we compare the neutral stability curves given by the numerical solution of
the Orr–Sommerfeld problem and by analytical representation. These representations
are obtained by calculating the zeros of the long-wave approximation obtained in
Appendix B.1, i.e. cancelling c�

1 in (B5), leading to the expression

k =
√

2
5

ĥ3

Ka
Re5/3, (5.1)

for an expansion up to O(k) with the surface tension correction at leading order
(Ca−1k2 = O(1)), and to the expression

k = 24
√

15015ĥ3/2
√

Re√
2 427 904ĥ11Re3 + 45 463 275ĥ5Re+ 21 621 600

Ka
Re2/3

, (5.2)

for an expansion up to O(k3) without correction. Figure 4 shows the approximated neutral
curves and the one obtained with the spectral methods for ĥ ∈ [0.2, 0.5, 0.8] considering
(a) zinc (Ka = 11 525) and (b) water (Ka = 3400). The instability region lies between the
curve and the k = 0 axis. The analytical expressions agree with the numerics for small
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Figure 4. Neutral curves separating the region of stable (above) and unstable (below) wavenumbers, based on
asymptotic expansions with surface tension correction up to O(k) (orange dash-dotted line with triangles) and
without correction up to O(k3) (green dashed line with squares), against the numerical ones (continuous blue
line), for ĥ ∈ [0.2, 0.5, 0.8] with (a) zinc (Ka = 11 525) and (b) water (Ka = 3400).

values of ĥ. The solution with correction agrees better than the full third-order solution,
which highlights the validity of the assumption Ca−1 × k2 = O(1) for large Ka and small
ĥ.

Going into more depth in the analysis of the neutral curves and the dispersion relations,
figures 5 and 6 show the numerical neutral curves for different values of ĥ and the
dispersion relations with axes normalised with the maximum value of ωi (max(ωi)) and
the cutoff wavenumber km at Re = 30 for the four liquids. The wavenumber kmax and the
magnitudes ωi,max of the growth rate peaks are reported in table 2. For ĥ ≤ 1, ωi gradually
increases with k, up to the peak, then sharply decreases towards km. For ĥ > 1, ωi reaches
the peak after a steep increase, and then it gently reaches km.

As for the growth rate, ĥ also influences the neutral stability curves. For the four fluids,
the instability region enlarges for large ĥ and small Ka, with curves progressively gathering
around the same wavenumbers for thick film conditions (ĥ > 1), with the limit case of
corn oil (Ka = 4), where the neutral curves are almost superimposed. Similar behaviour is
also visible in the dispersion relations. As Ka decreases, the relative distance between the
peaks’ positions for ĥ > 0.35 shrinks, with the limit case of corn oil (Ka = 4) where the
curves for ĥ = 0.4 and ĥ = 1 also change shapes, becoming similar to those for ĥ > 1.

This highlights stabilising mechanisms given by the balance of inertia, viscous and
gravitational forces without the effect of surface tension. As Ka decreases, the stabilising
effects of the surface tension diminish compared with the viscous effects. Even when
increasing ĥ, the instability region does not expand much. This suggests that neutral modes
with k = O(1) arise as an equilibrium of mostly viscous and gravitational forces, which is
not linked to the velocity of the plate. Indeed, increasing Re does not change the relative
position of the neutral curves; it just brings this equilibrium point to larger k.
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Figure 5. (a,c) Neutral curves for different values of the non-dimensional liquid-film thickness ĥ, (b,d)
dispersion relations normalised with max(ωi) and the cutoff frequency kc for Re = 30 for (a,b) liquid zinc
(Ka = 11 525) and (c,d) water (Ka = 3400).

Figure 7 shows the evolution of (a) the ωi peak magnitude max(ωi) and (b) the
wavenumber kmax varying ĥ for the different fluids. As Ka decreases, the maximum growth
rate increases. Corn oil (Ka = 4) has the largest growth rates of all the ĥ with its peaks
overlapping for ĥ ≥ 1.

Interestingly, the peaks’ locations do not have a monotonic behaviour with ĥ. For the
corn oil (Ka = 4), the peak position advances towards smaller wavelengths for ĥ = 0.7,
and then it goes to longer wavelengths for higher values of ĥ. As Ka increases, the peak
is located at smaller wavenumbers, and it moves to ĥ = 1.7 passing through ĥ = 1 for the
water–glycerol (Ka = 195) solution.

The liquid-film height ĥ and the Kapitza number also play a role in the phase speed
of the unstable perturbations. Figure 8 shows how the phase speed cr as a function of
the wavenumber k and the liquid-film height ĥ at Re = 30 with a highlight on the neutral
curve (continuous white line) and the positions of the maximum growth rate (white dashed
line) for (a) liquid zinc (Ka = 11 525), (b) water (Ka = 3400) and (c) corn oil (Ka = 4).
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Figure 6. (a,c) Neutral curve and (b,d) dispersion relations normalised with max(ωi) and the cutoff frequency
kc, for Re = 30 and different values of ĥ, for (a,b) liquid water–glycerol (Ka = 195) solution and (c,d) corn oil
(Ka = 4).

Ka 4 195 3400 11 525

ĥ kmax ωi,max kmax ωi,max kmax ωi,max kmax ωi,max

0.35 0.65 0.0015 0.11 4.6× 10−5 0.027 2.7× 10−6 0.015 8× 10−7

0.7 0.69 0.033 0.25 0.011 0.075 0.0013 0.041 0.0004
1 0.57 0.049 0.26 0.029 0.1 0.011 0.061 0.0054
1.4 0.5 0.049 0.24 0.036 0.1 0.021 0.065 0.015
1.7 0.53 0.049 0.24 0.037 0.095 0.023 0.063 0.018

Table 2. Peak of growth rate ωi,max and the associated wavenumber kmax for different liquids and ĥ at
Re = 30.
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ĥ = 1
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Figure 7. Values of (a) the maximum growth rate max(ωi) and (b) the associated wavenumber km for different
ĥ and liquids at Re = 30.
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Figure 8. Coloured surface showing the real part of the phase speed cr as a function of the wavenumber k and
the flat liquid-film height ĥ at Re = 30 with the neutral curve (white continuous line) and maximum growth
rate (white dashed line) for (a) liquid zinc (Ka = 11 525), (b) water (Ka = 3400) and (c) corn oil (Ka = 4).

As we move along k for a fixed ĥ, the phase speed varies first linearly (for small ĥ) and
then nonlinearly (for large ĥ). This relation is quadratic for zinc (Ka = 11 525) and water,
with the minimum at the same wavenumber of the maximum growth rate. In contrast, for
the corn oil (Ka = 4), after a steep variation for k→ 0, it becomes linear again with a
minimum not coinciding with the peak of growth rate. As we move along ĥ for a fixed k,
the phase speed of long waves varies quadratically with ĥ, in accordance with the leading
order approximation of the asymptotic expansion (B3) (cr = ĥ2 − 1). As we increase k,
this approximation loses validity, with waves propagating slower. This relation tends to
become linear as we move to shorter wavelengths. The slope of this relationship changes
with k and Ka, becoming almost insensitive to k, in the case of corn oil (Ka = 4). High
Ka, the most-unstable mode, travels slower than any other unstable mode.

5.2. Long-wave mechanism and energy balance of the unstable perturbation
In this subsection, we describe the mechanism behind the growth of unstable
perturbations using momentum and vorticity arguments. Moreover, we investigate how
the perturbation’s energy is extracted and stored depending on the values of the
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non-dimensional groups and the liquid-film height, highlighting the role of viscous terms.
In the falling-liquid-film case, Kelly et al. (1989), with the energy-based approach, and
Smith (1990), with asymptotic expansions, showed that the long-wave instability is fed
by a streamwise flow field resulting from the base state’s shear stress deficiency at the
free-surface.

5.2.1. Long-wave instability mechanism
Considering the harmonic disturbance h̃ over a flat interface h̄ (see § 4.1), the shear stress at
the perturbed interface is given by a base state and a perturbation contribution. Expanding
Dû around the base state thickness h̄, we obtain, at first order,

Dû(ĥ) = Dū(h̄)+ Dũ(h̄)+ D2ū(h̄)h̃ = 0. (5.3)

Since the base state is shear-free at the interface (Dū(h̄) = 0) and knowing that
D2ū(h̄) = −1, (5.3) reduces to

Dũ(h̄)− h̃ = 0. (5.4)

The equilibrium of forces implies that the disturbance has to generate a positive shear
stress Dũ(h̄) to compensate for h̃. To analyse this mechanism, we considered a reference
frame moving at the substrate velocity Up (û = −1), and we expand the streamwise
velocity amplitude ú in a power series of k assuming long-wave conditions (4.1) (Smith
1990). The solution at O(1) of (4.4) with boundary conditions (4.5) is given by a linear
velocity amplitude úm0(ŷ) and a positive phase speed cm0:

úm0(ŷ) = ŷ+ 1, cm0 = h̄2. (5.5a,b)

The behaviour of cm0 is solely determined by gravity. The thicker the base state, the more
gravity is important, and the more the wave travels faster downwards along the x̂ direction.

Figure 9(a) shows the flow field at leading order as a consequence of a harmonic
displacement of the interface (red line). Since the flow field is in phase with the liquid-film
displacement, the streamwise velocity is maximum at the peak and minimum at the trough.
Considering a control volume in the range θ ∈ [0, π/2], enclosed between a peak and a
node at the interface, this has a positive net flow rate. The velocity field pushes liquid to
the right at the crest, with a zero flow rate at the node. In accordance with the continuity
equation, this implies a positive displacement of the film interface to accommodate this
accumulation of mass, leading to a travelling wave in the positive x̂ direction. The solution
of (4.6a) gives the normal velocity at O(k):

v1 = −iŷ2/2. (5.6)

The link between the phase speed and the flow rate is given by the kinematic boundary
condition at the interface (4.7b):

cm0 − ūm(ĥ) = v1 =
∫ ĥ

0
um0 − 1 dŷ = ĥ2/2. (5.7)

This initiating mechanism affects the development of the flow field at O(k) through two
inertial stresses in (4.6b):

− iRe(um0(ŷ)− 1)(ūm(ŷ)− cm0 − 1) and Re v1(ŷ)Dūm(ŷ). (5.8a,b)

The first term corresponds to the advection of the reduced leading-order solution by
the base state velocity with respect to the reduced leading order wave speed. The second
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Figure 9. Magnitude (greyscale) and vector field (arrows) of the perturbation’s velocity field (a) at leading
order and (b) at first order in the wavenumber k.

term corresponds to the advection of the base state velocity by the first-order wall-normal
velocity v1. Since the phase speed cm0 is larger than any values in ūm(ŷ), and being
Dūm(ŷ) = −ŷ+ ĥ positive for all ŷ ∈ [0, ĥ], these two terms are both negative. This leads
to a destabilising flow field given by the solution of the first-order equations (4.6) with
boundary conditions (4.7):

um1(ŷ) = Re
24

i(8ĥ4ŷ− 4ĥ2ŷ3 + 12ĥŷ+ ĥŷ4 − 4ŷ3). (5.9)

Figure 9(b) shows the flow field calculated with (5.9). Since the velocity amplitude
um1(ŷ) is imaginary and positive, the flow has a phase shift of π/2 with respect to the
wave displacement. Consequently, the velocity pushes fluid from the troughs to the peaks,
sustaining the growth of the perturbation. This renders a growth mechanism based on the
extraction of energy contained in the leading-order solution, which, in turn, extracts energy
from the base state through the work done by the shear stress at the interface.

5.2.2. Vorticity perturbation at the free surface and in the bulk
In the previous subsection, we studied the general structure of the instability mechanism.
The first-order solution in k, fed by leading-order inertial stresses, generates a destabilising
flow from the troughs to the peaks due to a π/2 phase shift to the free-surface
displacement. In this section, we go into more detail, analysing how the phase shift and
the magnitude of the perturbation change with the wavenumber and the flat liquid-film
height. To this end, we look at the growth of the perturbation in terms of the vorticity
field. The perturbation’s shear stress correction in (5.4) can be seen as a source of vorticity
at the free surface ωFS. We consider a reference frame moving with the wave speed cr, i.e.
θ = k(x̂− crt̂), and we assume a sinusoidal displacement of the free surface:

h̃ = sin (θ), (5.10)

with θ = 0 at 0, this implies through (4.12a), that

ηr = 0, ηi = −1. (5.11a,b)

By means of the kinematic boundary condition (2.22b), we scale the eigenfunction such
that

φr(ĥ) = ci, φi(ĥ) = −ĉ. (5.12a,b)
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ĥ

1.75
1.50

1.25
1.00

0.75
0.50

0.25
ĥ
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Figure 10. (a,d) Growth rate, (b,e) free-surface vorticity amplitude and (c, f ) phase shift as a function of k and
ĥ with the neutral curve (continuous red line) and the positions of maximum growth rates (red dashed line) for
Re = 30, considering (a–c) corn oil (Ka = 4) and (d–f ) zinc (Ka = 11 525).

The shear stress condition (2.22d) imposes that

D2φr(ĥ) = −k2ci, D2φi(ĥ) = −2+ k2ĉ. (5.13a,b)

By replacing these expressions in (4.10d), we obtain the vorticity at the free surface:

ωFS = γ sin (θ − ξ), (5.14)

with the amplitude γ and the phase shift ξ given by

γ = 2
√

(1− k2ĉ)2 + (k2ci)2], ξ = arctan (k2ci/(1− k2ĉ). (5.15a,b)

Depending on ξ , ωFS stabilises (ξ < 0) or destabilises (ξ > 0) the free-surface
displacement (Kelly et al. 1989).

Figure 10 shows (a,d) the growth rate ωi, (b,e) the amplitude γ and (c, f ) the phase shift ξ
of the free-surface vorticity as a function of the wavenumber k and the liquid-film thickness
ĥ at Re = 30, with the neutral curve (continuous red line) and the maximum growth rate
(dashed red line) for (a–c) the corn oil (Ka = 4) and (d–f ) the liquid zinc (Ka = 11 525).
For a fixed k, ωi gently grows with ĥ driven by a vorticity with a large amplitude and
a very small positive phase shift. For ĥ = 1, ωi grows more sharply, accompanied by
an increase in the phase shift and a decrease in the vorticity amplitude. In the corn oil
(Ka = 4) case, the growth rate and the phase shift reach a plateau for large ĥ, in line
with the saturating mechanism introduced in § 5.1. The phase shift ξ peaks at higher
wavenumbers than the growth rate ωi. The decay of the vorticity amplitude γ with k
compensates for the destabilising effect of larger phase shifts, decreasing the growth rate.
This suggests that the instability mechanism is also driven by the vorticity in the bulk, thus
confirming the results in the previous subsections.
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To investigate this behaviour, we analysed the vorticity perturbation ω̃(θ, ŷ) = ∂x̂ṽ −
∂ŷũ within the liquid film. The vorticity equation is obtained by taking the curl of the
momentum equations (2.14b) and (2.14c), considering the continuity equations (2.14a) and
the base state (2.11), which leads to

∂t̂ω̃ + ū∂x̂ω̃ − ṽD2ū = 1
Re

(∂x̂x̂ω̃ + D2ω̃). (5.16)

Considering the reference frame moving with the wave speed cr and knowing that
D2ū = −1, we obtain

k(ū− cr)∂θ ω̃ + ṽ = 1
Re

(k2∂θθ ω̃ + D2ω̃). (5.17)

On the left-hand side, the first term corresponds to the advection relative to the wave
velocity, and the second term corresponds to the vorticity perturbation’s advection of
the base state. The term on the right-hand side corresponds to the viscous diffusion of
vorticity. Inserting a normal mode solution for the vorticity with k ∈ R and c = cr + ici,

ω̃ = ώ(ŷ) exp(ik(x̂− ct̂)) = ώ(ŷ) exp(kcit̂) exp(iθ), (5.18)

and for the wall-normal velocity given by (4.1) in (5.17) leads to the expression for the
free-surface amplitude v́(ŷ),

v́(ŷ) = ik(cr − ū(ŷ))ώ(ŷ)+ 1
Re

(−k2 + D2)ώ(ŷ). (5.19)

Note that for Re� 1, the relation reduces at leading order in k to

v́(ŷ) ≈ ik(cr − ū(ŷ))ώ(ŷ), (5.20)

which corresponds to neglecting viscous effects.
Approximating cr with the long-wave asymptotic solution at O(1) in (B3), the term

cr − ū is always positive ∀ŷ ∈ [0, ĥ], implying that the vertical velocity amplitude changes
linearly with the vorticity amplitude with a phase shift of π/2 along θ .

Figure 11 shows the perturbation (a, b, c, g, h and i) vorticity and (d, e, f, j, k and l)
normal velocity fields at (a–f ) ĥ = 0.7 and (g–l) ĥ = 1.7 for the corn oil (Ka = 4) with
k = 0.5 (a, d, g and j), 0.93 (b, e, h and k) and 1.2 (c, f, i and l) with the maximum (red
square) and minimum (red triangle) of vorticity at the interface with Re = 30. For k = 0.5,
the vorticity contours deform towards the left, advected by the flow. Since the advection
velocity strengthens, this tilting effect is more intense for large ĥ. This structure recalls the
capillary separation eddy in a falling liquid film of finite amplitude in the capillary flow
region (Dietze, Al-Sibai & Kneer 2009). The induced normal velocity field changes sign
at the peak of vorticity along θ , leading to a positive (negative) net vertical flow rate under
the crests (trough), which fosters the growth of the perturbation.

As the wavenumber increases, the vorticity lines bend towards the right near the
substrate. This curvature stabilises the perturbation, enlarging the negative (positive)
normal velocity area under the peak (trough). At the same time, the vorticity tends to
concentrate near the free surface, approaching its maximum value at the interface and
forming a boundary layer region with strong shear stresses. Despite the differences in the
vorticities and normal velocities’ distributions, the stability mechanism at ĥ = 0.7 and
ĥ = 1.7 for the corn oil (Ka = 4) is very similar. As we have seen, the neutral curves and
the dispersion relations (figure 6), the vorticity at the free surface (figure 10) and the order
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ṽ(×10–2)

–0
.0

15

–0
.0

60

0.030

0.030

0.090

0.
01

5

–0.015

–0.045

–0.075
–0.090

–0.060

–0.030

0.060

0.045

0.075

–0
.0

45

–0
.0

75

0

0.25

–4
–3
–2
–1
0
1
2
3
4

0.50

0.75

1.00

ŷ
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Figure 11. Perturbation (a, b, c, g, h and i) vorticity and (d, e, f, j, k and l) normal velocity fields at (a–f )
ĥ = 0.7 and (g–l) ĥ = 1.7 for the corn oil (Ka = 4) with k = 0.5 (a, d, g and j), 0.93 (b, e, h and k) and 1.2 (c, f,
i and l) with the maximum (red square) and minimum (red triangle) of vorticity at the interface with Re = 30.

of magnitude of the vorticity in bulk are almost the same for the two conditions. This
means that for small Ka, the instability growth is mainly driven by the vorticity at the free
surface and in its proximity.

Things change as we move to larger Ka. Figure 12 shows the perturbation (a, b, c, g,
h and i) vorticity and (d, e, f, j, k and l) normal velocity fields at (a–f ) ĥ = 0.7 and (g–l)
ĥ = 1.7 for the liquid zinc (Ka = 11 525) with k equal to (a,d) 0.002, (g, j) 0.003, (b,e)
0.047, (c, f ) 0.051, (h,k) 0.077 and (i,l) 0.15 with the maximum (red square) and minimum
(red triangle) of vorticity at the interface at Re = 30. For ĥ = 0.7, the advection has a very
small effect on the vorticity contour’s curvature. The viscous effects almost completely
dominate the vorticity distribution. As we have seen in figure 10, for ĥ = 0.7, the instability
grows mostly due to the vorticity magnitude rather than the phase shift, which is almost
zero.

For ĥ = 1.7, the vorticity lines tilt in the advection direction as we increase the
wavenumber. Moreover, for k = 0.15, a region of intense vorticity is created near the
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ỹ
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Figure 12. Perturbation (a, b, c, g, h and i) vorticity and (d, e, f, j, k and l) normal velocity fields at (a–f )
ĥ = 0.7 and (g–l) ĥ = 1.7 for the liquid zinc (Ka = 11 525) with k equal to (a,d) 0.002, (g, j) 0.003, (b,e) 0.047,
(c, f ) 0.051, (h,k) 0.077 and (i,l) 0.15 with the maximum (red square) and minimum (red triangle) of vorticity
at the interface at Re = 30.

substrate, destabilising the flow, increasing the net flow rate under the crests, and creating
a boundary layer near the substrate in addition to that near the free surface.

This region is the product of the streamwise pressure gradient induced by the surface
tension. The normal vorticity flux at the substrate, also known as vorticity source strength
(Lighthill 1963), is given by(Morton 1984)

− ∂ŷω = ∂x̂p̃− 1, (5.21)

where the right-hand side represents the rate of vorticity production per unit area and
comprises the perturbation’s streamwise pressure gradient and the gravitational effect.
Positive vorticity is generated when the streamwise pressure gradient outweighs the
gravitational effect.
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For small k, the pressure is constant a long ŷ, with the most-sensitive zone to the surface
tension close to the substrate. As we have shown in Appendix B.2, for high Ka, the
surface tension influences the first-order solution for small k. The first-order streamwise
velocity amplitude, derived by differentiating the stream function (B5) with respect to the
wall-normal coordinate, is given by

ú1 = Dϕ�
1(ŷ) =

iŷ2

12
(ĥ Re ŷ2 − 4ĥ2Reŷ+ 12k2 Ca). (5.22)

Assuming ĥ = O(1), the surface tension term is dominant for small ŷ i.e. near the
substrate.

Moreover, the surface tension also increases the vorticity near the free surface
(figure 12e and f ). The normal vorticity flux at the interface is given by (Dietze et al.
2009; Wu 1995)

− ∂n̂ω̃ =
∂x̂p̃√

1+ (∂x̂h̃)2
, (5.23)

where n̂ is the non-dimensional normal vector to the interface pointing toward the liquid.
As for the substrate flux, it depends on the streamwise pressure gradient. At a peak (trough)
location, the pressure gradient in the streamwise direction is negative (positive), so the film
produces positive (negative) vorticity at the free surface.

The mechanism leading to the formation of this boundary layer zone is as follows: the
pressure imposed by the surface tension pushes fluid down (up) at the crests (troughs),
which, via the continuity equation, produces a positive (negative) streamwise flow near
the substrate. The movement of the substrate increases the shear effects compared with
the falling film case, leading to more intense vorticity regions.

These outcomes highlight the importance of Ka, even for long-wave perturbation (small
k). This means that surface tension is crucial for stabilising short waves and storing
perturbation energy and for the early development of instability and vorticity distribution
in liquid film. Moreover, we reveal two mechanisms of instability involving viscous
stresses associated with the boundary layer at the free surface for the corn oil (Ka = 4)
and the boundary layer at the substrate for the zinc (Ka = 11 525).

5.2.3. Energy balance of the perturbation
We have analysed the early stages of the long-wave instability mechanism and how the
vorticity at the free surface and in bulk fosters the growth of unstable perturbations. Here,
we study the terms forming the kinetic energy balance (4.8a) of an unstable perturbation,
as presented in § 4.2.

The vorticity near the substrate also affects the dissipation terms defined in (4.8f ) and
(4.9). Figure 13 shows the elongational (DISSI1 green dashed-dotted line with circles
and DISSI3 orange dashed line with triangles) and shear (DISSI2 blue dashed line
with squares) stresses contributing to the total dissipative viscous effects (DISSItot red
continuous line) as a function of k at ĥ = 1.7 and Re = 30 for (a) corn oil (Ka = 4)
and (b) liquid zinc (Ka = 11 525). Here DISSI1 is equal to DISSI3 due to the continuity
equation. For small k, DISSI2, which is a function of the strain rate υ, dominates the
dissipative effects, with DISSI1 and DISSI2 slowly increasing with k. For larger k, DISSI2
decreases in magnitude. At Ka = 4 (corn oil), it decreases monotonically with k, whereas
for Ka = 11 525 (zinc), it reaches a minimum and increases again towards the cutoff
wavenumber. This is due to the creation of a boundary layer near the substrate. Near the
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Figure 13. Distribution of the extensional stresses DISSI1 and DISSI3 and shear stress DISSI2, with ĥ = 1.7
and Re = 30 for (a) the corn oil (Ka = 4) and (b) the liquid zinc (Ka = 11 525).

boundary, the strain rate υ is equal to the vorticity, and they are both generated with the
same boundary flux densities (Morton 1984). In addition to the boundary, the bulk is also
a source of strain rate. The equation governing the strain rate is given by

∂t̂υ = −2∂x̂ŷp̃+ 1
Re

(∂x̂x̂υ + ∂ŷŷυ). (5.24)

When the surface tension induces a pressure gradient in the liquid film, the bulk also
generates a strain rate, feeding DISSI2.

5.3. Absolute/convective (AC) threshold
The previous subsections focused on the instability mechanism using long-wave
expansions, vorticity and energy arguments. In this subsection, we further extend our
analysis of unstable perturbations of Pino, Mendez & Scheid (2024), calculating the AC
threshold in the ĥ–Re and cr–Re parameter spaces with the LLD solution

◦
h, the real part

of the wavenumber kr (red empty triangles) and the non-dimensional capillary length
�̂c defined in (2.9) (blue continuous line with empty squares), for the liquids in table 1.
Moreover, we calculate the threshold also in the Ka–Re space for the Derjaguin solution
(ĥ = 1). The region of absolute instability is depicted as a shaded area bounded by the AC
threshold simulated points (continuous black line with black circles).

In the literature on falling films, Brevdo et al. (1999) showed that a flat liquid film over a
vertical substrate is always convectively unstable due to gravitational effects. In the case of
an inclined substrate, the hydrostatic effects compensate for the gravity, leading to regions
of absolute instability (Brun et al. 2015; Scheid et al. 2016). Similarly, the leading actors
in the moving substrate case are gravity, inertia, viscosity and surface tension. For certain
parameters, these compensate for each other, leading to regions of absolute instability.

5.3.1. AC threshold in the Ka–Re space with ĥ = 1
Figure 14 shows the AC threshold for the Derjaguin solution (ĥ = 1) in (a) the Ka–Re
parameter space, with the trend line Ka = 0.15Re1.8 (red dashed line) and in (b) the
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Figure 14. AC threshold (black dotted line) of the Derjaguin flat film solution (ĥ = 1) in (a) the Ka–Re space
with the trend line Ka = 0.15Re1.8 (red dashed line) and in (b) cr–Re space with the associated real wavenumber
kr (red triangles) and non-dimensional capillary wavenumber k�c (continuous blue line with blue squares).

cr–Re space. For Ka < 30, the threshold has a minimum of Ka = 17 at Re = 3 and a
maximum of Ka = 25 at Re = 0.4. For Ka > 30 and Re � 10, it gets to an asymptote,
which goes as Ka ∼ Re1.8 or in terms of capillary number as Ca−1 ∼ Re1.5. These results
show that for fluids with Ka < 17, the Derjaguin solution is always convectively unstable
regardless of the Reynolds number.

The neutral perturbations (ωi = 0) associated with the AC threshold have a negative
phase speed for every Re. These travel faster than the substrate speed (|cr| > |Up|) for
Re � 5.5. The phase speed has a maximum at Re = 0.1 and an asymptote at cr 2.7 for
Re > 300. The real wavenumber kr of the neutral perturbations has a maximum at kr ≈ 0.8
in the range 100 < Re < 200. For Re > 300, kr exceeds �̂c, highlighting how, at these
wavelengths, surface tension starts to dominate over gravity.

5.3.2. AC threshold in the ĥ–Re space for different Ka
Moving to the AC threshold for the liquids in table 1, from figures 15–16 show the
window of absolute instability in (a) the ĥ–Re space bounded by a lower and an upper
threshold (black dots) and in (b) the cr–Re space, with the real wavenumber kr of the
upper (red empty triangular markers) and lower thresholds (red empty circular markers).
We also show a second AC upper threshold (green empty markers) and the LLD solution
◦
h (dash-dotted orange line) for the water–glycerol (Ka = 195) solution and corn oil
(Ka = 4). The absolute region’s extrema and the upper threshold inflection points are
reported in table 3.

For the four liquids, the lower threshold stems from ĥ = 1 as Re→ 0 and develops
mainly in the thin film domain, with a minimum at intermediate Re values. The threshold
extends into the thick film domain, with a plateau at ĥ ≈ 1.4 for water–glycerol (Ka = 195)
and corn oil (Ka = 4). The lower threshold of the corn oil extends solely into the thick film,
with thin film base states (ĥ < 1) always convectively unstable. In the cr–Re space, the
neutral waves associated with the lower threshold travel upward against gravity (cr < 0).
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Figure 15. Upper and lower branches of the absolute instability region (black dots) in (a,c) the ĥ–Re and (b,d)
cr–Re spaces with the associated wavenumber kr for the lower (circles) and upper (triangles) thresholds and
the curve k�c (dashed blue line) for (a,b) liquid zinc (Ka = 11 525) and (c,d) water (Ka = 3400).

The associated wavenumber kr monotonically increases with Re. Here kr overtakes k�c for
the liquid zinc (Ka = 11 525) and water, showing that the surface tension prevails over
gravity for large Re. Due to surface tension effects, which support the entrainment action
against gravity for intermediate Re, the minimum of the lower threshold ĥmin decreases
with Ka, following the relations:

Remin = 1.5496Ka0.4677, ĥmin = −0.0022Remin + 0.9403, (5.25a,b)

where Remin is the Re associated to ĥmin.
The upper thresholds stem from ĥ = 1 and extend into the thick film domain (ĥ > 1)

with a maximum of ĥ ≈ 1.65 at Re ≈ 10 and a plateau at ĥ ≈ 1.5 for Re > 100. In the
cr–Re space, the neutral waves, associated with the upper threshold, travel downwards
(cr > 0) with a maximum at Re ≈ 1 for corn oil (Ka = 4) and Re ≈ 100 for the
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Figure 16. Upper and lower branches of the absolute instability region (black dots) in (a,c) the ĥ–Re space
with the second branch of the upper threshold (green empty triangles) and the LLD solution (orange dash-
dotted line) and in (b,d) the cr–Re space with the associated wavenumber kr for the lower (circles) and upper
(triangles) thresholds and the curve k�c (dashed blue line) for (a,b) water–glycerol (Ka = 195) and (c,d) corn
oil (Ka = 4).

other liquids. As for the lower branch, based on the liquid’s properties, we define the
value of ĥmax and the associated Re (Remax) as a function of Ka via the relations

Remax = 1.9372Ka0.2732, ĥmax = −0.0008Remax + 1.6663. (5.26a,b)

Considering the operational range of the hot-dip galvanising process, using liquid zinc
with Re ∈ [437, 2273] and ĥ < 0.2, the flat liquid film is always convectively unstable.

In addition to the saddle point defining the upper branch, we found other valid saddle
points for water–glycerol (Ka = 195). Figure 17 shows two saddle points (red circle and
red square) (a) in the complex wavenumber space kr–ki with the ωi colour map and
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Minimum Maximum

Ka 4 195 3400 11 525 4 195 3400 11 525

ĥmin — 0.904 0.838 0.824 0 1.661 1.658 1.658
Remin — 18.28 69.08 123.46 0 8.19 17.79 25

Table 3. Maximum and minimum of the absolute instability windows in the ĥ–Re space for different liquids.
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Figure 17. Position of two saddle points (red circle and red square) in (a) the kr–ki space with the ωi colour plot
and in (b) the ωr–ωi space with the temporal branches along the real wavenumber axis with ki = 0 (continuous
coloured lines) for water–glycerol (Ka = 195) with ĥ = 1.48 and Re = 100.

(b) in the complex frequency space ωr–ωi with the spatial branches along the real k axis
with ki = 0 for water–glycerol (Ka = 195) at ĥ = 1.48 and Re = 100. The two saddle
points satisfy the collision criterion since an odd number of temporal branches surmount
them. Based on the second saddle point (red square), which appears around Re ≈ 40,
we traced another AC threshold (green empty triangles in figure 16a). Interestingly, this
threshold is always below the first and approaches the lower branch for larger Re, closing
the window of absolute instability. This is also visible in the cr–Re space (green triangles
in figure 16b), where the phase speed of the two branches converges. Moreover, the
wavenumber increases with Re reaching 0.5 for Re = 3000.

For Re = 3000, we discovered a collection of saddle points near the imaginary
wavenumbers’ axis. Figure 18 shows the position of six saddle points with (a,c) red
markers in the kr–ki space with the ωi colour map and with (b,d) coloured markers in the
ωr–ωi space and the temporal branches along the real wavenumber axis (coloured lines)
with ĥ = 1.41 and Re = 3000 for (a,b) water–glycerol (Ka = 195) and (c,d) Ka = 0. The
first saddle point is used to construct the AC threshold described previously. For plotting
convenience, we do not show the saddle point of the second upper branch because it is
at a much larger real wavenumber. Only the first four of the six saddle points respect the
collision criterion, with the first being the last to have a negative growth rate as we increase
ĥ. Since the AC associated with this point represents the upper bound for the region of
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Figure 18. Multiple saddle points in (a,c) the complex wavenumber space kr–ki (numbered red markers) and
(b,d) in the complex frequency domain ωr–ωi (empty coloured markers) with the temporal branches along
the real wavenumber axis (coloured continuous line) at Re = 3000 and ĥ = 1.41 for (a,b) water–glycerol
(Ka = 195) and (c,d) Ka = 0.

absolute stability, we did not investigate the AC for the other saddle points. The location
of these saddle points is invariant with Ka since their positions are the same for the case
with water–glycerol and Ka = 0. This implies that this part of the AC upper branch is not
affected by the surface tension and is solely given by a balance of gravity and inertia.

The LLD solution
◦
h (defined in (2.10)) is always convectively unstable for zinc

(Ka = 11 525), water (Ka = 3400) and water-glycerol (Ka = 195). For convenience, we
did not report this curve for liquid zinc and water because it was much smaller ĥ compared
with the window of absolute instability. For corn oil (Ka = 4),

◦
h crosses the area of

absolute instability in the range 100 < Re < 500. However, since this intersects the lower
branch at a Re ≈ 300, it is unrealistic to see it in an experiment. In addition, given that
the wavenumber of the lower branch is tiny, this would require a very long domain for
substrate velocities in the range Up ∈ [0.1–1] (m s−1).
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We rescale the upper and lower AC thresholds in the ĥ–Re space with (ĥmax, Remax)
and (ĥmin, Remin), respectively, for liquid zinc (Ka = 11 525), water (Ka = 3400) and
water–glycerol (Ka = 195). Figure 19 shows the scaled (a,b) upper and (c,d) lower
thresholds in (a,c) the ĥ–Re and (c,d) the h̆–Re spaces for the liquid zinc (Ka = 11 525)
(red circle), water (Ka = 3400) (blue squares) and water–glycerol (Ka = 195) (green
triangles), where h̆ is the non-dimensional film thickness based on the viscous length �ν

defined in (2.4). The curve matches perfectly apart from the lower bound in the ĥ–Re
space at small and large Re. Moreover, we found a simple approximation to the lower AC
threshold. Figure 19(d) shows a trend line (black loosely dashed line) for the lower branch,
given by

h̆/h̆min = (Re/Remin)
4/9. (5.27)

This approximation enables the construction of the absolute instability window for any
fluid within the range Ka ∈ [195, 11 525] without the need for further simulations.

6. Conclusion and perspectives

This study investigated the linear stability of a vertical liquid film over a substrate moving
against gravity for four liquids with Ka numbers ranging from 4 to 11 525. We have
identified the region of unstable perturbations by using long-wave asymptotic analysis
and numerical solutions to the Orr–Sommerfeld eigenvalue problem. The instability
mechanism has been described for the unstable solutions via momentum, vorticity and
energy-based arguments, and the threshold between absolute and convective instability
has been traced.

The neutral curves, growth rates and phase speed converge around the same values for
ĥ � 0.7, highlighting a stabilising mechanism where viscous effects balance gravitational
effects with minimal influence from surface tension.

For thin films, the instability is driven by the amplitude of the vorticity with a minimal
phase shift. For thick films, the amplitude decreases and the phase shift increases,
with a peak shifted at larger k. The surface tension strongly affects this mechanism,
simultaneously stabilising and destabilising the film, especially for Ka = 11 525. For long
waves, this curves the vorticity lines near the substrate, reducing the flow under the crests.
For short waves, this enhances vorticity production at the free surface and creates a region
of intense vorticity near the substrate.

Intense Reynolds stresses accompany areas of intense vorticity. At the same time, the
dissipative terms also grow in magnitude, leading to two instability mechanisms for small
and large Ka. For Ka = 11 525, surface tension induces a larger vorticity production at
the free surface and at the wall, resulting in significant Reynolds stresses and intense
dissipative effects. In addition, the contribution to the viscous terms also increases. For
Ka = 4 (corn oil), shear effects mainly influence the viscous term. The shear effects
diminish for
Ka = 11 525 (zinc), and the extensional term becomes more important.

In terms of AC instability threshold, for Ka < 17 the LLD solution is always
convectively unstable for any Re whereas for Re � 10, the threshold follows an asymptote
given by Ka ≈ 0.15 Re1.8. In the ĥ–Re space, a window of absolute instability arises
between the thin and thick film conditions. This window develops solely in the thick film
region for Ka = 4 (corn oil). Moreover, a bifurcation point is also present at Re ≈ 40,
where two solution branches exist, one independent of Ka. Rescaling the lower (upper)
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Figure 19. Scaled absolute instability window for liquid zinc (Ka = 11 525; red circles), water (Ka = 3400;
blue squares) and water-glycerol (Ka = 195; green triangles), with the (a,b) upper and (c,d) lower AC
thresholds rescaled with their values at the maximum and the minimum in (a,c) the ĥ–Re and (b,d) the h́–Re
space with the trend line h̆/h̆min = (Re/Remin)

4/9 (dashed black line).

branch of the absolute instability window with its minimum (maximum), the curves for
Ka > 4 converge in the ĥ–Re space. A relation linking the value of Re at the minimum of
this curve to the lower bound was also provided.

These findings provide crucial insights into the stability of the liquid film in dip-coating
processes. Our analysis helps validate reduced-order models by comparing their predicted
growth rates and neutral curves. By leveraging the numerical and analytical solutions
of the Orr–Sommerfeld problem, we can develop optimal control strategies for external
actuators to stabilise linearly unstable perturbations.

Future investigations could build on our findings by examining whether perturbations
exhibit remnant behaviour, with waves propagating in both directions, as well as exploring
transient growth mechanisms or transverse modulation due to nonlinear effects in three
dimensions. Understanding instability mechanisms without external influences such as
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magnetic fields or airflow lays a solid foundation for more detailed studies incorporating
these factors. Furthermore, direct numerical simulations could assess the accuracy of the
AC threshold and uncover additional unstable saddle points in complex frequency space
driven by nonlinear effects.
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Appendix A. Pseudocode for the search of the AC threshold

The pseudocode (Algorithm 1) reports the main steps of the AC threshold search. First, we
define the liquid properties and the Kapitza number. Then we select a range of Reynolds
numbers to calculate the threshold. Inside the ‘for’ loop, we choose one of these values
and a guess value for ĥ, and we search for a valid saddle point in the complex wavenumber
space. This procedure is done via trial and error. The wavenumbers space is explored
in small windows until we find a saddle point. Then, we validate this point by visually
inspecting two spatial branches from different half-planes pinch at the saddle point. If
the saddle point is validated, we fix the window in the complex wavenumber space and
define the limit for the ĥ optimisation. We define the range of ĥ, such that the growth rate
at the saddle point has a different value at the extremes of the range. Then we pass this
information to a scalar optimisation algorithm that computes precisely the location of the
threshold associated with a saddle point with |ωi| < 106. We store this value and move to
another Re number. The procedure for the Ka–Re space is the same; instead of searching
along ĥ, we search along Ka for a fixed Reynolds number.

Appendix B. Convergence study and code verification

Appendix B.1 reports the convergence study used to define a suitable number of
Chebyshev polynomials in the solution of the Orr–Sommerfeld eigenvalue problem
and the grid spacing of the complex wavenumber space in the AC threshold search.
Appendix B.2 validates the numerical implementation, showing the eigenvalue spectrum
obtained solving the Orr–Sommerfeld problem and the long-wave approximation of the
Orr–Sommerfeld solution.

B.1. Convergence study
The values of the most-unstable eigenvalue are compared by varying the numbers
of Chebyshev polynomials (N = 10, 20, 80 and 100) in the approximation of the
eigenfunction ϕ(ŷ) for the liquid zinc with Re = 20, ĥ = 1.7 and k = 10−2. Table 4
reports the real and imaginary part of the most-unstable eigenvalue and the difference
in magnitude to the N = 100 case, expressed by the Euclidean norm. Ten polynomials
are sufficient to approximate the unstable mode, with minor variation compared with
the more-accurate N = 100 case. The solution with N = 10 guarantees an approximation
error of at least 10−5 for both (a) the real and (b) the imaginary parts, also in terms
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Algorithm 1 AC threshold search in the parameter space ĥ–Re.

1: function SCALAR OPTIMISATION(H , K , Re, Ka)
2: Select random value of ĥr from H
3: Select the most-unstable mode at the border or the wavenumber window K solving

the generalised eigenvalue problem
4: Map the K into the frequency space with Rayleigh quotient iteration
5: Calculate saddle point location with numerical differentiation
6: Collect value of growth rate at the saddle point ωiSP

7: while |ωiSP | > 1× 10−6 do
8: Select value of ĥg from H
9: Map K into frequency space

10: Compute saddle point location with numerical differentiation
11: Check collision criterion
12: Collect value of ωi at the saddle point (ωiSP)
13: end while
14: return ĥg
15: end function
16: Define liquid properties and Ka number
17: Initialise list of Re numbers: a = [Re0, Re1, . . . , ReN]
18: Initialise empty list of ĥ: b
19: for n in (1,N) do
20: Select Reynolds from the list Re = a[n]
21: Define guess value for ĥ = ĥg
22: Search saddle point in wavenumber space
23: Define limit of search window: K = [krmin, kimin, krmax, krmax]
24: Define limit for ĥ line search: H = [ĥmin, ĥmax]
25: Compute ĥ at the threshold ĥn ←SCALAR OPTIMISATION(H , K , Re, Ka)
26: Store b← ĥn
27: end for

of τ coefficients (reported in table 5). To be conservative and limit the linear system’s
size, we use N = 20 for the rest of the computations. In case matrix Â used for the
Rayleigh quotient iteration (3.4) is singular, we use N = 30 polynomials. Concerning
the domain and grid spacing for the saddle point computation, we calculate the growth
rate at the saddle point in kr ∈ [0.05, 0.1] and ki ∈ [−0.02, 0.04], testing three different
meshes: M ×M = {100× 100, 200× 200, 500× 500}. Table 6 reports the value of kr
and ki at the saddle point and the associated ωi. A grid of M ×M = 200× 200 is
sufficient to have an accuracy of the growth rate up to the sixth digit, compared with the
M ×M = 500× 500 case. Therefore, a M ×M = 200× 200 grid is a good compromise
between results accuracy and computational cost. This grid spacing corresponds to a
discretisation step of �kr = 2.5× 10−4 and �ki = 3× 10−4, which are used for the
saddle point search.

B.2. Verification
To verify the numerical implementation, we compare the growth rate and the eigenfunction
obtained with the spectral method (with N = 20) against a long-wave asymptotic
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N ωr ωi Accuracy

10 1.61898344 0.4042714 1.5299× 10−4

20 1.61898354 0.40427141 1.5308× 10−4

80 1.61897484 0.40429792 1.5322× 10−4

100 1.6188345 0.40423644 —

Table 4. Values of ωi and ωr of the most-unstable eigenvalue (largest ωi) for Re = 20, ĥ = 1.7 and k = 10−2

for four different numbers of Chebyshev polynomials N with their relative accuracy expressed as the Euclidean
norm of the eigenvalue difference with respect to the N = 100 case.

N τ1 τ2 τ3 τ4

10 (3− 4i)× 10−6 (−0.5+ i)× 10−6 (0.5− 2i)× 10−7 (−0.3+ i)× 10−8

20 (−1− 2i)× 10−14 (−1− 9i)× 10−15 (0.8− i)× 10−15 (−4− 6i)× 10−15

80 (0.6+ i)× 10−10 (3+ i7)× 10−11 (1− i)× 10−11 (4+ i4)× 10−12

100 (2+ i4)× 10−10 (−5+ i0.1)× 10−7 (0.5+ i2)× 10−7 (0.3+ i1.2)× 10−8

Table 5. Values of the τ coefficients estimating the approximation error for four different numbers of
Chebyshev polynomials N in the case of liquid zinc with Re = 20, ĥ = 1.7 and k = 1× 10−2.

M ×M kr ki ωi

100× 100 0.0778 0.0176 0.00056017
200× 200 0.0776 0.0174 0.0005594
500× 500 0.0778 0.0173 0.0005599

Table 6. Position of the saddle point in the complex wavenumber space (kr–ki) and the associated growth rate
ωi, for three mesh sizes M using liquid film with Re = 30 and ĥ = 0.9.

expansion, obtained approximating the solution (ϕ(ŷ), c) with a power series, up to third
order, of k ∈ R (Yih 1963):

ϕ(ŷ) = ϕ0(ŷ)+ ϕ1(ŷ)k + ϕ2(ŷ)k2 + ϕ3(ŷ)k3 + O(k4), (B1a)

c = c0 + c1k + c2k2 + c3k3 + O(k4), (B1b)

with the long-wave assumption

k� 1 and Re = O(1). (B2a,b)

Injecting (B1) into (2.19) and (2.22) and solving for O(1) leads to the leading-order
solution:

ϕ0(ŷ) = ŷ2, c0 = (ĥ2 − 1). (B3a,b)

In the calculation, we assumed for convenience that the constant associated with ŷ2 is
equal to unity (Kalliadasis et al. 2011, Subsection 3.5.3), which is equivalent to setting
the liquid film’s displacement amplitude to two (η = 2). This solution corresponds to the
displacement of the film thickness associated with a variation of the flow rate with a simply
advected perturbation, which is neither amplified nor damped. In the liquid-film-stability
literature, this is known as the Goldstone mode (Colinet, Legros & Velarde 2001). In our
case, the magnitude and direction of the phase speed depend on ĥ. Waves have a zero phase
speed for ĥ = 1. For ĥ < 1, waves propagate upwards and for ĥ > 1, waves propagate in
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Figure 20. Spectrum of the Orr–Sommerfeld operator obtained using 80 Chebyshev polynomials considering
liquid zinc and k = 10−5 (a) for different values of the liquid-film height ĥ with Re = 50 and (b) for different
values of Re with ĥ = 1.

the direction of the gravitational acceleration, with waves going faster in magnitude than
any other particle inside the base flow (c > 1) for

√
2 < ĥ <

√
3.

The spectral method accurately predicts this leading-order solution. Figure 20 shows
the spectrum of the eigenvalue problem for k = 10−5 (a) for different ĥ with Re = 50 and
(b) for different Re with ĥ = 1. The spectrum presents two discrete eigenvalues; that with
the largest cr corresponds to the Goldstone mode. The spectrum also presents a continuous
branch of eigenvalues in the negative cr plane. As ĥ increases, the discrete eigenvalues tend
to spread on the real axis, whereas the continuous branch approaches the imaginary axis.
As Re decreases, the continuous spectrum spreads along the imaginary axis. While the
left eigenvalue tends to spread along the negative real axis, the Goldstone mode does not
move, in agreement with the asymptotic expansion.

Moving to higher-order terms in the asymptotic expansion, the solution at O(k) is given
by an imaginary streamwise velocity ϕ1(ŷ) and an imaginary phase speed c1:

ϕ1(ŷ) = i
1

60
(ĥ Re ŷ5 − 5ĥ2 Re ŷ4), c1 = i

2
15

ĥ6Re. (B4a,b)

In the derivation, we set the quadratic term ŷ2 to zero such that (B4) represents a pure
higher-order polynomial correction to the leading-order solution ϕ0(ŷ) (Kalliadasis et al.
2011, § 3.5.3). In the phase speed, the sixth-power dependence on ĥ highlights the critical
effect of the liquid-film height even at small k.

We can include the surface tension effect at this order, assuming (Ca−1 × k2) = O(1)

(Pelisson Chimetta et al. 2018). This leads to the corrected solution:

ϕ�
1(ŷ) =

i
60

(ĥ Re ŷ5 − 5ĥ2 Re ŷ4 + 20k2 Ca−1 ŷ3), c�
1 =

i
15

(2ĥ6 Re− 5ĥ3k2 Ca−1).

(B5a,b)
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Figure 21. Comparison of the growth rate ωi between long-wave expansion up to O(k3) (dash-dotted orange
line with circles), up to O(k) with (dashed green line with squares) and without (dashed red line with squares)
surface tension correction and the result obtained with the spectral method (continuous blue line) considering
liquid zinc with Re = 20 for (a) ĥ = 0.35, (b) ĥ = 0.8, (c) ĥ = 1 and (d) ĥ = 1.7.

For the higher-order term solutions, we neglect the hypothesis on the surface tension,
which then appears starting at O(k3) (Benney 1966). The solution at O(k2) reads

ϕ2(ŷ) = ŷ3(ĥ(Re2ŷ(224ĥ5 − 56ĥ3ŷ2 + 32ĥ2ŷ3 − 9ĥŷ4 + ŷ5)+ 6720)+ 3360ŷ)
20160

, (B6a)

c2 = ĥ4

63
(4ĥ6Re2 + 63), (B6b)

1000 A57-37

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

94
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.940


F. Pino, M.A. Mendez and B. Scheid

2.0

Theory O(k3)

Theory O(k)
Theory corr. O(k)
Spectral

1.5

1.0
ϕr

0.5

0

–0.5

–1.0

–1.5

–2.0

–2.5

–3.0

0.5

0

0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0

(×10–2)(b)(a)

ŷ/ĥ ŷ/ĥ

Figure 22. Comparison of the eigenfunction ϕ(ŷ) considering liquid zinc with ĥ = 1.3, Re = 10 and
k = 0.02 between the long-wave expansions up to O(k) (dashed orange line with triangle markers), to O(k)
with surface tension correction (dotted green line with square markers) and to O(k3), against the solution
of the Orr–Sommerfeld problem with N = 20 Chebyshev polynomials (continuous blue line) in terms of the
(a) real and (b) imaginary parts.

and at O(k3) reads

ϕ3(ŷ) = −
(

iŷ3(−17160 Re ŷ5(ĥ6 Re2 − 12)− 27456ĥ Re ŷ4(8ĥ6 Re2 + 45)+ 51480ĥ5 Re3 ŷ6)

1037836800

+ +iŷ3(5765760(13ĥ5 Re− 60Ca−1)− 26884ĥ4 Re3 ŷ7 + 7904ĥ3 Re3 ŷ8)

1037836800

+ +iŷ3(17297280ĥ3 Re ŷ2 − 1365ĥ2 Re3 ŷ9 − 1372800ĥ4 Re ŷ(4ĥ6 Re2 + 63))

1037836800

+ iŷ3(192192ĥ2 Re ŷ3(4ĥ6 Re2 + 15)+ 105ĥ Re3 ŷ10)

1037836800

)
, (B7a)

c3 = −75872iĥ14 Re3

2027025
− 157

224
iĥ8Re− 1

3
iĥ3Ca−1. (B7b)

Figure 21 shows a comparison of the growth rates (ωi = kci) of the most-unstable mode
for the expansion up to O(k3) (orange dash-dotted line with circles), up to O(k) with
(green dashed line with circles) and without (red dashed line with circles) surface tension
correction and that obtained with the spectral method (continuous blue line) at Re = 20
with liquid zinc’s properties for (a) ĥ = 0.35, (b) ĥ = 0.8, (c) ĥ = 1 and (d) ĥ = 1.7. The
numerical results agree with the three expansions for k→ 0.

For ĥ = 0.35 the solutions at O(k3), at O(k) with correction and the spectral one match
for all k with the solution at O(k) diverging around k = 0.75× 10−2. As ĥ increases, the
curves start to disagree for larger k. At ĥ = 1, the solution at O(k3) predicts very well the
cutoff wavenumber (where ωi = 0), despite overpredicting the location and the magnitude
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of the growth rate peak. At ĥ = 1.7, the asymptotic solutions completely disagree with
the Orr–Sommerfeld solution as the range of unstable wavenumbers enlarges and the
long-wave assumption loses validity. These results verify the numerical implementation
and highlight the long-wave nature of the instability for ĥ→ 0.

The agreement between theory and numerics is also evident in terms of eigenfunctions.
Figure 22 shows the comparison of the eigenfunction associated with the most-unstable
mode at ĥ = 1.3, k = 0.02 and Re = 20 for both (a) the real and (b) the imaginary parts,
scaled with the normalisation constraint:

∫ ĥ

0
ϕ(ŷ) dŷ = 1. (B8)

Both the real and the imaginary parts agree perfectly for all the expansions and the
spectral results, apart from the solution at O(k), which overpredicts the peak in the
imaginary part and a small deviation for ŷ→ ĥ.

In conclusion, given the agreement of both the growth rates and the eigenfunction, we
consider the numerical implementation verified.
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