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Due to increased longevity, women can expect to live more than one-third of their lives in a
post-menopausal state, which is characterised by low circulating levels of oestrogen and pro-
gesterone. The aim of this review is to provide insights into current knowledge of the effect
of female hormones (or lack of female hormones) on skeletal muscle protein turnover at rest
and in response to exercise. This review is primarily based on data from human trials. Many
elderly post-menopausal women experience physical disabilities and loss of independence
related to sarcopenia, which reduces life quality and is associated with substantial financial
costs. Resistance training and dietary optimisation can counteract or at least decelerate the
degenerative ageing process, but lack of oestrogen in post-menopausal women may reduce
their sensitivity to these anabolic stimuli and accelerate muscle loss. Tendons and ligaments
are also affected by sex hormones, but the effect seems to differ between endogenous and
exogenous female hormones. Furthermore, the effect seems to depend on the age, and as
a result influence the biomechanical properties of the ligaments and tendons differentially.
Based on the present knowledge oestrogen seems to play a significant role with regard to
skeletal muscle protein turnover. Therefore, oestrogen/hormonal replacement therapy may
counteract the degenerative changes in skeletal muscle. Nevertheless, there is a need for
greater insight into the direct and indirect mechanistic effects of female hormones before
any evidence-based recommendations regarding type, dose, duration and timing of hormone
replacement therapy can be provided.

Oestrogen: Hormone replacement therapy: Collagen: Muscle strength: Sarcopenia

Ageing is associated with a net loss of muscle mass, also in
master athletes(1–3). Since muscle mass is a significant
determining factor for muscle strength and function, pres-
ervation of muscle mass during ageing is essential for pre-
serving individuals’ ability to live independent lives.
Muscle mass and strength are lower in women than in
men(4–6). Furthermore, women experience accelerated
reduction in muscle mass, strength and function when
they enter menopause(7–9). The age-dependent accumula-
tion of non-contractile tissue (fat, connective tissue) within
skeletal muscle tissue increases after menopause(10,11) and
this reduces muscle quality (strength relative to muscle
cross-sectional area)(8,12,13). Therefore, both the muscle

quality and skeletal muscle mass in women are negatively
affected by the transition to the post-menopausal state.
Since life expectancy is also higher in women than in
men, women are particularly vulnerable to age-related
frailty and morbidity. Therefore, it is important to evaluate
the effectiveness of preventive strategies to postpone loss of
muscle function in women. This will be all the more
important in coming years due to the increasing numbers
of post-menopausal women in developed countries who
will challenge healthcare systems if preventive strategies
to reduce physical disabilities are not implemented.

Loss of muscle mass takes place when the synthesis
rate of structural contractile muscle proteins is lower

Corresponding author: M. Hansen, email mhan@ph.au.dk

Abbreviations: ACL, anterior cruciate ligament; ER, oestrogen receptors; ERT, oestrogen replacement therapy; HRT, hormone replacement therapy;
IGF-I, insulin-like growth factor-I; OC, oral contraceptive.

Proceedings of the Nutrition Society (2018), 77, 32–41 doi:10.1017/S0029665117001951
© The Author 2017 First published online 29 August 2017

P
ro
ce
ed
in
gs

o
f
th
e
N
u
tr
it
io
n
So

ci
et
y

https://doi.org/10.1017/S0029665117001951 Published online by Cambridge University Press

mailto:mhan@ph.au.dk
http://crossmark.crossref.org/dialog/?doi=10.1017/S0029665117001951&domain=pdf
https://doi.org/10.1017/S0029665117001951


than the breakdown rate. Furthermore, the turnover of
structural muscle, tendon and ligament proteins may
influence the composition and function of the tissue(14).
The aim of the present paper is to review the literature
regarding the effect of (lack of) oestrogen/female hor-
mones on muscle and tendon collagen protein turnover
and mass. The present review will refer primarily to
data from human trials. The direct effect of oestrogen
on muscle strength and power, independent of the effect
of muscle mass, is beyond the scope of the present review,
but has been reviewed by others (for review, see(15,16)).

Female hormone levels across the lifespan

Oestrogens are steroid hormones, which mediate their
action by binding to a number of tissue receptors, includ-
ing specific nuclear oestrogen receptors (ER; α and β) and
plasma membrane-associated ER(17). ER α and β func-
tion as transcription factors once bound to their ligand.
ER α and β are expressed and localised within skeletal
muscle tissue and in tendons and ligaments(18–23), sug-
gesting a direct effect of oestrogen.

The level of circulating oestrogen (17-β estradiol), the
primary female sex hormone, increases during puberty
and is about four times higher in women than men dur-
ing adulthood until menopause. Oestrogen and the other
female hormones (progesterone, luteinising hormone,
follicle-stimulating hormone) fluctuate during each men-
strual cycle. The concentration of circulating oestrogen is
relatively low during the early follicular phase (menses
phase), increasing progressively in the late part of the fol-
licular phase until ovulation. After this, the level
decreases, but it is still maintained at a high level during
the luteal phase until menses. The concentration of pro-
gesterone is low during the follicular phase, but markedly
increased during the luteal phase. During pregnancy,
both oestrogen and progesterone are markedly
enhanced(24). The level of oestrogen at the end of preg-
nancy is about 100 times or more higher than the level
experienced during the late follicular phase. After deliv-
ery, the hormone levels drop again within a few days.
Commonly, women in their mid-40s experience the meno-
pausal transition where the level of female hormones and
menstrual pattern become irregular. Menopause is defined
by the permanent cessation of menstrual period and is
experienced by women in their late 40s or early 50s.
After menopause, oestrogen is reduced to a negligible
level in most women. The implication of the latter is
that women spend more than one-third of their life with
low levels of oestrogen and progesterone.

Sex differences in muscle mass and muscle protein
turnover across the lifespan

The sex difference in muscle mass becomes marked dur-
ing the teenage years when boys experience accelerated
muscle growth(25,26). From young adulthood until the
menopausal transition, skeletal muscle mass can at an
individual level be changed positively or negatively by

training and immobilisation/disuse, but otherwise the
sex difference in muscle mass is relatively stable until
the age of about 50 years.

The observation of no major sex-related changes in
relative muscle mass in young subjects is supported by
the majority of published studies, which in young sub-
jects report no sex difference in muscle protein synthesis
in the post-absorptive state(27–31) in response to feed-
ing(30,31) and strenuous exercise(31,32). Similarly, the lim-
ited available data for measurements of muscle protein
breakdown have shown no difference between young
men and women(27,31) or muscle loss during disuse(33).
These observations may seem counterintuitive based on
the anabolic effect of the male steroid testosterone(34)

and women have a testosterone level that is 10–15-fold
lower than in men(31) and do not experience an increase
in circulating testosterone post-resistance exercise as has
been seen in men(31,35). Therefore, it can be hypothesised
that other stimulating factors (e.g. oestrogen) in young
women may compensate for the lower testosterone level
since testosterone evidently supports muscle growth in
response to resistance training(34). Nevertheless, not all
data from training studies suggest the response to regular
strength training in muscle mass is equal between young
men and women(36). A greater increase in muscle volume
was observed in eleven young men than in eleven young
women after 9 weeks of knee extension exercises, three
times weekly (also after adjustment for baseline muscle
volume)(36). Nevertheless, the latter findings are in con-
flict with several other strength training studies, which
have reported no sex difference in muscle growth and
strength gain(37–39). Still, the number of studies, which
have directly compared women and men in relation to
the effect of strength training on muscle growth, is lim-
ited. Furthermore, the majority of studies include less
than ten participants within each training group, which
enhance the risk of statistical type II error.

During the menopausal transition, muscle loss is accel-
erated in women(40), after which the rate of muscle loss
slows down(25,41). The accelerated loss of muscle mass
during the post-menopausal transition occurs even
though a higher post-absorptive muscle protein synthesis
rate is observed in post-menopausal women than in pre-
menopausal women and age-matched men(42,43). These
results suggest that the net negative muscle protein bal-
ance in post-menopausal women is caused by an up-
regulation of skeletal muscle protein breakdown rate,
although this hypothesis has not directly been tested in
human subjects. However, catabolic genes (e.g. MuRF1
and FOXO3 mRNA expression) are up-regulated in age-
ing muscle in women(43,44), which may help to explain the
counterintuitive observation of loss of muscle mass even
though the post-absorptive muscle protein synthesis rate
is enhanced in post-menopausal women.

A reduced responsiveness to anabolic stimuli such as
exercise and feeding when female hormone levels decline
at menopause may be an alternative explanation for the
net loss of muscle mass in elderly women. In line with
this notion, post-menopausal women experience a dimin-
ished anabolic response to feeding(45,46) and resistance
exercise(46,47) compared with young subjects and
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age-matched men. Also, the accumulated response to
resistance exercise training (three times per week in 26
weeks) has been reported to be lower in elderly women
than in elderly men(48). In agreement, after a 10-week
unilateral knee-extension strength-training programme,
including fifty-four men and eighty-two post-menopausal
women (50–85 years) a significant greater training-
induced increase in muscle volume was observed in
men than women, which corresponded to 9·1 % in men
and 7·5 % in women(49). In contrast, training studies
including women without regard to use of hormone
replacement therapy (HRT) and with less than ten sub-
jects in each group have not been able to observe signifi-
cant differences between old women and men in response
to resistance training(50), which may be related to lack of
statistical power.

Influence of female hormones on skeletal muscle

In comparative studies, including women and men, it is
not possible to test the isolated effect of the individual
sex hormones on skeletal muscle. Furthermore, when
testing young women, several hormones fluctuate during
the menstrual cycle and inter-individual levels of female
hormones exhibit great variation. This may be due to
genetic factors as well as nutritional status(51). In a cross-
sectional trial, we did not observe any differences in the
myofibrillar protein synthesis rate in eight young females
tested 2–3 d after the onset of menses (the follicular
phase), and seven females tested in the luteal phase 4 d
after a positive ovulation test(32). In the luteal phase com-
pared with the early follicular phase, circulating oestro-
gen was on average twice as high and the progesterone
markedly higher, but there was great variation and over-
lap in oestrogen between the phases (Fig. 1). Therefore,
to elucidate a clear effect of oestrogen on muscle protein
synthesis rate independent of progesterone, it would have
been more appropriate to measure the synthesis rate in
the early follicular phase v. late the late follicular phase
in a cross-over trial. Another approach could be to
administer estradiol and progesterone separately to post-
menopausal women who have an existing low circulation

level of oestrogen and progesterone. Accordingly, Smith
et al.(43) in a parallel-randomised controlled trial
enhanced circulating estradiol to a level that corre-
sponded to the mid-to-late-follicular phase by adminis-
tering transdermal oestrogen replacement therapy
(ERT) or administrated progesterone in a dose that
enhanced circulating progesterone to a level correspond-
ing to the mid-luteal in young girls. The administration
of progesterone was associated with a 50 % increase in
muscle protein synthesis rate, whereas ERT did not affect
muscle protein synthesis rate in the post-absorptive state.
This suggests that oestrogen may not have any marked
effect on the post-absorptive muscle protein synthesis
rate(43). Nonetheless, oestrogen may reduce muscle pro-
tein breakdown and/or enhance sensitivity to anabolic
stimuli. In support of the former, HRT has been reported
to reduce muscle loss or increase muscle mass and strength
in post-menopausal women in several, but not all(52–54),
randomised controlled trials(11,55–57). Furthermore, posi-
tive associations have been observed between serum estra-
diol and muscle mass and strength in post-menopausal
women(55). In line with this, a twin study, including thir-
teen pairs of monozygotic post-menopausal twin pairs
showed that use of HRT was associated with greater mus-
cle power and higher walking speed than no use of HRT
after a 1-year intervention(58). In addition, in a randomised
controlled trial lean tissue cross-sectional area was
increased significantly (6·3 %) after 12-month administra-
tion of HRT compared with the control group (0·7 %),
which underline that HRT influence muscle protein bal-
ance positively(57). In further support of an oestrogen
mediated reduction in skeletal muscle breakdown, HRT
has been reported to counteract post-menopausal-related
enhancement of protein degradation(59). In a randomised
double-blinded trial, reduction in lean body mass along
with transcriptional changes in the ubiquitine–proteosome
system was observed in women in the early post-
menopausal years after a 1-year intervention(59). In
contrast, amongst the women receiving HRT during the
intervention period, lean body mass was increased and
no transcriptional changes in the ubiquitine–proteosome
system were observed(59). Therefore, there are several
findings, which suggest that ERT/HRT may indirectly

Fig. 1. Plasma estradiol (a) and resting and post-exercise myofibrillar fractional synthesis rates (FSR) (b) in
the follicular phase (FP) and luteal phase (LP) of the menstrual cycle. Straight line in (a) represents the
average estradiol level. *P < 0·05. Significantly different from contralateral resting leg within each menstrual
phase. Copyright© 2006 The American Physiological Society. Used with permission(32).
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influence skeletal muscle protein turnover and counteract
the age-related loss of muscle mass and strength. In add-
ition, it should be noted that oestrogen is an antioxidant
and sarcolemma membrane stabiliser, which may posi-
tively influence the contractile properties of skeletal
muscle and protect against muscular damage. Moreover,
oestrogen lowers the age-related increase of pro-inflamma-
tory cytokines(60) that otherwise may contribute to muscle
loss by increasing muscle breakdown(61). Accumulation of
fat in the skeletal muscle may also be counteracted by
ERT/HRT(11), thus reducing the impairment of muscle
quality observed in the elderly(12).

A reduced sensitivity to anabolic stimuli in post-
menopausal women may provide an alternative explan-
ation for the accelerated loss of muscle mass in the early
menopause. Several observations support that oestrogen
has an important positive role in regards to increasing sen-
sitivity to training, reducing exercise-induced muscle dam-
age and improving recovery (discussed later). Part of this
positive effect may be explained by the idea that oestrogen
seems to be important for satellite cell expansion, differen-
tiation, and self-renewal and thereby muscle function(62,63)

(for review see(64)). Therefore, the reduction in oestrogen
at menopause may compromise satellite cell function
and have negative impact on the training response and
increase the risk of sarcopenia(64). In addition, in a cross-
sectional study that included oral ERT users we observed
an increase in myofibrillar protein synthesis rate in
response to resistance exercise(47). In contrast, age-
matched post-menopausal controls with estradiol concen-
tration under the analytic threshold showed no change in
myofibrillar protein synthesis rate when measured 24 h
post-exercise, even though the women had performed a
very strenuous bout of unilateral knee extensor exercise
(ten sets of ten repetitions, corresponding to ten to twelve
repetitions maximum (10–12 RM))(47). Moreover, Taaffe
et al.(11) observed a synergistic effect when combining
training with HRT (oestrogen and synthetic progesterone)
on leg muscle cross-sectional area compared with no HRT
or training alone. Furthermore, transcriptional data from
analysis of muscle samples from post-menopausal women
support positive synergetic effects of training and use of
HRT on skeletal muscle mass(65,66), and animal data
show that oestrogen is important for regaining muscle
mass in ovariectomised rats after muscle loss(67–69).

Oestrogen may also influence the response to training
in young girls, but probably not when combined with a
high circulating level of progesterone, as in the luteal
phase. No difference in the myofibrillar protein synthesis
rate in response to an acute bout of strenuous exercise is
observed between girls in the early follicular phase where
circulating oestrogen and progesterone are low compared
with the mid-luteal phase where both hormones are ele-
vated(32) (Fig. 1). Also, animal data indicate that the
individual effect of oestrogen and progesterone on net
muscle protein balance may counteract each other
when present simultaneously (as in the luteal phase)
(see review(70)). In the follicular phase, especially in the
late part of the follicular phase, only oestrogen is
enhanced. This may hypothetically induce an enhanced
possibility for muscle growth if resistance training is

performed in this phase of the menstrual cycle. In sup-
port, Wikström-Frisén et al.(71) observed greater
improvements in muscle strength and muscle mass in
response to 4 months resistance training in girls who
had undertaken intensified resistance exercise training
(five times per week) during the follicular phase com-
pared with girls who undertook intensified resistance
exercise training in the luteal phase. This observation is
supported by others(72,73), but not all(74). In general, the
number of studies within the area is still limited. In add-
ition, in the most well-controlled study by
Wikström-Frisén et al.(71) with fifty-nine participants
who completed the training protocol, the groups consisted
of a mix of non-users and users of oral contraceptives (OC),
which makes it difficult to separate between the effects of
endogenous and synthetic female hormones. Nevertheless,
it should be noted that the OC users who experienced an
increase in muscle growth and strength when training in
the first 2 weeks of the pill-circle primarily used triphasic
OC with a low content of synthetic progesterone in the
first part of the pill period.

In young women, a lower myofibrillar protein synthe-
sis rate was observed in women using OC containing a
constant amount of ethinyl estradiol and gestogen
(third generation OC) compared with non-users of
OC(75). In contrast, myofibrillar protein synthesis rate
in the non-users of OC and users of second generation
OC containing ethinyl estradiol and norgestimate was
comparable(75). These observations indicate that the syn-
thetic type of progesterone (gestagen) have differential
(anti-) androgen effects on myofibrillar protein synthesis
rate when combined with ethinyl estradiol. However,
mostly the type of OC is not reported in the literature
or type of OC has not been taken into account in the
data analysis. The present data underline the importance
of clarifying the specific effect of the different types of
OC on skeletal muscle in future studies.

In summary, oestrogen may be important for muscle
maintenance and muscle growth in response to training
in young and post-menopausal women regardless of no
potential direct effect of oestrogen on muscle protein syn-
thesis at rest in the post-absorptive state(43). However,
future human trials need to clarify the individual female
hormones’ effect on net muscle protein balance alone
and in combination under differential circumstances
(e.g. in the post-absorptive state, in response to protein
feeding and/or in response to exercise/training).

Influence of female hormones on tendon and ligaments

Any influence of female hormones on the biomechanical
properties of tendon and ligaments will have impact
on locomotion(76). Therefore, it is interesting to note
that sex differences are observed in connective tissue.
However, the effect of individual female hormones
alone and combined on skeletal muscle connective tissue
is a puzzle, which may be related to differential direct
and indirect effects of endogenous and exogenous female
hormones(77,78).
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Tendon structural quality seems to be lower in women
than in men(79–82). Isolated female tendon fascicles rup-
ture at a lower load compared with fascicles from
men(79). Also, a lower tendon dry mass per mg tendon
wet weight(80) and a higher expression of type III colla-
gen mRNA(81) in women compared with men has been
reported. In line with these observations, tendon stiffness
during maximal loading is lower in women, indicating
less resistance to deformation during loading(82).
Reduced tendon and ligament stiffness may explain
why muscle damage after eccentric non-weight-bearing
muscle contractions is lower in women than in men
because of reduced tensile loading of the myofilaments
during muscular contractions(83,84). Conversely, reduced
stiffness may also help to account for the observed 2–8
times higher risk of sustaining an anterior cruciate liga-
ment (ACL) rupture in active women than in comparably
active men(85,86). The idea that oestrogen may negatively
impact tendon and ligament resistance against rupture
during loading is further supported by the findings that
load to failure is significantly lower in ACL from rabbits
treated with a high dose of oestrogen than in controls(87).
Nevertheless, in regard to tendinopathy, ERT/HRT may
be beneficial for post-menopausal women in preventing
tendinopathy, especially in active elderly women(88).

Sex may also influence the ability of tendons and liga-
ments to respond to training. Collagen is the most abun-
dant structural protein in tendons and ligaments, and the
tendon collagen synthesis rate is markedly lower in
women than in men both at rest and in response to
acute exercise(89). Furthermore, in a cross-sectional
trial, we included young untrained controls and experi-
enced female and male runners who had been running
at least 40 km/week for the previous 5 years (men average
58 km/week and women average 54 km/week)(90). The
results showed that the weight-normalised cross-sectional
area of the patellar tendon and Achilles tendon in trained
and untrained women were comparable(90). In contrast,
the cross-sectional area of the tendons in trained men
were greater than untrained and trained women, but
also greater than untrained men(79,90). These data indi-
cate that the hypertrophic effect of regular exercise on
the patellar and Achilles tendons is lower in young
trained women than in similarly trained men(79,90)

(Fig. 2). Based on these findings, we hypothesised that
oestrogen has an inhibiting effect on tendon and liga-
ment collagen synthesis, which was supported by
some(91), but not all animal findings(92) dependent on spe-
cies. Nevertheless, we found that elderly women using
ERT had a higher tendon collagen synthesis than age-
matched post-menopausal women, and that the estradiol
level correlated positively with the tendon collagen syn-
thesis rate (Fig. 3)(14). Therefore, the higher tendon colla-
gen synthesis in men compared to women may be caused
by a dominating effect of another factor (e.g. testoster-
one). But on comparing women to women the higher ten-
don collagen synthesis rate in ERT users than in
non-users was associated with a relatively lower tendon
stiffness(14). Similarly, we observed in a group of female
handball players a negative correlation between serum
estradiol and tendon stiffness (adapted from(93)).

Furthermore, a significantly higher knee joint laxity
was observed in women in their third trimester (week
30) compared with 5–7 weeks postpartum. Knee joint
laxity was reduced in thirty-eight of forty women post-
partum(24). The latter observation underlines the fact
that biomechanical properties can change over a rela-
tively short time. In a well-controlled trial, Lee et al.(94)

collected blood samples seven times during a menstrual
cycle and measured anterior tibia displacement simultan-
eously. In the late follicular phase, when the level of
serum estradiol peaks and progesterone is low, they
observed significantly greater knee laxity compared
with other time points during the menstrual cycle. This
observation is confirmed by others(95–97) and is connected
with a greater risk of sustaining an ACL rupture in the
late follicular phase of the menstrual cycle(98,99). It
seems surprising that tissue structure is able to change
within days. However, results from engineered ligaments
have shown that short-term exposure to oestrogen (48 h)
can inhibit the activity of the crosslinking enzyme lysyl
oxidase(100). As a result, the tissue structure was destabi-
lised, the relative stiffness was lowered and the ultimate
stress before rupture was reduced(100). Notably, this
finding comes from a study that involved engineered liga-
ments, so further research is needed to confirm whether
similar inhibition of the cross-linking enzyme in tendon
and ligaments takes place in human subjects in vivo.

Administration of OC to young women seems to have
opposite effect of tendon and ligaments than HRT to
postmenopausal women(78). In OC users, tendon collagen
synthesis rate is lower than in age-matched controls(101).
This is in contrast to the higher tendon collagen synthesis
rate observed in elderly women using ERT compared with
age-matched controls(14). Furthermore, use of OC is asso-
ciated with lower ACL elasticity in several studies(102,103),
but not all(104). This is also contrary to the lower relative
tendon stiffness in elderly ERT users(14). The influence
of OC on tendon and ligaments seem to influence injury
risk. A case–control study including 4497 operatively trea-
ted patients after ACL rupture and 8858 age-matched

Fig. 2. The MRI determined patellar tendon cross-sectional area
(CSA) for trained and untrained men and women normalised to
body mass. Trained men had a greater CSA than untrained men
(P<0·01); however, note that trained women had a similar CSA
compared with untrained women(79,90). Copyright 2007 John Wiley
and Sons. Used with permission.
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controls with no ACL injury concluded that the relative
risk for sustaining an ACL injury was lower in
OC-users(105). The latter may be explained by OC users
having a lower endogenous level of estradiol and they
do not experience a peak in estradiol during the pill-period
as do non-users of OC. Still, it has not been clarified
whether synthetic estradiol (ethinyl estradiol) or the syn-
thetic gestagens in OC influence tendon and ligament col-
lagen turnover directly or indirectly. It is noteworthy that,
use of OC is associated with markedly lower insulin-like
growth factor-I (IGF-I) levels in young female OC
users(101). IGF-I enhances tendon collagen synthesis(106).
Therefore, the lower IGF-I level in OC-user may be a
major explanatory factor in regards to the lower tendon
collagen synthesis rate(101). The IGF-I level is already rela-
tive low in elderly women(107). Therefore, the further small
reduction in IGF-I induced by oral ERT in elderly women
may have negligible influence on tendon collagen synthesis
rate, whereas the stimulating influence of an enhanced
estradiol level on tendon collagen synthesis may overrule
the consequence of a lowered IGF-I level in elderly
ERT-users(78).

It is noteworthy that the presented findings have
focused on the effect of female hormones on ACL,
Achilles or patellar tendon. It is too simple to assume
that female hormones influence the structure and bio-
mechanical properties equally in all tendons and liga-
ments, independent of anatomical position and
function (e.g. stabilisation or elastic properties).
Differential distribution of ER in different tissues may,
for example, induce differential effects on collagen pro-
tein turnover(108). Furthermore, there are many types of
OC and HRT with either estradiol or ethinyl-estradiol,
and different types of synthetic progesterone with differ-
ential androgenic properties. Nevertheless, the latter has
not be elucidated in regards to the effects on tendon and
ligament collagen synthesis rate, and only sparely in
regards to the effect on myofibrillar protein synthesis
rate(75).

In conclusion, sex differences in muscle protein turn-
over in young subjects seem to be negligible. Still,

oestrogen may play an important role for obtaining a
positive anabolic effect of training. However, oestrogen
also reduces tendon and ligament stiffness, which for
the young female athletes probably enhance the risk for
ACL rupture. In postmenopausal, administration of
ERT/HRT has beneficial effects on skeletal muscle pro-
tein maintenance and may improve sensitivity to ana-
bolic stimuli and thereby enhance muscle mass and
strength. Furthermore, ERT/HRT may be beneficial
for post-menopausal women in preventing tendinopathy
and reduce tendon stiffness. Nevertheless, individual’s
risk profile should be considered before initiating HRT/
ERT and it must be underlined that no evidence-based
optimal dose, type of ERT/HRT, duration or timing of
initiation of treatment is currently outlined. Therefore,
currently, post-menopausal women should be recom-
mended to follow evidence-based guidelines for diet
and regular resistance training (with or without use of
HRT/ERT), since these are well-documented strategies
for counteracting age-related loss of muscle mass and
function, but also other age-related degenerative changes
in men and women(109–111). Furthermore, physically
active post-menopausal women report fewer symptoms
related to menopause than sedentary women(112).
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