
Can. J. Math.Vol. 46(1), 1994 pp. 184-199 

NORM CONVERGENCE IN ERGODIC THEORY 
AND THE BEHAVIOR OF FOURIER TRANSFORMS 

JOSEPH ROSENBLATT 

ABSTRACT. The L^-norm convergence of weighted averages / i , / in ergodic theory 
is equivalent to the pointwise convergence of the Fourier transforms £Ln. If h(l) = 
linv^oo fln(l), then the behavior of h determines when the L^-norm limit of /.iff is 
If dm. The nature of such limit functions h is the focus of this article. 

Let (X, /?, ni) be a probability space and let r be an invertible measure-preserving trans­
formation of (X, (3, m). Let (pn) be a sequence of probability measures on Z and define 
the operators p„f by 

Mi/W = E VnW(T*x) 
kez 

for all x G X, and/:X —-> C. This gives well-defined linear operators from LP(X) to 
LP(X), 1 < p < oo; moreover, ||/xn||p = 1. The questions treated here are 1) when does 
(Pnf) converge in L^-norm for/ G Lp(X), 1 < p < oo, and 2) what is the limit function 
/* = lim^^oo p„f, when it exists? 

The first very well-known principle is the following one which characterizes gen­
eral norm convergence in terms of the behavior of the Fourier transforms. The Fourier 
transform of the measure pn is given by 

Ml) = E »n(ktfk, fovieT={z: \z\ = 1}. 
kez 

The proof of Theorem 1 uses only a small part of the harmonic analysis which is inherent 
in the usual arguments for the Spectral Theorem on normal operators. 

THEOREM 1. For (pnf) to converge in Lp-norm for all f G LP(X, /3, m), 1 < p < oo, 
and all (X, /3, ra, r), it is necessary and sufficient that lim„_,oo fin{l) exists for all 7 G T. 

To prove this theorem, we first need a lemma. 

LEMMA 2. The sequence (pnf) converges in Lp-norm for all f G Lp(X,f3,m), 1 < 
p < oo, if and only if(prf) converges in Lj-norm for all f G L2(X,(3,m). 

PROOF. It suffices to prove only the non-trivial direction of implication above. Since 
\\l^n\\p < 1 for all /?, 1 < p < oo, to prove L^-norm convergence, it suffices to prove Lp-
norm convergence on the dense subspace /^(X, /3, m) ofLp(X, /3, ni). Let/ G L^X, (5, m), 
and assume (jinf) converges to/* in L2-norm. Some subsequence (pn„f) converges a.e. to 
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NORM CONVERGENCE IN ERGODIC THEORY 185 

/*. Since ||/i,/||oo < 11/1 loo» this shows/* G Loo(X,/?, m). Let (pnJ) be any subsequence. 
There is a further subsequence (/xWm / ) converging a.e. to/*. Then by Lebesgue's bounded 
convergence theorem, (pHm / ) converges in Z^-norm to/* for any /?, 1 < p < oo. Hence, 
since the L^-norm topology is a metric topology, the full sequence (prf) converges in 
Lp-norm to/*. • 

PROOF OF THEOREM 1. Assume (fin) converges pointwise on T. Let/ G Z/?(^ /?, m) 
and consider the positive definite function p on Z given by pf(k) = ( /or*, /) with (, ) 
being the inner-product in L,2(X, (5, m). 

By the Herglotz Theorem, there is a positive regular Borel measure Vf on T with 
#/(&) = pf(k) for all ^GZ. But then for all finite measures \i on Z, 

ll«/1l!=(M/\Mfl 

kez fez 

= £ £ v(k)WWf(k - 0 
kez (ez 

= / r l /2(7) |2^ /(7). 

Hence, for m, n > 1, 

l |p»/ -^l l2 = /rl/îm(7)-/J,,(7)|2^//(7). 

But (p,n) is a uniformly bounded sequence of continuous functions on T which converges 
pointwise on T. Hence, by Lebesgue's bounded convergence theorem (fin) converges in 
L2(T, v). Thus, (finf) is L2-norm Cauchy and must converge in L2-norm. 

Conversely, let (X,/3,m,T) be the dynamical system with X — T and m — À7, the 
usual Lebesgue measure on T. Let r(7) = 7Ô7 for some 7o G T. Then if/ G L2(T, XT) is 
given by/(7) = 7 for 7 G T, we see that pnf(l) = /2«(7o)/(7). Thus, the convergence of 
(/i^/) in L2-norm implies the convergence of (finOo))- Since we can vary the choice of 
7o, the Fourier transforms (fin) converge pointwise on T. m 

REMARK 3. a) Because of the consequence, if (pn) is as in Theorem 1, we will say 
it is universally L2-norm good. 

b) See Feller [5], XlXb, for an elementary proof of the Herglotz Theorem. 
c) The von Neumann Mean Ergodic Theorem for a unitary operator U on Li(X) says 

that for al l / G Li(X), lim^—00 ^ £^=1 Ukf exists in L2-norm and is the value Pyf of the 
normal projection Pv of Li(X) on the (7-invariant functions Iy. The intrinsic proof that 
is usually given for this is to observe that L2W — lu © cl|| ||, s P a n { / — Uf '• f £ L,2(X)} 
where /[/ = {/ G L2TO : Uf — / } . Then the behavior of the averages on the whole 
space is obvious. But also the previous argument can be used, only one takes U in place 
°f/ ^ Z ° T> anc* e a c n M// = £ E^Li Ukf. Since each function & H^ (Ukf,f) is positive 
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definite, the norm convergence of the averages ^ £f=1 Uk is immediate. But then also, 
since the limit function/* = lim/v-̂ oo ^ Ef=1 Ukf is clearly {/-invariant, it follows that 
/* = Puf for all / G L2(X). Indeed, when/ _L lv, any £/*/ _L /fy and so/* _L lv too. That 
is,/* = 0 if/ -L lu while/* = / if/ G h-

The first part of Theorem 1 can of course be proved by directly appealing to the 
Spectral Theorem. This has some advantages. For example, let E be the projection-
valued measure associated with the unitary operator Uf = f o r, for/ G L2(X,(3,m). 
If h{l) — lim^oo /2W(7) exists for all 7, then h is a Borel measurable function and (/!„) 
converges to the bounded operator Jr h(l)E{dl) in the strong operator topology. 

So the Spectral Theorem shows that if h(l) = 0 except for 7 = 1,7 G 7\ then 
(/x„) converges to the normal projection P/ = E{{ 1}) onto the r-invariant functions / in 
Ei{X, (3, m). However, this can be seen easily also in the style of the proof above because 
if 7 = {/ G L2(X,(5, m) : / is r-invariant}, then for any/ G I1, the measure i/f has no 
point mass at 1. Indeed, in this case, by Remark 3.c, liir^oo jj Ef=1/ ° T* = Pif = 0 in 
L2-norm. So lim^oo £ EjL, */(*) = l i m ^ o £ EjL, (/ o 7*,/) = 0. But 

lim i £ *,(*) = lim i £ / 7*<fi/,(7) = /lim -J- f f ^(7) = I/,({1}). 

So i/y({ 1}) = 0. Actually, this argument shows vy({ 1}) = 0 if and only if/ G 71. Hence, 
if/ G 71, we have 

lim | | ^ | | 2 = I™ L\(in{l)\2dvf{l) 
n—>oo n—>oo ./ / 

See also Jones, Rosenblatt, Tempelman [6] for extensions of the above arguments to 
general (abelian) groups. 

More generally, if /i(7) exists and is 0 except for at most a countable number of values 
7, then the same argument will work to identify the limit/* as long as vj has no discrete 
part. This is the reason for observing the following. 

PROPOSITION 4. The transformation T is weakly mixing if and only if whenever 
f G 7.2 (X, /?, m), / - L I , then v$- has no point masses. 

While this is also a well-known principle, there are serveral aspects of this which are 
worth pointing out, not the least of which is that the arguments to prove it are typical of 
the ones being used here. 

First, observe that 

LEMMA 5. The measure i/f has no point mass at X if and only if 
liitw-^o^EjL,^(*)A* = 0. 

PROOF. L e t i 7 . A = { £ othe^wL. T h e n ^ ^ = ' ^ ) A " = J ^ E ^ l ^ A ^ ' / / ( 7 ) -
So lim/v-̂ oo jj EJtLi vf{k)\k exists and is JT6lt\ dvfO) = uf({X}). m 

REMARK 6. The proof is showing that lim^oo jj T,^=\ vf{k)\k exists for all A G T. 
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Now r is weakly mixing if and only if for all / G L2(X), if dm — 0, 
liniA^oo jjH^=\ \$f(k)\ = 0. Indeed, the usual definition is that for g,h G L2(X), 
lim^oo ^ Ef=1 {{goi^ ,h) — $ g dm $ h dm\ = 0. But functions of the form/: i—> (gor^/z) 
are linear combinations over C of functions /: i—> (f o r*,/) = #/(&) for suitable/. So the 
equivalence of these two definitions is obvious. 

However, it is also a fact about sequences (ak) which are bounded that 
lim^oo ^ Ef=1 | «jt | = 0 if and only if lim^oo ^ £f=1 |a*|2 = 0. So we have 

LEMMA 7. The transformation r is weakly mixing if and only if 

lim^oo 1 E ^ i l ^# ) | 2 = 0 for all f G L2(Z), J /dm - 0. 

These remarks give 

PROOF OF PROPOSITION 4. Clearly, if r is weakly mixing, then 
l i m s u p ^ I | EjLi ^/(A)A*| < l i m s u p ^ I E?=1 | ^ ) | = 0 for a l l / _L 1. So by 
Lemma 5, i/f has no point masses for/ _L 1. 

Conversely, suppose i/f has no point masses for/ _L 1. Then for all/ G ^(X), J / dm = 
0, lim^^oo jj Ef=i Vf(k)\k = 0 for all À G 7\ But the reflected measure z/y given by 
vf(E) = vf(E~x) has ^(fc) = ïy(kj for all A: G Z. Hence, for/ _L 1, 

1 A<. ,„,2 ,. 1 " 
}™ 15 E l*/(*)f = «m - £ W W 

1 " 

N-^oo N ^ N~^oo N k=] 

v^hf(k)JT^JvfO) 

because lim^—oo jj T%=\ ^/(k)lk — 0 for all 7 G 7. Thus, if z/y- has no point masses for 
/ _L 1, r is weakly mixing by Lemma 7. • 

It is worth noting here that this elementary argument also easily gives another charac­
terization of weakly mixing transformation; namely, they are transformations with no 
non-trivial eigenvalues. First, we need a little more notation. Let À G T and define 
(E\ = {f e L2(X) : / o r = A/}. This is the X-eigenspace of r. Let Ex : L2(X) —> L2(X) be 
the unitary operator E\f = Xf or. Then let PA• L2W —> ^ W be the normal projection 
onto the eigenspace *E\. The von Neumann Mean Ergodic Theorem as in Remark 3.c 
says 

PROPOSITION 8. For allf G L2(X), l im^o , ^ £f=1 Étf = P\f in L2-norm. 

But this easily gives this localized version of Lemma 5. 
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PROPOSITION 9. For X e T and f e L2(X), / _L *E\ if and only if 

PROOF. Here 1 EjL, */(*)Â* = £ EjL, (E\fj)- So lim^-^o £ EjL, Of(k)Xk exists 
and is (P\f,f). Hence, this limit is 0 if and only iff LE\. m 

These corollaries are all immediate consequences of the previous discussion. 

COROLLARY 10. IfX G T andf <G L2(X), thenf _L £A if and only ifi/f has no point 
mass at X. 

PROOF. See the proof of Lemma 5. • 

COROLLARY 11. IfXeT, then <EX = {0} if and only (/"lim^oo ^ £*Li f/f(k^k = ° 
for all f EL2(X). 

COROLLARY 12. IfX e T, then £A = {0} if and only if for all f G L2(X), vf has no 
point mass at A. 

THEOREM 13. Given a transformationr, r is weakly mixing if and only if*E\ = {0} 
for all X ^ 1 and *E\ consists only of constants. 

PROOF. Assume *E\ = {0} for all A ^ 1. Then vj has no point mass at A ^ 1. 
But if also/ _L 1, then i/f has no point mass at 1 either, by the remarks after the proof of 
Theorem 3. So vj has no point mass at all for/ _L l.Thus, Proposition 4 shows r is weakly 
mixing. Conversely, assume r is weakly mixing. If A ^ 1 and/ G ¥,\, then/ _l_ 1. So by 
Proposition 4, i/f has no point masses and lim^^oo ^ £f=i i>f(k)Xk = 0 by Lemma 5. But 
/ G £A means Ûf(k) = (fo^,f) = Xk\\f\\2

2. So 0 = l i m ^ 1 EjL, A*|[/||22A* - \[f\\l 
Thus, £A = {0} if A ^ 1. • 

REMARK 14. a) The differences between this development of Theorem 13, and the 
one in Parry [10], Petersen f 11], or Walters [14] is that this approach is almost entirely 
Fourier analytic, with the Herglotz theorem being the only important tool. The argument 
in this form does not even require the machinery of the Spectral Theorem. 

b) A more sophisticated version of the previous results would center around the fact 
that f/f is weakly almost periodic and has the form a + n where a is almost periodic and n 
is weakly almost periodic with mean value for \n\ being 0. Then for at most a countable 
number of AG J1, lim^^oo jj T!H=\ a W ^ ¥ 0, anc* if (Xs '• s > 1) are these values, then 
there exists/ G (E\s such that a = E ^ i / . Hence, the eigenspaces <E\ = {0}for A ^ 1 if 
and only if a = 0 in every case. The previous arguments are preferred here because they 
avoid any discussion of the structure of AP(Z) and the behavior of the unique invariant 
mean on the space of weakly almost periodic functions. 

The above discussion gave Proposition 4 and Theorem 13 and should make the fol­
lowing two theorems quite clear. But it is also easy to see how this same discussion can 
be used to state a more local form of the next proposition. 
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PROPOSITION 15. If the l i n v ^ o /2W(7) = h(l) exists and is Ofor all but a countable 

number of values and i/f has no point masses, then limn_^oo 

COROLLARY 16. If the l im^oo /2n(7) = h(l) exists and is Ofor all but a countable 

number of values, then for any weakly mixing system (X,r), and f G L2(X), 

l im^oo \\firf - Sfdm\\2 = 0. 

Such a result as in Corollary 16 is what can be called a norm theorem with the classical 

limit. To what degree are such theorems generally available? For example, if we have a 

sequence (/iw) for which (jitf) converges in L2-norm for a l l / G L2(X) and all r, can one 

assert anything about the limit/*? There are plenty of examples to show why/* is not the 

classical limit in general. For instance, if pn — £ EjJL, 6k2, then (/2W(7)) converges for 

all 7. However, the limit is not zero for roots of unity. So for some dynamical systems, 

namely ones with £A ^ {0} for A ^ 1 and a root of unity, there will b e / G L2(X) for 

which/* ^ if dm. 

Such examples lead to the following question. First, we need this 

DEFINITION 17. The sequence (fin) is dissipative if limw_>oo iin{k) = 0 for all k. The 

sequence is uniformly dissipative if lim„^oo sup£GZ fin(k) = 0. 

It is clear that only averaging sequences (/in) which are dissipative are really mea­

suring some aspects of the long term behavior of (rk). For this reason, this technical 

assumption is added here. Note that a characterization of uniform dissipation in terms of 

(/2„) is given later in Example 23.b. See also Bellow, Jones, and Rosenblatt [1] where the 

concept of uniform dissipation is used. 

QUESTION 18. If (pn) is dissipative and (ftn) converges pointwise on 7, is the limit 

h necessarily 0 except for countably many values? 

If the answer to Question 18 were affirmative, then for weakly mixing systems, the 

limit/* would be the classical limit. On the other hand, if not, then for some a > 0, 

the set {7 G T : |/i(7)| > ex} must be uncountable. Since this set is a Borel set, it must 

contain a closed perfect set K. But then there is a positive measure 0 ^ v G M{K) with 

no point masses. Such a measure v is Vf for s o m e / G L2(X) and some weakly mixing 

system. This is seen by using the Gaussian measure space construction. See Schmidt [13] 

or Cornfeld et al. [4], 8.2 and 14. Hence, the answer to Question 18 is exactly resolving 

whether all dissipative L2-norm good averaging mathods must necessarily converge to 

the classical limit. An example given later in this paper in Proposition 33 shows that the 

answer to Question 18 is negative. 

There are some extremes when the norm limit/* is always the classical limit. Here is 

an extension of the result in Blum and Hanson [2]. 

THEOREM 19. If(pn) is uniformly dissipative and (X, r) is strongly mixing, then for 

allf G LP(X), 1 < p < oo, l im^oo | | / i / - Jfdm\\p = 0. 

PROOF. AS in Lemma 1, it suffices to prove linv^oo ||/i^/*||2 = 0 f o r / G L2(X), 

/ - L I . For such/ , the assumption that r is strongly mixing says that i/f is vanishing at 
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oo. Hence, for C > 1 fixed, 

hnf\\l= E nn(k)iin(ewf(k-i) 
kjez 

where £ i is the sum over {(it, l) G Z2 : \k - l\ < C} and £ 2 is the sum over {(£, 0 G 

Z2 : | £ - £ | > C } . B u t 

E 2 ^ E Vn(k)lln(l) SUp 1 ^ ) 1 

i*-n>c 

< sup \ûf(s)\. 

UEZ \S\>C 
\k-f\>C 

;\>C 

Also, 

El <ll/1l2EMn(*) E MO 
keZ cez 

\k-f\<C 

< ( 2 C + 1 ) | [ / 1 | 2 X > « W sup iin(s) 
kez s 

= (2C+\)\\f\\2
2supiin(s). 
s 

Hence, we can choose C > 1 such that | £2 I is as small as we like, and then let n —-> 00 

to get I £1 I as small as we like. Thus, l im^oo H/x,/!^ = 0. • 

An immediate corollary of the proof above is that if \/j is absolutely continuous with 

respect to mj, then, for (pn) which is uniformly dissipative, linv-00 n^f = 0 in L2-norm. 

In fact, the following was shown. 

PROPOSITION 20. If(f^n) is uniformly dissipative andf G L2(X) has Of vanishing at 

00, then l im^oo pnf — 0 in L^-norm. 

REMARK 21. a) Because there exist singular measures v with co Fourier coefficients, 

the above applies to a wider class of functions than those for which i/f is of Lebesgue 

type. 

b) Notice also that the uniform dissipation assumption is needed above. For example, 

if [in — bn, then (/in) is dissipative but H^^/lb = II/H2 for a l l / G L2(X). 

This result suggests some Fourier analytic properties of the levels sets of \h\. To con­

firm this, we first need this lemma. 

LEMMA 22. lf(nn) is uniformly dissipative and h(l) = l im^oo pn(l) exists for all 

7 G T, then h(l) = Ofor a.e. 7 with respect to Lebesgue measure mj. 

PROOF. Choose a subsequence (nm) such that £^1(supit/iWff?(fc)) < 00. If 

lim^^oo /2W/n(7) — 0 f ° r mT a.e. 7, then /i(7) = 0 for mT a.e. 7 too. But 

[\finm(l)\2dmT0)= E ^nm(k)^lm(0 [ Îkl( dm 
11 kjez JT 

7<7) 

E VnM 
kez 
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So JT |/2„w(7)|2 dmT(l) < sup^ finm(k). This means E^Li |/2W„,(7)|2 ls integrable with 

respect to mj and so the terms /2Wm(7) —> 0 as m —> oo for a.e. 7. • 

EXAMPLE 23. a) If pn — \ T!l
k=\ Smk, for some fixed sequence (mk) in Z+, then (p,n) 

is uniformly dissipative. Also, /2W(7) —> 0 as w —> oo for m^ a.e. 7. This is a well known 

fact about sequences (mk): for a.e. real number*, (mkx) is uniformly distributed modulo 

1; see Kuipers and Niederreiter [8] for a reference. But even though (/iw) is uniformly 

dissipative and lim^oo /2A7(7) = 0 for mr a.e. 7, /i can still fail to exist. An example of 

this would be with mk = 2k, a lacunary sequence. However, in general for a uniformly 

dissipative sequence (//„), if h fails to exist, then (pn) may not converge a.e. to 0. An 

example of this is given in Example 35. 

b) It also should be noticed that (pn) is uniformly dissipative if and only if every 

subsequence (/iWm) has a further subsequence (/iWwiv) for which l i n v ^ (Lnm (7) exists 

for m^ a.e. 7. Indeed, if (fin) is uniformly dissipative, then this property holds by the 

proof of Lemma 22 above. Conversely, if limn^oo/i„(7) = 0 mr a.e. 7 then |/iw(£)| = 

I Jr frnO)lk dmT(l)\ < ST \ftn(l)\dmT(l) shows sup^GZ jin(k) —> 0 as rc —» oo. Thus, if the 

subsequence property holds, then (fin) is uniformly dissipative. Indeed, otherwise there 

is a subsequence (finm) and <5 > 0 with sup^GZ finm(k) > <5 for all ra > 1 ; and then some 

subsequence of this, (/xWffIV), is uniformly dissipative by the integration argument. This 

would be a contradiction. 

So, let us assume that h = lim (in exists pointwise and that (fin) is uniformly dissipa­

tive. Then h(J) = 0, mr a.e. 7. But also, h is a first Baire class function, the pointwise 

limit of continuous functions (fin). So h is continuous at a dense G^ set of points in T. 

Thus, /z cannot be non-zero at a point of continuity because h — 0 mj a.e. and, hence, on 

a dense set. Thus, h — 0 m^ a.e. and on a dense G$ set simultaneously. This means that 

the level sets {7 G T : |/*(7)| > or} are small sets in two different senses. This is certainly 

satisfied by h if h ^ 0 only countably often, but it also can hold for more general h, as 

Proposition 33 shows. 

Also, Proposition 20 suggests another way in which the level sets are small. 

PROPOSITION 24. Suppose (pn) is uniformly dissipative and v G M(T), v > 0, 

v ^ 0, with suppz/ C {7 G T : l iminf^oo |/i„(7)| > a } , a > 0. 77ie« z/ d<?<?s nor vanish 

at oo. 

PROOF. In the proof of Proposition 20, it was shown that if v is vanishing at infinity, 

then lirn^oo J |/2„(7)|2 dv(l) = 0. Indeed, 

f\fln(l)\
2diy(l)= £ / iw(*)/xw(0*(*--0 

so the proof there applies with v in place of i/f. But now, if supp v C {7 G 7 : 

l iminf^oo |/2„(7)| > a } , then 

liminf f \nn(l)\
2dis(l) > [ liminf |/2W(7)|2<M7) 

n—>oo JT JT n—>oo 

>a 2 |HI . . 
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Since v ^ 0, this is a contradiction. • 

COROLLARY 25. If(^n) is uniformly dissipative andE C {7 : liminf^oo |/iw(7)| > 
a} is compact, then any v G M{E), v ^ 0, has v not vanishing at oo. 

PROOF. It is observed by Kôrmer, in Lindahl & Poulsen [9], p. 153, that if there is 
v G M(E), v ^ 0, with v vanishing at oo, then there is v G M(E), v ^ 0, v > 0, with i> 
vanishing at oo. • 

The property of the level sets above is also a property of Helson sets. However, in 
Lindahl and Poulson [9] Kôrmer points out that this property is not equivalent to a set 
being a Helson set. It is possible that the level sets above are Helson sets. 

EXAMPLE 26. Here is a construction of a closed perfect set E as above. Let cjn = 
n ̂ k=\ &2k- Then a)n(7) —» 1 for all 7 which are 2m roots of unity for some m > 0. 
Choose /ii = CJ/V, and two points 7n ^ 7i2 with /2i(7w) > \,i = 1,2. Then choose 
two disjoint open arcs /n, hi with7w £ hi such that |/îi(7)| > \ for all 7 G h\ U/12. 
Inductively assume \i\,..., /iw have been chosen so that for each /, there are 2l points 
7(/,7 = 1,. • •, 2l, and 2l pairwise disjoint arcs, IyJ — 1 , . . . , 2\ with 7// G ///. Assume 
also the usual Cantor type nesting that h+i^k-i U A+1,2* C /;,* for ^ — 1, • • •, 2'. Now 
choose /x/+i from (o;n ) and 7n+1,1,... ,7n+i2«+i such that for each k = 1,... ,2", 7,7+i,2*-i, 
ln+\,2k e7^,and|/2„+i(7„+i,,-)| > \ for/ = 2k- 1, 2/c. Then choose/„+IJ,J = 1,...,2W+1, 
pairwise disjoint open arcs with7w+i,/ G /„+!,/ and In+i,2k-\ ^h+\,2k C /„,*,& = 1,. . . , 2". 
If these arcs are small enough, then |/2w+i(7)| > ^ for all 7 G |J?=i ^+ij- This completes 
the induction. Let E = f|/^i Uyli V Then £ is a closed perfect set and \ftn(l)\ > \ for 
all 7 G E and n > 1. This provides a construction of (/iw) and E as in Proposition 24. 

It might be appropriate now to point out that the essential ingredient of the above 
construction was that the measures (un) have liminf^oo |cD„(7)| = 1 for a dense set of 
7 G T. It follows that (o)n(7)) does not converge for some 7. 

PROPOSITION 27. Suppose (fn:T —> C are continuous and (<pn) is pointwise con­
vergent to 0 on a dense set Do, and lim s u p ^ ^ | ipn(l)\ > a > Ofor all 7 on a dense set 
D\. Then there is a dense G«$ set on which (<pn) does not converge. 

PROOF. Consider L, = U£ i i X U f r e ^ • km(7)| < f } . Each {7 G 7 : 
|^m(7)| < f } is closed and so is (X^=n{^ ^ ^ : lv9m(7)| < f }. This intersection has no 
interior since lim sup | (fm(l)\ > a o n some dense set D\. Hence, L\ is first category and 
L\ is a dense Ĝ  set. For any 7 G Lf, |^m(7)| > f for infinitely many m. 

By a similar argument the set L2 = U ^ i lXU{^ ^ T '• km(7)| > f } is a first 
category set because Do is disjoint from each f)T=m{^ ^ T : |^m(7)| > f }. Hence, L\ is 
also a dense Gs set and for any 7 G L ,̂ |^m(7)| < f for infinitely many m. But then on 
the dense G^ set, L\ Hi Zij, (| ipm\) and (</?w) do not converge. • 

COROLLARY 28. Suppose (\in) is uniformly dissipative and lim inf^oo | /2„(7) | > oc> 
for some a > 0, /or «// 7 G D, where D is dense in a non-trivial arc I C T. Then on a 
dense G$ subset of I, (/2n(7)) does not converge. 
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PROOF. Without loss of generality, we can replace (/in) by a subsequence as in the 
proof of Lemma 21 where (/2W(7)) converges to 0 for mT a.e. 7. Then let ipn = fin and 
use the proof of Proposition 27 on /, instead of on all of T. m 

REMARK 29. This proposition shows that if (fin) does converge everywhere to h and 
(/xw) is uniformly dissipative, then the level sets of\h\ cannot be dense in any non-trivial 
arc. This is further information on how small these level sets must be. 

Unfortunately, it does not seem to be clear whether Corollary 28 holds for the usual 
Cesaro averages of a lacunary sequence (nk). By numerical properties, it does for any 
(nk) of the form bk, b — 2,3, It also does if nk+\ jnk > A > 1 and À is sufficiently 
large, depending on a. See Rosenblatt [12]. But it is not clear in general. For this reason, 
we would like to point out 

PROPOSITION 30. For any Sidon set E C Z and any dissipative sequence (fin) of 
probabilty measures on E, there exists 7 G T such that limn^oo find) does not exist. 

PROOF. Without loss of generality, replace (//„) by a subsequence which is essen­
tially disjointly supported. That is, if S > 0 is fixed, then there are pairwise disjoint set 
(En) in E with ^n(En) > 1 — 8. Choose a measure v G M(T) with v(k) = ak, for all 
k G \JT=\ En- If we assume \ak\ < 1 for all k, then we can take \\i/\\\ < C, the Sidon 
constant of E. Assume l i n v ^ find) — h(l) exists for all 7 G T. Then 

JT fin(l) dvCl) = £ tln(k)Jîk dv(n) 

= J2 Vn(k)ak + en 
keEn 

where \en\ < /in(Z\En) \\i/\\\. 
If ak is constantly bn for k G En, \bn\ < 1, this gives | $T fin(l) dv(l) — bn^n(En)\ < 

{ 0 n even 
, this gives | JT fin(l) du(l)\ < SC for n even and 

I h find) dv(d)\ > 1 — S — 6C for n odd. Hence, for small enough 6, we see that 
lim^oo IT find) dv<d) fails to exist. But if limn^oo fin{l) = h(l) exists for all 7 G T, then 
also lim„_oo JT fin{l) dv{l) must exist by Lebesgue's Bounded Convergence Theorem. • 

COROLLARY 31. If(nk) is lacunary, then there exists 7 such that lim^oo £ E£=1 Yk 

fails to exist. 

REMARK 32 

. A good question is whether there is a constant a > 0, 
independent of A = infk>\ nk+\/nk, such that for all 7 in a dense set in T, 
liminf^oo £ | T%=\ 7n* | > oc. The previous corollary does not come close to answering 
this. See Rosenblatt [12] for an ergodic theoretic application of the above, when it holds. 
It is perhaps now clearer what are the properties of the level sets of lim infn_oo | /in |. Ques­
tion 18 is asking whether these properties are consistent with the existence of 
lim^oo find) for all 7. The following answers this basic question. 
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PROPOSITION 33. There exists a uniformly dissipative (/iw) of symmetric probability 
measures on Z with p,n(l) > 0 and decreasing everywhere to a limit h(l) > 0 such that 
h(l) > \ on some closed perfect set. 

COROLLARY 34. There is a uniformly dissipative sequence (//„) which gives opera­
tors fiff converging in L^-normfor allf G L2(X) and all (X, (3, ra, r), but for which there 
also exists a weakly mixing (X, /3, m,r) such that for some f G Li{X)y lim^oo fiflf ^ 
if dm. 

PROOF OF PROPOSITION 33. Let (pn) be an increasing sequence of whole numbers. 
Let wn = \(èo+àPn)* * (So + 6P„) = {èo + ~6Pn + \è-Pn. Let \in = w\ * • • • * wn. We claim 
that for any rapidly increasing (pn), this sequence (/x„) is the one that we want. 

First, wn is symmetric and wn(l) = \vn(l)\
2 where vn — ^(6o+6Pn). Also, \i/n(l)\ < 1 

since vn is a probability measure. So, /xw is symmetric for each n > 1, and 0 < p,n+\ < 
fln < 1. Hence, limn_,oo /2„(7) exists for all 7 G T . 

Second, we can choose pn+\ inductively so that supkeZ fin+\(k) < ^supkeZiin(k). 
Hence, sup^GZ jin(k) decreases to 0 geometrically. This only requires pn+\ > 2 Yln

k=\ Pk 
so that the supports of [in, 6Pn+{ * /i„, and Ô^Pn+] * \in are pairwise disjoint. 

To keep the limit h large on a Cantor set, we inductively choose pn as follows. Notice 
thatz/^l) = 1 if 7 is a/?„th root of unity. Choose p\ so that/2i (7) > ^ for all 7 G /nU/ |2 , 
where 7iy are two pairwise disjoint open arcs. Inductively assume p\,... ,pn have been 
chosen so that ftn(l) > \ for all 7 G Inj,j = 1, . . . , 2n, where the open arcs {Ikj : k = 
1, . . . , nj — 1, . . . , 2k} are nested as in Example 26. Then for any sufficiently large pn+\, 
the appropriate new level of arcs In+\j exist. Consequently, the limit h will have h(l) > \ 
for all 7 G HSi U/=i ^>' w m ch is a closed perfect set. • 

REMARK 35. a) The analogy with a Riesz product construction of the above is in­
teresting. The idea of making (fin) non-increasing is very useful because it is hard to get 
pointwise convergence otherwise. Indeed, it remains an open problem to construct a se­
quence (mk) such that the measures \in — £ E£=1 èmk has lim^oo fin(l) = h(l) existing 
everywhere, but h(l) ^ 0 more than countably often. 

b) In the construction of Proposition 33, one can arrange for h(l) > 1 — e for all 7 in 
a closed perfect set by the same argument, no matter what e > 0 is given. 

c) The construction also can easily give limn^007
/?'1 = 1 for all 7 G H/Si \J}L\ Uj-

But then the weakly mixing r constructed in Corollary 34 will be rigid because for all 
/ G L2(X)Mmn^o^,f) will be \\f\\\. 

PROOF OF COROLLARY 34. Take the construction of (/i„) as in Proposition 33 and 
let E be a closed perfect set on which h(y) > \ for 7 G E. Let v G 0\f(E), v > 0, 
v ^ 0, be any regular Borel measure with no point masses. Since p(k) — v(k) is positive 
definite, there exists a unitary operator V on a Hilbert space H and a cyclic vector w for 
V in it such that (V*u>, w) = z/(&) for all k G Z. As in Schmidt [13] or Cornfeld et al. [4], 
the Gaussian action of Z on a Gaussian probability space (X,(3, m) arising from V is a 
weakly mixing action by the ergodic invertible transformation r corresponding to 1 ̂  Z. 
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But iff G L2(X, /3, m), such that (f o r*, / ) = ( V V w) = //(£), then Jfdm = 0 and/* = 

linin-KX)^ satisfies |[f ||2 = l i m , ™ jT \fln(l)\
2 diy(l) = hh2dv{l) > \v(T) > 0, so 

r ^ j / ^ / n . • 

It should be remarked that the existence of the above example says something inter­

esting about probability measures on the Bohr compactification (5Z of Z. Generally, if 

{fin) is a sequence of probability measures on Z, such that l im^oo A«O0 = h(Y) exists 

for all 7 G T, then (/x„) converges in the uu*-topology of M(/3Z). Let B be the unit ball of 

M(f3Z). Then this oo* -topology is not metric on B, and there is no point jtiGfi which has 

a (relative to B) local basis which is countable. Nonetheless, there are measures \i G B, 

[i > 0, with jl — h which is not zero uncountably often such that \i is a uf -limit of a 

sequence (fin). This is despite the highly non-metric nature of the local topology for such 

a/x. 

Hopefully, the example above exhibits how complex the limit operator / * = 

l im^oo fiff can be even for weakly mixing systems. This construction is actually eas­

ier to achieve if one only wants the local convergence of {jinf) in some weakly mixing 

system. 

One way to see this is as follows. Let \in = ^ E£=1 è2k. As we have observed in 

Example 26, there is a closed perfect set E such that |/2W(7)| > \ for all 7 G E. In general 

though, there is no subsequence of (pn) such that (/2W(7)) converges everywhere; see 

Proposition 27 and Rosenblatt [12]. But we can localize to a metric space and fix this. 

Indeed, some subnet {jina) of (fin) does have lima/iWa(7) = h(l) exists for all 7 E T. 

Take a weakly mixing system (X, /3, m, r) given by some continuous non-zero positive 

measure v on E. Then the associated space Lj{X) is necessarily a separable Banach space 

in such constructions. The operators (//Wff) converge in the strong operator topology on 

L2(X). 

But this is a metric topology. Hence, there is actually a sequence (u;s), given by (/xw„), 

such that ( C J / ) converges in L2-norm for all / G L2(X). The choice of v guarantees 

/ * 7̂  if dm for s o m e / G Z^W- The sequence here (LJV) is a subsequence of (//„). Its 

defect is that it cannot be universally L2-norm good, but is only L2-norm good, with a 

non-classical limit, in this particular weakly mixing system. 

Moreover, the behavior of some (fin) on a particular L2(X) does not predict its global 

behavior unless L2(X) contains all possible eigenspaces *E\, X G T. Indeed, for separable 

spaces Z,2(X), this would never be enough as the following shows. 

PROPOSITION 36. Given a separable probability space (X, /3, m), and an ergodic 

transformation r, there exists a uniformly dissipative sequence (//„) such that 

limn^oo l^nf — Ifdm in L^-norm for all f G L2(X), but (nn) is not good for E2-norm 

convergence for some other ergodic dynamical system. 

PROOF. Suppose (fs) is a sequence which is dense in {1 j 1 C Li(X). This exists by 

the separability hypothesis. Write each i/s = Vfs as v\ + v\ where v\ « mj, and the 

measure-theoretic support Es of v] is mj measure zero. Let E — \J^L\ Es. Then E is a 

Lebesgue null set. To prove the theorem it suffices to construct (jin) with /2W(7) —» 0 a.e. 
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7 and /2W(7) —> 0 for all 7 G £ \ {1}, but /2„(7o) does not converge for some 7o of infinité 
order. Indeed, then 

\\»nfs\\22= E UnWUndXfsOT*-*,/,) 

= J2 Mn(*)/a«K(* - o 

= /j/2„(7)|2<M7) 

= / r |/2„(7)|2 <fc/J(7) + jT \fin(l)\2 dv2
s(l) -^ 0 as n -+ cx> 

for all s > 1. It follows easily that linv^oo [ij — if dm in L2-norm for all / G Z^OT-

To do the above, choose 7o G 7* \ {1} of infinite order with 7o ^ £ and 70 ' ^ £. 
Then let Kn be an open arc about 7o and let Ln = 70~

1ATn. Assume Kn is symmetric 
about 7o so that L"1 = Ln. Choose LnnKn = 0 and mT(Kn) —> 0 as n —> oo too. Let 
^n = cw(l^„ + \Ln) * (l^-i + U J with cn > 0. lfhn = 1^ + 1L„, then (/?„ = cA* * h*. 
Let ipn = hn * h*n. We have <£n > 0. But also, \[jn G L2(T) * LjiT) so $„ G ^i(Z) and 
thus T,kez$n(k) < oo. Choose cn so that Hkez Cn$n(k) = 52hez VnQi) = 1. This makes 
wn — (pn a probability measure onZ. Actually, if £n(7) = Y,kez^n(k)lk, then ujn(\) = 1 
andù;w(l) = <pn(l) = cnijjn(l) = cn jT \hn\

2 dmT. So cn = mTiKA)\mT{Ln) = ^ W 
These calculations show that 

uon{%1) = uon(lo) = cn JThn(\)hn(%
lX)dmT(\) 

>cnjTlKn(\)hoLnWd\. 

But we chose 7o£„ = Kn and so we have ci)„(7(̂
1) > 2m{Kn)

 = 5- However, for all values 
of 7 G T, 7 £ {1,70,7e1}, a>n(7_1) = dv,(7) = cnhn * /i*(7) = 0 for n sufficiently large 
because supp hn and supp(7/i„) will be disjoint. Since 7o and 10

{ are not in £, ujn(l) —+ 0 
as n —» oo for all 7 G £ \ {1}. Clearly also cDn(7) —> 0 m^ a.e. 7. 

Now, let (//„) be the sequence (ojn) above intertwined with any other sequence of 
probability measure (uj'n) with limn^oo^(7) = 0 for all 7 G 7 \ {1}. Then (/i„) is not 
universally L2-norm good, but will be L2-norm good for the L2 space of the particular 
dynamical system above. • 

REMARK 37. a) The same argument as above can be carried out simultaneously for 
any given sequence of separable dynamical systems. This is by way of emphasizing 
again the essentially non-metric nature of (/xn) being universally L2-norm good as in 
Theorem 1. 

b) It would be interesting to carry out the above construction with /iw of the form 
\ ££=i Smk f° r some sequence (mk). That is, given E C T, a Lebesgue null set, can we 
construct (n^) which is not universally L2-norm good, but such that E is contained in the 
set of 7 G T such that x- ££=1 7

m* —> 0 as n —> 00 
c) It is probably also possible to prove Proposition 36 with a sequence (pn) such that 

no subsequence of it is universally L2-norm good. 
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The same technique as was used in the proof of Proposition 36 can be used to give an 
example relevant to Lemma 22. 

EXAMPLE 38. There exists a uniformly dissipative sequence (fin) such that (/in) does 
not tend to 0 a.e. To see this, we construct \in like in Proposition 36 but with 7o variable. 
Indeed fix em = ^ and an open symmetric arc Lm about 1 with m^(Lm) = em. Fix 7 
such that l~xLm Pi Lm = 0. Then let ipm = cmhm * h*m where /iw = V1/,,,, + Um and cm 

is a normalizing constant. Let \im — (pm. We showed \xm is a probability measure and 
fimO±l) > 5. So there is an open symmetric arc £m about 1 such that for all À G 7±1£m, 
fimW > |- This arc has a length which can be chosen independently of 7. 

Now, with em fixed, choose 7 i , . . . ,7/vm such that for each /, lJxLm C) Lm = 9, but 
U^i liEm U U^i ^iXEm covers as much of T \ Lm as is otherwise possible. The set that 
can be covered this way is T \ Lm where LM is an open symmetric arc about 1 with 
tnriLm) < 4sm. Arrange (ji(em, 7/) : / = 1,... ,Nm, m> \) in a lexicographical ordering 
(lin). Then for all 7 ^ 1, for oo many n, \fin(l)\ > \. So (fin) does not converge to 0 
for any 7 G T. The sequence (/iw) is uniformly dissipative through. This can be seen 
by applying Lemma 22 directly of course. But for any probability measure /i, fi(k) = 
JT fiCf)Jk dmrd). So, in this case, one can calculate that if \in = ^(em,7/), for some 
m > 1 and / = l,...,Nm, then 

supiin(k) < / cmhm * h*m dmT 
kez JT 

1 
2Tm{Irh'"dmT) =2£ 

As a final counterpoint to the previous results, we should discuss some examples of 
classes of measures (/zn) for which the limit function is necessarily not zero at most 
countably often. First, let us make this definition. 

DEFINITION 39. A bounded sequence u = (uk) is Hartman almost periodic if for all 
7 G T, liiïifl-KX) X- ££=1 ukl

k = K(l) exists. 
This concept is discussed briefly in Kahane [7] where Corollary 42 is stated. It is clear 

that if (m*) is a sequence in Z+, m\ < m^ < m^ < • • •, and lirn^oo {mk'™k-n* exists and 
is not zero, then the indicator sequence (uk) of (mk) is Hartman almost periodic if and 
only if Hindoo - E^=1 7

m* exists for all 7 G T. It turns out that for such sequences, or 
weighted sequences, generally the limit functions are not zero at most countably often. 
First here is an elementary fact that we will use. 

LEMMA 40. The sequence (nk) has lower density lim inf,^^ iw*-™*-"i > 0 if and 
only if supn>{ f < oo. 

PROOF. If supn>1 ^ < C, then mn < Cn for all n > 1. So if mn > M then Cn > M. 
Hence, the first n, say no, with mno > M has no > ^ . That is, #{mn < M} = no — 1 > 
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m > 
M l.Thus. 

#{mn<M} 

>h •k and lim \niM-
c} — c 

liminfM^oo ^7 > <5 > 0, then for sufficiently large M, #{m„ < mN} 

> --. Conversely, if 

N > I mN. 

#{mn<M} 
M —CM "11V* "*"""yw->oo M 

#{mn<M} 
M 

This means, ^ < | for N large, and hence supAA>1 ^ < 00. • 

The following theorem and its proof are due to M. Boshernitzan whom the author 
wishes to thank for letting it be included here. The author previously only was able to 
give a more difficult proof that the set in question is countable. 

THEOREM 41. If (uk) is bounded, then for all 8 > 0, Es = {7 £ 7 : 
liminfrt-KX) £| E*=1 ukl

k\ > 5} is finite. 

PROOF. Suppose 7 i , . . . , 7M are distinct elements with 7, £ /^ for / = 1, . . . , M. 
Then for / ^ j , ij= 1, . . . , M, l inv^o ^ £j*=1 7*7y = 0. Consider the finite-dimensional 
subspace H of ^ ( Z + ) spanned by the sequences (uk : k > 1) and (7f : k > 1), for / = 
1,...,M. By choosing a suitable subsequence (ns), we can arrange for 
lirn^oo ^ J2n

k=l Ukl\ to exist for all / = 1,...,M, and simultaneously for 
linv^oo -̂ E^Li lw^|2 t o exist. This allows us to define a complex inner-product (•, •) in 
/ /by (a,b) - lim^oo £ E*Li « Â , for all a,b G //, a = (a* : k > 1), b = (bk : * > 1). 
This makes // a Hilbert space. 

Now by Bessel's inequality, with 7/ = (7* : k > 1), / = 1, 

M 1 I ns 

,M, 

;=i s^oo ft * i / c = 1 

= £l(u,7,>|2 

<i(u,u}|2 

\ ns 

< lim — Y,\UJ\ 
ls k=\ 

< sup \uk\ 
k>\ 

< CO. 

Hence, M < (sup)t>1 \uk\
2)/ b2. This proves that M is bounded by a constant independent 

of the choice of 7 i , . . . , 1M and hence that E$ is finite. • 

COROLLARY 42. If (uk) is bounded Hartman almost periodic sequence, then the 
limit function h(l) = limn^oo - Y2k={ ukl

k is not zero at most countably often. 

COROLLARY 43. If(rnn) has positive lower density, then for allé > 0, Eh — {7 G 
T : liminf^oo l-\ En

k=l T
k\ > 5} is finite. 

PROOF. Because of Lemma 40, (mn/n) is bounded. Let (uk) be the indicator function 
of (mn). then for mk <n < mk+\, 

1| 

k=\ 

ii k 

n\f={ 
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Hence, {7 G T : l i m i n g {\ E t , T( \ > è} C {7 G T : lim i n f ^ ^ | E ^ i w*7*l > 
^ } if C = sup^>, ^ . Thus by Theorem 41, this result holds. • 

COROLLARY 44. Suppose (mn) is a universally L^-norm good sequence with positive 
lower density. Then for all weakly mixing dynamical systems (X, (3, m,r), iff G Z>2(X), 
then linv-^oo £ T!l=xf o ^ * = if dm in L^-norm. 

PROOF. By Corollary 43, and Corollary 16, this is proved. • 

REMARK 45. See Boshernitzan [3] for many closely related theorems about se­
quences (nk) for which the limit function h(l) = lim^oo £ | £j*=1 Y

k | is not zero at most 
countably often. It is observed there, and is essentially the point of Corollary 43, that for 
such (nk), if v G M(T) is continuous, then linv^oo £ ££=1 \û(nk)\ = 0. Also, an interest­
ing characterization of when (nk) has this property is given in [3] in terms of the behavior 
of subsequences of the sequence of averages ^ EJL \ lnk • 
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