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It is well-known that manual image segmentation of vast 3D data sets is a challenging task in computed 

electron tomography and has been one of the most significant hurdles in comprehensive 3D analysis. A 

volume rendering approach has often been preferred for 3D visualization owing to its simplicity and speed, 

even though a detailed representation of the features in 3D is compromised, leading to the loss of critical 

morphological and quantitative information. To address this problem, we have investigated deep learning 

architectures of U-Net with specific decoder units’ variants using the 3D analysis of a -Alumina (Al2O3)/ 

Pt catalytic material in a class imbalance situation [1,2,3]. In heterogeneous catalysts, complex surface 

structure, relatively poor intrinsic contrast of the oxide support material, and sparse distribution of the 

catalytic nanoparticles over the background of TEM images present a significant challenge for pixel-wise 

image classification, including the current state-of-the-art deep learning-based modalities.   

 

We compared the results obtained from the U-Net architectures in the form of a standard U-Net, U-Net 

with the additive attention gates, and U-Net with the attention gates and residual connections, as shown 

in Figure 1. Self-attention gates have been introduced in Natural Language Processing (NLP), aiming to 

enrich the contextual information and improve the robustness of the recurrent neural networks [2]. 

Recently, it has been adapted in convolutional networks to mainly suppress the irrelevant feature mapping 

through the skip connections and thus, enhance the performance of the classification models [4]. We 

discuss the accuracy of our segmentation results by assessing the commonly used semantic segmentation 

metrics on the overall overlap between the ground-truth and predicted segmentations, as shown in Table.1. 

Preliminary results on the validation data sets have demonstrated comparable effects on the segmentation 

performance of the U-Net models for the -Alumina segmentation task and relatively higher performance 

for Pt nanoparticle segmentation with attention units. Figure 2. visualizes exemplar segmentation results 

from -Alumina and Pt nanoparticles, respectively. For each patch of the validation data, ground-truth and 

predicted segmentations of -Alumina and Pt nanoparticles are compared separately in the binary images. 

An example of differences in the segmentations of the standard U-Net model is shown explicitly in the 

false negative and false positive maps highlighting the discrepancies in the overlap of each class. 

Nevertheless, the deep learning-assisted automated semantic segmentation of the HAADF STEM 

tomography reconstructions unlocked the comprehensive 3D visualization of the catalytic material and a 

clearer insight into the long-standing debate on the characteristics of -Alumina surfaces and their 

relationship with the catalytic Pt nanoparticles [3], as shown in Figure 3.  

 

This work fully exploits open-source resources in deep learning and computed electron tomography 

analyses. The electron tomography study was conducted using a Python programming script based on the 

tomviz software for the image shift and tilt alignments and TomoPy and ASTRA Toolbox for the 
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maximum likelihood expectation maximization (MLEM) reconstructions. Paraview software was 

employed to generate 3D visualizations from the fully segmented reconstructions. 
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Table 1. Evaluation performance of the U-Net architectures.  

Figure 1. Variants of the decoder units. 

Figure 2. Ground-truth and predicted 

segmentations, and false negative and 

false positive maps.  
Figure 3. 3D visualizations of the -Alumina 

catalytic particle and Pt nanoparticles.  

      
     

      

    

      
    

      

    

    
    

     

    

https://doi.org/10.1017/S1431927622011667 Published online by Cambridge University Press

https://doi.org/10.1017/S1431927622011667

