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It is well-known that manual image segmentation of vast 3D data sets is a challenging task in computed
electron tomography and has been one of the most significant hurdles in comprehensive 3D analysis. A
volume rendering approach has often been preferred for 3D visualization owing to its simplicity and speed,
even though a detailed representation of the features in 3D is compromised, leading to the loss of critical
morphological and quantitative information. To address this problem, we have investigated deep learning
architectures of U-Net with specific decoder units’ variants using the 3D analysis of a y-Alumina (Al203)/
Pt catalytic material in a class imbalance situation [1,2,3]. In heterogeneous catalysts, complex surface
structure, relatively poor intrinsic contrast of the oxide support material, and sparse distribution of the
catalytic nanoparticles over the background of TEM images present a significant challenge for pixel-wise
image classification, including the current state-of-the-art deep learning-based modalities.

We compared the results obtained from the U-Net architectures in the form of a standard U-Net, U-Net
with the additive attention gates, and U-Net with the attention gates and residual connections, as shown
in Figure 1. Self-attention gates have been introduced in Natural Language Processing (NLP), aiming to
enrich the contextual information and improve the robustness of the recurrent neural networks [2].
Recently, it has been adapted in convolutional networks to mainly suppress the irrelevant feature mapping
through the skip connections and thus, enhance the performance of the classification models [4]. We
discuss the accuracy of our segmentation results by assessing the commonly used semantic segmentation
metrics on the overall overlap between the ground-truth and predicted segmentations, as shown in Table.1.
Preliminary results on the validation data sets have demonstrated comparable effects on the segmentation
performance of the U-Net models for the y-Alumina segmentation task and relatively higher performance
for Pt nanoparticle segmentation with attention units. Figure 2. visualizes exemplar segmentation results
from y-Alumina and Pt nanoparticles, respectively. For each patch of the validation data, ground-truth and
predicted segmentations of y-Alumina and Pt nanoparticles are compared separately in the binary images.
An example of differences in the segmentations of the standard U-Net model is shown explicitly in the
false negative and false positive maps highlighting the discrepancies in the overlap of each class.
Nevertheless, the deep learning-assisted automated semantic segmentation of the HAADF STEM
tomography reconstructions unlocked the comprehensive 3D visualization of the catalytic material and a
clearer insight into the long-standing debate on the characteristics of y-Alumina surfaces and their
relationship with the catalytic Pt nanoparticles [3], as shown in Figure 3.

This work fully exploits open-source resources in deep learning and computed electron tomography
analyses. The electron tomography study was conducted using a Python programming script based on the
tomviz software for the image shift and tilt alignments and TomoPy and ASTRA Toolbox for the
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maximum likelihood expectation maximization (MLEM) reconstructions. Paraview software was
employed to generate 3D visualizations from the fully segmented reconstructions.
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Table 1. Evaluation performance of the U-Net architectures.

¥-Alumina Pt NPs Bckgrnd/Pores
Method Dice Similarity Coefficient
U-Net 0.963 0.844 0.952
Attention U-Net 0.963 0.864 0.9952
— Attention Res-U-Net 0.963 0.872 0.992
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Figure 3. 3D visualizations of the y-Alumina false positive maps.

catalytic particle and Pt nanoparticles.
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