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Abstract

We incorporate the new theory of equivariant moving frames for Lie pseudogroups into Vessiot’s
method of group foliation of differential equations. The automorphic system is replaced by a set
of reconstruction equations on the pseudogroup jets. The result is a completely algorithmic and
symbolic procedure for finding both invariant and noninvariant solutions of differential equations
admitting a symmetry group.
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1. Introduction

The method of group foliation (also called group splitting, or group stratification)
is a procedure for obtaining solutions of differential equations invariant under
a symmetry group. The idea was proposed by Lie [27], and subsequently
developed by Vessiot [56]. Later work of Johnson, Ovsiannikov, and others
[9, 19, 47] showed renewed interest. More recently, group foliation has been used
to study equations of mathematical physics [30, 34], and reformulated using the
language of exterior differential systems [3], demonstrating potential for further
development and application.

Consider a differential equation ∆ = 0 with symmetry group G, possibly
infinite dimensional. The method of group foliation uses a foliation of the solution
space of ∆ = 0 by the orbits of the group action to decompose ∆ = 0 into two
alternative systems of differential equations, called the resolving and automorphic
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Figure 1. The geometry of group foliation.

systems. An automorphic system, characterized by the property that all solutions
are situated on a single orbit of G, describes the leaves of the foliation. The
resolving system links the original differential equation to a specific automorphic
system in the sense that each resolving system solution specifies a leaf of the
foliation. See Figure 1 for the geometry of this construction. Application of
group foliation may roughly be understood as a process of removing symmetries;
quoting Ovsiannikov [47]:

The practical significance of group splitting consists in the fact that
solutions of the automorphic system are very simply found at the
expense of its automorphic property (by operation with a group
transformation on any of its solutions), and the resolving system turns
out to be simple when compared with the initial equation ∆ = 0.
The latter occurs because the resolving system has fewer solutions
than ∆ = 0 does because of removal of those excesses which were
introduced by the existence of the admitted group G.

Our main tool will be the theory of equivariant moving frames [13, 43,
44]. The determination of the resolving system relies on the classification of
differential invariants and their syzygies, which may be performed algorithmically
using the universal recurrence relation (32). The resolving system may be
interpreted as a projection of the original differential equation into a space of
invariants, accomplished through the application of a right moving frame. The
automorphic system then provides a method for reconstructing solutions to the
original differential equation from resolving system solutions. Geometrically,
this reconstruction process is the reversal of the right moving frame projection,
accomplished by application of a left moving frame.
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Our approach was inspired by Mansfield’s use of equivariant moving frames
to solve ordinary differential equations [28, Ch. 7]. This approach works for Lie
group actions, and it relies on the choice of a faithful matrix representation for
the group. In this paper, we adapt these constructions to infinite-dimensional
Lie pseudogroup actions. Central to this adaptation is the introduction of the
pseudogroup jet differential expressions which, after pull-back by a moving
frame, generalize Cartan’s structure equations of a moving frame for Lie group
actions [14], and play the role of Mansfield’s ‘curvature matrix’ equation
in the reconstruction process. The reconstruction step is also related to the
reconstruction procedure appearing in symmetry reduction of exterior differential
systems [2, 3, 48].

In its most general formulation, the group foliation method applies to infinite-
dimensional Lie pseudogroup actions, so we begin by reviewing in Section 2
the basics of Lie pseudogroups. The theory of equivariant moving frames is
introduced in Section 3. We begin our discussion of group foliation in Section 4.1.
In Section 4.2, we incorporate the moving frame apparatus and obtain a new
perspective—in particular, a natural geometric approach to the reconstruction
step—based on moving frames. The Lie pseudogroup action

X = f (x), Y = y, U =
u

f ′(x)
,

considered in [41, 43], is used as a running example for our constructions. This
pseudogroup is also used in [48] to illustrate the method of symmetry reduction of
exterior differential systems admitting an infinite-dimensional symmetry group;
we reproduce these results in Examples 28 and 47. In Section 5, the group
foliation method is applied to several equations of interest, including a nonlinear
wave equation studied by Calogero [5], the equation of a transonic gas flow,
and a nonlinear second-order ordinary differential equation. Finally, when a
symmetry pseudogroup G admits a chain of normal subpseudogroups, we explain
in Section 6 how the reconstruction procedure splits into a sequence of smaller
reconstruction problems.

2. Lie pseudogroups

Since we work with infinite-dimensional Lie pseudogroup actions, we restrict
our considerations to the analytic category. Given an analytic m-dimensional
manifold M , let D = D(M) denote the pseudogroup of all local diffeomorphisms
ϕ : M → M . For each n > 0, we denote by D(n) the subbundle formed by their
nth-order jets jnϕ. Introducing the local coordinates Z = ϕ(z) on D(0)

= M ×M ,
we denote by z = σ̃ (jnϕ) and Z = τ̃ (jnϕ) the source and target coordinates of ϕ.
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The induced coordinates on D(n) are jnϕ = (z, Z (n)), where Z (n) indicates the
derivatives

Z b
A =

∂k Z b

∂za1 · · · ∂zak
, b = 1, . . . ,m, A = (a1, . . . , ak),

of order 0 6 k 6 n. A local diffeomorphism ψ ∈ D acts on D(n) by either left or
right multiplication:

Lψ(jnϕ|z) = jn(ψ ◦ ϕ)|z or Rψ(jnϕ|z) = jn(ϕ ◦ ψ
−1)|ψ(z). (1)

The definition of a pseudogroup G ⊂ D is a natural extension of the concept of
a local Lie group action. We refer to [17] for a precise definition.

DEFINITION 1. A pseudogroup G ⊂ D is called a Lie pseudogroup of order
n? > 1 if, for all finite n > n?, the following hold.

• The pseudogroup jets σ̃ : G(n) → M form an embedded subbundle of
σ̃ : D(n)

→ M .

• The projection π n+1
n : G(n+1)

→ G(n) is a fibration.

• Every local diffeomorphism ϕ ∈ D satisfying jn?ϕ ⊂ G(n?) belongs to G.

The above regularity conditions imply that, in some coordinate chart, the
subbundle G(n?) is described by a system of n?th-order differential equations

F (n?)(z, Z (n?)) = 0, (2)

called the determining system of G. For n > n?, G(n) is described by the
prolongation of (2).

EXAMPLE 2. As our running example, we consider the Lie pseudogroup action

X = f (x), Y = y, U =
u

f ′(x)
, f ∈ D(R), (3)

on M = R3
\ {u = 0}, defined by the system of differential equations

X y = Xu = 0, Y = y, U =
u
X x
. (4)

As is generally the case, it is preferable to work with the Lie algebra of
infinitesimal generators of a Lie pseudogroup. Let X (M) denote the space of
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locally defined vector fields on M . In local coordinates, we use the notation

v =
m∑

a=1

ζ a(z)
∂

∂za
(5)

to denote a vector field. For 0 6 n 6 ∞, let JnT M denote the nth-order jet
bundle of the tangent bundle with local coordinates jnv = (z, ζ (n)). Once more,
ζ (n) denotes the collection of derivatives ζ a

A, a = 1, . . . ,m, 0 6 #A 6 n.
Given a Lie pseudogroup G, let g ⊂ X (M) denote its Lie algebra consisting of

local infinitesimal generators whose flows belong to the pseudogroup. A vector
field (5) is in g if its n?-jet is a solution of the linear system of partial differential
equations

L (n
?)(z, ζ (n

?)) = 0, (6)

called the infinitesimal determining system of g, obtained by linearizing the
determining system (2) at the identity jet. When G is the symmetry group
of a differential equation, the infinitesimal determining system (6) is obtained
by implementing Lie’s algorithm for determining the infinitesimal symmetry
generators [36].

EXAMPLE 3. The infinitesimal generators of the pseudogroup action (3) are

v = ξ
∂

∂x
+ η

∂

∂y
+ φ

∂

∂u
= a(x)

∂

∂x
− u ax(x)

∂

∂u
, (7)

where a(x) is an arbitrary analytic function. The coefficients of the vector field
(7) are solutions to the infinitesimal determining system

ξy = ξu = 0, η = 0, φ = −u ξx , (8)

obtained by linearizing the determining equations (4) at the identity jet 1(1).
Relations among higher-order vector field jets are obtained by considering the
prolongation of (8).

Dual to the Lie algebra g are the G-invariant Maurer–Cartan forms. Since
these play an important role in what follows, we now recall the details of their
construction [41]. Beginning with the diffeomorphism pseudogroup D, we split
the differential d = dM + dG into its horizontal and group (or vertical/contact)
components, as is done in the standard variational bicomplex construction [1],
and observe that this splitting is invariant under the pseudogroup multiplication
(1). Since the target coordinates Z a are right invariant, the horizontal one-forms

σ za
= dM Z a

=

m∑
b=1

Z a
b dzb, a = 1, . . . ,m,
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are also right invariant. Let DZ1, . . . ,DZm be the dual right-invariant total
derivative operators defined by

dM F =
m∑

a=1

(DZa F) σ za
, for F : D(∞)

→ R.

Explicitly,

DZa =

m∑
b=1

wb
a Dzb , where (wb

a) = (Z
b
a)
−1, (9)

and
Dzb =

∂

∂zb
+

∑
#A>0

Z A,b
∂

∂Z A
, b = 1, . . . ,m, (10)

are the total derivative operators onD(∞). Then, the right-invariant Maurer–Cartan
forms are obtained by successively Lie differentiating the zero-order invariant
contact forms

µa
= dG Z a

= d Z a
−

m∑
b=1

Z a
b dzb

with respect to (9):
µa

A = DA
Zµ

a.

We denote by µ(n) the set of right-invariant Maurer–Cartan forms of order 6 n.
For the implementation of the moving frame method, the coordinate

expressions of the Maurer–Cartan forms are not required. It is enough to
know that these invariant group forms exist since, in practice, most computations
involving the Maurer–Cartan forms can be done symbolically.

Under the inclusion map i : G(∞) ↪→ D(∞), the pulled-back Maurer–Cartan
forms µa

A = i∗(µa
A) are no longer linearly independent. In the following, to

simplify the notation, we systematically avoid writing pull-backs.

PROPOSITION 4. Let G be a Lie pseudogroup of order n?. Then, for all n > n?,
the restricted Maurer–Cartan forms µ(n)|G satisfy the nth-order lifted linear
relations

L (n)(Z , µ(n)) = 0, (11)

obtained from the infinitesimal determining system (6) and its prolongation by
making the substitutions za

→ Z a and ζ a
A → µa

A.

EXAMPLE 5. Continuing Example 3, the right-invariant Maurer–Cartan forms of
the Lie pseudogroup (3) satisfy the linear relations

µx
Y = µ

x
U = 0, µy

= 0, µu
= −Uµx

X , (12)
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obtained from the infinitesimal determining equations (8) by making the
substitutions

ξA → µx
A, ηA → µ

y
A, φA → µu

A and x → X, y → Y, u → U.

Linear relations among the higher-order Maurer–Cartan forms are obtained by
Lie differentiating (12) with respect to DX , DY , DU . It follows that a basis of
right-invariant Maurer–Cartan forms is given by µk = µ

x
Xk , k > 0.

By pseudogroup inversion, the preceding discussion also holds for the left
multiplication (1). Denote the inverse of Z = ϕ(z) by z = ϕ−1(Z). Then the
above formulas may be adapted to the left action by interchanging the variables
za and Z a . In particular, the left-invariant Maurer–Cartan forms are obtained by
successively Lie differentiating

µa
= dza

−

m∑
b=1

za
Zb d Z b,

with respect to

Dza =

m∑
b=1

W b
a DZb , where (W b

a ) = (z
b
Za )
−1, (13)

so that
µa

A = DA
z µ

a.

For the implementation of the group foliation method it will be useful to know
the relation between left-invariant and right-invariant Maurer–Cartan forms. For
the order-zero Maurer–Cartan forms we find that

µa
= dza

−

m∑
b=1

za
Zb d Z b

= −

m∑
b=1

za
Zb(d Z b

−

m∑
c=1

Z b
zc dzc) = −

m∑
b=1

za
Zb µ

b. (14)

The linear relations among the higher-order Maurer–Cartan forms are obtained
by Lie differentiating (14) with respect to (13):

µa
A = −

m∑
b=1

∑
B6A

(
A
B

)
DB

z (z
a
Zb) · DA−B

z (µb). (15)

For example, for the first-order Maurer–Cartan forms, we have the relations

µa
b = Dzb(µa) = −

m∑
b,c=1

W c
b (z

a
Zb Z c µ

b
+ za

Zb µ
b
c).
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For G ⊂ D, the relations between the left-invariant and right-invariant Maurer–
Cartan forms are obtain by restricting (14), (15) to the determining system (2) and
the lifted determining equations (11).

EXAMPLE 6. For our running example, formula (14) reduces to

µ = µX
= −[xX µ

x
+ xY µ

y
+ xU µ

u
] = −xX µ, (16)

µY
= −[yX µ

x
+ yY µ

y
+ yU µ

u
] = −µy

= 0,

µU
= −[uX µ

x
+ uY µ

y
+ uU µ

u
] =

u xX X

xX
µx
−

1
xX
µu
=

u xX X

xX
µ− u µX ,

where we used (12) and the determining equations

xY = xU = 0, y = Y, u =
U
xX
.

Lie differentiating (16) with respect to

Dx =
1

xX
DX +

u xX X

xX
DU , Dy = DY , Du = xXDU

yields the relations among the higher-order Maurer–Cartan forms. For example,

µx = Dx(µ) = −
xX X

xX
µ− µX ,

µxx = Dx(µx) =

(
x2

X X

x3
X

−
xX X X

x2
X

)
µ−

xX X

x2
X

µX −
1

xX
µX X .

3. Moving frames

We are interested in the action of a Lie pseudogroup G on p-dimensional
submanifolds S ⊂ M , with 1 6 p < m = dim M . To this end, let Jn

= Jn(M, p)
denote the nth-order extended jet bundle of equivalence classes of p-dimensional
submanifolds under the equivalence relation of nth-order contact [35]. Locally,
we identify M ' X × U with the Cartesian product of the submanifolds X
and U with local coordinates z = (x, u). The coordinates x = (x1, . . . , x p)

and u = (u1, . . . , uq) are considered as independent and dependent variables,
respectively. This induces the local coordinates z(n) = (x, u(n)) on Jn , where u(n)

denotes the collection of derivatives uαJ , with α = 1, . . . , q and 0 6 #J 6 n.
We introduce the nth-order lifted bundle

E (n) = Jn
×M G(n)→ Jn,
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whose local coordinates are given by (z(n), g(n)), where z(n) are the nth-order
submanifold jet coordinates and g(n) are the fiber coordinates along G(n)|z . On
the infinite-order lifted bundle E (∞), define the total derivative operators

Dx i = Dx i +

q∑
α=1

[
uαi Duα +

∑
J

uαJ,i
∂

∂uαJ

]
, i = 1, . . . , p,

where the expressions for the differential operators Dx i , Duα are given in (10).
A Lie pseudogroup G acts on Jn by the usual prolonged action

(X,U (n)) = g(n) · (x, u(n)) = g(n) · jn S = jn(g · S). (17)

The coordinate expressions of the prolonged action are obtained by applying the
lifted total derivative operators

DX i =

p∑
j=1

B j
i Dx j , where (B j

i ) = (Dx i X j)−1,

to the dependent target coordinates U α:

U α
X J = D J

XU α, α = 1, . . . , q, #J > 0.

The lifted bundle E (n) has groupoid structure with source map

σ (n)(z(n), g(n)) = z(n)

given by the projection onto the first factor, and target map

τ (n)(z(n), g(n)) = g(n) · z(n)

given by the prolonged action (17). On E (∞) we use σ and τ to denote the source
and target maps.

EXAMPLE 7. The Lie pseudogroup (3) is now assumed to act on surfaces in R3

locally given as graphs {x, y, u(x, y)}. In this setting, the prolonged action is
obtained by applying the lifted total derivative operators

DX =
1
fx

Dx , DY = Dy,

to U . For example, the second-order prolonged action is

UY =
u y

fx
, UX =

ux fx − u fxx

f 3
x

, UY Y =
u yy

fx
,

UXY =
uxy −UY fxx

f 2
x

, UX X =
uxx fx − u fxxx

f 4
x

− 3
UX fxx

f 2
x

.
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From this point forward, we assume that the Lie pseudogroup acts regularly
on Jn for all n. This means that the orbits of the pseudogroup action form a
regular foliation and that its leaves intersect small open sets in pathwise connected
subsets.

DEFINITION 8. Let

G(n)z(n) = {g
(n)
∈ G(n)|z : g(n) · z(n) = z(n)}

be the isotropy subgroup of z(n). The pseudogroup G acts freely at z(n) if
G(n)z(n) = {1

(n)
z }. The pseudogroup G is said to act freely at order n if it acts freely

on an open subset Vn
⊂ Jn , called the set of regular n-jets.

DEFINITION 9. Let G be a Lie pseudogroup acting regularly and freely on
Vn
⊂ Jn , and let Kn

⊂ Vn be a local cross-section to the pseudogroup orbits.
Given z(n) ∈ Vn , the nth-order right moving frame

%(n)(z(n)) = (z(n), ρ(n)(z(n)))

is the section of the lifted bundle E (n) where the fiber component ρ(n)(z(n)) is the
unique nth-order pseudogroup jet in G(n)|z such that

τ (n)[%(n)(z(n))] = ρ(n)(z(n)) · z(n) ∈ Kn.

Assuming, to simplify the discussion, that Kn is the coordinate cross-section

x i1 = c1, . . . , x il = cl, uαl+1
Jl+1
= cl+1, . . . , uαdn

Jdn
= cdn , (18)

where dn = dimG(n)|z is the fiber dimension of the subbundle G(n), the corres-
ponding right moving frame is obtained by solving the normalization equations

X i1(z(n), g(n)) = c1, . . . , X il (z(n), g(n)) = cl,

U αl+1

X Jl+1
(z(n), g(n)) = cl+1, . . . ,U

αdn

X Jdn
(z(n), g(n)) = cdn ,

for the pseudogroup jets g(n) = ρ(n)(z(n)) so that

%(n)(z(n)) = (z(n), ρ(n)(z(n))). (19)

To each right moving frame (19) corresponds a unique left moving frame %(n)

obtained by pseudogroup inversion:

%(n)(ρ(n)(z(n)) · z(n)) = (ρ(n)(z(n)) · z(n), (ρ(n)(z(n)))−1).
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In the following, we let ρ(n)(z(n)) = (ρ(n)(z(n)))−1 denote the inverse of the
pseudogroup jet ρ(n)(z(n)) so that

%(n)(z(n)) = (ρ(n)(z(n)) · z(n), ρ(n)(z(n))) where z(n) = τ (n)(%(n)). (20)

Given a (right) moving frame, there is a systematic procedure for invariantizing
differential functions and differential forms. First recall the standard coframe on
J∞ given by the horizontal one-forms

dx1, . . . , dx p, (21a)

and the basic contact one-forms

θαJ = duαJ −
p∑

j=1

uαJ, j dx j , α = 1, . . . , q, #J > 0. (21b)

Supplementing (21) with the Maurer–Cartan forms µa
A|G yields a coframe for the

lifted bundle E (∞).

DEFINITION 10. Let ω be a differential form on J∞. Its lift is the G-invariant
differential form

λ(ω) = πJ[τ
∗(ω)], (22)

where πJ is the projection onto jet forms obtained by setting the Maurer–Cartan
forms equal to zero.

We denote by
Ω i
= λ(dx i), Θα

J = λ(θαJ ), (23)

the lift of the standard jet coframe. When ω is a submanifold jet coordinate, its
lift is just the usual prolonged action:

X i
= λ(x i), U α

X J = λ(uαJ ).

The lift map (22) may also be extended to the vector field jet ζ (n) by defining

λ(ζ a
A) = µ

a
A

to be the corresponding right-invariant Maurer–Cartan form.

DEFINITION 11. Let % = %(∞) : J∞ → E (∞) be a right moving frame. Then the
invariantization map ι : Ω∗(J∞)→ Ω∗(J∞) is defined by

ι = %∗ ◦ λ. (24)
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We denote by

$ i
= %∗(Ω i) = ι(dx i), i = 1, . . . , p,

ϑαJ = %
∗(Θα

J ) = ι(θ
α
J ), α = 1, . . . , q, #J > 0,

(25)

the invariantization of the horizontal coframe and basic contact one-forms. Since
the lifted contact forms (23) and their invariant counterparts in (25) are not used
in the group foliation method, we introduce the equivalence notation ≡ to denote
equality of two differential one-forms up to a lifted or invariant contact form.
Finally, we denote the invariantization of the submanifold jet coordinates by

H i
= ι(x i), I αJ = ι(u

α
J ), (26)

and refer to them as normalized invariants. By construction, the invariantization
of the jet coordinates (18) defining the cross-section K∞ are constant, and for this
reason they are called phantom invariants.

PROPOSITION 12. The normalized invariants (26) form a complete set
of functionally independent differential invariants. In particular, using the
invariantization map (24), any invariant J (x, u(n)) can be expressed as

J (x, u(n)) = ι[J (x, u(n))] = J (H, I (n)).

EXAMPLE 13. We now construct a moving frame for the Lie pseudogroup action
(3). A standard cross-section to the pseudogroup orbits is

x = 0, u = 1, uxk = 0, k > 1. (27)

Solving the normalization equations U = 1, X = UXk = 0, k > 1, for the
pseudogroup parameters yields the right moving frame

f = 0, fxk = uxk−1, k > 1. (28)

Up to second order, the invariantization of the submanifold jet coordinates
produces the normalized invariants

H y
= ι(y) = y, I01 = ι(u y) =

u y

u
,

I11 = ι(uxy) =
uuxy − ux u y

u3
, I02 = ι(u yy) =

u yy

u
.

(29)

The invariantization of the horizontal coframe gives the invariant one-forms

$ x
= %∗(dJ X) = u dx, $ y

= %∗(dJ Y ) = dy.
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The corresponding left moving frame is obtained by inverting the right moving
frame (28):

f̄ = x, f̄X =
1
fx
=

1
u
, f̄X X = −

fxx

f 3
x

=
ux

u3
, . . . . (30)

THEOREM 14. Let ω be a differential form on J∞. Then

d[λ(ω)] = λ[dω + v(∞)(ω)]. (31)

An immediate consequence of (31) is that

d[ι(ω)] = ι[dω + v(∞)(ω)]. (32)

The identity (32) is called the universal recurrence relation. We are particularly
interested in the case when ω is a differential function, and, more particularly,
when ω is one of the submanifold jet coordinates. Substituting x i and uαJ in (32),
we obtain the invariant recurrence relations

d H i
= $ i

+ M i , d I αJ ≡ I αJ,i $
i
+ N α

J , (33)

for the normalized invariants. The correction terms M i , N α
J come from the Lie

algebraic term ι(v(∞)(ω)) in (32). One of most important features of (33) or (32)
is that these equations do not require the coordinate expression of the invariant
object to be computed [43].

EXAMPLE 15. In this example, we compute the invariant recurrence relations
(33) for the normalized invariants (29). To compute the lifted recurrence relation
(31), we need the prolongation of the infinitesimal generator (7):

v(∞) = a(x)
∂

∂x
− u ax

∂

∂u
− (u axx + 2ux ax)

∂

∂ux
− u y ax

∂

∂u y
− u yy ax

∂

∂u yy

− (u y axx + 2uxy ax)
∂

∂uxy
− (u axxx + 3ux axx + 3uxx ax)

∂

∂uxx
− · · · .

Substituting x , y, u, ux , u y , . . . for ω in (31), we obtain, modulo contact forms,

d X = Ω x
+ µ, dY = Ω y,

dU ≡ UX Ω
x
+UY Ω

y
−U µX ,

dUX ≡ UX X Ω
x
+UXY Ω

y
−U µX X − 2UX µX ,

dUY ≡ UXY Ω
x
+UY Y Ω

y
−UY µX ,

dUX X ≡ UX X X Ω
x
+UX XY Ω

y
−U µX X X − 3UX µX X − 3UX X µX ,

dUXY ≡ UX XY Ω
x
+UXY Y Ω

y
−UY µX X − 2UXY µX ,

dUY Y ≡ UXY Y Ω
x
+UY Y Y Ω

y
−UY Y µX , . . . .

(34)
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Pulling back (34) by the right moving frame ρ, the left-hand side of (34) is
identically zero for the phantom invariants H x

= 0, I = 1, Ik0 = 0, k > 1.
Solving these equations for the pulled-back Maurer–Cartan forms µk = %

∗µk , the
result is

µ = −$ x , µk ≡ Ik−1,1$
y, k > 1. (35)

Substituting the expressions (35) into the remaining recurrence relations (34)
yields the invariant recurrence relations

d H y
= $ y, d I01 ≡ I11$

x
+ I02$

y
− I 2

01$
y,

d I11 ≡ I21$
x
+ I12$

y
− 3I01 I11$

y, d I02 ≡ I12$
x
+ I03$

y
− I01 I02$

y,

(36)
and so on. Let Di be the invariant total differential operators dual to the invariant
horizontal one-forms $ i defined by

d F ≡
p∑

i=1

Di(F)$ i for any differential function F(x, u(n)).

Since the invariant horizontal one-forms $ i are linearly independent, we deduce
from (36) the recurrence relations

Dx I01 = I11, Dy I01 = I02 − I 2
01,

Dx I11 = I21, Dy I11 = I12 − 3I01 I11,

Dx I02 = I12, Dy I02 = I03 − I01 I02,

(37)

among the low-order normalized invariants. Note that the invariant I12 appears
twice on the right-hand side of (37). Eliminating this invariant, we obtain the
relation

Dx I02 = Dy I11 + 3I01 I11. (38)

DEFINITION 16. A set of invariants I is said to generate the algebra of
differential invariants with respect to the invariant derivative operators D1, . . . ,

Dp if all differential invariants can be expressed as some function of the invariants
I ∈ I and their invariant derivatives DJ I .

The fundamental basis theorem—first proved for finite-dimensional group
actions by Lie [26, page 760], and later extended to infinite-dimensional Lie
pseudogroups by Tresse [54]—guarantees that the set I may be taken to be
finite. That is, the algebra of differential invariants is generated by a finite
number of invariants. Modern proofs of the fundamental basis theorem appear
in the textbooks [36, 47]; other proofs based on Spencer cohomology [23], Weyl
algebras [32], homological methods [21], or moving frames [15, 39, 44] also exist.
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Using Gröbner basis techniques, the proof of the basis theorem presented
in [44] is constructive and also identifies a generating set. The proof relies on
the assumption that moving frames constructed are of minimal order, and hence
we assume from now on every moving frame to be of minimal order. Intuitively,
a moving frame is of minimal order if during the normalization procedure the
pseudogroup parameters are normalized as soon as possible; we refer the reader
to [15, 39] for a precise definition.

Understanding functional dependence relations among the invariants will be
central to the implementation of the group foliation method.

DEFINITION 17. A syzygy among the generating differential invariants

I = {I 1, . . . , I k
}

is a nontrivial functional relationship

S(. . . ,DL I 1, . . . ,DK I k, . . .) = 0

among the invariants I ν and their various invariant derivatives DJ I ν .

EXAMPLE 18. Continuing Example 15, setting ω = dx and ω = dy in the
recurrence relation (32), we find that

d$ x
= I01$

y
∧$ x , d$ y

= 0.

By duality, we deduce the commutation relation

[Dx ,Dy] = I01 Dx . (39)

Syzygies arising from commutation relations such as the above are called
commutator syzygies. For example, for any differential invariant I , one finds by
application of (39) the syzygy

DxDy I = DyDx I + I01Dx I. (40)

DEFINITION 19. A collection S = {S1, . . . , Sk} of syzygies is said to form a
generating system if every syzygy can be written as a linear combination of
members of S and finitely many of their derivatives, modulo the commutator
syzygies.

THEOREM 20. Let G be a Lie pseudogroup acting locally freely on an open subset
of the submanifold jet bundle Jn for some n > 1. Then the algebra of syzygies is
generated by a finite number of fundamental syzygies.
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A comprehensive discussion of syzygies and a proof of Theorem 20 appears
in [44]. The proof is again constructive and based on Gröbner basis methods.
We note that in applications it is generally possible to avoid the introduction
of the Gröbner basis machinery. The generating sets I and S for the algebra
of differential invariants and the algebra of syzygies can be found by direct
observation.

EXAMPLE 21. Continuing Example 15, we conclude from the recurrence
relations (37) that the second-order normalized invariants I11 and I02 are
expressible in terms of the normalized invariants I01 and H y and their invariant
derivatives with respect to Dx and Dy . The same holds for higher-order
normalized invariants, and we conclude that the algebra of differential invariants
of the pseudogroup (3) is generated by the normalized invariants I01 and H y and
the invariant derivative operators Dx = (1/u)Dx and Dy = Dy .

Also, there is no fundamental syzygy among the generating invariants
{H y, I01}. Every syzygy must be trivial modulo the commutator syzygies.
For example, substituting I = I01 in (40) and using the recurrence relations (37),
we recover the syzygy (38).

In the above discussion, the invariant derivative operators D1, . . . ,Dp can be
replaced by any other set of p linearly independent invariant total derivative
operators. In doing so, the structure of the algebra of differential invariants
may change. As the next example shows, the generating set of invariants and
fundamental syzygies are dependent on the basis of invariant total derivative
operators.

EXAMPLE 22. We now revisit Example 21, using a different set of invariant
derivative operators. To simplify the notation, let

H = H y, J = I01, K = I11, L = I02. (41)

From (36), we have that

d H ∧ d J ≡ K $ y
∧$ x . (42)

Working on the open subset of jet space where K 6= 0, one can replace the
invariant total derivative operators Dx and Dy by the invariant Tresse derivatives
DH and DJ [22]. By the chain rule,

Dx = Dx H · DH +Dx J · DJ = K DJ ,

Dy = Dy H · DH +Dy J · DJ = DH + (L − J 2)DJ .
(43)
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In terms of these Tresse derivatives, the algebra of differential invariants cannot
be generated by the invariants {H y, I01} = {H, J }, since

DH (H) = DJ (J ) = 1 and DH (J ) = DJ (H) = 0.

In this case, a generating set of invariants is given by the four normalized
invariants (41). There is now one fundamental syzygy obtained by expressing
(38) in terms of the operators (43):

Dx L = Dy K +3J K ⇐⇒ K DJ L = DH K + (L− J 2)DJ K +3J K . (44)

4. Group foliation

In the first part of this section, we review the classical method of group
foliation, mostly following Ovsiannikov’s treatment [47]. Moving frames are
used when possible to simplify the constructions. In particular, the derivation
of the automorphic and resolving systems is done symbolically without relying
on coordinate expressions for the differential invariants. In the second part of
this section, the moving frame method is used to obtain a symbolic procedure
for reconstructing solutions of the original differential equation from solutions
of the resolving system. This reconstruction procedure differs from the classical
approach using automorphic systems, which requires explicit formulas for
differential invariants.

4.1. Vessiot’s group foliation method. Given a differential equation ∆ = 0,
group foliation splits the problem of solving ∆ = 0 into one of solving two
associated systems of differential equations called the resolving and automorphic
systems. More precisely, it is an associated family of equations; each solution
to the resolving system determines a particular G-automorphic system, which in
turns yields solutions to the original equation ∆ = 0.

DEFINITION 23. A system of differential equations is called G-automorphic if
all of its solutions can be obtained from a single solution via transformations
belonging to G.

We now describe the method rigorously. Suppose that

∆(x, u(n)) = 0

is an nth-order differential equation admitting a Lie pseudogroup G of
symmetries. By definition of invariance, G maps solutions of ∆ = 0 to other
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Figure 2. The orbit of a graph and intersection with a cross-section.

solutions. Thus, there is an induced action of G on the solution set, partitioning
this space into orbits. If the jets of solutions lie within the set of regular jets
Vk
⊂ Jk , these orbits determine invariant submanifolds in Jk , k > 0, traced out

by the action of G on the prolonged graph of a given solution. The description
of these invariant submanifolds using the differential invariants of G leads to the
main idea of the group foliation method.

Let Kk be a cross-section to the prolonged action of G on Jk , and let u0 : X →U
be an arbitrary function whose prolonged graph (x, u(k)0 (x)) lies in a neighborhood
of Kk . Later on, u0(x)will be a solution of the differential equation∆ = 0, but the
immediate discussion does not rely on this assumption. Consider the orbit under
G of the kth prolongation of the graph (x, u(k)0 (x)):

A(u(k)0 ) =
{

g(k) · (x, u(k)0 (x)) : g
(k)
∈ G(k)|

(x,u(k)0 )

}
⊂ Jk .

Let rk be the dimension of the intersection of A(u(k)0 ) with the cross-section Kk .
We assume that the dimension of this intersection is constant. Increasing the order
of prolongation, we have the nondecreasing sequence

0 6 r0 6 r1 6 · · · 6 p.

DEFINITION 24. The smallest order s such that rs = rs+i for all i > 1 is called
the order, and r = rs is called the invariant rank of the function u0.

As guaranteed by the fundamental basis theorem, we may choose k > s so that
there is a functionally independent generating set I of differential invariants of
order 6k. These invariants provide coordinates for the cross-section Kk , and this
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allows us to write the intersection A(u(k)0 ) ∩ Kk as a parameterized submanifold
of Kk . For this purpose, distinguish a set of functionally independent differential
invariants {J 1, . . . , J r

} ⊂ I , to be used as parametric variables. We may then use
the remaining invariants as dependent variables for the parameterization, writing
A(u(k)0 ) ∩Kk locally as a graph in Kk :

Ar : K 1
= F1(J 1, . . . , J r ), . . . , K ν

= Fν(J 1, . . . , J r ), (45)

where {J 1, . . . , J r , K 1, . . . , K ν
} is the full generating set of invariants. The

system (45) is automorphic, and it will be called an automorphic system Ar of
rank r , dropping reference to u0. In [47], it is shown that every automorphic
system on J∞ has the form (45).

REMARK 25. In practice, we may distinguish the invariants J 1, . . . , J r by
verifying the independence condition

d J 1
∧ · · · ∧ d J r

6≡ 0

on Ar . This may be done symbolically, without the need for explicit formulas for
the invariants.

EXAMPLE 26. In this example, we obtain the automorphic systems for the
pseudogroup (3). The differential invariants and their recurrence relations were
obtained in Examples 13 and 15. Since the independent variable H = H y

= y is
an invariant, the invariant rank of an automorphic system is bounded by 1 6 r 6 2.
Distinguishing the invariants H and J as parameters, the independence condition
(42) from Example 22 implies that, when K 6= 0, the invariants H , J are
independent, and automorphic systems of rank two have the form

A2 :

{
K = F1(H, J )
L = F2(H, J ) ⇒


uuxy − ux u y

u3
= F1

(
y,

u y

u

)
u yy

u
= F2

(
y,

u y

u

)
.

(46)

When K = 0, we may choose H as a parameter to obtain the rank-one
automorphic systems

A1 :

J = F1(H)
K = 0
L = F2(H)

⇒



u y

u
= F1(y)

uuxy − ux u y

u3
= 0

u yy

u
= F2(y).

(47)
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The choice of F1, . . . , Fν in (45) may not be arbitrary. Because (45) is
expressed in terms of differential invariants, applications of syzygies among the
invariants will lead to integrability conditions. Consideration of these syzygies
leads to a system of differential equations for the functions F1, . . . , Fν in the
automorphic system Ar that we call the syzygy system.

We first discuss syzygy systems for full rank automorphic systems, that is
r = p. Let S be the set of fundamental syzygies among the generating invariants
I = {J 1, . . . , J r , K 1, . . . , K ν

}. Making the chain rule substitutions

Di =

r∑
k=1

(Di J k) DJ k , i = 1, . . . , p, (48)

we may write the invariant differential operators Di appearing in each syzygy in
terms of the derivatives DJ j . Without loss of generality, we assume that Di J j ,
i = 1, . . . , p, j = 1, . . . , r , are again functions of the generating invariants I by
increasing the order of prolongation and adding more invariants to I if necessary
(we do not require I to be minimal). Application of the fundamental syzygies to
the system (45) results in a system of differential equations for F1, . . . , Fν . This
system is called the syzygy system.

REMARK 27. As can be seen from Example 22, for any particular symmetry
group, the substitution (48) may be made symbolically, without explicit formulas
for the invariants, using the recurrence relations (33).

EXAMPLE 28. The syzygy system associated to the rank-two automorphic
system (46) is simply obtained by substituting the functions K = F1(H, J ) and
L = F2(H, J ) into the fundamental syzygy (44), resulting in the first-order partial
differential equation

F1 ∂F2

∂ J
=
∂F1

∂H
+ (F2

− J 2)
∂F1

∂ J
+ 3J F1. (49)

We now address the case when the automorphic systems considered have
less than full rank, that is r < p. In this instance, the substitution (48) may
introduce new dependencies among the differentiated invariants in addition to the
fundamental syzygies and their consequences. We will call these dependencies
restriction syzygies, since they arise from restricting the differential operators to
submanifolds (locally) parameterized by J 1, . . . , J r .

EXAMPLE 29. For the rank-one automorphic system (47), the syzygy (44) is
trivial. To see this, express the invariant total derivative operators Dx , Dy in terms
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of the single operator DH :

Dx = Dx H · DH = 0, Dy = Dy H · DH = DH . (50)

On the other hand, by substitution of (50) into the recurrence relations (37), we
find

DH J = L − J 2, I21 = 0, I12 = 0, I03 = DH L − J L , (51)

and so on. Thus, there is a new restriction syzygy

DH J = L − J 2

among the generating invariants, arising from the restriction of the invariants and
invariant differential operators to submanifolds of the form (47). It can be seen by
inspection that this restriction syzygy is generating. Thus we arrive at the rank-one
syzygy system for the functions F1(H), F2(H):

∂F1

∂H
= F2

− (F1)2.

REMARK 30. We will henceforth refrain from referencing the functions F i

in our examples when it is understood that each invariant K i is a function
K i(J 1, . . . , J r ).

Analogous to Theorem 20 in the full rank case r = p (where the restriction
syzygies are identical to the usual syzygies), the restriction syzygies for r < p
are also finitely generated.

PROPOSITION 31. Suppose that the Lie pseudogroup G admits a moving frame.
For any choice of distinguished invariants J 1, . . . , J r , the set of restriction
syzygies resulting from substitution of the relations (48) into the recurrence
relations is finitely generated. A finite generating set of restriction syzygies is
called a set of fundamental restriction syzygies.

Proof. The full rank case r = p follows from Theorem 20. When r < p,
certain constraints among the differential invariants are imposed, as can be seen in
Example 26. Writing the differential invariants explicitly in terms of submanifold
jet coordinates (x, u(n)), these constraints give invariant differential equations
that u = u(x) must satisfy. The proposition then follows from the fact that the
differential module of differential syzygies restricted to the solution space of an
invariant differential equation is finitely generated [22, Theorem 24].

https://doi.org/10.1017/fms.2015.24 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2015.24


R. Thompson and F. Valiquette 22

REMARK 32. Our proof of Proposition 31 provides only the existence of a finite
generating set of restriction syzygies. A constructive proof would be preferable
and useful for more intensive examples than those treated in this paper.

We are now prepared to define the syzygy system for all ranks r 6 p.

DEFINITION 33. The syzygy system Sr for a rank-r automorphic system Ar is the
finite system of differential equations for F1, . . . , Fν as functions of the invariant
parameters J 1, . . . , J r obtained by applying to Ar the fundamental restriction
syzygies.

REMARK 34. It is important to note that the syzygy system does not impose extra
conditions on the solutions of the system Ar ; Sr is a collection of integrability
conditions on the functions F j .

Let us now return to the context in which our automorphic systems (45) arise as
orbits of solutions u0(x) to a G-invariant differential equation ∆ = 0, and discuss
how to apply these systems to the problem of finding solutions to ∆ = 0.

Starting with a solution u0(x) to a G-invariant equation ∆ = 0, solutions
to the G-automorphic system A(u(k)0 ) will again satisfy ∆ = 0 by invariance.
Unfortunately, this observation does not offer obvious practical value for finding
solutions to∆ = 0; indeed, if a ‘seed’ solution u0 is known, one can simply apply
the pseudogroup transformations to u0 and avoid automorphic systems altogether.
The preceding construction of syzygy systems suggests an alternative approach:
append to the syzygy system the condition ∆ = 0. By adding this condition, we
ensure that the automorphic systems determined by solving the syzygy system
are those generated by solutions to ∆ = 0. Note that, by the invariance of ∆ = 0,
this amounts to adding new relations among the generating invariants; these
relations will be called constraint syzygies. The constraint syzygies together with
the restriction syzygies give a set of differential equations, called the resolving
system, whose solutions determine automorphic systems generated by solutions
of ∆ = 0.

DEFINITION 35. The rank-r resolving system Rr (∆) of a differential equation
∆ = 0 foliated by G is the system of differential equations obtained by appending
to the syzygy system Sr the constraint syzygy ι(∆) = 0 and its differential
consequences.

EXAMPLE 36. We now obtain the rank-two resolving system for the nonlinear
wave equation

uuxy − ux u y = u3, (52)
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foliated by the Lie pseudogroup (3). First observe that this Lie pseudogroup is a
symmetry group of (52). Invariantization of (52) gives the constraint syzygy

K = 1. (53)

Appending the constraint syzygy to the syzygy system (49) yields the resolving
system

K = 1, DJ L = 3J. (54)

Note that there is no rank-one resolving system, because the constraint syzygy
(53) is not compatible with the dependence condition K = 0 from (42).

REMARK 37. The addition of the constraint syzygy may, as usual, be performed
symbolically by direct invariantization of the equation ∆ = 0 and use of the
recurrence relation to write all invariants appearing in ι(∆) in terms of the
generating invariants. We assume that the solution space of ∆ = 0 lies within the
set of regular jets so that the equation may be written as a level set of differential
invariants; see [35, Proposition 2.56].

All the ingredients for the group foliation algorithm are now in place.

ALGORITHM 38 (Group foliation). Let ∆(x, u(n)) = 0 be an nth-order
differential equation invariant under a Lie pseudogroup G, and suppose that
G admits a moving frame on the solution space of ∆ = 0.

• Choose an invariant rank r for which rank-r solutions will be sought. Prolong
to order k > s, where s is the order of stabilization of a generic rank-r solution,
so that the normalized invariants of order at most k form a generating set.

• Choose distinguished invariants J 1, . . . , J r among the normalized invariants
so that Di J j have order no greater than k. These invariants will be used as
independent variables and the remaining normalized invariants K 1, . . . , K ν as
dependent variables in the automorphic system

Ar : K 1
= F1(J 1, . . . , J r ), . . . , K ν

= Fν(J 1, . . . , J r ).

• Compute the order-r resolving system Rr (∆) by applying the restriction
syzygies and the constraint syzygy ι(∆) = 0 to Ar .

• Find a solution F1(J 1, . . . , J r ), . . . , Fν(J 1, . . . , J r ) to the resolving system.

• Form an automorphic system Ar using the resolving system solution, and
write the invariants in this automorphic system explicitly in terms of (x, u(k)).
Solutions of this automorphic system will satisfy the original equation ∆ = 0.
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EXAMPLE 39. We continue Example 36. A general solution to the resolving
system (54) is easily found:

K (H, J ) = 1, L(H, J ) = 3
2 J 2
+ G(H), (55)

where G(H) is an arbitrary smooth function. Substituting (55) and the explicit
formulas (29) for the invariants into the automorphic system (46), we obtain the
system of differential equations

uuxy − ux u y

u3
= 1,

u yy

u
=

3
2

(u y

u

)2
+ G(y). (56)

It is apparent that the method in this instance has been circular; the original
equation itself appears in the final automorphic system, and the second equation
of (56) follows from the first by cross-differentiation. This unfortunate outcome
will be remedied by the subject of the next section.

EXAMPLE 40. To illustrate the algorithm for nonmaximal invariant rank, we
consider the differential equation

uuxy − ux u y = 0. (57)

This equation also admits the symmetry pseudogroup (3). Using the same notation
as Examples 26 and 29, (57) implies the constraint syzygy K = 0. Since d H ∧
d J ≡ K$ y

∧ $ x
= 0, the invariants H and J are functionally dependent, and

the resolving equations in this case are identical to the rank-one syzygy system
already computed in Example 29. A solution to the resolving system is

J (H) = G(H), L(H) = G ′(H)+ G(H)2, (58)

where G is an arbitrary smooth function. Substituting (58) and the explicit
formulas (29) for the invariants into the automorphic system (47), we obtain the
system of differential equations

u y

u
= G(y),

uuxy − ux u y

u3
= 0,

u yy

u
= G ′(y)+ G(y)2. (59)

We do not pursue a solution of (59) at present. This will be done by alternative
means in Example 49 to follow.

In Algorithm 38, all steps except for the last may be executed using the
symbolic calculus of moving frames. It is only the last step that requires explicit
knowledge of the differential invariants and, in the instance of Example 39, leads
to a dead end in the computation. In keeping with the intent of moving frames,
we propose an alternative method for reconstruction of solutions from the
resolving system that is completely symbolic, and effective in certain examples,
such as Example 39, where the standard reconstruction method fails.
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Figure 3. The geometry of reconstruction.

4.2. Reconstruction procedure. The method of moving frames is naturally
incorporated into our exposition of the group foliation method. Moving frames
are not required per se to perform the algorithm, but they facilitate the
symbolic construction of the automorphic and resolving systems using only
the infinitesimal data of the pseudogroup action and the choice of a cross-section
to the pseudogroup orbits. But, when the automorphic system is used to construct
a solution to∆ = 0 from a solution of the resolving system, as in (56), it becomes
necessary to know the explicit formulas for the generating invariants. Also, as
Example 39 shows, this final step of the group foliation method may result in a
problem no easier to solve than the original differential equation.

To address these shortcomings, we replace the explicit automorphic system by
a system of reconstruction equations. In essence, the reconstruction system makes
use of the pseudogroup transformations to map the resolving system solution
away from the cross-section, to solutions of ∆ = 0. More precisely: a right
moving frame ρ will project the jet of an unknown solution along pseudogroup
orbits onto the cross-section. This projection is identical to the intersection of the
orbit of the solution with the cross-section, and hence is characterized as a solution
of the resolving system Rr studied in the previous section. A left moving frame
% inverts this process, mapping a resolving system solution away from the cross-
section and back to solutions of ∆ = 0. See Figure 3 for the geometry of this
process. We begin by introducing the pseudogroup jet differentials of G, which
will allow the determination of reconstruction equations in a purely symbolic
manner.

4.2.1. Pseudo-group jet differentials. In this section, we introduce the
pseudogroup jet differential expressions arising simply from taking the exterior
derivative of the pseudogroup jets. Pull-back of these pseudogroup jet differentials
by the right moving frame results in an expression for the exterior derivatives
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of the left moving frame components in terms of ‘known quantities’: invariant
horizontal differential forms and the right moving frame pull-backs of the
right Maurer–Cartan forms, computed using the universal recurrence relation
(32). Expansion of these exterior derivatives in the invariant horizontal coframe
yields differential equations for the left moving frame; after restriction to a
resolving system solution, these differential equations become the reconstruction
equations.

The pseudogroup jet differential expressions rely on the relation between left
and right Maurer–Cartan forms. Recall from Section 2 the right and left zero-order
Maurer–Cartan forms, respectively, for the full diffeomorphism pseudogroup:

µa
= d Z a

−

m∑
b=1

Z a
zb dzb, µa

= dza
−

m∑
b=1

za
Zb d Z b.

Higher-order right and left Maurer–Cartan forms µa
A = DA

Zµ
a and µa

A = DA
z µ

a

are obtained via Lie differentiation with respect to, respectively,

DZa =

m∑
b=1

zb
Za Dzb and Dza =

m∑
b=1

Z b
za DZb .

The Maurer–Cartan forms of a Lie pseudogroup G ⊂ D are found by restricting
the diffeomorphism pseudogroup Maurer–Cartan forms to the determining
equations (2) and lifted determining equations (11) for G, with the interchange
z ↔ Z , µ↔ µ for the left Maurer–Cartan forms.

Using the relation (14) between left and right zero-order Maurer–Cartan forms,
we find the following relations among the diffeomorphism pseudogroup jets:

dza
=

m∑
b=1

(za
Zb d Z b

− za
Zb µ

b). (60a)

Similar relations among the higher-order diffeomorphism pseudogroup jets za
A are

obtained by Lie differentiation of (60a) with respect to DZa . For example, we find,
for the first-order pseudogroup jets,

dza
Z c =

m∑
b=1

(za
Zb Z c d Z b

− za
Zb Z c µ

b
− za

Zb µ
b
Z c). (60b)

DEFINITION 41. Equations (60) and higher-order consequences are called
pseudogroup jet differentials for the diffeomorphism pseudogroup. For a
Lie pseudogroup G ⊂ D, the pseudogroup jet differentials are obtained by
application of the determining system (2), with the interchange of z and Z , and
lifted determining system (11)–(60).

https://doi.org/10.1017/fms.2015.24 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2015.24


Group foliation of differential equations using moving frames 27

REMARK 42. It will usually be more convenient to work with pseudogroup
parameters instead of pseudogroup jets. The distinction is purely computational;
we will illustrate both approaches in our running example.

EXAMPLE 43. We now compute the pseudogroup jet differentials for the Lie
pseudogroup action (3). Applying to (60) the determining equations

xY = 0, xU = 0, y = Y, u =
U
xX
,

and the lifted determining equations (12) for the right Maurer–Cartan forms, we
obtain

dx = xX (d X − µx)

dy = dY

du =
1

xX
(d X − µx)−

U xX X

xX
(dU +Uµx).

Lie differentiation with respect to DX gives the higher-order relations

dxX = xX X (d X − µx)− xX µ
x
X

duX =
−xX X

x2
X

(d X − µx)−
1

xX
µx

X −
U (xX X X xX − x2

X X )

x2
X

(dU +Uµx)

−
U 2xX X

xX
µx ,

and so on. Writing these jet differentials in terms of the pseudogroup parameters
f̄ = x, f̄X = xX , f̄X X = xX X , . . . instead offers some simplification:

d f̄ = f̄X (d X − µx),

d f̄X = f̄X X d X − f̄X X µ
x
− f̄X µ

x
X ,

d f̄X X = f̄X X X d X − f̄X X X µ
x
− 2 f̄X X µ

x
X − f̄X µ

x
X X ,

(61)

and so on. The pseudogroup jet differentials involving the jets u, uX , uX X , . . .

may be disregarded, since they are expressible in terms of the jet parameters
determined by (61).

4.2.2. Reconstruction equations. Locally, the right moving frame %(z(∞)) and
left moving frame %(z(∞)) are completely determined by their pseudogroup jet
functions ρ(z(∞)) and ρ(z(∞)), respectively. Since the considerations of this
section are purely local, we will refer to ρ and ρ as the right and left moving
frames by an abuse of terminology.
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Because the right and left moving frames ρ and ρ are related by pseudogroup
inversion, the right moving frame pull-back of the ‘inverse’ pseudogroup jets za

A
produces the left moving frame pull-back of the ‘regular’ pseudogroup jets Z a

A:

ρ∗(z, Z (∞)) = ρ∗(Z , z(∞)).

Thus applying the right moving frame pull-back ρ∗ to the pseudogroup jet
differentials will yield an expression for the differential

dρ = (d(ρ∗z), d(ρ∗za
Zb), . . .)

of the left moving frame:

dρ ≡
p∑

j=1

Pj(ρ, H, I (∞))$ j , (62)

where H , I (∞) are the collections of normalized invariants H i
= ι(x i),

I αJ = ι(u
α
J ), respectively, and z = (x, u) as usual. The invariants H i , I αJ , make

their appearance in (62) via the normalized Maurer–Cartan forms ρ∗µa
A and

the normalized differentials ρ∗d X i , ρ∗dU α. Note that these quantities may all
be computed symbolically via the universal recurrence relation (32). Giving a
general expression for the functions Pj is possible but not necessary for our
discussion. To apply the identity (62) to the problem of group foliation, we
restrict consideration to a particular automorphic system Ar given by a choice of
resolving system solution. First consider the case of full rank, r = p.

Let ∆ = 0 be a G-invariant differential equation, and suppose that a solution
to a full rank resolving system Rr is given, determining the automorphic system
Ar . Let J = {J 1, . . . , J p

} be the distinguished independent invariants for the
resolving system. Because of independence, invariant horizontal projections of
the forms

d J 1, . . . , d J p

constitute an invariant horizontal coframe, which may be used in place of$ 1, . . . ,

$ p in (62). Restricted to Ar , (62) then yields an explicit system of differential
equations for the left moving frame as a function of the distinguished invariants
J via projection onto this horizontal coframe:

dρ =
p∑

j=1

Q j(ρ, J ) d J j . (63)

All invariants H, I (∞) are expressed as functions of the distinguished invariants
via the recurrence relations. The result is a system of first-order differential
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equations that must be satisfied by ρ:

DJ j ρ = Q j(ρ, J ). (64)

We will refer to (63) or (64) as reconstruction equations.

THEOREM 44. The reconstruction equations (63) are automorphic relative to G.

Proof. Let ρ1 and ρ2 be two solutions of the reconstruction equations (63). Then
S1 = ρ1 · (H, I ) and S2 = ρ2 · (H, I ) are p-dimensional submanifolds with
same projection onto K∞. Since the normalized invariants (H, I (∞)) = ι(x, u(∞))
form a complete set of invariants and parameterize K∞, the submanifolds S1

and S2 have the same signatures [40, 55]; that is, (H, I (∞))|S1 = (H, I (∞))|S2 .
This implies that there exists a transformation g ∈ G such that g · S1 = S2. By
construction of S1 and S2, this means that g(∞) · ρ1 = ρ2.

REMARK 45. As seen in (20), a left moving frame is uniquely determined by its
target point. Since the solution to the reconstruction equations (64) is expressed in
terms of the source coordinates (that is coordinates on the cross-section K(∞)), the
solution is not unique. By the automorphic property of the reconstruction solution,
if ρ(J ) is a particular solution, then the general solutions have the form g(∞)·ρ(J ),
where g(∞) ∈ G(∞).

THEOREM 46. The parameterized graph

ρ(J ) · (H(J ), I (J )) = (x(J ), u(J ))

is the graph of a solution to the differential equation ∆ = 0.

Proof. Let (H(J ), I (∞)(J )) be a solution of the resolving system. By definition,
this solution must come from the invariantization of some solution (x, u(∞)(x))
to the differential equation ∆ = 0. Let ρ(x) be the right moving frame
sending (x, u(∞)(x)) onto (H(J ), I (∞)(J )). Suppose that ρ is a solution to the
reconstruction equations. Since ρ̄ and ρ−1 are both solutions of the reconstruction
equations, by the automorphic property there exists g ∈ G such that

ρ = g(∞) · ρ−1.

Since ρ−1 maps (H(J ), I (∞)(J )) onto the prolonged graph (x, u(∞)(x)), and g(∞)

preserves the property of being a prolonged graph, ρ(J ) · (H(J ), I (∞)(J )) can be
identified with (x, ũ(∞)(x)) for some function ũ(x), which must be a solution of
∆ = 0.
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By Theorem 46, to construct a solution of ∆ = 0, we apply ρ to the graph of
the resolving system solution:

ρ(J 1, . . . , J p) · (H(J 1, . . . , J p), I (J 1, . . . , J p)) = (x1, . . . , x p, u1, . . . , uq),

(65)
where the normalized invariants H = (ι(x1), . . . , ι(x p)), I = (ι(u1), . . . , ι(uq))

are evaluated on the resolving system solution.
To simplify notation in the following examples, we will use the same notation

for the pseudogroup parameters and their right moving frame pull-backs.

EXAMPLE 47. Continuing Example 39, we apply the reconstruction approach
to obtain solutions to (52). We begin by deriving the reconstruction equations
(63). Taking the right moving frame pull-back of the zero-order pseudogroup jet
differential from (61) yields

d f̄ = f̄X $
x , (66)

since, as found in Example 15,

ρ∗(d X) = 0 and ρ∗(µx) = −$ x .

By duality with (43), we find

$ x
≡ (J 2

− L) d H + d J , $ y
≡ d H,

using the constraint syzygy K = 1 and writing L = L(H, J ) for our choice of
resolving system solution from (55). Expressing (66) in this new coframe, we
obtain

d f̄ = (J 2
− L) f̄X d H + f̄X d J,

which gives the reconstruction equations for f̄ (H, J ), f̄X (H, J ):

DH f̄ = (J 2
− L) f̄X DJ f̄ = f̄X .

These equations determine f̄ , f̄X , which are the only parameters needed for
reconstruction. Using (55), the reconstruction equations may be written more
explicitly as

DH f̄ = −
(

J 2

2
+ G(H)

)
DJ f̄ , DJ f̄ = f̄X , (67)

which may be solved by the method of characteristics. Acting on the graph of
the resolving system solution in the cross-section (27) by the left moving frame
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determined by the reconstruction yields a solution to the nonlinear wave equation
(52) given parametrically, in terms of the invariants H and J :

x = f̄ (H, J ), y = H, u =
1

f̄X (H, J )
.

REMARK 48. The reconstruction result in Example 47 was derived in [48] using
the machinery of symmetry reduction of exterior differential systems.

We now consider the reconstruction process for nonmaximal invariant rank,
r < p. In this case, invariant horizontal projections of the forms d J 1, . . . , d J r

cannot be used as an invariant coframe in place of the invariant forms $ i . To
remedy this situation, we supplement the invariant forms d J 1, . . . , d J r with p−r
forms $ j1, . . . ,$ jp−r from the standard invariant horizontal coframe in order to
form a full invariant horizontal coframe. Thus the reconstruction equations have
the modified form

dρ ≡
r∑

j=1

Q j(ρ, J 1, . . . , J r ) d J j
+

p−r∑
i=1

Pji (ρ, J 1, . . . , J r )$ ji .

We may then use p − r of these equations to express the supplemental
differential forms $ ji in terms of the differentials of p − r moving frame
components ρai = ρ∗(zai ), i = 1, . . . , p− r . Solutions to these nonmaximal rank
reconstruction equations will then be parameterized by the invariant variables
J 1, . . . , J r in addition to the components ρa1, . . . , ρap−r . The addition of these
p − r ‘free parameters’ in the reconstruction transformations is expected; we
are attempting to reconstruct the graph of a solution to ∆ = 0, a p-dimensional
manifold, from the graph of a resolving system solution, an r -dimensional
manifold.

EXAMPLE 49. We return to Example 40 to illustrate reconstruction for
nonmaximal rank. Recall that in this example we have the single distinguished
invariant H , and the resolving system solution

J (H) = G(H)
L(H) = G ′(H)+ G(H)2.

We supplement the form d H with $ x so that {d H,$ x
} is an invariant

horizontal coframe. Applying the right moving frame pull-back to the first two
pseudogroup jet differentials from (61) yields

d f̄ ≡ f̄X $
x , d f̄X ≡ f̄X X $

x
− f̄X J d H. (68)
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The first equation of (68) allows us to express the invariant horizontal form$ x in
terms of the moving frame components:

$ x
≡ d f̄ / f̄X ,

reducing the second equation of (68) to

d f̄X ≡
f̄X X

f̄X
d f̄ − f̄X J d H. (69)

The component f̄ of the moving frame may be taken as an independent variable
so that

f̄X = f̄X ( f̄ , H), f̄X X = f̄X X ( f̄ , H),

and hence (69) yields differential equations for f̄X :

D f̄ f̄X =
f̄X X

f̄X
, DH f̄X = − f̄X J.

The first equation gives f̄X X in terms of f̄X ; solving the second, we find

f̄X ( f̄ , H) = A( f̄ ) e−
∫

G(H) d H
=

A( f̄ )
B(H)

,

where A( f̄ ) 6= 0, B(H) > 0 are arbitrary functions. Hence we find solutions to
(57), parameterized by f̄ , H :

(x, y, u) =
(

f̄ , H,
1
f̄X

)
=

(
f̄ , H,

B(H)
A( f̄ )

)
.

In agreement with our explicit computation of the left moving frame in (30), we
have f̄ = x , and conclude that u(x, y) = B(y)/A(x) solves (57).

REMARK 50. Note that, due to the automorphic property of the reconstruction
equations, solutions are not unique. Acting by a transformation of G will produce
a new reconstruction solution, and hence a new solution to ∆ = 0. This freedom
of choice in the reconstruction solution can be seen in all of our examples.

EXAMPLE 51. With explicit knowledge of the left moving frame, we can
see directly the equivalence of the automorphic system and reconstruction
equations. In this example, we compare directly the automorphic system (56)
and reconstruction equations (67) for our running example. Taking the exterior
derivative of the invariants

H = y, J =
u y

u
,
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we obtain

d H ≡ dy, d J ≡
(

uuxy − ux u y

u2

)
dx +

(
uu yy − u2

y

u2

)
dy,

so that, by duality,

DH = Dy −

(
uu yy − u2

y

uuxy − ux u y

)
Dx , DJ =

u2

uuxy − ux u y
Dx .

Substituting the values of the left moving frame, f̄ = x and f̄X = 1/u, and writing
out the reconstruction equations (67) explicitly,

DH f̄ =
(

J 2

2
− G(H)

)
DJ f̄ , DJ f̄ = f̄X ,

we recover the automorphic system (46).

5. Further examples

In this section, we apply the group foliation method to three other examples.
Example 52 gives another illustration of the method for an infinite-dimensional
symmetry group. Examples 54 and 55 show how the group foliation method
subsumes classical symmetry reduction techniques for finding invariant and
partially invariant solutions to differential equations. The symmetry groups
appearing in all examples may be obtained via Lie’s standard algorithm [35].

EXAMPLE 52. In this example, we solve the nonlinear Calogero wave equation
[5]

uxt + uuxx = F(ux) (70)

using the group foliation method. The differential equation (70) admits the
infinite-dimensional symmetry group

X = x + a(t), T = t, U = u + a′(t), (71)

where a(t) is an arbitrary differentiable function of t . The Lie pseudogroup action
(71) is generated by the vector fields

v = a(t)
∂

∂x
+ a′(t)

∂

∂u
,
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whose prolongation is

v(∞) = a(t)
∂

∂x
+ at

∂

∂u
+ (at t − ux at)

∂

∂ut
− uxx at

∂

∂uxt

+ (at t t − ux at t − 2uxt at)
∂

∂ut t
+ · · · .

The recurrence relations (31) for the lifted invariants are

d X = Ω x
+ µ, dT = Ω t ,

dU ≡ UX Ω
x
+UT Ω

t
+ µT ,

dUX ≡ UX X Ω
x
+UXT Ω

t ,

dUT ≡ UXT Ω
x
+UT T Ω

t
+ µT T −UX µT ,

dUX X ≡ UX X X Ω
x
+UX XT Ω

t ,

dUXT ≡ UX XT Ω
x
+UXT T Ω

t
−UX XµT ,

dUT T ≡ UXT T Ω
x
+UT T T Ω

t
+ µT T T −UX µT T − 2UXT µT , . . . .

(72)

A cross-section to the pseudogroup orbits is given by

X = UT k = 0, k > 0,

which leads to the normalized Maurer–Cartan forms

µ = −$ x , µT = −I10$
x , µT T = −(I11 + I 2

10)$
x , . . . . (73)

Substituting (73) into (72), we obtain, up to order two, the recurrence relations

Dx I10 = I20, Dt I10 = I11,

Dx I20 = I30, Dt I20 = I21,

Dx I11 = I21 + I10 I20, Dt I11 = I12.

(74)

Eliminating I21 from (74), we find the syzygy

S : Dx I11 = Dt I20 + I10 I20. (75)

A generating set for the algebra of differential invariants is given by

t, s = I10, K = I11, L = I20.

For t and s to be independent invariant variables, we require that L 6= 0 as

ds ∧ dt ≡ L $ x
∧$ y.
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Then, the rank-two automorphic system is

A2 : K = K (s, t), L = L(s, t).

By the chain rule,

Dx = (Dx t) Dt + (Dx s) Ds = L Ds,

Dt = (Dt t) Dt + (Dt s) Ds = Dt + K Ds,

and, in the variables s, t , the syzygy (75) is equivalent to

L(Ks − s) = L t + K L s . (76a)

The invariantization of the differential equation (70) gives the constraint syzygy

K = F(s). (76b)

Equations (76) comprise the resolving system. Substituting (76b) into (76a), we
obtain the first-order partial differential equation

L t + F L s = L(Fs − s) (77)

for the invariant L . Assuming F(s) 6= 0, the solution to (77) is

L(s, t) = F(s) h
(

t −
∫

ds
F(s)

)
exp

[
−

∫
s

F(s)
ds
]
, (78)

where h is an arbitrary differentiable function. To obtain the solution to the
original differential equation (70), we solve the reconstruction equation

db = $ x
+ bT dt =

1
L

ds +
(

bT −
K
L

)
dt,

which implies that

Dsb =
1
L

and bT = Dt b +
K
L
.

Hence,

b(s, t) =
∫

ds
L
+ a(t) and bT = −

∫
L t

L2
ds +

F(s)
L
+ a′(t),

with L given in (78). Then, the solutions to (70) of invariant rank two are

(x, t, u) = ρ · (0, t, 0) =
(∫

ds
L
+ a(t), t,−

∫
L t

L2
ds +

F(s)
L
+ a′(t)

)
, (79)

where L(s, t) is given by (78).
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We now assume that L = 0, and search for solutions of invariant rank one.
First, the automorphic system is now given by

A1 : s = s(t), K = K (t), L = L(t) = 0,

and, by the chain rule,
Dx = 0, Dt = Dt .

Then, the recurrence relations (74) yield the syzygy

Dt s = K ,

while the constraint syzygy (76b) still holds. Thus, the function s(t) is a solution
of the ordinary differential equation

Dt s = F(s). (80)

From the pseudogroup jet differentials

db = −µ+ bT dt = $ x
+ bT dt,

dbX = −µT + bT T dt = s$ x
+ bT T dt,

(81)

we conclude that
$ x
= db − bT dt,

and so the pseudogroup jets bT , bT T , . . . are assumed to be functions of the
pseudogroup variable b and the invariant t . From the second equation in (81),
we deduce that

Db(bT ) = s, bT T = Dt(bT )+ s bT .

Hence,
bT (b, t) = b · s(t)+ f (t),

where s(t) is a solution of (80) and f (t) is an arbitrary differentiable function.
Finally, the solutions of invariant rank one are

(x, t, u) = ρ · (0, t, 0) = (b, t, b · s(t)+ f (t)).

REMARK 53. The solution (79) also appears in [25]. It can be seen by comparison
with this author’s computations that the moving frame approach yields the
solution in a completely systematic manner and does not require explicit formulas
for the invariants s, K , and L .
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We illustrate in the next two examples the group foliation method for finite-
dimensional Lie groups. In Example 54, we show how the group foliation method
subsumes existing algorithms for obtaining invariant [35] and partially invariant
[47] solutions. In the context of finite-dimensional Lie groups, the dimension of
the automorphic system is bounded between p and p+r , where r is the dimension
of the Lie group. Let p+δ be the dimension of the automorphic system, 0 6 δ 6 r .
The number δ is called the defect of the solution generating the automorphic
system. Invariant solutions have defect δ = 0, while partially invariant solutions
satisfy 0 < δ < r . By limiting our search to resolving systems of rank p + δ − r ,
we discover invariant and partially invariant solutions of rank δ.

Finally, Example 55 illustrates the use of the group foliation method to reduce
the order of an ordinary differential equation. Foliating a second-order ordinary
differential equation with respect to a two-dimensional Lie group, we obtain a
resolving system of order zero, that is an algebraic equation.

EXAMPLE 54. Consider a system of equations for a transonic gas flow [47]:

u y − vx = 0, u ux + vy = 0. (82)

To obtain an invariant solution of (82) we foliate the equations with respect to the
group of dilations

X = λ x, Y = λ y, U = u, V = v, (83)

and search for invariant rank-one solutions of the resolving system. Choosing the
cross-section

K = {y = 1},

a complete set of invariants is given by

H = ι(x), Ii, j = ι(ux i y j ), Ji, j = ι(vx i y j ).

The recurrence relations (33) yield

d H = $ i
− H $ y, (84)

and
Ii+1, j = Dx Ii, j , Ii, j+1 = Dy Ii, j − (i + j)Ii, j ,

Ji+1, j = Dx Ji, j , Ji, j+1 = Dy Ji, j − (i + j)Ji, j .

Thus, a generating set of the algebra of differential invariants is given by

H, I, J.
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Modulo the commutator syzygies induced by the commutator relation

[Dy,Dx ] = Dx ,

there is no fundamental syzygy.
Searching for an order-one invariant solution, the automorphic system is

A1 : I = I (H), J = J (H).

By the chain rule,

Dx = (Dx H)DH = DH , Dy = (Dy H)DH = −H DH .

Thus, the invariantization of the differential equations (82) yields

H DH I + DH J = 0, I DH I − H DH J = 0.

Omitting the constant solution, the integration of the resolving system gives

I (H) = −H 2, J (H) = 2
3 H 3
+ C,

where C is an arbitrary constant. Implementing the reconstruction step, we obtain
the reconstruction equation

$ y
=

dλ

λ
. (85)

Viewing λ as an independent variable, the invariant solution is given by

(x, y, u, v) = λ · (H, 1, I, J ) =
(
H λ, λ,−H 2, 2

3 H 3
+ C

)
.

Since λ = y, H = x/λ = x/y, and the solution invariant under the dilation group
(83) is

u(x, y) = −
(

x
y

)2

, v(x, y) =
2
3

(
x
y

)3

+ C.

We now obtain a partially invariant solution of (54) by foliating (82) with
respect to

X = λ x, Y = λ y, U = u, V = v + ε. (86)

This time, a cross-section is given by

K = {y = 1, v = 0},

and
H = ι(x), I = ι(u), J = ι(vx), K = ι(vy),
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form a generating set of invariants. These invariants admit one fundamental
syzygy

Dy J = Dx K + J. (87)

Restricting ourself to the rank-one automorphic system

I = I (H), J = J (H), K = K (H),

the corresponding resolving system is

J + H DH I = 0, K + I DH I = 0, DH [(H 2
+ I )DH I ] = 0, (88)

where the first two equations come from the invariantization of (82) and the third
equation is a consequence of syzygy (87). Hence, provided I (H) is a solution of

(H 2
+ I )DH I = C,

where C is a constant, the invariants J and K are completely determined by (88).
Implementing the reconstruction step, the first of two reconstruction equations is
given by (85). From (84), which still holds, we conclude that

$ x
= d H + H

dλ

λ
.

Hence, integrating the second reconstruction equation

dε = J $ x
+ K $ y

= −H DH I d H − C
dλ

λ
,

we obtain

ε = −C ln λ−
∫

H DH I d H.

This produces the partially invariant solution

(x, y, u, v) = (λ, ε) · (H, 1, I, 0)

=

(
H λ, λ, I (H),−C ln λ−

∫
H DH I d H

)
.

Since H = x/y and λ = y,

u(x, y) = I (x/y), v(x, y) = −C ln y −
∫
(x/y) I ′(x/y) d(x/y).

https://doi.org/10.1017/fms.2015.24 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2015.24


R. Thompson and F. Valiquette 40

EXAMPLE 55. Consider the nonlinear second-order ordinary differential
equation

x2uxx = (x ux − u)2, x > 0. (89)

The equation (89) is invariant under the two-dimensional solvable group of
transformations

X = λ x, U = u + ε x with λ > 0 and ε ∈ R. (90)

In the pseudogroup framework, the determining equations of the Lie group action
(90) are

x X x = X, Xu = 0, x Ux = U − u, Uu = 1,

and the infinitesimal determining equations corresponding to an infinitesimal
generator v = ξ(x, u) ∂x + φ(x, u) ∂u are

x ξx = ξ, ξu = 0, x φx = φ, φu = 0. (91)

Hence, the general prolonged infinitesimal generator is

v = ξx

(
x
∂

∂x
−

∞∑
k=1

k uxk
∂

∂uxk

)
+ φx

(
x
∂

∂u
+

∂

∂ux

)
,

and the order-zero lifted recurrence relations are

d X = Ω x
+ X µx

X , dU ≡ UX Ω
x
+ X µu

X . (92)

Choosing the cross-section K0
= {x = 1, u = 0}, the recurrence relations (92)

yield the normalized Maurer–Cartan forms

µx
X = −$

x , µu
X ≡ −I1$

x .

Now, let

A1 : z = I1 = ι(ux) = x ux − u, v(z) = I2 = ι(uxx) = x2uxx

be the rank-one automorphic system, which requires that

v 6= 0 (93)

as dz ≡ v $ x . Since there are no syzygies, the invariantization of the differential
equation (89) yields the resolving system

v(z) = z2.
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Hence, the constraint (93) is satisfied, provided that z 6= 0. When this is so, ωx
=

dz/v, and the reconstruction equations are

Dz(x) =
x
z2
, Dz(u) =

u
z2
+

1
z
. (94)

Solving (94), we obtain

x(z) = A e−1/z, u(z) = e−1/z

[∫
e1/z

z
dz + B

]
, (95)

where A and B are two constants. By construction, the parametric curve (95) is a
solution of (89); to recover the solution in the form u(x) it suffices to express the
parameter z as a function of x using the first equation in (95):

u(x) = −x
[∫

dx
x2(ln x + A)

+ B
]
.

REMARK 56. When G is a (local) Lie group action as in Example 55, we can
rely on the abstract definition of Lie groups to obtain a simple expression for
the reconstruction equations. By Ado’s theorem [18], every Lie group is locally
isomorphic to some linear group G ' G ⊂ GL(k) for some k ∈ N, and a right
moving frame is a G-equivariant map ρ : Jn

→ G satisfying

ρ(g · z(n)) = ρ(z(n)) · g−1.

As for Lie pseudogroups, the corresponding left moving frame is obtained by
group inversion ρ = ρ−1, and the reconstruction equations (62) are equivalent to

dρ = dρ−1
= −ρ · (dρ · ρ−1) = −ρ µ, (96)

where µ is the moving frame pulled-back Lie algebra valued right-invariant
Maurer–Cartan form of G (restricted to a solution of the resolving system).
Examples of integrating ordinary differential equations using this point of view
can be found in [28, Ch. 6].

6. Normal subpseudogroups

For pseudogroups admitting normal subpseudogroups, it is possible to split the
reconstruction procedure into a series of subreconstruction steps involving smaller
pseudogroups. This is the moving frame version of Vessiot’s observation [56] that
the integration of an automorphic system can be replaced by the integration of a
sequence of differential equations automorphic with respect to primitive simple
Lie pseudogroups.

DEFINITION 57. A subpseudogroup H ⊆ G is normal if, for all h ∈H and g ∈ G,
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g B h B g−1
∈ H (97)

whenever the composition is defined.

Let h and g denote the Lie algebras of H and G, respectively. Infinitesimally, if
H is a normal subpseudogroup of G, then h is an ideal of g:

[h, g] ⊆ h.

EXAMPLE 58. To illustrate Definition 57, we introduce the Lie pseudogroups

H : X = x, Y = y + g(x), U = u + g′(x),

and

G : X = f (x), Y = f ′(x) y + g(x), U = u +
f ′′(x) y + g′(x)

f ′(x)
, (98)

where f (x) ∈ D(R) is a local diffeomorphism and g(x) is an arbitrary smooth
function. The pseudogroup H is a subpseudogroup of G obtained by setting f = 1
to be the identity map in (98). To verify (97), let

g · (x, y, u) =
(

f (x), f ′(x) y + g(x), u +
f ′′(x) y + g′(x)

f ′(x)

)
∈ G

and

g−1
· (X, Y,U ) =

(
F(X), F ′(X) Y + G(X),U +

F ′′(X) Y + G ′(X)
F ′(X)

)
,

where F(X) = f −1(X) and G(X) = −g(F(X))/ f ′(F(X)). If

h · (x, y, u) = (x, y + h(x), u + h′(x)) ∈ H,

a direct computation shows that

g B h B g−1
· (X, Y,U ) = (X, Y + H(X),U + H ′(X)) ∈ H,

with H(X) = f ′(F(X)) · h(F(X)). Infinitesimally, the Lie algebras of G and H
are spanned by

g = span
{

va = a(x)
∂

∂x
+ y a′(x)

∂

∂y
+ y a′′(x)

∂

∂u
,wb= b(x)

∂

∂y
+ b′(x)

∂

∂u

}
,

h = span
{

wb = b(x)
∂

∂y
+ b′(x)

∂

∂u

}
, (99)
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where a(x) and b(x) are arbitrary smooth functions. Computing the basic
commutators

[va, vb] = va b′−b a′, [wa,wb] = 0, [va,wb] = wa b′−b a′,

we see that h is an abelian ideal of g.

Given a normal Lie subpseudogroup H of G, the definition of the quotient Lie
pseudogroup of G by H is based on the notion of invariant admissible fibration
introduced by Rodrigues in [49]. We now recast the main definitions of [49] at the
pseudogroup level. Given a fibered manifold π : M → N and a Lie pseudogroup
G acting on M , a local diffeomorphism g ∈ G is said to be projectable by π
if there exists a local diffeomorphism ϕ ∈ D(N ) such that π ◦ g = ϕ ◦ π .
We denote by π̃(g) = ϕ the map that sends the projectable diffeomorphism g
to its projection ϕ. The fibration π : M → N is said to be G-invariant if every
pseudogroup transformation g ∈ G is projectable.

Recall from Definition 1 that the map π n+k
n : G(n+k)

→ G(n) denotes the standard
pseudogroup jet projection.

DEFINITION 59. A G-invariant fibration π : M → N is called G-admissible if
there are integers n0 and k0 such that (ker π̃)(n) ∩ G(n) and

π n+k
n ((ker π̃)(n+k)

∩ G(n+k))

are subbundles of the pseudogroup jet bundle G(n) for n > n0 and k > k0.

DEFINITION 60. Let G and H be two Lie pseudogroups acting on M and N ,
respectively. A homomorphism of G onto H is a fibration π : M → N which is
G-admissible and such that π̃(G) =H. If the kernel ker π̃ is trivial, then π̃ is said
to be an isomorphism of G onto H.

DEFINITION 61. Let H be a normal sub-Lie pseudogroup of G. A Lie
pseudogroup Q is a quotient of G by H if there exist Lie pseudogroups G̃ and
H̃ ⊂ G̃, an isomorphism π̃ : G̃ → G such that π̃(H̃) = H, and a homomorphism
β̃ : G̃ → Q whose kernel is H̃.

Pictorially, we have the following.

G̃ ⊃ H̃

G ⊃ H Q
∼

π̃ β̃
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The last three definitions naturally fit within the moving frame framework.
Given a Lie pseudogroup G acting on M and a normal Lie subpseudogroup
H ⊂ G, consider their isomorphic prolongations G(∞) and H(∞) obtained by
considering their prolonged action on the set of regular jets V∞ ⊂ J∞ of G(∞).
Let KH be a cross-section to the H(∞)-orbits, and let %H be the corresponding
right moving frame. Then, the projection τ ◦ %H : V∞ → KH onto the cross-
section KH is a G(∞)-invariant admissible fibration of V∞. The quotient of G by
H can then be identified with the projected action of G(∞) onto KH which we will
write as G(∞)/H(∞).

G(∞) ⊃ H(∞)

G ⊃ H G(∞)/H(∞)

∼̃
π∞0 τ̃ ◦ %H

Since KH can be identified with the space of H-invariants, the quotient
pseudogroup G(∞)/H(∞) has a well-defined action on the space of H-invariants.
Finally, we note that the quotient pseudogroup G(∞)/H(∞) is isomorphic [51]
to the subpseudogroup of transformations of G that keep the cross-section KH
invariant:

G/H = {g ∈ G | g(∞) ·KH ∈ KH} ⊂ G.

EXAMPLE 62. Continuing Example 58, we now implement the moving frame
method for the normal subpseudogroup H. Up to order two, the lifted invariants
are

X = x, Y = y + g(x), U = u + gx ,

UX = ux + gxx − gx u y, UY = u y,

UX X = uxx + gxxx − gxx u y − 2gx uxy + g2
x u yy,

UXY = uxy − gx u yy, UY Y = u yy.

Choosing the cross-section

K∞H = {y = uxk = 0, k > 0}, (100)

we find, up to order three, the invariants

X = x, I01 = u y, I11 = uxy + u u yy, I02 = u yy, (101)
I21 = uxxy + (ux + u u y)u yy + 2u uxyy + u2u yyy,

I12 = uxyy + u u yyy, I03 = u yyy.
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We now introduce the quotient pseudogroup G(∞)/H(∞) acting on the
H-invariants (101):

X = f (x), J01 =
I01

fx
+

fxx

f 2
x

, J11 =
I11

f 2
x

+
fxxx − fxx I01

f 3
x

− 2
f 2

xx

f 4
x

,

J02 =
I02

f 2
x

, J12 =
fx I12 − 2 fxx I02

f 4
x

, J03 =
I03

f 3
x

, . . . .

(102)

In the above action formulas, Ji, j denotes the image of the invariant Ii, j . This
pseudogroup is the prolongation to the H-invariants of the subpseudogroup

G/H : X = f (x), Y = f ′(x) y, U = u +
f ′′(x) y
f ′(x)

(103)

of G that fixes the cross-section (100). The pseudogroup (103) originally appeared
in [31], where Medolaghi systematically studies isomorphic representations of the
diffeomorphism pseudogroup D(R). This pseudogroup was also used by Vessiot
[56] in his work on automorphic systems.

Given a differential equation ∆ = 0 with symmetry pseudogroup G, if we
assume that H ⊂ G is a normal subpseudogroup, then it is possible to apply
the group foliation procedure iteratively. First, we foliate the solution space of the
differential equation with respect to the normal subpseudogroup H, and project
solutions onto the cross-section KH defining a moving frame for H. Let AH

r and
RH

r be the corresponding automorphic and resolving systems.

PROPOSITION 63. The resolving system RH
r is invariant under the quotient

pseudogroup G/H (to be more accurate, we should write G(∞)/H(∞) instead of
G/H, but, since the two pseudogroups are isomorphic, from now on, we use the
latter to simplify the notation).

Proof. Since syzygies among differential invariants are invariant under the
diffeomorphism pseudogroup D(M), it follows that RH

r is invariant under the
quotient pseudogroup G/H as the differential equation ∆ = 0 is G-invariant.

The invariance of resolving system RH
r under G/H permits us to foliate the

solution space of RH
r with respect to the quotient pseudogroup G/H. The result

is the same as foliating the differential equation ∆ = 0 by the full symmetry
pseudogroup G.

Assuming that a solution to the resolving system RG
r̃ is known, Figure 4 shows

that the reconstruction operation splits into two steps. First, we can solve the
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Figure 4. Iterative group foliation.

reconstruction equations for the quotient pseudogroup G/H to obtain a solution to
the resolving system RH

r . Given a solution, solving the reconstruction equations
for the normal pseudogroup H yields a solution to the original differential
equation. At the level of moving frames, this reflects the fact that the left G-
equivariant moving frame is equivalent to the composition

ρG = ρH · ρG/H.

In general, the reconstruction procedure can split into many steps. Given a Lie
pseudogroup G, let G1 ( G be a proper maximal normal sub-Lie pseudogroup of
G. Similarly, let G2 ( G1 be a proper maximal normal sub-Lie pseudogroup of
G1. Repeating the procedure, assume that it is possible to obtain a finite chain of
sub-Lie pseudogroups,

{1} = G`+1 ( G` ( G`−1 ( · · · ( G1 ( G0 = G,

such that, for each k = 0, . . . , `, the quotient Gk = Gk/Gk+1 is a simple
pseudogroup. Then, the group foliation method reduces to solving the resolving
system RG

r followed by a series of reconstruction steps for the simple sub-Lie
pseudogroups G`, . . . ,G0. According to Cartan [6], each subreconstruction step
will only require the integration of either ordinary differential equations or linear
partial differential equations involving no more than one arbitrary function.

EXAMPLE 64. To illustrate the iterative reconstruction procedure, we foliate the
differential equation

uxyy + u u yyy + 2u y u yy = 0 (104)

with respect to the symmetry pseudogroup (98). The moving frame construction
for this Lie pseudogroup can be found in [42, 43]. Choosing the cross-section

K∞G = {x = y = uxk = u yxk = 0, u yy = 1 : k > 0}, (105)

and letting Ii j = ι(ux i y j ) and µk = ι(ak), νk = ι(bk), where a(x), b(x) are the
arbitrary functions occurring in the infinitesimal generators (99), the normalized
Maurer–Cartan forms of order 62 are

µ ≡ −$ x , µX ≡
1
2 (I12$

x
+ I03$

y), µX X ≡ ν ≡ −$
y, νX ≡ νX X ≡ 0.

(106)
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The recurrence relations for the third-order normalized invariants are

Dx I12 = I22 −
3
2 I 2

12, Dy I12 = I13 −
3
2 I12 I03 + 2,

Dx I03 = I13 −
3
2 I12 I03, Dy I03 = I04 −

3
2 I 2

03,
(107)

while the fundamental syzygy, modulo the commutator relation

[Dx ,Dy] =
I03

2
Dx −

I12

2
Dy, (108)

is given by
Dx I03 −Dy I12 = −2. (109)

Implementing the group foliation algorithm, we let the third-order normalized
invariants

s = ι(uxyy), t = ι(u yyy),

play the role of the independent invariants, and let the fourth-order normalized
invariants

I22(s, t) = ι(ux2 y2), I13(s, t) = ι(uxy3), I04(s, t) = ι(u y4) (110)

be the dependent invariants so that (110) forms the automorphic system. Then,
the invariantization of (104) yields

s = 0. (111)

Hence, the automorphic system (110) will produce invariant rank-one solutions.
Taking into account (111) the fundamental syzygy (109) yields

Dx t = −2. (112)

By the chain rule,

Dx = (Dx s)Ds + (Dx t)Dt = −2Dt , Dy = (Dys)Ds + (Dyt)Dt = I Dt ,

where I (t) = Dyt = I04−3t2/2 by the recurrence relations (107). Differentiating
the fundamental syzygy (112) with respect to Dy , and using the commutation
relation (108), we deduce the differential equation

2Dt I = t or Dt I04 =
7
2 t. (113)

On the other hand, the recurrence relations (107) imply that

I22 = 0 and I13 = −2. (114)
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In summary, the equations (111), (113), and (114) form the resolving system.
Integrating (113), we obtain

I (t) =
a2
+ t2

4
or I04(t) =

a2
+ 7t2

4
,

where a is a constant of integration.
We are now ready to implement the reconstruction procedure. Based on

Examples 58 and 62, we first implement the reconstruction procedure for the
quotient pseudogroup (102). Using the Maurer–Cartan normalizations (106), the
reconstruction equations (62) for the quotient action are, up to order two,

d f̄ = f̄X $
x , d f̄X = f̄X X $

x
−

t
2

f̄X $
y,

d f̄X X = f̄X X X $
x
+ ( f̄X − t f̄X X )$

y. (115)

From the first equation, we have that

$ x
= d f̄ / f̄X . (116)

On the other hand, from the equality

dt = (Dx t)$ x
+ (Dyt)$ y

= −2$ x
+ I $ y,

we have that

$ y
=

1
I

(
dt + 2

d f̄
f̄X

)
. (117)

The second and third equations of (115) then reduce to

Dt f̄X = −
t f̄X

2I
, D f̄ f̄X =

f̄X X

f̄X
−

t
I
, (118a)

Dt f̄X X =
f̄X − t f̄X X

I
, D f̄ f̄X X =

f̄X X X

f̄X
+

2( f̄X − t f̄X X )

I f̄X
. (118b)

From (118a), we deduce that

f̄X (t, f̄ ) =
F( f̄ )

a2 + t2
, f̄X X (t, f̄ ) =

F( f̄ )(F ′( f̄ )− 4t)
(a2 + t2)2

, (119)

where F( f̄ ) 6= 0 is an arbitrary nonzero smooth function. At the next order,
substituting (119) into the first equation of (118b), we see that the first equation is
identically satisfied and the second equation of (118b) defines f̄X X X . Continuing

https://doi.org/10.1017/fms.2015.24 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2015.24


Group foliation of differential equations using moving frames 49

the computation at higher order, we obtain the expressions for f̄Xk , k > 4, giving
the left moving frame ρG/H.

The next step in the iterative reconstruction procedure is to construct the left
moving frame ρH. To obtain the reconstruction equations for the pseudogroup
jets ḡ, ḡX , . . . , we first compute (60) for the full symmetry pseudogroup (98), and
then restrict the equations to the cross-section (100). This yields

dḡ = ḡX $
x
+ f̄X $

y, dḡX = ḡX X$
x
+

(
f̄X X −

t ḡX

2

)
$ y, . . . .

Using (116), (117), and (119), we obtain

Dt ḡ =
4F( f̄ )
(t2 + a2)2

,
ḡX

f̄X
= D f̄ ḡ −

2
I
.

Integrating the first equation, we find that

ḡ = 4F( f̄ )
(

t
2a2(t2 + a2)

+
1

2a3
arctan

t
a

)
+ G( f̄ ),

ḡX

f̄X
= 4F ′( f̄ )

(
t

2a2(t2 + a2)
+

1
2a3

arctan
t
a

)
+ G ′( f̄ )−

8
t2 + a2

,

where G( f̄ ) is an arbitrary smooth function. Thus, a parameterized solution to
the partial differential equation (104) is given by

(x, y, u) = ρG = ρH · ρG/H · (0, 0, 0) =
(

f̄ , ḡ,
ḡX

f̄X

)
.

Conclusion

Using the machinery of equivariant moving frames, we have attempted to
provide a unified and computationally clear approach to group foliation. The
newness and broad applicability of moving frame theory brings fresh insight to
old algorithms, and, as such, many unexplored directions present themselves. We
list here several possibilities for further research.

(a) One of the most obvious applications of group foliation is to the solution of
differential equations. There are many physically interesting equations that
may be particularly amenable to our version of group foliation because of
the complexity of their symmetry pseudogroups. Four particularly interesting
examples are the following: the Davey–Stewartson equations [7], the Infeld–
Rowlands equation [12], the potential Kadomtsev–Petviashvili equation
[11], and the Calabi–Yau equation for Kähler–Einstein metrics [57].
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(b) The results and algorithms presented in the present paper relied on the
construction of a moving frame. By appropriately adapting the exposition,
it is possible to encompass the situation where only a partial moving frame
[46, 55] exists on the solution space of a differential equation. For example,
when foliating (52) with respect to its full symmetry group

X = f (x), Y = g(y), U =
u

f ′(x) g′(y)
, (120)

no differential invariants exist on the solution space of the differential
equation, and only a partial moving frame can be constructed. In this case,
this is a reflection of the automorphic property of (52) with respect to
the pseudogroup action (120). A more detailed investigation of the group
foliation method in the context of partial moving frames could be of interest.

(c) The systematic construction of Bäcklund transformations using symmetry
reduction of exterior differential systems introduced by Anderson and
Fels applies only to Lie groups. The group foliation/inductive moving
frames approach outlined in Section 6 does not have this limitation.
It would be worthwhile to pursue the possibility of constructing new
Bäcklund transformations by realizing systems of interest as resolving
systems for infinite-dimensional Lie pseudogroups; these ideas are also
most likely closely related to the reduction methods for infinite-dimensional
Lie pseudogroups introduced by Pohjanpelto [48]. The investigation of
nonmaximal rank resolving systems could also produce interesting examples.
Finally, the group foliation algorithm in conjunction with inductive moving
frames may provide a means for constructing coverings of differential
equations [16, 20].

(d) Through the use of joint moving frames and joint invariants [37, 38],
the moving frames approach to group foliation may be adapted to finite
difference equations. This adaptation is the subject of a work in progress
[53]. Investigating the possibility of discrete group foliation as a numerical
method for solving differential equations could be fruitful.

It may also be worthwhile to pursue the construction of Bäcklund
transformations for finite difference or differential difference equations
and compare these results with similar notions from discrete differential
geometry and integrable systems [4, 10].

(e) In the case of group foliation by finite-dimensional Lie group actions,
nonmaximal rank resolving systems correspond to what are called partially
invariant solutions [47]. The question of when a partially invariant solution
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is irreducible, that is, not obtainable as an invariant or partially invariant
solution for a subgroup, has been studied by Ondich [45]. This allows for an
extension of the classification of group invariant solutions [35] to partially
invariant solutions. It may be interesting to investigate the extension of such a
classification and the notion of irreducibility in the context of group foliation.

(f) Invariant submanifold flows find applications in a diversity of fields such
as control theory [33], elasticity theory [24], and computer vision [8, 50],
and it is possible that the idea of invariant flow reconstruction presented in
[52] may provide insight in some of these areas. Theoretical application of
invariant flow reconstruction is also worth exploring. For example, Mansfield
and van der Kamp [29] have studied the question of when the integrability (in
the sense of possessing infinitely many symmetries) of a differential invariant
signature flow ‘lifts’ to integrability of the flow itself. We suspect that their
results could be reinterpreted within our framework.
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