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Dynamic mode decomposition for analysis of
time-series data
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Since its publication in 2010, the paper by Schmid (J. Fluid Mech., vol. 656, 2010,
pp. 5–28) has wielded considerable influence, an impact we examine here. That seminal
work introduced dynamic mode decomposition, a method for performing flow-field
spectral analysis of snapshot sequences of data. As a data-driven approach aimed at
uncovering spatial and temporal patterns or modes within datasets, its applicability has
extended far beyond fluid mechanics, reaching into a wide array of fields.
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1. Introduction

The paper by Schmid (2010) stands out as the only paper in the Journal of Fluid Mechanics
to be the subject of two Focus of Fluids articles. The initial article, authored by Henningson
(2010), focused on the potential implications of the work. Now, after 14 years, we reflect
on the enduring impact of the paper and why it was selected as the most significant paper
in the Journal of Fluid Mechanics published in the century of volumes 601–700.

Schmid (2010) introduced dynamic mode decomposition (DMD), which was initially
presented at the 2008 APS-DFD meeting (Schmid & Sesterhenn 2008). The DMD
approach serves as a factorization and dimensionality reduction technique for sequential
data streams. Essentially, it provides a means to analyse and extract dynamic behaviour
from time-series data, particularly within the context of dynamical systems and fluid
dynamics. It represents an equation-free, data-driven approach aimed at identifying spatial
and temporal patterns or modes within the data.

The rapid adoption and success of DMD in fluid mechanics since Schmid (2010) has
likely coincided with the concurrent rise of data science and the rapid development
of time-resolved, planar and volumetric velocity field measurement techniques (particle
image velocimetry and its variants) and numerical simulations (direct numerical
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Figure 1. Dynamic mode decomposition: (a) factorization and (b) dimensionality reduction. Adapted with
permission from Schmid (2022).

simulations and large-eddy simulations). These techniques provide the necessary input to
DMD, as described by Schmid (2010), in the form of constant-sampling-rate time-series
data.

2. Overview

The fundamental aspects of the DMD approach are depicted in figure 1. The time-series
data are arranged into a data (snapshot) matrix D where each column represents a snapshot
of the system at a specific time. The aim is to produce a decomposition of this data matrix
into three matrices capturing spatial structures (Φ), the amplitudes (diag(ξ)) and temporal
dynamics (C).

The reduced-order representation detailed in figure 1(b) may be obtained by manually
selecting modes that correspond to large amplitudes and/or frequencies of interest, or via
algorithmic methods such as the sparsity-promoting DMD variant developed in Jovanović,
Schmid & Nichols (2014). This reduced subset aims to capture the dominant dynamics of
the system. The selected (dynamic) modes depict spatial patterns or structures evolving
over time, with each mode representing a specific oscillatory behaviour or dynamic feature
of the system. Furthermore, the eigenvalues associated with each dynamic mode are
produced by the DMD algorithm, providing insights into the growth or decay rates of
the respective modes.

The DMD approach is closely associated with Koopman analysis, a technique used in
dynamical systems theory. Specifically, DMD produces the best (least-squares) fit linear
dynamical system to the nonlinear dynamical system generating the data; its dynamic
modes are approximations of Koopman modes (Rowley et al. 2009). Hence, DMD
provides a straightforward and powerful algorithm for computing Koopman eigenfunctions
and their associated eigenvalues (Brunton et al. 2022), which can be further enhanced
through the use of nonlinear transformations of the original data (Williams, Kevrekidis
& Rowley 2015). Moreover, as pointed out by Henningson (2010), the dynamic modes of
DMD simplify to global linear eigenmodes for linearized problems or to Fourier modes
for (nonlinear) periodic problems.

The DMD methodology is well suited for analysing flows where the processed data
capture relevant temporal and/or spatial scales of the dynamic process. Schmid (2022)
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Figure 2. Jet in cross-flow. (a) Isocontour of Q for representative snapshot. (b) Layout of the spatial slices
normal to the base-flow streamline. (c) First dominant dynamic mode from streamline-based DMD analysis of
the spatial evolution of fluid structures along the counterrotating vortex sheet. Velocity vectors shown in black
and vorticity contours in red–grey colour in a plane normal to the base-flow streamline emanating from the jet
exit. Adapted with permission from Schmid (2022).

presents an illustrative example demonstrating its effectiveness in complex flows,
particularly in describing the evolution of structures along curved trajectories in space.
For instance, as depicted in figure 2, a turbulent jet in cross-flow exhibits a breakdown of
vortical structures developing along a curved counterrotating vortex pair. Streamline-based
DMD analysis reveals this phenomenon by projecting the three-dimensional velocity fields
into in-plane and plane-normal components along the curved streamline and incorporating
these data into the DMD data matrix.

While DMD has predominantly been utilized in fluid mechanical studies for flow-field
analysis, its application extends to various other domains, including thermal, reactive,
acoustic or fluid-structural time-series data. In addition to serving as a diagnostic
tool through low-rank spatiotemporal features, DMD facilitates state estimation and
future-state prediction, paving the way for its application in purely data-driven control
strategies (Kutz et al. 2016). These attributes, coupled with the approach’s versatility in
handling a variety of evolution processes and data formats, underscore the broad appeal
and utility of DMD.

3. Broader applications and future

Schmid (2022) provides a comprehensive review of recent advancements in DMD,
emphasizing its strengths while also recognizing its limitations. Since DMD is limited
to linear analysis, it may struggle to capture nonlinear transients and strong nonlinearity
effects. It can also face robustness challenges when dealing with noisy or insufficient data,
which are usually unknowns, as well as sparse measurements or data with sub-Nyquist
sampling. Consequently, considerable attention has been directed towards extending,
generalizing and improving DMD, making it an active area of ongoing research (Kutz
et al. 2016; Schmid 2022).

The utility of the DMD approach, relying solely on data without the need for an
underlying model or governing equations, has led to its rapid adoption across numerous
fields beyond fluid mechanics. Examples range from its utilization in the analysis and
forecasting of highway traffic (Avila & Mezić 2020) to its application in facial recognition
schemes. In this latter context, DMD’s capability to represent the temporal information of
an entire video as a single image with dimensions similar to those of the video’s constituent
images serves as a critical preprocessing step, enabling efficient detection of spoof samples
(Tirunagari et al. 2015). Furthermore, DMD finds application in medicine, such as in the
real-time forecasting of tumour ablation treatment simulations (Bourantas et al. 2014), and
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in robotics, where Berger et al. (2015) integrated DMD with machine learning to detect,
estimate and compensate for external perturbations using only input from standard sensors.
Numerous other application areas, as described by Schmid (2022), extend to neuroscience,
epidemiology, medical imaging, climate science, oceanography and financial engineering.

The above list of application areas is far from complete and will only continue to grow.
Indeed, the citation numbers of Schmid (2010) continue to increase exponentially year on
year. This growth is unlikely to halt anytime soon, especially given the incorporation of
DMD into many modern machine learning approaches (Brunton, Noack & Koumoutsakos
2020), whose uptake in research has been staggering. Coupled with the ever-growing
generation of data, in both quality and quantity, this trend ensures that the impact of
data-centric techniques such as DMD will only continue to expand.
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