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Abstract

Metonymy resolution (MR) is a challenging task in the field of natural language processing. The task of
MR aims to identify the metonymic usage of a word that employs an entity name to refer to another target
entity. Recent BERT-based methods yield state-of-the-art performances. However, they neither make full
use of the entity information nor explicitly consider syntactic structure. In contrast, in this paper, we argue
that the metonymic process should be completed in a collaborative manner, relying on both lexical seman-
tics and syntactic structure (syntax). This paper proposes a novel approach to enhancing BERT-based MR
models with hard and soft syntactic constraints by using different types of convolutional neural networks
to model dependency parse trees. Experimental results on benchmark datasets (e.g., RELOCAR, SEMEVAL
2007 and WIMCOR) confirm that leveraging syntactic information into fine pre-trained language models
benefits MR tasks.

Keywords: Syntax; Anaphora resolution; Information retrieval

1. Introduction

Metonymy is a type of figurative language that is pervasive in literature and in our daily conversa-
tion. It is commonly used to refer to an entity by using another entity closely associated with that
entity (Lakoff and Johnson 1980; Lakoff 1987; Fass 1988; Lakoff 1991, 1993; Pustejovsky 1991). For
example, the following two text snippets show a word with literal usage and metonymic usage:

(1) President Vladimir Putin arrived in Spain for a two-day visit.
(2) Spain recaptured the city in 1732.

In the first sentence, the word ‘Spain’ refers to the geographical location or a country located in
extreme southwestern Europe. However, in the second sentence, the meaning of the same word
has been redirected to an irregular denotation, where ‘Spain’ is a metonymy for ‘the Spanish Army’
instead of its literal reading of the location name.

In natural language processing (NLP), metonymy resolution (MR) (Markert and Nissim 2002;
Nissim and Markert 2003; Nastase and Strube 2009; Gritta et al. 2017; Li et al. 2020) is a task aimed
at resolving metonymy for named entities. MR attempts to distinguish the word with metonymic
usage from literal usage given that word in an input sentence, typically location or organisation
names. MR has been shown to be potentially helpful for various NLP applications such as machine
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translation (Kamei and Wakao 1992), relation extraction (RE) (Chan and Roth 2011) and geo-
graphical parsing (Monteiro, Davis, and Fonseca 2016; Gritta et al. 2017; Li et al. 2020). While
other types of metonymies exist, in this paper, we are only interested in a specific type of conven-
tional (regular) metonymy, namely, location metonymy. The task of location metonymy resolution
(Markert and Nissim 2002; Gritta et al. 2017; Li et al. 2020) constitutes classifying a location name
within the given sentence into metonymic or literal class.

Although many named entity recognition (NER) systems and word sense disambiguation
(WSD) systems exist, these systems generally do not explicitly handle metonymies. NER systems
only identify entity names from a sentence, but they are not able to recognise whether a word is
used metonymically. Existing WSD systems only determine which fixed ‘sense’ (interpretation)
of a word is activated from a close set of interpretations, whereas metonymy interpretation is an
open problem. They cannot infer the metonymic reading of a word out of the dictionary. Lakoff
and Johnson (1980) and Fass (1988) found that metonymic expressions mainly fell into several
fixed patterns, most of which were quite regular. Therefore, recent methods for MR are mainly
structured into two phases (Markert and Nissim 2002): metonymy detection® and metonymy
interpretation (Nissim and Markert 2003). Metonymy detection attempts first to distinguish the
usage of entity names between metonymic and literal. Then, metonymy interpretation determines
which fine-grained metonymic pattern it involves such as place-for-people or place-for-event. The
difference between metonymy detection and metonymy interpretation can be seen as from a
coarse-grained (binary, metonymic or literal) to fine-grained (a particular type of metonymic
expression) classification (Mathews and Strube 2020).

In computational linguistics, conventional feature-based methods for location MR (Nissim and
Markert 2003; Farkas et al. 2007; Markert and Nissim 2007, 2009; Brun, Ehrmann, and Jacquet
2007; Nastase and Strube 2009; Nastase et al. 2012) rely heavily on handcrafted features delivered
from either linguistic resources or off-the-shelf taggers and dependency parsers. These methods
struggle with the problem of data sparsity and heavy feature engineering. Later, deep neural net-
work (DNN) models (Mikolov et al. 2013; Gritta et al. 2017; Mathews and Strube 2020) become
mainstream in handling various NLP tasks, including MR. These models have better performances
since they take more contextual information into account. Although DNN models provide a
giant leap forward compared to feature-based methods, training high-performance DNN mod-
els requires large-scale and high-quality datasets. However, existing datasets for MR are rather
small because the cost of collecting and annotating datasets is very expensive and unaffordable.
This situation raises a need to transfer the knowledge from existing large-scale datasets. Recently,
pre-trained language models (PLMs), especially BERT (Devlin et al. 2019), have shown superior
performance on various NLP downstream applications (Sun, Huang, and Qiu 2019; Qu et al.
2019; Lin et al. 2019b). The main advantage of PLMs is that they do not need to be trained from
scratch. When applying PLMs to a specific dataset, only some additional fine-tuning is required,
which is much cheaper. Benefiting from being pre-trained on a large-scale dataset with efficient
self-supervised learning objectives, PLMs can efficiently capture the syntax and semantics in the
text (Tang et al. 2018; Jawahar, Sagot, and Seddah 2019). Therefore, it is natural to adopt BERT to
generate entity representations for MR tasks.

However, directly adopting BERT into MR tasks might encounter problems. While BERT has
a strong advantage in modelling lexical semantics and generates informative token embeddings,
BERT has difficulty in fully modelling completed syntactic structures as it might need deeper
layers to capture long-distance dependencies (Tang et al. 2018; Zhang, Qi, and Manning 2018;
Jawahar et al. 2019). Given the sentence ‘He later went to manage Malaysia for one year’, BERT
tends to focus more on the former verb ‘went’ and ignore the latter verb ‘manage’, which might

2Metonymy detection is also called metonymy recognition by Nissim and Markert (2003).
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Figure 1. An example illustrates that syntactic information helps metonymy resolution. ‘Malaysia’ is metonymically used.
The words in deeper blue colour have higher weights in the BERT’s attention. Since the sentence above contains two verbs,
it is confusing to infer metonymy. While ‘manage’ strongly suggests a metonymic reading, BERT currently has not addressed
that verb. The attention weight for ‘went’ is higher than that of ‘manage’.

lead to incorrect prediction of the MR label for ‘Malaysia’® As shown in Figure 1, dependency
parse trees that convey rich structural information might help to recognise the metonymic usage.
Therefore, syntactic knowledge is necessary for improving BERT-based MR models.

Previous studies (Nissim and Markert 2003; Nastase and Strube 2009; Nastase et al. 2012) sug-
gested that syntax was a strong hint in constructing metonymy routes. Both the lexical semantics
and the syntactic structure (specifically, dependency relations) jointly assisted in recognising novel
readings of a word. In a metonymic sentence, the target entity is artificially violated its fixed usage
in order to introduce a novel metonymic reading, which was traditionally treated as syntactico-
semantic violation (Hobbs and Martin 1987; Pustejovsky 1991; Chan and Roth 2011). Generally,
an entity is an argument to at least one predicate, there exist explicit syntactic restrictions on the
entity and the predicate. In other words, the inference of metonymic reading primarily relies on
the selectional preferences of verbs (Fass 1988). As shown in Figure 1, ‘Malaysia’ refers to the
national football team of Malaysia. The verbs and dependency arcs among verbs (coloured in a
dark colour) were a strong clue to that metonymy, while other words (coloured in grey) had less
contribution. This motivated us to explore an interesting question: Can jointly leveraging lexical
semantics and syntactic information for MR can bring benefits?

As a part of ongoing interest in introducing prior syntactic knowledge into DNNs and PLMs,
this paper investigates different ways to incorporate hard and soft syntactic constraints into BERT-
based location MR models, following the idea that lexical semantics are potentially helpful for MR.
Firstly, we employ an entity-aware BERT encoder to obtain entity representations. To force the
model to focus on the target entity for prediction, we leverage explicit entity location informa-
tion by inserting special entity markers before and after the target entity of the input sentence.
Then, to take advantage of relevant dependencies and eliminate the noise of irrelevant chunks, we
adopt two kinds of graph convolutional neural networks to impose hard and soft syntactic con-
straints on BERT representations in appropriate ways. Finally, the model selectively aggregates
syntactic and semantic features to be helpful for MR inference. As a result, the proposed approach
shows state-of-the-art (SOTA) performances on several MR benchmark datasets. To the best of
our knowledge, this work is the first attempt to integrate syntactic knowledge and contextualised
embeddings (BERT) for MR in an end-to-end deep learning framework.

b Although we know that ‘Malaysia’ is metonymically used, the resolution of the metonymy here is unclear without further
contextual information. Possible resolutions include as the national football team of Malaysia, as a department of a multi-
national business.
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2. Background: Metonymy resolution

Previous research in cognitive linguistics (Fundel, Kiiffner, and Zimmer 2007; Janda 2011;
Pinango et al. 2017) revealed that metonymic expressions are based on actual, well-established
transfer relations between the source entity and the target referent, while those relations were not
expected to be lexically encoded. Metonymy consists of a natural transfer of the meaning of con-
cepts (Kvecses and Radden 1998) which evokes in the reader or listener a deep ‘contiguity’ process.
For instance, in a restaurant a waitress says to another, “Table 4 asked for more beer’, which involves
a lesser-conventionalised circumstantial metonymy.© A large amount of knowledge is necessary to
interpret this kind of metonymy (Zarcone, Utt, and Pad6 2012), for example, Table 4 cannot ask
for beer, but the guests occupying Table 4 can. In contrast to circumstantial metonymy, system-
atic metonymy (also called conventional metonymy) is more regular (Nissim and Markert 2003),
for example, producer-for-product, place-for-event and place-for-inhabitant. Such reference shifts
occur systematically with a wide variety of location names. As ‘Malaysia’ refers to the national
football team, as shown in Figure 1, the name of a location often refers to one of its national sports
teams. It is easy to apply supervised learning approaches to resolve systematic metonymies by
distinguishing between literal readings and a pre-defined set of metonymic patterns (e.g., place-
for-event, place-for-people and place-for-product). Since the metonymic patterns place-for-event
and place-for-product are rather rare in the natural language, the majority of MR works focus on
the prediction of place-for-people.

Empirical methods for MR mainly fall into feature-based and neural-based approaches. Most
feature-based methods (Brun et al. 2007; Nastase and Strube 2009; Nastase et al. 2012) based
on statistical models are commonly evaluated on the SEMEVAL 2007 Shared Task 8 benchmark
(Markert and Nissim 2007). Markert and Nissim (2002) were the first to treat MR as a classifica-
tion task. Nissim and Markert (2003) extracted more syntactic features and showed that syntactic
head-modifier relations were important clues to metonymy recognition. Brun et al. (2007) pre-
sented a hybrid system combining a symbolic and an unsupervised distributional approach to
MR, relying on syntactic relations extracted by the syntactic parsers. Farkas et al. (2007) applied
a maximum entropy classier to improve the MR system on the extracted feature set. Nastase and
Strube (2009) expanded the feature set used in Markert and Nissim (2007) with more sophisti-
cated features such as WordNet 3.0 and WikiNet (Wikipedia’s category network). Nastase et al.
(2012) explored the usage of local and global contexts for the task of MR in a probabilistic frame-
work. Nastase and Strube (2013) used a support vector machine with a large-scale knowledge base
built from Wikipedia. These feature-based methods suffer from error propagation due to their
high dependence on the extraction process of handcrafted features. Furthermore, constructing
the feature set requires external NLP tools and extra pre-processing costs.

Recently, the majority of MR models incorporate DNNs. Gritta et al. (2017) first applied a
BiLSTM neural network, called PreWin, to extract useful features from the predicate windows.
During encoding, PreWin retained only the words and corresponding dependency labels within
the predicate to eliminate noise in context. Rather than using BERT as a classifier after fine-
tuning, Mathews and Strube (2020) proposed to leverage BERT as an encoder to initialise word
embeddings lightly; then, they fed the BERT’s embeddings into the PreWin system to perform MR.

PLMs have shown great success in many NLP tasks. Those models can produce context-aware
and tokenwise pre-trained representations on a large-scale unlabelled dataset. They are fine-tuned
on a downstream task and do not need to learn parameters from scratch. These models, such as
ELMo (Peters et al. 2017; Peters et al. 2018) and BERT (Devlin et al. 2019), considerably sur-
pass competitive neural models in many NLP tasks (Socher et al. 2013; Rajpurkar et al. 2016).
PLM:s obtained new SOTA results on language understanding tasks and are outstanding in captur-
ing contextual or structural features (Glavas and Vuli¢ 2021). Intuitively, introducing pre-trained
models to MR tasks is a natural step. Li et al. (2020) first attempted to use the BERT framework

“Circumstantial metonymy is also known as unconventional metonymy (Nissim and Markert 2003).
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for MR tasks directly. Given the vast range of entities in the world, it is impossible to learn all
entity mentions. To address data sparsity and force the model to make predictions based only on
context, Li et al. (2020) proposed a word masking approach based on BERT by replacing all target
entity names with an [X] token during training and inference. The masking approach substantially
outperformed existing methods over a broad range of datasets.

Despite their successes, they did not investigate the role of syntax and how syntax affects MR.
However, identifying the metonymic usage of an entity should collaboratively rely on both the
entity and the syntax. The above issue motivated us to concentrate on modelling dependency
associations among words that may be potentially helpful for MR to enrich BERT representations.

3. Related works

Since entity names are often used in a metonymic manner, MR has a strong connection with other
NLP tasks such as WSD and RE. These tasks share similar pre-processing techniques and neural
network architectures in utilising syntactic information (Joshi and Penstein-Rosé 2009; Li et al.
2014; Peng et al. 2017; Zhang et al. 2018; Fu, Li, and Ma 2019). Integrating dependency relations
with DNN models has shown promising results for various NLP tasks (Joshi and Penstein-Rosé
2009; Li et al. 2014; Peng et al. 2017; Zhang et al. 2018; Fu et al. 2019). However, the effect of
dependency integration for neural-based MR models is still not recognised and has made limited
progress so far.

With recent advances in RE (Zhang et al. 2018; Wu and He 2019; Guo, Zhang, and Lu 2019),
we investigate the use of dependency integration for MR. Our first concern is the integration
approach, whether directly concatenating dependency embeddings with token embeddings or
imposing dependency relations using a graph model is more appropriate. Extensive works have
discussed this issue, and most of them treated dependency relations as features. For example,
Kambhatla (2004) trained a statistical classifier for RE by combining various lexical, syntactic and
semantic features derived from the text in the early data pre-processing stage. Zhang, Zhang,
and Su (2006) studied embedding syntactic structure features in a parse tree to help RE. As a
result, those models were sensitive to linguistic variations, which prevented further applying the
dependency integration approach.

Recent research employs graph-based models to integrate DNNs and dependency parse trees.
A variety of hard pruning strategies relying on pre-defined rules have been proposed to distil
dependency information that improves the performance of RE. For example, Xu ef al. (2015)
used the shortest dependency path between the entities in the entire tree. Liu et al. (2015) com-
bined the shortest dependency path between the target entities using a recursive neural network
and attached the subtrees to the shortest path with a convolutional neural network. To leverage
hierarchy information in dependency parse trees, Miwa and Bansal (2016) performed bottom-
up or top-down computations along the parse tree or the subtree below the lowest common
ancestor (LCA) of the entities. Zhang et al. (2018) pruned words except for the immediate ones
around the shortest path, given that those words might hold vital information to hint at the rela-
tion between two target entities. They applied graph convolutional network (GCN) to model the
dominating dependency tree structures. Although these hard pruning methods remove irrele-
vant relations efficiently, some useful information may also be eliminated. To resolve the above
conflicts, Guo et al. (2019) proposed a soft pruning method called AGGCN (attention-guided
graph convolutional network), a model that pools information over dependency trees by using
GCN. They transform original dependency trees into fully connected edge-weighted graphs, bal-
ancing the weights of dependency relations between including and excluding information. Note
that dependency-guided approaches, such as Zhang et al. (2018) and Guo et al. (2019), worked on
the RE task. To the best of our knowledge, we are the first to incorporate syntactic constraints into
BERT-based models for MR.
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Figure 2. Illustration of the architecture of the proposed model with syntactic integration. It can distinguish metonymic
usage of the entity name ‘Malaysia’ given the enriched representation by incorporating hard and soft syntactic constraints
using GCN and AGCN blocks. In this model, both the context and entity semantics are considered to resolving metonymies.

4. Proposal

The task addressed in this paper is MR. Given an entity name E within a sentence S, MR predicts
whether E involves a metonymic or literal usage. The critical insight of this paper is that incorpo-
rating syntactic constraints may help BERT-based MR. As shown in Figure 1, the closest governing
verb in the dependency parse tree plays a dominant role in resolving metonymies. Therefore, we
consider that lexical semantics and syntactic structure essential for identifying metonymies.

Figure 2 illustrates the overall architecture of the proposed model. We propose an end-to-
end neural-based approach for MR tasks and train the model based on recent advances in PLMs.
Since BERT has shown superior performance on various NLP tasks, we employ BERT as an input
encoder to produce tokenwise semantic representations by passing the input sentences through
the BERT encoder. To enrich these tokenwise representations with syntactic knowledge given
dependency parse trees, we propose two ways to incorporate syntactic constraints using different
types of GCNs, for example, non-attentive GCN and attentive GCN (AGCN). We first perform
dependency parsing for input sentences to extract corresponding dependency parse trees and then
convert those parse trees into dependency adjacency matrices. Then, we use the GCN to encode
dependency adjacency matrices explicitly. However, vanilla GCNs represent the adjacency edges
among nodes using hard 0 and 1 labels. To learn these weights, following Guo et al. (2019), we
adopt the self-attention mechanism (Vaswani et al. 2017) upon GCNs to tune the weights. As a
result, the final representations contain rich syntactic knowledge, and lexical semantics serve to
make predictions.

4.1 Entity-aware encoding with BERT

BERT, consisting of multi-layer bidirectional transformers, is designed to produce deep bidi-
rectional representations. The BERT encoding layer uses a multi-layer transformer encoder to
generate a sentence-level representation and fine-tuned contextual token representations for each
token. We omit a detailed architecture description of BERT and only introduce the primary part
of the entity-aware BERT encoder. Concretely, we pack the input as [CLS, S¢, SEP], where [CLS] is
aunique token for classification, S; is the token sequence of S generated by a WordPiece Tokenizer
and [SEP] is the token indicating the end of the sentence. Our model takes the packed sentence S as
input and computes context-aware representations. Following Wu and He (2019), which enriches
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BERT with entity information for relation classification, we insert special [ENT] indicators before
and after the entity nominal. This simple approach lets BERT easily locate the MR entity position.
For each K0 at the index x, we concatenate initial token embeddings with positional embeddings
and segment embeddings as follows:

K0 = concat[S°F; SE*; S7%]. (1)

After going through N successive transformer encoder blocks, the encoder generates entity-aware
BERT representation at the x-th position represented by hY as follows:

hY = BERT(h?) @)

4.2 Alignment

BERT applies WordPiece Tokenizer (a particular type of subword tokenizer) to further segment
words into word pieces, for example, from ‘played’ to [‘play’, ‘##ed’]. However, dependency pars-
ing relies on words and hence does not execute further segmentation. Thus, we need to align
BERT’s tokens against the input words and restore word representations by adopting the average
pooling operation on BERT’s token representations. Assume hy, ..., h, are BERT representa-
tions of tokens (x and y represent the start and end indices of the token sequence), we obtain

the embedding h; of the i-th word by<:
. 1 Y
hi=——— > h 3
e ; t (3)

4.3 Syntactic integration

Our model requires both the GCN and AGCN layers for data processing purposes. The nonat-
tention GCNs are inserted before the AGCNs to impose dependency graphs explicitly. Then,
the AGCNs learn the soft weights of edges in the dependency graph. The syntactic integration
layer enriches the final representations with dependency relation information, making them both
context- and syntax-aware.

Although the GCN layer is similar to the AGCN layer in architecture, the main difference
between the former and the latter is whether the attention matrix A is initialised by directly using
the dependency adjacency matrix A or computing multi-head self-attention scores given H. The
choice of A is dependent on the present application of the GCN or AGCN, which can be expressed
as follows:

- A if GCN
A= L (4)
o(H x H"), if AGCN

@ is a soft attention function, such as additive (Bahdanau, Cho, and Bengio 2015), general dot-
product (Luong, Pham, and Manning 2015) or scaled dot-product (Vaswani et al. 2017) attention.
Therefore, the attention-guided layer composes both the attentive and nonattentive modules. We
use the scaled dot-product attention in our model for efficiency.

dLet H={[hy, ..., h,] denotes a sentence. A more effective approach is to construct a mapping matrix M to project BERT’s
token representations H into the full sentence representations, that is, word representations H. The projection matrix M
records the transformation from the original words to the subwords, which can be served as a router to restore word-wise
representations as H = HM", where M is the projection matrix where M € R™*". m and n denote the length of the input
sentence in word and in token after tokenisation.
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4.3.1 Dependency-guided layer
Many existing methods have adopted hard dependency relations (i.e., 1 or 0 indicates whether
the association exists or not, respectively) to impose syntactic constraints. These methods require
handcrafted rules based on expert experience. Moreover, hard rules set dependency relations con-
sidered as irrelevant as zero weights (not attended), which may develop biased representations,
especially towards sparser dependency graphs.

We adapt the graph convolution operation to model dependency trees by converting each tree
into its corresponding adjacency matrix A. In particular, A;; = Aj; = 1 if there exists a dependency
edge between word i and word j; otherwise, A;; = Aj; = 0. Empirically, a self-loop is necessary for

an addition to edges. Then, in a multi-layer GCNs, the node (word) representation l~11(-l) is produced
by applying a graph convolution operation in layers from 1 to [ — 1. The convolutional operation
can be described as follows:

n
B =p [ 2 AwOn b0 5)
j=1

where W represents the weight matrix, b®) denotes the bias vector and p is an activation func-

tion. A=V and h are the hidden states in the prior and current layers, respectively. Each node
gathers and aggregates information from its neighbouring nodes during graph convolution.

4.3.2 Attention-quided layer

The incorporation of dependency information is more challenging than just imposing depen-
dency edges. How to use relevant information while ignoring irrelevant information from the
dependency trees remains a problem. Hard pruning methods (Zhang et al. 2018) are likely to
prune one of the long sentences containing two verbs, causing information loss. Guo et al. (2019)
proposed adopting multi-head self-attention mechanism (Vaswani et al. 2017) as a soft prun-
ing strategy to extract relevant features from dependency graphs. Guo et al. (2019) introduced
attention-guided GCN (called AGCN) to represent graphs as an alternative to previous GCNs
(Kipf and Welling 2017). AGCN relies on a large, fully connected graph to reallocate the impor-
tance of each dependency relation rather than hard-pruning the graph into a smaller or simpler
structure. The soft pruning strategy of distributing weight to each word can partly avoid this
problem.

Generally, the AGCN layer models the dependency tree with the soft attention A, in which each
cell weight ranges from 0 to 1. The shape of A is the same as the original dependency adjacency
matrix A for convenience. We compute attention weights in A by using the multi-head attention
(Vaswani et al. 2017). For the k-th head, A®) is computed as follows:

QWX x (KWK)T

Ja

AR = softmax( ) (6)

where Q and K are the query and the key in multi-head attention, respectively, Q and K are both
equal to the input representation H (i.e., the output of the last module), d denotes the dimension
of H, WiQ and WX are both learnable parameters € R?*9, and AW is the k-th attention-guided
adjacency matrix corresponding to the k-th head. Thus, we can replace the hard matrix A in the
previous equation with the soft attention matrix A®). The dependency relations, especially the
indirect, multi-hop ones, are modelled by the multi-head mechanism.
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Figure 3. Densely connected structure. The sublayers are densely connected to fuse structures.

4.3.3 Densely connected structure

Previous work (Huang et al. 2017) has proven that dense connections across GCN layers helps
to capture structural information. Deploying the densely connected structure forces the model
to learn more non-local information and train a deeper GCN model. In our model, each densely
connected structure has L sublayers placed in regular sequence. Each sublayer takes the outputs
of all preceding sublayers as input, as shown in Figure 3. We define the output of the densely
0

connected structure g;

;o as follows:

g = [iz]@), i, ,E}l—“] )

where x; is the initial representation outputted by the alignment layer. hj(l), . 1Y denote a
concatenation of the representations produced by preceding sublayers. In addition, the dimension
of representations in these sublayers shrinks to improve parameter efficiency, that is, dyiggen =
d/L, where L is the number of sublayers, and d is the input dimension, with three sublayers and an
input dimension of 768, dy;g4e, = d/L = 256. It outputs a fresh representation whose dimension
is 768(256 x 3) by concatenating all these sublayer outputs. Thus, the layer conserves consider-
able information at a low computational cost. This layer helps the weight gradually flow to the
determining token. N densely connected layers are constructed to compute N adjacency matri-
ces produced by attention-guided layers, where N denotes the numbers of the head. The GCN
computation for each sublayer should be modified to adapt the multi-head attention as follows:

n

7 ~ (k n I

Hy=p | 2 A7WEg" + b ®)
j=1

where k represents the k-th head, W]((l) and b](f) are the learnable weights and bias, respectively,
which are selected by k and associated with the attention-guided adjacency matrix A%,

4.3.4 Multi-layer combination
In this layer, we combine the representations outputted by N densely connected layers corre-
sponding to N heads to generate the final latent representations:

hout = Wout;lin + bout (9)

hin =AY, ..., h™)] (10)

where }Ntout € RY is the aggregated representation of N heads. W, and b, are the weights and
biases learned during training.
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4.4 Classifier

This layer maps the final hidden state sequence H to the class metonymic or literal. The represen-
tation H; corresponds to the token t;. Specifically, Hy denotes ‘(CLS] at the head of the subword
sequence after tokenisation, which serves as the pooled embedding to represent the aggregate
sequence.

Suppose that h s, . . ., hy/ are the word representations against the entity span E outputted by

the syntactic integration layer. x’ and y’ represent the start and end index of the words in the entity
span, respectively. We apply an operation of average pooling to obtain the final entity encoding:

H,= MeanPooling(sz/, e fzy/) (11)

For classification, we concatenate Hy and H, consecutively, applying two fully connected layers
with activation. Then, we apply a softmax layer to make the final prediction. The learning objective
is to predict metonymic and literal classes for an entity within a given sentence:

Hiinat = p(W*[o(W concat{Ho; He] +b 1) + b*]) (122)

N €xp (Hﬁnal)

y =argmax — & ——— (12b)
exp Y0, (H,)
/
where P refers to a class type in the metonymy type set I'. W e R¥*24, W* e R"™4, || is the
number of classification types, and d is the dimension of the hidden representation vector. While
there are only two classes in this task, this approach can generalise to multiple classes.

5. Experiments
5.1 Datasets

We conducted our experiments mainly on three publicly available benchmarks: two small size
location metonymy datasets, SEMEVAL (Markert and Nissim 2007) and RELOCAR (Gritta et al.
2017), and a large size dataset, WIMCOR (Mathews and Strube 2020). SEMEVAL and RELOCAR
are created to evaluate the capability of a classifier to distinguish literal (geographical territories
and political entities), metonymic (place-for-people, place-for-product, place-for-event, capital-
for-government or place-for-organisation) and mixed (metonymic and literal frames invoked
simultaneously or are unable to distinguish) location mentions.

SEMEVAL: The SEMEVAL dataset® focuses on locations retrieved from the British National
Corpus. The distribution of categories in the SEMEVAL dataset is approximately 80% literal, 18%
metonymic and 2% mixed to simulate the natural distribution of location metonymy. Therefore,
a literal default tag already provides 80% precision. Although it contains finer-grained labels of
metonymic patterns, such as place-for-people, place-for-event or place-for-product, we use only
coarse-level labels of metonymy or literal in the experiment. Our experiment excluded the mixed
class since it accounts for only 2% of the data. Finally, the dataset comprises training (910 samples)
and testing (888 samples) partitions.

RELOCAR: The RELOCAR dataset! was collected using the sample data from Wikipedia’s Random
Article API The data distribution of RELOCAR classes (literal, metonymic and mixed) is approxi-
mately 49%, 49% and 2%, respectively. We excluded mixed class instances. The processed dataset
contains 1026 training and 982 testing instances and has a better label balance to eliminate the
bias due to sub-sampling of the majority class to balance the classes.

¢http://web.eecs.umich.edu/ mihalcea/affectivetext/#resources.
fhttps://github.com/milangritta/Minimalist-Location-Metonymy-Resolution/tree/master/data.
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WIMCOR: The above datasets are limited in size. We also conduct our experiments on a large
harvested corpus of location metonymy called WIMCOR.8 WimCor is composed of a variety
of location names, such as names of towns (e.g., ‘Bath’), cities (e.g., ‘Freiburg’) and states (e.g.,
‘Texas’). The average sentence length in WIMCOR is 80 tokens per sentence. While the samples
in WIMCOR are annotated with coarse-grained, medium-grained and fine-grained labels, only
the coarse labels (binary, i.e., metonymic or literal) are used in our experiments. The training set
contains 92,563 literal instances and 31,037 metonymic instances.

5.2 Setup

5.2.1 Data pre-processing

This section introduces the way to obtain dependency relation matrices. We performed depen-
dency parsing using the spaCy parser” and transformed all dependency trees (one parse tree per
sentence) into symmetric adjacency matrices, ignoring the dependency directions and types for
simplicity. In preliminary work, we conducted experiments using asymmetric matrices, but we
did not observe any improvements.

For BERT variants, we followed Devlin et al. (2019) and used the tokenizer in BERT to seg-
ment words into word pieces as discussed in Section 4.1. We inserted the special [ENT] indicator
before and after the entity spans as Wu and He (2019) did for E-BERT experiments. To adapt the
sequence length distribution corresponding to each dataset, we set the max sequence length to 256
for SEMEVAL, and 128 for RELOCAR and WIMCOR.

5.2.2 Comparison setting

To evaluate our approach, we compared our model with different previous models: SVM, BiLSTM
and PLMs, for example, BERT and ELMo. We took the current SOTA MR system BERT+MASK
(Li et al. 2020) as the baseline, which did not include additional entity information. Following the
best practices in Devlin et al. (2019) and Guo et al. (2019), we constructed the baseline and GCN
models and set up the hyperparameters.

5.2.3 Training details

For all BERT-based models, we initialised the parameters of the BERT encoder using the pre-
trained models released by Huggingface. By launching two unsupervised tasks, namely, masked
language model and the next sentence prediction (Devlin et al. 2019) on the large pre-training
corpus, the sentence tokens are well represented. We empirically found that the large-cased-
BERT model, which is case-sensitive and contains 24 transformer encoding blocks, each with 16
self-attention heads and 1024 hidden units, provides the best performance on the experimen-
tal datasets. The number of sublayers L, for GCN block and L, for ACGN block are 2 and 4,
respectively.

For the SEMEVAL and RELOCAR datasets, we set the batch size to 8 and the number of train-
ing epochs to 20. For the WIMCOR dataset, we trained for 1 epoch and then reach convergence.
We chose the number of heads for the multi-head attention N from the set {1,2, 4,6, 8}, and
the initial learning rate for AdamW Ir from the set {5 x 107%,1 x 107>,2 x 10~°}. The small
learning rate yields more stable convergence and optimal results during model training but under-
fitting during training. A proper value for learning rate should be 1 x 107> or 2 x 10™°. We chose
these hyperparameters based on our experience obtained from extensive preliminary experiments,
given the trade-off between time cost and performance depending on datasets. The combinations

Shttps://kevinalexmathews.github.io/software/.

hhttps://spacy.io/.
thttps://github.com/huggingface/transformers.
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of (N=8,Ir=1x10"°), (N=4,lr=2x10") and (N=4,lr =2 x 107°) provided the best
results on SEMEVAL, RELOCAR and WIMCOR datasets, respectively. E-BERT4+AGCN requires
approximately 1.5 times the GPU memory compared with BERT when training the models on a
Tesla V100-16GB GPU.

5.3 Results

5.3.1 Models

We compared our proposed method with different MR methods to evaluate it. The task of loca-
tion MR is to detect the locations with literal reading only and ignore all other possible readings.
Following Gritta, Pilehvar and Collier (2020), we classify the entity phrase as either literal or
metonymic. The baseline models used in our experiments are listed below.

SVM+Wiki: SVM+Wiki is the previous SOTA statistical model. It applies SVM with Wikipedia’s
network of categories and articles, enabling the model to automatically discover new relations and
their instances.

LSTM and BiLSTM: LSTM is one of the most powerful dynamic classifiers publicly known
(Sundermeyer, Schliiter, and Ney 2012). Thanks to the featured memory function of remember-
ing the last hidden states, it achieves decent results and is widely used on various NLP tasks (Gao
et al. 2018; Si et al. 2019). Moreover, BILSTM improves the token representation by being aware of
the conditions from both directions (Hochreiter and Schmidhuber 1997), making ture contextual
reasoning available. Additionally, two kinds of representations, GloVe (Pennington, Socher and
Manning 2014) and ELMo, are tested separately to ensure model reliability.

Paragraph, Immediate and PreWin: Three models, Paragraph, Immediate and PreWin, are built
upon BiLSTM models. They simultaneously encode tokens into word vectors and dependency
relation labels into one-hot vectors (generally 5-10 tokens selected from the left and right of the
entity work best). The three models differ in the manner of token picking. Immediate x chooses
the x number of words to the immediate right and left of the entity as input to the model (Collobert
et al. 2011; Mesnil et al. 2013; Mikolov et al. 2013; Baroni, Dinu, and Kruszewski 2014), for exam-
ple, Immediate-5/10 takes the 5/10 words to the immediate right and left of the entity as input to
a model. The Paragraph model extends the Immediate model that takes more words (50 words)
from each entity’s side as the input. PreWin selects the words near the local predicate to eliminate
long-distance noise in the input.

PreWin (BERT) is the reimplementation of the PreWin system with BERT embeddings as the
input. Instead of deploying BERT as a classifier, we replace the original GloVe embeddings with
BERT embeddings used in the PreWin model and initialise word embeddings using BERT embed-
dings. Word embeddings are combined by summing subword embeddings to generate GloVe-like
word embeddings.

BERT, +AUG, +MASK: Three BERT-based MR models are described in Li et al. (2020). The
vanilla BERT model (Devlin et al. 2019) can be directly used to detect metonymies by performing
sentential classification. BERT encodes the input tokens into distributed vector representations
after fine-tuning over datasets. BERT+AUG is fine-tuned with data augmentation (Li ef al. 2020).
This method generates new samples by randomly substituting the target entity nominal with one
from all the extracted target words. BERT4+MASK fine-tunes the BERT model with target word
masking that replaces the input target word with the single token [ENT] during training and
evaluation.

E-BERT (sent) and E-BERT (sent+ent): Entity-aware BERT, namely, E-BERT, enriches the
semantic representations by incorporating the entity information. The input to the E-BERT (sent)
model is slightly different from the original dataset, where we inserted [ENT] markers before and
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Figure 4. Variants of the architecture for extracting entity and sentence representations from the deep Transformers net-
work. (a) A model with the standard input and with sentence output at the position of [CLS]; (b) a model using the
entity-marked input and with the sentence (i.e., [CLS]) and the entity outputs; (c) and (d) two models with the entity-marked
input and with the sentence (i.e., [CLS]) and the entity outputs using GCN and AGCN, respectively.

after the entity spans, making BERT aware of the entity position. The E-BERT (sent) model repre-
sents the sentence using the encoding at the [CLS] position. The E-BERT (sent+ent) model shares
the same network structure as the R-BERT model (Wu and He 2019) for RE, but it depends on
a sole entity. Concretely, this variation concatenates the target entity’s sentential encoding and
corresponding encoding.

E-BERT+GCN: This model applies a hard pruning strategy using GCN computation to integrate
syntactic information into BERT representations. The input sentences are inserted with the [ENT]
label before and after the metonymic and literal entity span.

E-BERT+AGCN: We build the fully attentive system E-BERT+AGCN based on E-BERT+GCN.
The attention-guided layer in E-BERT+AGCN employs a soft attention mechanism to assign
proper weights to all dependencies. Figure 4 illustrates all BERT variants used in this paper,
including BERT, E-BERT, E-BERT+GCN and E-BERT4+AGCN.

5.3.2 Overall evaluation

We compared the averaged F1 and accuracy scores by running each model 10 times (see Table 2).
In the accuracy comparison, the performance of the feature-based model SVM~+Wiki is still supe-
rior to most of the recent DNN models. LSTMs yielded better results due to operations, such as
structure variation modelling, word representation improvement and feature integration. Of note,
NER and part-of-speech (POS) features have less of an effect on BiLSTM (ELMo). The semantics
provided by POS/NER features might be redundant for ELMo representations. PreWin surpasses
the baseline LSTM (GloVe) by a large margin on both RELOCAR and SEMEVAL datasets. The
result indicates the significance of syntactic information. In addition, the process of choosing and
retaining related tokens is also a major contributor to PreWin, resulting in at least 1.2 and 2.2
points higher than Paragraph and Immediate on SEMEVAL and RELOCAR, respectively.

The results of E-BERT+GCN and E-BERT+AGCN show that our model is able to lever-
age syntactic information that is useful for MR and demonstrates its advantages over previous
works with SOTA results. Specifically, E-BERT+AGCN considerably outperforms the previous
model based on heavy feature engineering, that is, SVM+Wiki. Our model also surpassed pre-
vious DNN models, including LSTM, BiLSTM and PreWin, even when enriched with POS and
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Table 1. Statistics of the datasets used in this paper. The table describes the number
of identical entities and the number of overlapping entities in the training and test
sets. The table includes sentence length, entity position and the number of verbs per

sentence
RELOCAR SEMEVAL WIMCOR
Train # of sent 1026 910 123,600
sent_len 22.049.7 30.14+17.7 84.54-55.0
ent_pos 9.9£7.5 15.4£13.5 41.24+39.1
distinct ent. 336 183 1010
# of verbs 2.0£1.4 2.9+2.2 8.0+£6.6
Test # of sent. 982 888 41,200
length 23.449.9 29.74+16.9 84.84+55.8
ent_pos 11.849.2 14.7+12.1 41.1£39.0
distinct 346 174 1010
# of verbs 2.1+15 2.9+2.1 8.0+6.8
Overlapped 140 114 1010

NER features. Furthermore, we compared E-BERT-+AGCN with two baseline models: E-BERT
(the entity-aware BERT model without syntactic integration) and E-BERT+GCN (imposing hard
syntactic constraints with GCN).

Moreover, the experiment on E-BERT+GCN shows an accuracy increase that is 0.3% and
0.2% higher than E-BERT (sent+-ent) on the SEMEVAL and RELOCAR datasets, respectively.
GCN improves performance by catching useful information from syntax. The hard pruning
behaviour of Immediate 5 exerted on E-BERT+GCN has little effect, which shows that prun-
ing graphs crudely may be counterproductive. E-BERT+AGCN obtains improvements of 0.7%
and 0.2% on the SEMEVAL and RELOCAR datasets, respectively, compared with E-BERT+GCN.
Therefore, introducing a multi-head attention mechanism that assists GCNs in information
aggregation seems successful. The standard deviation of E-BERT+AGCN is also lower than
E-BERT+GCN, indicating a more robust model performance. Our approach effectively incor-
porates soft-dependency constraints into MR models by pruning irrelevant information and
emphasising dominant relations concerning indicators.

We also report F1 scores for literal class and metonymic class separately. RELOCAR is a class-
balanced dataset with literal and metonymic independently accounting for 50% of all examples
in the training dataset. The F1 score of RELOCAR is relatively higher than that of the SEMEVAL
dataset due to the shorter sentence length. In the RELOCAR rows, the F1 of both classes indicates a
slight upgrade compared with baseline E-BERT and E-BERT+GCN, since the standard deviations
are relatively higher. Conversely, SEMEVAL serves as a benchmark with literal and metonymic
accounting for 80% and 20%. The imbalance causes a lack of metonymic evidence, making the
model learning process insufficient. As reflected in Table 2, earlier models, such as LSTM, have an
inferior F1 performance on the metonymic class compared with the literal class. The considerable
performance gap of 3.4% and 4.0% in F1-M between BERT and E-BERT+AGCN shows that E-
BERT+AGCN is more powerful in capturing syntactic clues to solve the sample limitation. To
summarise, E-BERT4+AGCN achieves the highest F1 scores for both SEMEVAL and RELOCAR
and is able to adapt to various class distributions in the dataset.
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Table 2. The overall F1 and accuracy scores on the SEMEVAL and RELOCAR datasets. ‘L’ and ‘M’ denote literal
and metonymic classes. +NER+POS means integrating both NER and POS features with the baseline model.
In general, E-BERT-+AGCN obtains the best results. The boldface denotes the best results and ‘4’ means sta-
tistically significant improvement over the baseline (BERT+MASK, Li et al. 2020) with p-value < 0.05. t and #
are the results reported in the previous works of Gritta et al. (2017) and Li et al. (2020), respectively. Since the
datasets are slightly different, we re-implement systems of Li et al. (2020) and report the new results labelled

by
MODEL SEMEVAL RELOCAR

F1-L F1-M Acc. (std.) F1-L F1-M Acc. (std.)
SVM-+Wiki 91.6 59.1 86.2 (N/A) - - -
LSTM (GloVe) 85.2 28.7 72.6 (1.48) 78.4 78.4 78.4 (0.91)
+NER+POS 87.5 27.3 77.4(1.34) 80.6 80.6 80.6 (0.92)
BiLSTM (GloVe) 83.2 37.4 75.4 (1.72) 82.9 83.0 82.9 (0.85)
+NER+POS 88.8 31.7 82.0(1.36) 84.2 84.2 84.2 (0.69)
BiLSTM (ELMo) 91.9 54.7 86.3 (0.45) 90.0 90.1 90.0 (0.40)
+NER+POS 91.6 55.6 86.1(0.47) 90.1 90.1 90.1(0.36)
Paragraph’ - - 81.3(0.88) - - 80.0 (2.25)
Immediate-5" - - 81.3(1.11) - - 81.4 (1.34)
Immediate-10* - - 81.9(0.89) - - 81.3(1.44)
PreWin (Glove)" 90.6 57.3 83.1(0.64) 84.4 84.8 83.6 (0.71)
PreWin (BERT)* - - 87.1(0.54) - - 92.2(0.48)
BERT* 91.6 59.7 86.2(0.32) 91.8 91.8 91.8(0.81)
+AUG* 91.9 56.9 86.4 (0.55) 91.4 91.4 91.4 (0.08)
+MASK* (SOTA) 93.0 63.3 88.2(0.61) 95.3 95.4 95.3(0.41)
E-BERT (sent) 93.5 60.0 87.6 (0.55) 94.0 94.0 94.0 (0.58)
E-BERT (sent+ent) 93.2 66.0 88.8 (0.63) 95.2 95.3 95.3(0.44)
+GCN 93.5" 67.5% 89.1(0.60)1 95.5 95.5 95.5 (0.46)
+GCN (Immediate-5) 93.6" 65.71 89.0 (0.50)" 95.3 95.4 95.4 (0.44)
+AGCN 94.0" 68.3" 89.6 (0.85)" 95.7" 95.8" 95.8 (0.34) '

683

In addition, to verify the effectiveness of our model on a larger dataset, we launch the experi-
ment using the WIMCOR dataset. Table 3 also gives the results on the WIMCOR dataset. Though
the increase is not substantial in terms of accuracy or F1 scores, our model leads to a 0.2 percent-
age point improvement compared to E-BERT, given the fact that the WIMCOR testing set contains

41,200 instances.

5.3.3 Cross-domain evaluation
Since the metonymy datasets were created using different annotation guidelines, it is informa-
tive to study the generalisation ability of the developed models. Thus, we launched across-domain
experiments to evaluate the model’s performance under cross-domain configurations as follows:
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Table 3. Results of the WIMCoR dataset

MODEL Acc Precision Recall F1-L F1-M

WIMCoR—WIMCOR E-BERT 96.8 95.1 92.5 97.8 93.8
E-BERT+GCN 96.9 95.2 92.6 97.9 93.9

E-BERT+AGCN 97.0 96.4 91.7 98.0 94.0

Table 4. Cross-domain accuracy, precision, recall and F1 scores. The best results are indicated in boldface

Models Acc Precision Recall F1-L F1-M
WIMCoR—RELOCAR E-BERT 59.1 80.1 25.2 69.3 38.3
E-BERT+GCN 58.8 81.8 23.6 69.4 36.6
E-BERT+AGCN 65.8 83.9 39.9 72.7 54.0
WIMCOR— SEMEVAL E-BERT 80.2 42.4 15.0 88.6 22.1
E-BERT+GCN 80.0 35.1 7.8 88.7 12.7
E-BERT-+AGCN 81.6 52.7 23.4 89.4 32.4
SEMEVAL—RELOCAR E-BERT 66.4 99.4 33.7 74.6 50.3
E-BERT+GCN 70.9 96.1 44.4 76.9 60.6
E-BERT+AGCN 70.1 99.0 41.1 76.7 58.1
RELOCAR— SEMEVAL E-BERT 72.5 40.1 93.4 80.0 56.1
E-BERT+GCN 74.1 41.5 91.6 81.5 57.1
E-BERT+AGCN 69.8 37.7 92.2 77.7 53.7

WIMCOR—RELOCAR, WIMCOR—SEMEVAL, SEMEVAL—RELOCAR, RELOCAR—SEMEVAL.
We trained models on one dataset for all configurations and tested them on another dataset and
then compared the three models, E-BERT, E-BERT+GCN and E-BERT+AGCN. As shown in
Table 4, the result on the WIMCOR dataset indicates the robustness of E-BERT+AGCN on a large
benchmark. Although incorporating hard syntactic constraints improves the MR results slightly,
the soft constraint is more efficient than the hard in the experiments in terms of accuracy.

5.3.4 Sentence length
We further compared the accuracy of E-BERT+AGCN and E-BERT with different sentence
lengths, as shown in Figure 5. The experiment is conducted on both SEMEVAL and the RELOCAR
datasets. Note that the average sentence length of RELOCAR is shorter than that of the SEMEVAL.
To highlight the issues, we primarily discuss the SEMEVAL dataset. Long sentences are likely
to affect the classification accuracy and cause poor performance for two reasons: 1. contextual
meanings for long sentences are more difficult to capture and represent; 2. the position of key
tokens, like the predicate, can be far from the entity in a sentence, therefore, difficult to deter-
mine. Thus, it is challenging for sequence-based models to retain adequate performance when
tested with long sequences. BERT fails to utilise structural information such as dependency trees
that have been proven to benefit NLP tasks. Previous studies (Tang et al. 2018) have shown that
BERT lacks model interpretability for non-local syntactic relations, for example, long-distance
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Figure 5. Comparison on the RELOCAR and the SEMEVAL datasets w.r.t. different sentence lengths. E-BERT-+AGCN signifi-
cantly outperforms E-BERT and E-BERT+GCN on the SEMEVAL dataset when sentence length is longer than 70.

syntactic relations. The accuracy drops as in Figure 5 for BERT when the sentence length grows.
In this case, a dependency-based model is more suitable for handling long-distance relations while
reducing computational complexity. E-BERT+AGCN alleviated such performance degradation
and outperformed the two baselines in all buckets, and the improvement becomes more signifi-
cant when the sentence length increases (> 30 on RELOCAR and > 66 on SEMEVAL). The results
in Figure 5 confirm that E-BERT+AGCN produces better entity and contextual representations
for MR, especially for longer sentences.

5.3.5 Case study

This section describes is a case study using a motivating example correctly classified by E-
BERT+AGCN but misclassified by E-BERT to show the effectiveness of our model. Given the
sentence, ‘He later went to manage Malaysia for one year’, a native speaker can easily identify
‘Malaysia’ as a metonymic term by linking ‘Malaysia’ to the concept of ‘the national football team
of Malaysia’. In the above sentence, since the verb phrase, ‘went to’ is a strong indicator, E-BERT
is prone to overlook the second predicate ‘manage’. As a result, E-BERT would falsely recognises
‘Malaysia’ as a literal territory (due to customary usage of ‘went to somewhere’). We can explain
how the problem mentioned above is resolved in E-BERT+AGCN by visualising the attention
weights of the model. We first compare the attention matrix of the transformer encoder blocks
in E-BERT to check the contribution of syntactic integration to the whole model. Figure 6(a)
shows that the weights of tokens in BERT are decentralised. Intuitively, E-BERT provides insuf-
ficient semantic knowledge to MR, resulting in the lose of useful information as to which target
words should be considered. In Figure 6(b), the attention in E-BERT+AGCN concentrates on
the predicate ‘manage’ and the entity ‘Malaysia’ rather than on ‘went fo’ and other tokens. With
the integration of syntactic components, the dependency information assisted the model in being
aware of the sentence structure. As a result, our model selects relevant tokens and discards the
irrelevant and misleading tokens.
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Figure 6. Visualisation of attention matrices (better viewed in colour). (a) averaged attention weights in the E-BERT encoder
(E-BERT), (b) averaged attention weights in the E-BERT encoder (E-BERT-+AGCN); (c) attention weights in the non-attention
modules (E-BERT+GCN and E-BERTHAGCN); (d) averaged attention weights in the attention modules (E-BERTH+AGCN).
(a) with (b) show the effect of incorporating syntactic constraints on BERT. (c) and (d) illustrate soft attention weights com-
pared to hard ones. (a)~(d) illustrate that incorporating syntactic information forces the model to focus on the neighbours
of the target word in the dependency graph, compared to Figure 1.

Furthermore, the sentence in the example can be divided into the main clause ‘He later went to
manage Malaysia’ and the prepositional phrase ‘for one year’. The main clause contains the pred-
icate and the entity that dominates the MR inference. However, conventional methods consider
the modified relation between ‘one’ and ‘year’ as well as other irrelevant connections to have the
same weight. This process introduces massive noise in feature extraction.

As shown in Figure 6(b), the prepositional phrase ‘for one year’ is irrelevant to the MR task.
Despite the existence of dependency relations for the prepositional phrase, the weights of those
relations are relatively lower compared with the main clause, which includes the verb and its
dependent words. After launching the multi-head attention mechanism, the model is free from
fixed pruning rules and flexibly learns the connections among tokens.

The syntactic component (GCN Block) first selects relevant syntactic features efficiently given
the hard dependency adjacency matrix (see Figure 6(c)). Then, the attention-guided layer learns
the soft attention matrix. To demonstrate the superiority of soft dependency relations, we use
Figure 6(d) to visualise the attention weights of the attention-guided layer. Unlike the attention in
the BERT encoding layer, the attention-guided layer’s attention matrix reflects more information
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Table 5. Samples for error analysis. Bold denotes the target entities for MR. ‘Label’ refers to the class label of the target entity,
followed by the correctness of the predictions of E-BERT and E-BERT+AGCN models

# Sentence Label E-BERT E-BERTH+AGCN

S1  Her personal bests in the event are 1.92 metres outdoors (Marseille 2015) and MET X X
1.93 metres indoors (Budapest 2015)

S2  Engaged in very long range strategic bombing missions to enemy military, MET X v
industrial and transportation, were Italy, France, Germany, Austria, Hungary,
Romania, and Yugoslavia

S$3  This led to an open uprising by Schleswig-Holstein’s large German majority in LIT X X
support of independence from Denmark and of close association with the
German Confederation

S4  The LP had advance orders of a half million and sold another half million by MET X v
September 1965, making it the second album to sell a million copies in the
United Kingdom, after the soundtrack to the 1958 film South Pacific

S5 After spending three years in London on board the prison hulk Newgate, MET X X
Hutchinson was transported to Australia on the Hillsborough, sometimes
referred to as the ‘Fever Ship’ since some ninety-five of the three hundred
convicts aboard died from typhoid fever brought aboard from the prison hulks

about dependency relationships. GCN is prone to trust information for all its one-hop neighbours
in dependency graphs while overlooking other neighbours. In contrast, AGCN uses multi-head
attention to attend to different representation subspaces to reduce the information loss jointly.

6. Error analysis

In most cases shown in Table 5, E-BERT4+AGCN makes correct predictions. However, typical
issues caused by various reasons remain unsolved. We will discuss three types of such unsolved
errors here.

6.1 Error propagation

E-BERT+AGCN predicts the entity type given dependency relations and contextualised embed-
dings. Concretely, S1 shows an example that presents isolation of the term ‘Marseille 2015 in
the dependency parse tree. The subtree of ‘Marseille 2015 and the remaining parts are split by
parentheses. In an extreme case, E-BERT+AGCN fails to recognise ‘Marseille’ as ‘a sport event in
Marseille’. We found that the connection between ‘beats’ and ‘Marseille’ is missing in the parse tree.

6.2 Multiple predicates

The predicate plays a crucial role in understanding a sentence (Shibata, Kawahara, and Kurohashi
2016). In MR tasks, if an entity exerts an action on others, it is probably a metonym. S2 is a typi-
cal example of long distance between the predicate and the entity. In this situation, BERT fails to
classify and cannot catch non-local features due to long distances. Meanwhile, E-BERT+AGCN
correctly predicts metonymy by relying on the related entity and the predicate, ‘engaged’. In other
words, E-BERT4+AGCN can mine strong connections in sentences with a relatively straightfor-
ward and smart effort. The observation proves again that the syntactic component is efficient in
searching keywords.

In more complex cases, our method might fail to detect metonymy. For example, in S3,
conventional models might easily find the predicate ‘uprising’. The event participant is ‘Schleswig-
Holstein’s large German majority’ rather than ‘Schleswig-Holstein’. E-BERT+AGCN could not
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trace the predicate and made an incorrect prediction even though it was aware of syntactic
structural knowledge.

6.3 Knowledge deficiency

Many metonymies are proper nouns that refer to existing well-known works or events. Previous
models struggle with the limitations of lacking real-world and common-sense knowledge to access
the referents, which results in poor interpretability. In contrast, in sentence S4, ‘South Pacific’
refers to a film in 1958. E-BERT fails to recognise such a metonym, while E-BERT+AGCN
successfully extends the implication of ‘South Pacific’ to the film called South Pacific due to
the dependency between ‘film’ and ‘South Pacific’. S5 is one of the failed cases. In sentence S5,
E-BERT+AGCN fails to detect metonymy, notwithstanding the explanation of ‘Hillsborough’,
referring to ‘Fever Ship’, which has been mentioned in the discourse. In fact, ‘Hillsborough’ is a
ship name involved in unconventional metonymy. As discussed in Section 2, identifying such a
logical metonymy is difficult since the interpretation requires additional, inferred information.

7. Conclusion and future work

This paper shows the success of a neural architecture deploying a dependency-guided network to
capture non-local clues for MR. This approach incorporates hard and soft dependency constraints
into MR, enabling context- and syntax-aware representations. Experimental results and analyses
on MR benchmark datasets showed that our proposed architecture surpasses previous approaches.
Our work also demonstrates the importance of syntax for NLP applications.

There are several potential directions for future research. For example, further introducing
dependency types (Tian et al. 2021) into the GCN variations and using external knowledge bases
(Mihaylov and Frank 2018; Lin et al. 2019a; Yang et al. 2019) to mine latent relations appear to be
of interest. To make full use of the prior knowledge for MR, we also plan to replace BERT with
knowledge-enhanced PLMs (Zhang et al. 2019).
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A. Comparison of data size

Figure A.1. shows the performance of E-BERT, E-BERT+GCN and E-BERT+AGCN against
different settings of data size. Given the SEMEVAL dataset has fewer metonymic instances, we
conduct the experiment on RELOCAR only. Using only 20% of training data, two models achieve
desirable F1 scores near 90. The result demonstrates the robustness of E-BERT+GCN and E-
BERT+AGCN models. When comparing them under the same data size setting, E-BERT+AGCN
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Figure A.1. Comparison of F1 scores w.r.t training data size on the RELOCAR dataset. We train the model with different
percentages {20, 40, 60, 80, 100} of the training dataset.

substantially outperforms E-BERT, and the performance gap between E-BERT+AGCN and E-
BERT is always larger than 0.4%. The observation suggests that the E-BERT+AGCN model has
better generalisation than E-BERT, especially for small datasets.
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