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Abstract
We investigate properties of closed approximate subgroups of locally compact groups, with a particular interest for
approximate lattices (i.e., those approximate subgroups that are discrete and have finite co-volume).

We prove an approximate subgroup version of Cartan’s closed-subgroup theorem and study some applications.
We give a structure theorem for closed approximate subgroups of amenable groups in the spirit of the Breuillard–
Green–Tao theorem. We then prove two results concerning approximate lattices: we extend to amenable groups
a structure theorem for mathematical quasi-crystals due to Meyer; we prove results concerning intersections of
radicals of Lie groups and discrete approximate subgroups generalising theorems due to Auslander, Bieberbach
and Mostow. As an underlying theme, we exploit the notion of good models of approximate subgroups that stems
from the work of Hrushovski, and Breuillard, Green and Tao. We show how one can draw information about a
given approximate subgroup from a good model, when it exists.
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1. Introduction

As defined by Tao [Tao08], a K-approximate subgroup of a group G is a subset A that is symmetric
𝐴 = 𝐴−1, contains the identity, and satisfies 𝐴𝐴 ⊂ 𝐹𝐴 for some finite subset 𝐹 ⊂ 𝐺 with |𝐹 | ≤ 𝐾 . In
a seminal paper [Hru12], Hrushovski showed that approximate subgroups are closely related to neigh-
bourhoods of the identity in locally compact groups. Breuillard–Green–Tao [BGT12] subsequently used
his ideas in combination with techniques originating from Gleason’s and Yamabe’s work on Hilbert’s
5th problem to prove a theorem describing the structure of arbitrary finite approximate subgroups. Their
work was extended in Kreitlon Carolino’s thesis [Car15] to handle approximate groups that are relatively
compact neighbourhoods of the identity in an arbitrary locally compact group.

The goal of this paper is to further investigate properties of infinite approximate subgroups. We
will prove several results in this direction. In particular, we will show (Theorem 4.1 below) that closed
approximate subgroups of locally compact groups are commensurable to homomorphic images of open
approximate groups in a possibly different locally compact ambient group. This can be seen as an
analogue of the classical theorem of Cartan asserting that closed subgroups of Lie groups are Lie
subgroups. In turn, this enables us to apply the main result of Kreitlon Carolino’s thesis [Car15] to any
compact approximate subgroup and remove the assumption in [Car15, Thm. 1.25] that the relatively
compact approximate groups studied have nonempty interior (Theorem 4.6 below). We will also prove
(Theorem 1.6) a structure theorem in the spirit of the Breuillard–Green–Tao theorem ([BGT12]) for
amenable closed approximate subgroups of locally compact groups. This applies, in particular, to all
closed approximate subgroups of amenable locally compact groups.

But most of the paper will be devoted to investigating a special class of approximate groups called
approximate lattices. These were first systematically studied in recent work of Björklund and Hartnick
[BH18]. The approximate lattices are those approximate subgroups Λ of an ambient locally compact
group G that have finite co-volume (i.e., 𝐺 = ΛF for some Borel subset F of G of finite Haar mea-
sure) and are uniformly discrete (or equivalently the identity is isolated in Λ2). Note that this defini-
tion is due to Hrushovski [Hru22]; Björklund and Hartnick first defined uniform approximate lattices
(when F is relatively compact) as well as a non-uniform version of this notion under the name of
strong approximate lattice; see [BH18, Def. 4.9] and Subsection 2.3 below (the link between these
three notions is investigated in [Mac22a]). When G is commutative, these sets had been defined and
studied already in the 1970’s by Yves Meyer [Mey72]; they are a model of the so-called mathemat-
ical quasi-crystals and have been much studied since, in particular in connection with mathematical
physics [BG13].

A simple way to construct approximate lattices is via a cut-and-project scheme – namely, the datum
(𝐺, 𝐻, Γ) of two locally compact groups G and H, and a lattice Γ in 𝐺 × 𝐻, which projects injectively
to G and densely to H. Given a symmetric relatively compact neighbourhood of the identity 𝑊0 ⊂ 𝐻,
one defines the model set 𝑃0 (𝐺, 𝐻, Γ,𝑊0) := 𝑝𝐺 ((𝐺 × 𝑊0) ∩ Γ), where 𝑝𝐺 is the projection to
the first factor. It is easy to see that a model set, or even any set commensurable to a model set,
must be an approximate lattice. For more on cut-and-project sets, we refer the reader to [BHP18,
BHP22].
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Central to our paper is an idea, exploited in [Hru12] and [BGT12] on the way to the structure theorems
established there, which consists in defining a certain topology on the approximate group by means of
what we will call here a good model:

Definition 1.1. Let Λ be an approximate subgroup of a group Γ. A group homomorphism 𝑓 : Γ → 𝐻
with target a locally compact group H is called a good model (of (Λ, Γ)) if:

1. 𝑓 (Λ) is relatively compact;
2. there is 𝑈 ⊂ 𝐻 a neighbourhood of the identity such that 𝑓 −1(𝑈) ⊂ Λ.

IfΓ is generated byΛ, then we say that f is a good model ofΛ. Any approximate subgroup commensurable
to Λ will be called a Meyer subset.

This definition is reminiscent of the construction of the so-called Schlichting completion of a pair
(Γ,Λ), where Λ ≤ Γ are discrete groups such that Γ commensurates Λ. Indeed, if U is also a compact
subgroup, then Λ := 𝑓 −1(𝑈) is commensurated by Γ. See, for instance, the work of Tzanev [Tza03] on
Hecke pairs or the works of Shalom and Willis [SW13] and of Caprace and Monod [CM09, §5D] on
commensurators of discrete groups, where this construction plays a key role.

We will see that good models exist in many situations of interest. Indeed, our first observation is that
for approximate lattices in an ambient group G, the existence of a good model is equivalent to being
commensurable to a model set via a certain cut-and-project scheme (𝐺, 𝐻, Γ).

Proposition 1.2. Let Λ be an approximate lattice in a locally compact group G. Then Λ is a Meyer
subset if and only if it is contained in and commensurable to a model set.

Meyer [Mey72] (see also [Sch73]) showed that every approximate lattice in a locally compact
commutative group G comes from a cut-and-project construction: in other words, it is commensurable
to a model set, or, equivalently thanks to Proposition 1.2, it is a Meyer subset. The question of extending
Meyer’s theorem to other groups has been raised by Björklund and Hartnick in [BH18, Problem 1]. This
has been achieved for nilpotent and solvable Lie groups in our previous works [Mac20] and [Mac22b]
following a method close in spirit to Meyer’s. A consequence of the tools developed in the present paper
will be a new proof of this fact and indeed a generalization to all locally compact amenable ambient
groups (Theorem 1.5 below). In a companion paper ([Mac23]), we show, using some key results of
the present paper (notably Proposition 1.2 and Theorem 4.1) in combination with Zimmer’s cocycle
superrigidity theorem, that Meyer’s theorem also holds for strong approximate lattices in semi-simple
Lie groups without rank one factors (we also mention Hrushovski’s [Hru22] which generalises Meyer’s
theorem to semi-simple groups via a different approach). Another consequence will be a proof of the
analogue for approximate lattices of the classical facts about hereditary properties of lattices with respect
to intersections with closed normal subgroups (Proposition 6.3) and, in particular, an Auslander-type
theorem regarding the intersection with the amenable radical (Theorem 1.7).

We are now ready to state the main results of this paper. We consider first two interesting classes of
approximate groups: compact approximate subgroups and amenable approximate subgroups (Definition
5.1). We will see that these types of approximate subgroups always have good models and thus are
particularly regular types of approximate subgroups. In the case of compact approximate subgroups,
this leads to a closed-subgroup theorem for approximate subgroups.

Theorem 1.3 (Closed-approximate-subgroup theorem). Let Λ be a closed approximate subgroup of
a locally compact group G. There are a locally compact group H, an injective continuous group
homomorphism 𝜙 : 𝐻 → 𝐺 and an open approximate subgroup Ξ of H such that for all 𝑛 ≥ 0, 𝜙 |𝜙−1 (Λ𝑛)

is proper and a homeomorphism onto its image, and Λ ⊂ 𝜙(Ξ) ⊂ Λ3. Furthermore, if G is a Lie group,
then H is a Lie group.

We say that a map between locally compact spaces is proper if the inverse image of any compact
subset is also compact. Here, a good model of some compact approximate subgroup contained in Λ2

appears implicitly as the inverse of the map 𝜙. Theorem 1.3 and a theorem of Schreiber [Sch73] (which

https://doi.org/10.1017/fms.2024.67 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.67


4 S. Machado

was recently given a new proof by Fish [Fis19]) show that, modulo a compact error term, the structure of
closed approximate subgroups of Euclidean spaces is akin to the structure of closed subgroups. Recall
that a subset Λ of an ambient group G is called uniformly discrete if e is isolated in Λ−1Λ.

Proposition 1.4. Let Λ be a closed approximate subgroup in R𝑑 . Then we can find a vector subspace
𝑉𝑜 ⊂ R𝑘 , as well as a uniformly discrete approximate subgroupΛ𝑑 and a compact approximate subgroup
𝐾𝑒 both in a supplementary subspace 𝑉𝑑 of 𝑉𝑜 such that Λ is commensurable to 𝑉𝑜 + Λ𝑑 + 𝐾𝑒.

Incidentally, Theorem 1.3 (in fact, the more general Theorem 4.1) enables us to remove an openness
assumption from a result of Kreitlon Carolino’s thesis ([Car15, Thm. 1.25]) which is an improvement of
the Gleason–Yamabe theorem [Yam53, Thm. 3]. This yields a precise structure theorem for all compact
approximate subgroups.

Likewise, we are able to prove that amenability assumptions force approximate subgroups to have
good models. It is well known that in many situations, existence of some invariant finitely additive
measures implies existence of a good model (see, for example, [Hru12, HKP22, San12, CS10, MW15]).
We will say that a closed approximate subgroup of a locally compact group G is amenable if there exists
an invariant finitely additive probability measure on Borel subsets of Λ (Section 5). This condition
is in particular satisfied on any closed approximate subgroup close to an amenable normal subgroup
(Proposition 5.13). This enables us to prove a generalisation of Meyer’s seminal theorem [Mey72]:

Theorem 1.5 (Meyer theorem for amenable groups). If Λ is an approximate lattice in an amenable
locally compact second countable group G, then Λ is contained in and commensurable to a model set.

Recall that we had already established this result in [Mac20, Mac22b] in the special case when G
is a soluble Lie group. Our method here is very different, however, and is inspired from the work of
Hrushovski [Hru12] and Breuillard–Green–Tao [BGT12].

It is interesting to show that an approximate subgroup is amenable beyond the realm of approximate
lattices. By using the strong Tits’ alternative due to Breuillard [Bre08] (and a consequence of it due
to Breuillard, Green and Tao [BGT11]), we can prove a result reminiscent of the structure theorem of
finite approximate subgroups [BGT12] (see also Proposition 5.6 for a more complete statement in the
language of good models).

Theorem 1.6 (Structure of amenable approximate subgroups). Let Λ be an amenable closed approx-
imate subgroup of 𝜎-compact locally compact group G. Then there is a closed approximate subgroup
Λ𝑠𝑜𝑙 ⊂ Λ4 and a closed subgroup 𝑁 ⊂ Λ𝑠𝑜𝑙 such that

1. N is normal in 〈Λ𝑠𝑜𝑙〉 and 〈Λ𝑠𝑜𝑙〉/𝑁 is a soluble group;
2. if 〈Λ𝑠𝑜𝑙〉 is equipped with the topology given by Theorem 1.3, then 〈Λ𝑠𝑜𝑙〉/𝑁 is a Lie group;
3. there is a compact neighbourhood V of the identity in Λ𝑛 (in the induced topology) for some 𝑛 ≥ 0

such that Λ is contained in 𝑉Λ𝑠𝑜𝑙 and 𝑉Λ𝑠𝑜𝑙 ∪ Λ𝑠𝑜𝑙𝑉 is an approximate subgroup commensurable
to Λ.

Subgroups, compact approximate subgroups (see Section 4) and approximate subgroups of soluble
lie groups (see [Mac22b]) are natural and well-studied examples of amenable approximate subgroups.
Theorem 1.6 asserts conversely that any amenable closed approximate subgroup of a locally compact
group is built as a combination of these. We briefly mention two facts to illustrate the strength of
Theorem 1.6: when G is supposed totally disconnected or Λ is supposed uniformly discrete (e.g., when
Λ is an approximate lattice), we can choose Λ𝑠𝑜𝑙 commensurable to Λ (Corollaries 5.11 and 5.12). Then
Λ is an extension of an amenable group by a soluble approximate subgroup.

Finally, we will use the ideas behind Theorem 1.6 to study generalisations of theorems due to
Auslander [Aus63, Thm. 1] and Mostow [Mos71, Lem. 3.9] about intersections of lattices and radicals
in Lie groups. Our main result in that direction follows:

Theorem 1.7 (Semi-simple + amenable decomposition). Let Λ be a uniformly discrete approximate
subgroup in a locally compact second countable group G. Suppose that there exists an amenable closed
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normal subgroup A such that 𝐺/𝐴 is a finite direct product of simple algebraic groups over local fields
as a topological group. If the projections of 〈Λ〉 to all simple factors of 𝐺/𝐴 are Zariski-dense, then the
projection of Λ to 𝐺/𝐴 is uniformly discrete.

When specialized to approximate lattices, this answers a question of Hrushovski [Hru22, Question
7.11] and indeed generalises [Aus63, Thm. 1] and [Mos71, Lem. 3.9]. We point to Corollary 6.11 and
the discussion immediately after for this and more.

Structure of the paper

In Section 2, we recall a few useful facts and definitions about approximate subgroups and approximate
lattices. We then study general properties of good models in Section 3. Using these tools, we establish
in Section 4 and Section 5 the structure theorems for, respectively, compact approximate subgroups
and amenable approximate subgroups. In Section 6, we study intersections of approximate lattices with
closed subgroups, eventually proving Theorem 1.7.

2. Preliminaries

2.1. Notation

In this paper, topological group is a group together with a topology making the inverse map and
multiplication map continuous. A topological group is locally compact if it admits a compact Hausdorff
neighbourhood of the identity. More generally, we follow throughout this paper Bourbaki’s terminology.
In particular, all compact sets are understood to be Hausdorff. Given a locally compact group G, a Haar
measure of G refers to a left-Haar measure. We refer to [Bou89a, Ch. III], [Var84] for background on
locally compact groups and Lie groups.

For a subset X of a group G and a non-negative integer n, define 𝑋−1 = {𝑥−1 |𝑥 ∈ 𝑋},
𝑋𝑛 := {𝑥1 · · · 𝑥𝑛 |𝑥1, . . . , 𝑥𝑛 ∈ 𝑋} and 〈𝑋〉 the group generated by X. Recall that an approximate sub-
group is a subset Λ of a group that is symmetric (i.e., Λ = Λ−1) and contains the identity, and such that
there exists a finite subset 𝐹 ⊂ 𝐺 with Λ2 := {𝜆1𝜆2 ∈ 𝐺 |𝜆1, 𝜆2 ∈ Λ} ⊂ 𝐹Λ. A useful observation in
the study of approximate subgroups is the so-called modular law. Namely, if 𝑋,𝑌, 𝑍 ⊂ 𝐺 are such that
𝑋 ⊂ 𝑌𝑍 , then 𝑋 ⊂ (𝑌 ∩ 𝑋𝑍−1)𝑍 .

2.2. Preliminaries on approximate subgroups and commensurability

We will say that two subsets 𝑋,𝑌 ⊂ 𝐺 are (left-)commensurable if there exists a finite subset 𝐹 ⊂ 𝐺
such that 𝑋 ⊂ 𝐹𝑌 and 𝑌 ⊂ 𝐹𝑋 . Note that commensurability is an equivalence relation between
subsets of a group. An approximate subgroup is thus a symmetric subset Λ containing e such that Λ2

is commensurable to Λ. By an easy induction, we see moreover that Λ𝑛 is commensurable to Λ for all
𝑛 ≥ 1. When Λ1,Λ2 are two commensurable approximate subgroups, Λ1 ∪ Λ2 is also an approximate
subgroup.

We will denote by Comm𝐺 (𝑋) the subgroup of elements g of G such that 𝑔𝑋𝑔−1 is commensurable
with X. We say that a subset 𝐻 ⊂ 𝐺 commensurates X if 𝐻 ⊂ Comm𝐺 (𝑋). If Λ is an approximate
subgroup, then 〈Λ〉 commensurates Λ (i.e., 〈Λ〉 ⊂ Comm𝐺 (Λ)) [Hru22, Lem. 5.1].

We collect here well-known facts about approximate subgroups and commensurability in a form
and with hypotheses suitable to our discussion (See [Tao08, BGT12, Hru12, Toi20] for this and more
background material).

Lemma 2.1 (Ruzsa’s covering lemma). Let 𝑋,𝑌 be subsets of a group G and 𝐹 ⊂ 𝑋 be maximal such
that ( 𝑓𝑌 ) 𝑓 ∈𝐹 is a family of disjoint sets. Then 𝑋 ⊂ 𝐹𝑌𝑌−1.

Proof. If 𝑥 ∈ 𝑋 , then there is 𝑓 ∈ 𝐹 such that 𝑥𝑌 ∩ 𝑓𝑌 ≠ ∅. So 𝑥 ∈ 𝐹𝑌𝑌−1. �
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Lemma 2.2. Let 𝑋0, 𝑋1, . . . , 𝑋𝑟 be subsets of a group G and 𝐹1, . . . , 𝐹𝑟 ⊂ 𝐺 be finite subsets such that
𝑋0 ⊂ 𝐹𝑖𝑋𝑖 for all integers 1 ≤ 𝑖 ≤ 𝑟 . There is 𝐹 ⊂ 𝐺 with |𝐹 | ≤ |𝐹1 | · · · |𝐹𝑟 | such that

𝑋0 ⊂ 𝐹 ·
⋂

1≤𝑖≤𝑛
𝑋−1
𝑖 𝑋𝑖 .

Proof. Take 𝑓 := ( 𝑓𝑖) ∈ 𝐹1 × · · · × 𝐹𝑟 , and whenever
⋂

1≤𝑖≤𝑟 𝑓𝑖𝑋𝑖 ≠ ∅, choose an element
𝑥 𝑓 ∈

⋂
1≤𝑖≤𝑟 𝑓𝑖𝑋𝑖 . If x is any element of 𝑋0, then there must be some 𝑓 ∈ 𝐹1 × · · · × 𝐹𝑟 such that

𝑥 ∈
⋂

1≤𝑖≤𝑟 𝑓𝑖𝑋𝑖 . We thus have 𝑥−1
𝑓 𝑥 ∈

⋂
1≤𝑖≤𝑛 𝑋

−1
𝑖 𝑋𝑖 . Defining 𝐹 := {𝑥 𝑓 | 𝑓 ∈ 𝐹1 × · · · × 𝐹𝑛, 𝑋0 ∩⋂

1≤𝑖≤𝑟 𝑓𝑖𝑋𝑖 ≠ ∅}, we find

𝑋0 ⊂ 𝐹 ·
⋂

1≤𝑖≤𝑛
𝑋−1
𝑖 𝑋𝑖 . �

Lemma 2.3. Let 𝐾1, . . . , 𝐾𝑟 be positive integers, and take a 𝐾𝑖-approximate subgroup Λ𝑖 of G for all
1 ≤ 𝑖 ≤ 𝑟 . We have

1.
⋂

1≤𝑖≤𝑟 Λ
2
𝑖 is a 𝐾3

1 · · ·𝐾
3
𝑟 - approximate subgroup;

2. if (Ξ𝑖)1≤𝑖≤𝑟 is a family of approximate subgroups with Ξ𝑖 commensurable to Λ𝑖 for all 1 ≤ 𝑖 ≤ 𝑟 ,
then

⋂
1≤𝑖≤𝑟 Λ

2
𝑖 and

⋂
1≤𝑖≤𝑟 Ξ

2
𝑖 are commensurable.

Proof. We know that Λ4
𝑖 is covered by 𝐾3

𝑖 left-translates of Λ𝑖 for all 1 ≤ 𝑖 ≤ 𝑟 . So (1) is a consequence
of Lemma 2.2 applied to 𝑋0 = (

⋂
1≤𝑖≤𝑟 Λ𝑖)

4 and 𝑋1 = Λ1, . . . , 𝑋𝑟 = Λ𝑟 . To prove (2), it suffices to
show that

⋂
1≤𝑖≤𝑟 Λ

2
𝑖 is covered by finitely many translates of

⋂
1≤𝑖≤𝑟 Ξ

2
𝑖 by symmetry. Statement (2) is

then a consequence of Lemma 2.2 applied to 𝑋0 =
⋂

1≤𝑖≤𝑟 Λ
2
𝑖 and Ξ1, . . . ,Ξ𝑟 . �

Lemma 2.4. LetΛ1 andΛ2 be two commensurable approximate subgroups of a group G. Let 𝜙 : 𝐻 → 𝐺
be a group homomorphism. Then 𝜙−1(Λ2

1) and 𝜙−1(Λ2
2) are commensurable approximate subgroups

of H.

Proof. By Lemma 2.3, the subsets 𝜙(𝐻)∩Λ2
1 and 𝜙(𝐻)∩Λ2

2 are commensurable approximate subgroups.
Taking {𝑖, 𝑗} ⊂ {1, 2}, we can find a finite subset 𝐹𝑖 𝑗 ⊂ 𝐻 such that (𝜙(𝐻)∩Λ2

𝑖 )
2 ⊂ 𝜙(𝐹𝑖 𝑗 )

(
𝜙(𝐻) ∩ Λ2

𝑗

)
.

In other words,

𝜙−1(Λ2
𝑖 )

2 ⊂ 𝐹𝑖 𝑗𝜙
−1(Λ2

𝑗 ).

So 𝜙−1(Λ2
1) and 𝜙−1(Λ2

2) are commensurable approximate subgroups. �

2.3. Approximate lattices and cut-and-project schemes

First, recall the definition of approximate lattices:

Definition 2.5 (Approximate lattices, A.2, [Hru22]). Let Λ be an approximate subgroup of a locally
compact group G. We say that Λ is an approximate lattice if

(i) Λ is uniformly discrete (i.e., Λ2 ∩𝑊 = {𝑒} for some neighbourhood of the identity 𝑊 ⊂ 𝐺);
(ii) there is F ⊂ 𝐺 measurable of finite Haar measure such that ΛF = 𝐺.

Recall that a uniform approximate lattice is a uniformly discrete approximate subgroup of G such that
there exists a compact subset 𝐾 ⊂ 𝐺 with Λ𝐾 = 𝐺. So uniform approximate lattices are approximate
lattices, but there are approximate lattices that are not uniform.

In the above definition as well as in the rest of this paper, we use ‘uniformly discrete’ but are implicitly
considering a notion that would be better coined as ‘left-uniform discreteness’. When considering
symmetric subsets, however, the notions of ‘left-uniform discreteness’ and ‘right-uniform discreteness’
are equivalent. This applies in particular to approximate subgroups that are uniformly discrete.
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Remark moreover here that ifΛ is a uniformly discrete approximate subgroup of some locally compact
groups, all its powers Λ𝑛 are also uniformly discrete approximate subgroups. As a useful consequence,
the powers Λ𝑛 of an approximate lattice Λ are also approximate lattices.

We recall now the definition of a cut-and-project scheme:
Definition 2.6 (Definitions 2.11 and 2.12, [BH18]). A cut-and-project scheme is a triple (𝐺, 𝐻, Γ)
consisting of two locally compact groups G and H and a lattice Γ in 𝐺 × 𝐻 which projects injectively
to G and densely to H. For any symmetric relatively compact neighbourhood of the identity 𝑊0 ⊂ 𝐻,
we define the model set

𝑃0 (𝐺, 𝐻, Γ,𝑊0) := 𝑝𝐺 ((𝐺 ×𝑊0) ∩ Γ) ⊂ 𝐺,

where 𝑝𝐺 : 𝐺 × 𝐻 → 𝐺 denotes the natural projection.
It was shown in [BH18, Hru22] that model sets are approximate lattices and that they are uniform if

and only if the lattice Γ they are associated with is uniform.

3. Good models: definition, first properties and examples

In this section, we investigate elementary properties of good models. We will prove in particular
Proposition 1.2, Proposition 3.6 and Theorem 3.13.

3.1. About the definition of good models

Let us recall the definition of good models:
Definition. Let Λ be an approximate subgroup of a group Γ. A group homomorphism 𝑓 : Γ → 𝐻 with
target a locally compact group H is called a good model (of (Λ, Γ)) if
1. 𝑓 (Λ) is relatively compact;
2. there is 𝑈 ⊂ 𝐻 a neighbourhood of the identity such that 𝑓 −1(𝑈) ⊂ Λ.
Remark 3.1. Restricting the range of the good model f, we can always assume that f has dense image.

Definition 1.1 involves both the choice of a map f and an open subset U. However, up to commensu-
rability, the choice of U does not matter as the following shows:
Lemma 3.2. Let H be a locally compact group, Γ be a discrete group,𝑉1 and𝑉2 be symmetric relatively
compact neighbourhoods of the identity in H and 𝑓 : Γ → 𝐻 be a group homomorphism. The subsets
𝑓 −1(𝑉1) and 𝑓 −1(𝑉2) are commensurable approximate subgroups.
Proof. Take 𝑖, 𝑗 ∈ {1, 2}. The identity belongs to the interior int(𝑉 𝑗 ) of 𝑉 𝑗 so

𝑉2
𝑖 ⊂

⋃
ℎ∈𝑉 2

𝑖

ℎ int(𝑉 𝑗 ).

But int(𝑉 𝑗 ) is open and 𝑉2
𝑖 is relatively compact, and thus, there is a finite subset 𝐹𝑖 𝑗 ⊂ 𝑉2

𝑖 such that
𝑉2
𝑖 ⊂ 𝐹𝑖 𝑗𝑈. Since𝑉1 and𝑉2 are moreover symmetric subsets, we have that𝑉1 and𝑉2 are commensurable

approximate subgroups. Choose now a symmetric open neighbourhood of the identity W such that
𝑊2 is contained in 𝑉1 and 𝑉2. Then 𝑓 −1(𝑊2), 𝑓 −1(𝑉2

1 ) and 𝑓 −1(𝑉2
2 ) are commensurable approximate

subgroups by Lemma 2.3. But for 𝑖 = 1, 2, we have 𝑓 −1(𝑊2) ⊂ 𝑓 −1(𝑉𝑖) ⊂ 𝑓 −1(𝑉2
𝑖 ). So 𝑓 −1(𝑉1) and

𝑓 −1(𝑉2) are commensurable approximate subgroups. �

Corollary 3.3. Let Λ be an approximate subgroup of a (discrete) group Γ and 𝑓 : Γ → 𝐻 be a good
model of (Λ, Γ). If𝑈 ⊂ 𝐻 is a symmetric relatively compact neighbourhood of the identity, then 𝑓 −1(𝑈)

is an approximate subgroup commensurable to Λ.
Admitting a good model is a property that is stable under group homomorphisms.
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Lemma 3.4. Let Λ be an approximate subgroup of a group Γ. Suppose that (Λ, Γ) has a good model.
We have

1. if 𝜙1 : Γ1 → Γ is a group homomorphism, then 𝜙−1
1 (Λ) is an approximate subgroup and (𝜙−1

1 (Λ), Γ1)
has a good model;

2. if 𝜙2 : Γ → Γ2 is a group homomorphism, then (𝜙2(Λ), 𝜙2(Γ)) has a good model.

Proof. Let 𝑓 : Γ → 𝐻 be a good model of (Λ, Γ), and let𝑈 ⊂ 𝐻 be an open subset as in Definition 1.1.
Set furthermore Λ1 := 𝜙−1

1 (Λ) and 𝑓1 := 𝑓 ◦ 𝜙1. Then 𝑓1(Λ1) = 𝑓 (Λ) is relatively compact and
𝑓 −1
1 (𝑈) ⊂ Λ1. Hence, Λ1 is an approximate subgroup by Lemma 3.2 and 𝑓1 is a good model of (Λ1, Γ1).

Let us now prove (2). Take a good model 𝑓 : Γ → 𝐻 of (Λ, Γ) with dense image and 𝑈 ⊂ 𝐻 a
symmetric neighbourhood of the identity such that 𝑓 −1(𝑈2) ⊂ Λ. Define 𝑁 := 𝑓 (ker(𝜙2)), which is a
normal subgroup since 𝑓 (Γ) is dense. Now

(𝑝𝐻/𝑁 ◦ 𝑓 )−1(𝑝𝐻/𝑁 (𝑈)) ⊂ 𝑓 −1(𝑈2 𝑓 (ker(𝜙2))) ⊂ 𝑓 −1(𝑈2) ker(𝜙2) ⊂ Λ ker(𝜙2),

where 𝑝𝐻/𝑁 : 𝐻 → 𝐻/𝑁 denotes the natural projection. Therefore, the obvious map 𝜙2(Γ) → 𝐻/𝑁 is
a good model of (𝜙2 (Λ), 𝜙2(Γ)). �

3.2. Group-theoretic characterisation of good models

We will prove the following detailed version of Proposition 3.6:

Theorem 3.5. Let Λ be an approximate subgroup of a group Γ. The following are equivalent:

(1) there is a good model 𝑓 : Γ → 𝐻 of (Λ, Γ);
(2) there exists a sequence (Λ𝑛)𝑛≥0 of approximate subgroups such that

(a) Λ0 = Λ;
(b) for all integers 𝑛 ≥ 0 and all 𝛾 ∈ Γ, the approximate subgroups 𝛾Λ𝑛𝛾−1 and Λ are commensu-

rable;
(c) for all integers 𝑛 ≥ 0, we have Λ2

𝑛+1 ⊂ Λ𝑛;
(3) there exists a family of subsets B such that

(a) there is Ξ ∈ B with Ξ ⊂ Λ;
(b) all elements of B contain e and are commensurable to Λ;
(c) for all Λ1 ∈ B and 𝛾 ∈ Γ, there is Λ2 ∈ B with 𝛾Λ−1

2 Λ2𝛾
−1 ⊂ Λ1.

Moreover, when any of the three statements above is satisfied,

(4) with B as in (3), we can choose a good model 𝑓 : Γ → 𝐻 such that f has dense image and B is a
neighbourhood basis for the identity with respect to the initial topology on Γ given by f;

(5) there is a good model 𝑓0 : Γ → 𝐻0 of (Λ, Γ) such that for any other good model 𝑓 : Γ → 𝐻 of
(Λ, Γ), we have a continuous group homomorphism 𝜙 : 𝐻0 → 𝐻 with compact kernel such that
𝑓 = 𝜙 ◦ 𝑓0;

(6) if Λ is a K-approximate subgroup, then there exists a sequence (Λ𝑛)𝑛≥0 with Λ0 = Λ8 and as in (2)
such that Λ is covered by 𝐶𝐾,𝑛 left-translates of Λ𝑛 for all 𝑛 ≥ 0, where 𝐶𝐾,𝑛 is an integer that
depends on K and n only.

Condition 2(b) above can be rephrased as saying that Λ𝑛 and Λ are commensurable and that
Γ ⊂ Comm𝐺 (Λ). This reformulation makes clear that Theorem 3.5 shows that Λ has a good model
if and only if (Λ,Comm𝐺 (Λ)) has a good model.

As mentioned in the introduction, Theorem 3.5 is folklore and well known to the expert. This
is specially true in model theory, and the more common approach goes through elementary model-
theoretic tools (see [Hru12, Lem. 3.3], [MW15] and [BGT12, Lem. 6.6] for a somewhat elementary
approach). The first step is to embed Λ in a ‘sufficiently saturated elementary extension’ Γ – for instance,
by means of an ultra-power of Λ over a sufficiently large ultra-filter. Then one can obtain a good model
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by quotienting out a normal subgroup naturally associated with (Λ𝑛)𝑛≠0 and equip this quotient with
the logic topology. This provides a sleek construction and highlights how extra structure on Λ impacts
the structure of the good model.

Our goal here is to provide an elementary proof of Theorem 3.5. Indeed, it is already essentially
contained in the work of Weil on completion of uniform structures. Moreover, the form presented here
will be more adapted to our discussion about regularity and continuity later on (Proposition 5.7). We
also hope that this will be of use to mathematicians outside model theory.

Proof. (1) ⇒ (2):
Choose a neighbourhood of the identity 𝑈 ⊂ 𝐻 such that 𝑓 −1(𝑈) ⊂ Λ. There exists a sequence

(𝑈𝑛)𝑛>0 of relatively compact symmetric neighbourhoods of the identity in H such that 𝑈0 = 𝑈 and
𝑈2
𝑛+1 ⊂ 𝑈𝑛 for all integers 𝑛 ≥ 0. Define now (Λ𝑛)𝑛≥0 by Λ0 = Λ and Λ𝑛 = 𝑓 −1(𝑈𝑛). We readily check

that for all integers 𝑛 ≥ 0, we have Λ2
𝑛+1 ⊂ Λ𝑛. Furthermore, for all 𝛾 ∈ Γ, 𝛾Λ𝑛𝛾−1 is an approximate

subgroup commensurable to Λ by Corollary 3.3. So (1) ⇒ (2) is proved.
(2) ⇒ (3):
Let (Λ𝑛)𝑛≥0 be as in (2). For any two subsets 𝑋,𝑌 ⊂ 𝐺, define

𝑋𝑌 :=
⋂
𝑦∈𝑌

𝑦𝑋𝑦−1.

Define now B by

B :=
{(
Λ2
𝑛

)𝐹
| 𝑛 ∈ N, 𝐹 ⊂ Γ, |𝐹 | < ∞

}
.

We know that Λ2
1 ⊂ Λ and that for all Ξ ∈ B, we have 𝑒 ∈ Ξ, and Ξ is an approximate subgroup

commensurable to Λ (Lemma 2.3). Now, for all 𝑛 ∈ N and 𝐹 ⊂ Γ finite, we have((
Λ2
𝑛+1

)𝐹 )2
⊂
(
Λ4
𝑛+1

)𝐹
⊂
(
Λ2
𝑛

)𝐹
,

and for 𝛾 ∈ Γ, we find

𝛾
(
Λ2
𝑛

)𝐹
𝛾−1 ⊂

(
Λ2
𝑛

)𝛾𝐹
.

So B satisfies (3).
(3) ⇒ (1):
Equip the group 〈Λ〉 with the topology defined by

T = {𝑈 ⊂ Γ|∀𝛾 ∈ 𝑈, ∃Ξ ∈ B, 𝛾Ξ ⊂ 𝑈}.

By [Bou89b, Ch. III, §1.2, Proposition 1], the topology T is the unique topology that makes G into a
topological group and such that B is a neighbourhood basis for e. Now, the closure {𝑒} of the identity
is a closed normal subgroup, and the group Γ/{𝑒} equipped with the quotient topology is the maximal
Hausdorff factor of Γ. Let 𝑝 : Γ → Γ/{𝑒} be the natural map. Then {𝑝(Ξ) |Ξ ∈ B} is a neighbourhood
basis for the identity in Γ/{𝑒}. But the subsets that belong to B are pairwise commensurable, so the
neighbourhoods {𝑝(Ξ) |Ξ ∈ B} are pre-compact. Hence, the topological group Γ/{𝑒} has a completion
by [Bou89b, Ch. III, Ex. §3, Ex. 7,8]. In other words, there is a locally compact group H and a group
homomorphism

𝑖 : Γ/{𝑒} → 𝐻
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such that i has dense image and is a homeomorphism onto its image. Define the continuous map
𝑓 := 𝑖 ◦ 𝑝. We will show that f is a good model. The group H is a complete space, and Λ is pre-compact
in the topology T according to assumption (b). So 𝑓 (Λ) is a relatively compact subset of H. Recall that
i is a homeomorphism onto its image, the map p is open and B is a neighbourhood basis for the identity.
There is thus a neighbourhood of the identity 𝑈 ⊂ 𝐻 such that 𝑓 −1(𝑈) ⊂ Λ according to assumption
(a) and (c).

Statement (4) is straightforward from the proof of (3) ⇒ (1). Let us prove (5). Let T0 denote the initial
topology on Γ with respect to the class of all good models 𝑓 : Γ → 𝐻 of (Λ, Γ). In other words, the
topology T0 is generated by the family of subsets { 𝑓 −1(𝑈)} 𝑓 ,𝑈 where 𝑓 : Γ → 𝐻 and U run through
all good models of (Λ, Γ) and all open subsets 𝑈 ⊂ 𝐻. Define B0 as {𝑈 ∈ T0 |𝑒 ∈ 𝑈 ⊂ Λ}. Since
Λ is assumed to have a good model, we know that B0 is not empty. So take Ξ ∈ B0. Then there are
good models ( 𝑓𝑖 : Γ → 𝐻𝑖)1≤𝑖≤𝑟 of (Λ, Γ) and open relatively compact neighbourhoods of the identity
𝑈𝑖 ⊂ 𝐻𝑖 for all 1 ≤ 𝑖 ≤ 𝑟 such that ⋂

1≤𝑖≤𝑟
𝑓 −1
𝑖 (𝑈𝑖) ⊂ Ξ ⊂ Λ.

But the map 𝑓 := ( 𝑓𝑖)1≤𝑖≤𝑟 : Γ →
∏

1≤𝑖≤𝑟 𝐻𝑖 is a good model, so Corollary 3.3 implies that Λ
is commensurable to

⋂
1≤𝑖≤𝑟 𝑓

−1
𝑖 (𝑈𝑖), and hence to Ξ. So B0 satisfies conditions (a) and (b) of (3).

But condition (c) of (3) is also satisfied since (𝐺, T0) is a topological group. Indeed, a group with an
initial topology given by group homomorphisms to topological groups is a topological group. Let now
𝑓0 : Γ → 𝐻0 be as in the proof of (3) ⇒ (1). Then every good model 𝑓 : Γ → 𝐻 of (Λ, Γ) is continuous
with respect to T0. According to the universal properties of quotients and completions (see [Bou89b,
Ch. III, §3.4, Prop. 8]), one can therefore find a continuous group homomorphism 𝜙 : 𝐻0 → 𝐻 such
that 𝜙 ◦ 𝑓0 = 𝑓 .

We now prove (6). Take a good model 𝑓 : Γ → 𝐻 of (Λ, Γ) with dense image. We can find a
relatively compact open symmetric neighbourhood of the identity 𝑈 ⊂ 𝐻 such that Λ ⊂ 𝑓 −1(𝑈) ⊂ Λ2.
So 𝑓 −1(𝑈) is a 𝐾3-approximate subgroup, and hence, U is a 𝐾3-approximate subgroup as well. But
by Lemma 5.8 we can find an symmetric open neighbourhood of the identity 𝑆 ⊂ 𝑈4 such that 𝑆8 is
contained in 𝑈4 and 𝐶𝐾 left-translates of S cover U for some constant 𝐶𝐾 that depends on K only. We
thus define Λ1 = 𝑓 −1(𝑆) and 𝐶𝐾,1 = 𝐶𝐾 . A proof by induction on n then shows (6). �

One of the key takeaways can be summarized as follows:

Proposition 3.6. Let Λ be an approximate subgroup of a group G. There exists a good model f of Λ if
and only if there is a sequence of approximate subgroups (Λ𝑛)𝑛≥0 such that Λ0 = Λ, and for all integers
𝑛 ≥ 0, we have Λ2

𝑛+1 ⊂ Λ𝑛 and Λ𝑛 commensurable to Λ.

Proof. Proposition 3.6 is the equivalence ‘(1) ⇔ (2)’ in Theorem 3.5. �

Remark 3.7. We note here that, similarly, some results presented in Section 5 were foreshadowed by
Weil’s work on group topologies. We point, for instance, to the striking similarities between the work
of Weil on completions of measurable groups and the method of Sanders and Croot–Sisask presented
below.

As a consequence of Theorem 3.5, we show that Meyer subsets almost have a good model:

Proposition 3.8. Let Λ be an approximate subgroup of some group. If Λ is a Meyer subset, then there
is a positive integer such that Λ𝑛 has a good model.

Proof. Note first that if Γ = 〈Λ〉, then Γ commensurates Λ. In this situation, 2.(b) of Theorem 3.5
becomes equivalent to the approximate subgroups Λ𝑛 and Λ being commensurable for all 𝑛 ≥ 0; see
the remark immediately after Theorem 3.5.

Let Λ be a Meyer subset. By Theorem 3.5, there is a sequence (Λ𝑛)𝑛≥0 of approximate subgroups
commensurable to Λ such that Λ2

𝑛+1 ⊂ Λ𝑛 for all integers 𝑛 ≥ 0. The union of two approximate
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subgroups commensurable with Λ is also an approximate subgroup commensurable with Λ. Thus,
applying Theorem 3.5 to the approximate subgroup Λ∪Λ0 together with the sequence (Λ𝑛)𝑛≥0 implies
that Λ ∪ Λ0 has a good model, and so has (Λ ∪ Λ0) ∩ 〈Λ〉 by Lemma 3.4. But (Λ ∪ Λ0) ∩ 〈Λ〉 is
commensurable to Λ, and 〈Λ〉 is generated by Λ. So there is a positive integer n such that (Λ∪Λ0) ∩ 〈Λ〉
is contained in Λ𝑛. �

This last result prompts the following question:

Question 1. With notations as in Proposition 3.8, can n be chosen independently of Λ?

3.3. Universal properties and compatibility with limits

Approaching Theorem 3.5 via saturated elementary extensions highlights that, to some extent, good
models correspond to a certain notion of quotients of groups by approximate subgroups (see the remark
below Theorem 3.5). The elementary method presented above too enables us to build a good model that
satisfies a quotient-like universal property. We think of this good model as a ‘maximal’ or ‘initial’ good
model. We also identify a type of ‘minimal’ or ‘final’ good model.

Proposition 3.9. Let Λ be an approximate subgroup of a group G, and let Γ ⊂ 𝐺 be a subgroup
containing Λ such that (Λ, Γ) has a good model. We have

1. if 𝑓0 : Γ → 𝐻0 is as in part (5) of Theorem 3.5, then any group homomorphism 𝑔 : Γ → 𝐿 with
target a topological group and such that 𝑔(Λ) is relatively compact factors through 𝑓0 (i.e., there
exists a continuous group homomorphism ℎ : 𝐻0 → 𝐿 such that ℎ ◦ 𝑓0 = 𝑔);

2. there is an approximate subgroup Ξ ⊂ 𝐺 commensurable to Λ and a good model 𝑓 : 〈Ξ〉 → 𝐻 of Ξ
with dense image and target a connected Lie group without nontrivial normal compact subgroups.
Such a group H is unique up to continuous isomorphisms.

Remark 3.10. The above constructions are not original and widely known in model theory; see, for
instance, [HKP22] and references therein. One can note that 𝑓0 enjoys a universal property similar to the
Bohr compactification of a subgroup (i.e., the maximal group compactification of a given subgroup),
and, indeed, if Λ = Γ, then 𝐻0 is the Bohr compactification of Λ. The comparison with the Bohr
compactification is mentioned in the introduction of [HKP22], and we mention here the work of
Krupiński [Kru17]. Note finally that the model theoretic approach also offers universality statements
stronger than (1).

The construction in (2) was also already thoroughly studied in [Hru12] where its canonicity was
established – providing a much stronger uniqueness statement. We also note the related work of Fanlo
[Fan23] and indicate that a polylogarithmic bound on the dimension is known by [JTZ23].

Proof. Take B𝐿 a neighbourhood basis for the identity in L made of symmetric subsets, and take any BΛ

as in part (3) of Theorem 3.5. Then as a consequence of Lemma 2.2, we know that B := {Ξ∩𝑔−1(𝑈) |Ξ ∈

BΛ,𝑈 ∈ B𝐿} satisfies the assumptions of part (3) of Theorem 3.5. Now by part (4) of Theorem 3.5 and
by the universal properties of completions and quotients, we can build a good model 𝑓 : Γ → 𝐻 such
that g factors through f. But according to part (5) of Theorem 3.5, we know that g factors through 𝑓0 –
proving (1).

Take 𝑓 : 〈Λ〉 → 𝐻 a good model of Λ with dense image. By the Gleason–Yamabe theorem, there
are 𝑂 ⊂ 𝐻 an open subgroup and a normal compact subgroup K of O such that 𝑂/𝐾 is a connected
Lie group without nontrivial normal compact subgroup; see, for instance, [Hru12, §4.1], for detail.
Then Λ′ := 𝑓 −1(𝑈𝐾), where 𝑈 ⊂ 𝑂 is any symmetric compact neighbourhood of the identity, is an
approximate subgroup commensurable to Λ according to Corollary 3.3. But the composition of 𝑓 |Λ′

and the natural projection 𝑂 → 𝑂/𝐿 is easily checked to be a good model of Λ′. Now take Ξ and
Ξ′ approximate subgroups commensurable to Λ, and let 𝑓 : 〈Ξ〉 → 𝐻 and 𝑓 ′ : 〈Ξ′〉 → 𝐻 ′ be good
models of Ξ and Ξ′, respectively. Suppose moreover that both satisfy (2). Let 𝐷 : 〈Ξ2 ∩Ξ′2〉 → 𝐻 ×𝐻 ′

be the diagonal map, and let Δ be the closure of its image. We want to show that Δ ∩ (𝐻 × {𝑒}) and
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Δ ∩ ({𝑒} × 𝐻 ′) are compact subgroups. Let U denote a relatively compact open neighbourhood of the
identity inΔ . Then 𝐷 (〈Ξ2∩Ξ′2〉)∩𝑈 (Δ∩({𝑒} × 𝐻 ′)) is dense in𝑈 (Δ∩({𝑒} × 𝐻 ′)). But the projection
of 𝑈 (Δ ∩ ({𝑒} × 𝐻 ′)) to H is a relatively compact set 𝑈𝐻 . So 𝐷−1 (𝑈 (Δ ∩ ({𝑒} × 𝐻 ′))) is contained
in 𝑓 −1(𝑈𝐻 ) which is covered by finitely many translates of Ξ (Corollary 3.3) and, by Lemma 2.2, is
covered by finitely many translates of Ξ2 ∩ Ξ′2. So 𝐷 ( 𝑓 −1 (𝑈𝐻 )) is covered by finitely many translates
of 𝐷 (Ξ2 ∩Ξ′2) ⊂ 𝑓

(
Ξ2) × 𝑓 ′

(
Ξ′2) which is relatively compact. So𝑈 (Δ ∩ ({𝑒} × 𝐻 ′)) ⊂ 𝐷 ( 𝑓 −1 (𝑈𝐻 )),

which is compact, thus proving that Δ ∩ ({𝑒} × 𝐻 ′) is compact. A symmetric argument shows that
Δ ∩ (𝐻 × {𝑒}) is compact. Moreover, Ξ2 ∩ Ξ′2 is commensurable to both Ξ and Ξ′ by Lemma 2.2.
So 𝑝𝐻 (𝐷 (Ξ2 ∩ Ξ′2)) contains 𝑓 (Ξ2 ∩ Ξ′2), which contains an open subset by the Baire category
theorem. Therefore, Δ projects surjectively to H by connectedness. Likewise, the projection of Δ to
𝐻 ′ is surjective. So Δ ∩ (𝐻 × {𝑒}) and Δ ∩ ({𝑒} × 𝐻 ′) are compact normal subgroups of H and 𝐻 ′,
respectively, which means that they are trivial. As a consequence, Δ is the graph of a continuous
isomorphism 𝜙 : 𝐻 → 𝐻 ′ such that 𝑓 ′

| 〈Ξ2∩Ξ′2 〉
= 𝜙 ◦ 𝑓 | 〈Ξ2∩Ξ′2 〉 . This proves (2). �

We will show later on that, upon dropping the requirement that 𝑓0 be a good model, part (1) of
Proposition 3.9 can be extended to all approximate subgroups. See Proposition 4.7 below.

A key point in both [BGT12] and [Hru12] consists in utilising ultraproducts of approximate sub-
groups to study all members of a family of approximate subgroups at once. Notably, they showed that
ultraproducts of finite approximate subgroups have a good model, as this enabled them to use features
of Lie groups and locally compact groups (such as tools developed by Gleason, Yamabe and others
in the resolution of Hilbert’s fifth problem) to tackle problems about finite approximate subgroups. In
a similar fashion, ultraproducts of locally compact approximate subgroups (i.e., compact symmetric
neighbourhoods of the identity) were shown to have a good model in [Car15] in order to obtain uni-
form and quantitative – although non-effective – versions of the Gleason–Yamabe structure theorem for
locally compact groups. We show that, in general, the property to have a good model is stable under
ultrapoducts. The proof of this fact is not surprising and follows the idea of [BGT12] building upon the
Sanders and Croot–Sisask arguments.

Proposition 3.11. Let (Λ𝑖)𝑖∈𝐼 be a family of K-approximate subgroups of the groups (Γ𝑖)𝑖∈𝐼 for some
fixed integer K.

(1) ([BGT12, App. A]) the ultraproduct Λ :=
∏
𝑖∈𝐼 Λ𝑖/U is an approximate subgroup for any ultrafilter

U over I;
(2) if moreover Λ𝑖 has a good model for all 𝑖 ∈ 𝐼, then Λ8 has a good model.

Suppose that there are a directed order ≤ on I and injective group homomorphisms 𝜓𝑖 𝑗 : Γ𝑖 → Γ 𝑗 for
all 𝑖 ≤ 𝑗 such that 𝜓 𝑗𝑘 ◦𝜓𝑖 𝑗 = 𝜓𝑖𝑘 for all 𝑖 ≤ 𝑗 ≤ 𝑘 . And suppose moreover that 𝜓𝑖 𝑗 (Λ𝑖) ⊂ Λ 𝑗 whenever
𝑖 ≤ 𝑗 . Then

(3) the direct limit lim
−−→𝐼

Λ2
𝑖 is an approximate subgroup;

(4) if moreover Λ𝑖 has a good model for all 𝑖 ∈ 𝐼, then lim
−−→𝐼

Λ8
𝑖 has a good model.

In the second part of Proposition 3.11, no commensurability assumption is required for the approxi-
mate subgroups Λ 𝑗 and 𝜓𝑖 𝑗 (Λ𝑖). The lack of such an assumption appears to be very surprising at first
glance. We note moreover that Proposition 3.11 is original and has not been studied, to the knowledge
of the author, from the model-theoretic point-of-view.

Proof. If Λ𝑖 has a good model for all 𝑖 ∈ 𝐼, then there are constants (𝐶𝐾,𝑛)𝑛≥0 and sequences (Λ𝑖,𝑛)𝑛≥0
as in part (6) of Theorem 3.5. But then for any ultrafilter U over I, we know that Λ8 is covered by 𝐶𝐾,𝑛
left-translates of Λ𝑛 :=

∏
𝑖∈𝐼 Λ𝑖,𝑛/U for all 𝑛 ≥ 0 (see, for example, [BGT12, App. A] for background

material on ultraproducts of groups). So (Λ𝑛)𝑛≥0 satisfies part (2) of Theorem 3.5, and Λ0 = Λ8 has a
good model.
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Let U be an ultrafilter on I that contains the subsets {𝑖 ∈ 𝐼 | 𝑗 ≤ 𝑖} for all 𝑗 ∈ 𝐼. Such an ultrafilter
exists because this family has the finite intersection property (note moreover that U may be principal if I
contains a final element). Write Λ and Γ for the ultraproducts of (Λ𝑖)𝑖∈𝐼 and (Γ𝑖)𝑖∈𝐼 over U , respectively.
By the universal property of direct limits, there is a natural map 𝜙 : lim

−−→𝐼
Γ𝑖 → Γ, and we compute

that 𝜙−1(Λ) = lim
−−→𝐼

Λ𝑖 . So lim
−−→𝐼

Λ2
𝑖 is an approximate subgroup by Lemma 2.4. If every Λ𝑖 has a good

model, then the approximate subgroup Λ8 has a good model by (2). So lim
−−→𝐼

Λ8
𝑖 has a good model by

Lemma 3.4. �

One may wonder if a converse to part (2) (and (4)) of Proposition 3.11 holds. The next section will
give rise to an interesting counterexample.

Lemma 3.12. There is a sequence (Λ𝑛)𝑛≥0 of approximate subgroups such that
∏
𝑛≥0 Λ𝑛/U has a good

model, but for all 𝑛 ≥ 0, Λ𝑛 is not a Meyer subset, where U is any non-principal ultrafilter on N.

Lemma 3.12 is certainly well known – or, at the very least, not surprising – to the expert, but we
could not locate a reference. We delay the proof to the end of the next subsection.

3.4. An approximate subgroup without a good model

The main goal of this section is to prove the existence of approximate subgroups that are not Meyer
subsets:

Theorem 3.13. Let 𝐹2 be the free group over two generators a and b. For any two reduced words
𝑤, 𝑥 ∈ 𝐹2, define 𝑜(𝑥, 𝑤) as the number of occurrences of w in x. Then for any𝑤 ∈ 𝐹2\

{
𝑎, 𝑏, 𝑎−1, 𝑏−1, 𝑒

}
of length l, the set {

𝑔 ∈ 𝐹2 : |𝑜(𝑔, 𝑤) − 𝑜(𝑔, 𝑤−1) | ≤ 3𝑙
}

is an approximate subgroup but not a Meyer subset.

Recall that a quasi-morphism of a group G is a map 𝑓 : 𝐺 → R such that

𝐶 ( 𝑓 ) := sup
𝑔1 ,𝑔2∈𝐺

| 𝑓 (𝑔1𝑔2) − 𝑓 (𝑔1) − 𝑓 (𝑔2) | < ∞.

We say that f is symmetric if for all 𝑔 ∈ 𝐺, we have 𝑓 (𝑔−1) = − 𝑓 (𝑔), and that it is homogeneous if
for all 𝑛 ∈ Z and 𝑔 ∈ 𝐺, we have 𝑓 (𝑔𝑛) = 𝑛 𝑓 (𝑔); see, for instance, [Kot04] for background on quasi-
morphisms. Just like group homomorphisms, quasi-morphisms give rise to families of approximate
subgroups. The approximate subgroups produced that way are often called quasi-kernels.

Lemma 3.14. Let G be a group and 𝑓 : 𝐺 → R be a symmetric quasi-morphism. Then for all 𝑅 > 𝐶 ( 𝑓 ),
the set 𝑓 −1([−𝑅; 𝑅]) is a 2 2𝑅+𝐶 ( 𝑓 )

𝑅−𝐶 ( 𝑓 ) + 1 -approximate subgroup.

Proof. Let Λ denote the set 𝑓 −1([−𝑅; 𝑅]). Then Λ is symmetric since f is symmetric and the set
𝑓 (Λ2) is contained in [−2𝑅 − 𝐶 ( 𝑓 ); 2𝑅 + 𝐶 ( 𝑓 )]. Set 𝛿 := 𝑅 − 𝐶 ( 𝑓 ) > 0, and choose a finite subset
𝐹 ⊂ Λ2 with |𝐹 | = | 𝑓 (𝐹) | such that 𝑓 (𝐹) is a maximal 𝛿-separated subset of 𝑓 (Λ2). We know that
|𝐹 | ≤ 2 2𝑅+𝐶 ( 𝑓 )

𝛿 + 1, and, in addition, we have

𝑓 (Λ2) ⊂
⋃
𝛾∈𝐹

𝑓 (𝛾) + [−𝛿; 𝛿] .

Take 𝜆 ∈ Λ2 and 𝛾 ∈ 𝐹 such that | 𝑓 (𝜆) − 𝑓 (𝛾) | ≤ 𝛿. We have

| 𝑓 (𝛾−1𝜆) − ( 𝑓 (𝜆) − 𝑓 (𝛾)) | ≤ 𝐶 ( 𝑓 ),
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so

| 𝑓 (𝛾−1𝜆) | ≤ 𝐶 ( 𝑓 ) + 𝛿 = 𝑅.

Hence, 𝛾−1𝜆 ∈ Λ and Λ2 ⊂ 𝐹Λ. �

Since all bounded maps are quasi-morphisms, quasi-morphisms are often studied up to a bounded
error. This gives an equivalence relation between quasi-morphisms that can be translated as a commen-
surability condition on quasi-kernels.

Lemma 3.15. Let G be a group, 𝑓1, 𝑓2 : 𝐺 → R be two symmetric quasi-morphisms and
Λ1 := 𝑓 −1

1 ([−𝑅1; 𝑅1]) and Λ2 := 𝑓 −1
2 ([−𝑅2; 𝑅2]) for 𝑅1 > 𝐶 ( 𝑓1) and 𝑅2 > 𝐶 ( 𝑓2). Then, if

𝜂 := sup𝑔∈𝐺 | 𝑓1(𝑔) − 𝑓2(𝑔) | < ∞, the approximate subgroups Λ1 and Λ2 are commensurable. More
precisely, there is 𝐹 ⊂ 𝐺 with |𝐹 | ≤ max( 2(𝑅1+𝜂)

𝑅2−𝐶 ( 𝑓2)
+1, 2(𝑅2+𝜂)

𝑅1−𝐶 ( 𝑓1)
+1) such thatΛ1 ⊂ 𝐹Λ2 andΛ2 ⊂ 𝐹Λ1.

Conversely, if Λ1 and Λ2 are commensurable, then there is 𝛼 ∈ R nontrivial such that 𝑓1 − 𝛼 𝑓2 is
bounded. Furthermore, if 𝑓1 and 𝑓2 are homogeneous, then 𝑓1 = 𝑓2𝛼.

Proof. Write 𝛿1 := 𝑅1 −𝐶 ( 𝑓1). Choose 𝐹1 ⊂ Λ2 with |𝐹1 | = | 𝑓1 (𝐹1) | such that 𝑓1(𝐹1) is a maximal 𝛿1-
separated subset of 𝑓1 (Λ2). Since 𝑓1(Λ2) ⊂ [−(𝑅2 + 𝜂); 𝑅2 + 𝜂], we know that |𝐹1 | ≤

2(𝑅2+𝜂)
𝛿1

+ 1. As in
the proof of Lemma 3.14, we find thatΛ2 ⊂ 𝐹1Λ1. By symmetry, there is 𝐹2 ⊂ 𝐺 with |𝐹2 | ≤

2(𝑅1+𝜂)
𝑅2−𝐶 ( 𝑓2)

+1
such that Λ1 ⊂ 𝐹2Λ2.

Let us now prove the converse statement. Both 𝑓1 and 𝑓2 are within bounded distance of an homoge-
neous quasi-morphism [Kot04]. Therefore, by the first part of Lemma 3.15, we only have to prove the
converse assuming that 𝑓1 and 𝑓2 are homogeneous. First of all, if 𝑓1 = 0, then Λ2 = 𝑓 −1

2 ([−𝑅2; 𝑅2]) is
commensurable to G. So 𝑓2 (𝐺) is bounded. But 𝑓2 is homogeneous, so 𝑓2 = 0. Suppose now that 𝑓1 is
nontrivial, and take 𝑔0 ∈ 𝐺 such that 𝑓1(𝑔0) > 0. Define that map

𝑓 : 𝑔 ↦→ 𝑓1(𝑔0) 𝑓2(𝑔) − 𝑓2(𝑔0) 𝑓1(𝑔).

It is a homogeneous quasi-morphism with 𝑓 (𝑔0) = 0. Moreover, any set commensurable to Λ1 (equiva-
lently, toΛ2) has bounded image by 𝑓 . For all 𝑔 ∈ 𝐺, there is 𝑛 ∈ Z such that | 𝑓1 (𝑔)−𝑛 𝑓1(𝑔0) | ≤ | 𝑓1(𝑔0) |.
Thus,

𝐺 = 〈𝑔0〉 𝑓
−1
1 ([−𝐶 ( 𝑓1) − 𝑓1(𝑔0); 𝑓1(𝑔0) + 𝐶 ( 𝑓1)]).

But 𝑓 −1
1 ([−𝐶 ( 𝑓1) − 𝑓1(𝑔0); 𝑓1(𝑔0) + 𝐶 ( 𝑓1)]) is commensurable to Λ1 according to the first part of the

proof and, hence, is mapped to a bounded set by 𝑓 . So 𝑓 must have bounded image and, therefore, must
be trivial. In other words, 𝑓2 = 𝑓2 (𝑔0)

𝑓1 (𝑔0)
𝑓1. �

Our main result links properties of quasi-morphisms to whether the quasi-kernel is a Meyer subset
or not.

Proposition 3.16. Let G be a finitely generated group, and let 𝑓 : 𝐺 → R be a homogeneous quasi-
morphism. Choose a real number 𝑅 > 𝐶 ( 𝑓 ). If the approximate subgroup 𝑓 −1([−𝑅; 𝑅]) is a Meyer
subset, then f is a group homomorphism.

Proof. If f is bounded, then 𝑓 = 0. So assume that f is unbounded. Take 𝑅′ > 𝐶 ( 𝑓 ) such that
𝑓 −1([−𝑅′; 𝑅′]) generates G. We know that 𝑓 −1([−𝑅′; 𝑅′]) is an approximate subgroup (Lemma 3.14)
and a Meyer subset (Lemma 3.15). By Proposition 3.8, there is an integer 𝑛 ≥ 1 such that there are a
good model 𝑓0 : 𝐺 → 𝐻 of some power, say n, of 𝑓 −1([−𝑅′; 𝑅′]) with dense image. In particular, 𝑓0
is a good model of Λ := 𝑓 −1([−𝑛(𝑅′ + 𝐶 ( 𝑓 )); 𝑛(𝑅′ + 𝐶 ( 𝑓 ))]) according to Lemma 3.15. Since 𝑓0(𝐺)

is dense in H, we have that 𝑓0(Λ) is a neighbourhood of the identity. So the subgroup generated by the
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compact set 𝑓0(Λ) is open (so clopen) and contains 𝑓0 (𝐺), and hence equals H. The group H is thus
compactly generated. We will now show that 𝑓 = 𝑐 𝑓0 for some real number 𝑐 > 0. We start with two
claims:

Claim 3.4.1. The set of commutators {ℎ1ℎ2ℎ
−1
1 ℎ−1

2 |ℎ1, ℎ2 ∈ 𝐻} is relatively compact.

Proof. By Lemma 3.15, the approximate subgroup 𝑓0( 𝑓
−1([−3𝐶 ( 𝑓 ); 3𝐶 ( 𝑓 )])) is commensurable

to 𝑓0(Λ). So 𝐾 := 𝑓0( 𝑓 −1([−3𝐶 ( 𝑓 ); 3𝐶 ( 𝑓 )])) is compact. Take now 𝛾1, 𝛾2 ∈ 𝐺. We have
| 𝑓 (𝛾1𝛾2𝛾

−1
1 𝛾−1

2 ) | ≤ 3𝐶 ( 𝑓 ); hence, 𝑓0(𝛾1𝛾2𝛾
−1
1 𝛾−1

2 ) ∈ 𝐾 . But 𝑓0(𝐺) is dense in H, so we find
{ℎ1ℎ2ℎ

−1
1 ℎ−1

2 |ℎ1, ℎ2 ∈ 𝐻} ⊂ 𝐾 . �

Claim 3.4.2. Let 𝛾0 ∈ 𝐺 be such that 𝑓 (𝛾0) > 0. Then there is a compact subset 𝐾 ⊂ 𝐻 such that for
all 𝛾 ∈ 𝐺, we have 𝑓0(𝛾) ∈ 〈 𝑓0(𝛾0)〉𝐾 .

Proof. Write 𝑅0 := 𝑓 (𝛾0). Then the subset 𝑓 −1([−𝑅0 − 𝐶 ( 𝑓 ); 𝑅0 + 𝐶 ( 𝑓 )]) is commensurable to Λ by
Lemma 3.15. So the subset

𝐾 := 𝑓0( 𝑓 −1([−𝑅0 − 𝐶 ( 𝑓 ); 𝑅0 + 𝐶 ( 𝑓 )]))

is compact. But for any 𝛾 ∈ 𝐺, there is an integer l such that | 𝑓 (𝛾) − 𝑙 𝑓 (𝛾0) | ≤ 𝑅0 so 𝑓0 (𝛾0)
−𝑙 𝑓0 (𝛾) =

𝑓0(𝛾
−𝑙
0 𝛾) ∈ 𝐾 . �

Now all conjugacy classes of H are relatively compact according to Claim 3.4.1. So we can find a
compact normal subgroup 𝐾 ⊂ 𝐻 and non-negative integers 𝑘, 𝑙 such that 𝐻/𝐾 � R𝑘 ×Z𝑙 (see [GM71,
Thm. 3.20]). We will show that 𝑘 + 𝑙 ≤ 1. Let 𝑝 : 𝐻 → 𝐻/𝐾 denote the natural projection. Then the
group homomorphism 𝑝 ◦ 𝑓0 has dense image, and 𝑝 ◦ 𝑓0(Λ) is relatively compact. If 𝐻/𝐾 is compact,
then 𝐻/𝐾 � {𝑒}. Otherwise, we can find 𝛾0 ∈ 𝐺 \ Λ so 𝑓 (𝛾0) > 0. According to Claim 3.4.2, every
𝛾 ∈ 𝐺 satisfies 𝑝◦ 𝑓0(𝛾) ∈ 〈𝑝◦ 𝑓0 (𝛾0)〉𝐿 where L is some compact subset of𝐻/𝐾 . Therefore, 〈𝑝◦ 𝑓0 (𝛾0)〉
is an infinite cyclic co-compact subgroup, and hence, 𝑘 + 𝑙 ≤ 1. Choose a neighbourhood 𝑈 ⊂ 𝐻 of the
identity such that 𝑓 −1

0 (𝑈) ⊂ Λ. Since K is a compact subgroup of H and the subgroup 𝑓0(𝐺) is dense,
we can find an integer 𝑚 ≥ 0 such that 𝐾 ⊂ 𝑓 (Λ𝑚)𝑈. Then 𝑉 := 𝑝(𝑈) ⊂ 𝐻/𝐾 is such that

𝑓 −1
0 (𝑝−1 (𝑉)) ⊂ 𝑓 −1

0 (𝑈𝐾) ⊂ Λ𝑚+2.

So 𝑝 ◦ 𝑓0 is a good model of Λ𝑚+2 with image dense in R or Z. By the converse of Lemma 3.15
𝑓 = 𝛼 · 𝑝 ◦ 𝑓0 for some 𝛼 ∈ R, so f is a group homomorphism. �

Proof of Theorem 3.13. Recall that w is a reduced word of length l in 𝐹2 the free group over {𝑎, 𝑏}
and that 𝑜(𝑔, 𝑤) counts the occurrence of w as a reduced sub-word of g with overlap. Suppose that
𝑤 ∉ {𝑎, 𝑏, 𝑎−1, 𝑏−1, 𝑒}. According to [Bro81, §3. (a)], the map

𝑓𝑤 :𝐹2 −→ R

𝑔 ↦−→ 𝑜(𝑔, 𝑤) − 𝑜(𝑔, 𝑤−1)

is a symmetric quasi-morphism with 𝐶 ( 𝑓𝑤 ) ≤ 3(𝑙 − 1). Moreover, 𝑓𝑤 is within distance 𝛿 of a
unique homogeneous quasi-morphism, 𝑓𝑤 say, that is not a group homomorphism. But according to
Lemma 3.14, the set {

𝑔 ∈ 𝐹2 | |𝑜(𝑔, 𝑤) − 𝑜(𝑔, 𝑤−1) | ≤ 3𝑙
}
= 𝑓 −1

𝑤 ([−3𝑙; 3𝑙)])

is an approximate subgroup. Moreover, by Lemma 3.15, it is commensurable to 𝑓 −1
𝑤 ([−𝐶 ( 𝑓𝑤 ) −

𝛿;𝐶 ( 𝑓𝑤 ) + 𝛿]). So if
{
𝑔 ∈ 𝐹2

��|𝑜(𝑔, 𝑤) − 𝑜(𝑔, 𝑤−1) | ≤ 3𝑙
}

is a Meyer subset, then 𝑓 −1
𝑤 ([−𝐶 ( 𝑓𝑤 ) −

𝛿;𝐶 ( 𝑓𝑤 ) + 𝛿]) is a Meyer subset, and hence, 𝑓𝑤 is a group homomorphism according to Proposition
3.16 – contradiction. �
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At first glance, Theorem 3.13 seems to contradict the conjecture from [MW15, p. 57] stating ‘even
without the definable amenability assumption a suitable Lie model exists’. It is interesting to note that
another example going in that direction is given in [HKP22] and that it is also built thanks to quasi-
morphisms. Theorem 3.13, however, only refutes a naive interpretation of the conjecture from [MW15,
p. 57]. Indeed, Hrushovski shows in [Hru22] that one can always construct such a model using a
combination of both homomorphisms and quasi-homomorphisms. This provides a positive answer to
the conjecture from [MW15, p. 57] and indicates that the ‘suitable Lie model’ should be interpreted in
the sense of quasi-homomorphisms.

Finally, we give a proof of Lemma 3.12:

Proof of Lemma 3.12. Let w be a reduced word of length l in 𝐹2 the free group over {𝑎, 𝑏}, and suppose
that 𝑤 ∉ {𝑎, 𝑏, 𝑎−1, 𝑏−1, 𝑒}. Let 𝑓𝑤 be as in the proof of Theorem 3.13. Define Λ𝑛 := 𝑓 −1

𝑤 ([−3𝑛𝑙; 3𝑛𝑙])
for all 𝑛 > 0. Then Λ2

𝑛 ⊂ Λ𝑛+1, and K left-translates of Λ𝑛 cover Λ𝑛+1 for some K independent of n
(Lemma 3.15). So the sequence of subsets (Λ𝑘 )𝑘≥0 defined by Λ𝑘 :=

∏
𝑛≥0 𝑓 −1

𝑤 ([−3𝑛−𝑘 𝑙; 3𝑛−𝑘 𝑙])/U is
made of well-defined approximate subgroups commensurable to

∏
𝑛≥0 Λ𝑛/U since U is non-principal

(see, for example, [BGT12, App. A]). Besides, Λ2
𝑘 ⊂ Λ𝑘−1 for all 𝑘 ≥ 1 since U is non-principal. So∏

𝑛≥0 Λ𝑛/U has a good model according to Theorem 3.5. However, for all 𝑛 ≥ 0, Λ𝑛 is not a Meyer
subset according to Theorem 3.13. �

3.5. Good models and cut-and-project schemes

In this section, we relate good models (Definition 1.1) to the non-commutative cut-and-project schemes
(Definition 2.6). Note that when the ambient group is abelian, Meyer was the first to notice the striking
link between cut-and-project schemes and some large approximate subgroups (see [Mey72] and [Sch73]
for this and more).

Lemma 3.17. Let Λ be a discrete approximate subgroup of a locally compact group G, and let Γ be
a group that contains it. If (Λ, Γ) has a good model 𝑓 : Γ → 𝐻, then the graph of f defined by
Γ 𝑓 := {(𝛾, 𝑓 (𝛾)) |𝛾 ∈ Γ} is a discrete subgroup of 𝐺 × 𝐻.

Proof. Choose a neighbourhood of the identity 𝑈 ⊂ 𝐻 such that 𝑓 −1(𝑈) ⊂ Λ (Definition 1.1) and
an open subset 𝑉 ⊂ 𝐺 such that 𝑉 ∩ Λ = {𝑒}. For 𝛾 ∈ Γ, we know that (𝛾, 𝑓 (𝛾)) ∈ 𝑉 × 𝑈 implies
𝑓 (𝛾) ∈ 𝑈; hence, 𝛾 ∈ Λ. But 𝛾 ∈ 𝑉 , so 𝛾 = 𝑒, and we find Γ 𝑓 ∩ (𝑉 ×𝑈) = {𝑒}. �

An easy consequence of Lemma 3.17, in the spirit of [BH18, Prop. 2.13, (iv)], asserts that the graph
of a good model of an approximate subgroup Λ has finite co-volume as soon as Λ itself has finite
co-volume.

Proposition 3.18. Let Λ be an approximate lattice of a locally compact group G. Suppose that Λ has a
good model 𝑓 : Γ → 𝐻 with dense image. The graph Γ 𝑓 of f is a lattice in 𝐺 × 𝐻, and Λ is contained
in and commensurable to a model set contained in Λ2.

Proof. LetF ⊂ 𝐺 be a measurable subset of finite Haar measure such thatFΛ = 𝐺 ([Hru22, Prop. A.2]).
Define𝑊0 := 𝑓 (Λ). Then Γ 𝑓 is discrete by Lemma 3.17. Moreover, we know that for all (𝑔, ℎ) ∈ 𝐺×𝐻,
there is 𝛾1 ∈ Γ 𝑓 such that (𝑔, ℎ)𝛾−1

1 ∈ 𝐺 ×𝑊0. By assumption, we have 𝛾2 ∈ Γ 𝑓 ∩ (𝐺 ×𝑊0) such
that 𝑝𝐺 ((𝑔, ℎ)𝛾−1

1 𝛾−1
2 ) ∈ F . Therefore, we know that (𝑔, ℎ) ∈

(
F ×𝑊0𝑊

−1
0
)
Γ 𝑓 . So Γ 𝑓 is a lattice in

𝐺 × 𝐻. Now, Λ ⊂ 𝑃0 (𝐺, 𝐻, Γ 𝑓 ,𝑊0) ⊂ Λ2, which concludes. �

Proof of Proposition 1.2. Assume that Λ is a model set. Let (𝐺, 𝐻, Γ) be a cut-and-project scheme,
and let 𝑊0 be a neighbourhood of the identity 𝑊0 ⊂ 𝐻 such that 𝑃0(𝐺, 𝐻, Γ,𝑊0) = Λ (Definition 2.6).
Denote by 𝑝𝐺 : 𝐺 ×𝐻 → 𝐺 and 𝑝𝐻 : 𝐺 ×𝐻 → 𝐻 the natural projections. The map (𝑝𝐺) |Γ is injective
and

Λ = 𝑃0(𝐺, 𝐻, Γ,𝑊0) = 𝑝𝐺 ((𝐺 ×𝑊0) ∩ Γ).
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But

𝑝𝐺 ((𝐺 ×𝑊0) ∩ Γ) =
(
𝑝𝐻 ◦ (𝑝𝐺)

−1
|Γ

)−1
(𝑊0),

where we think of (𝑝𝐺) |Γ as a bijective map from Γ to 𝑝𝐺 (Γ). We know that 〈Λ〉 ⊂ 𝑝𝐺 (Γ), so set

𝜏 : 〈Λ〉 −→ 𝐻

𝛾 ↦−→ 𝑝𝐻 ◦ (𝑝𝐺)
−1
|Γ (𝛾).

Then 𝜏 is a group homomorphism, 𝑊0 is a symmetric relatively compact neighbourhood of the identity
and 𝜏−1(𝑊0) = Λ. So 𝜏 is a good model of Λ.

Conversely, Λ is a Meyer subset. So there is 𝑛 ≥ 1 such that Λ𝑛 has a good model by Proposition 3.8.
Therefore, Λ𝑛 – hence, Λ – is contained in and commensurable to a model set by Proposition 3.18. �

Remark 3.19. Note that the map 𝜏 introduced in the first part of the proof of Proposition 1.2 is well
known in the abelian setting and is called the star-map (see, for instance, [BG13, §7.2]).

4. A closed-approximate-subgroup theorem

We give in this section a proof of Theorem 1.3 and investigate some applications.

4.1. Globalisation in Hausdorff topological groups

We start by proving a general form of Theorem 1.3.

Theorem 4.1. Let Λ be a compact approximate subgroup of a Hausdorff topological group G and Γ
a subgroup that contains Λ and commensurates it. There is a locally compact group H, an injective
continuous group homomorphism 𝜙 : 𝐻 → 𝐺 and a compact symmetric neighbourhood V of the identity
in H such that 𝜙(𝑉) = Λ2 and 𝜙(𝐻) = Γ.

The key observation needed to prove Theorem 4.1 is the fact that locally a closed approximate
subgroup behaves like a group.

Lemma 4.2. Let Λ be a closed approximate subgroup of a locally compact group G, and let Ξ be a
subset covered by finitely many left-translates of Λ. There is an open neighbourhood of the identity
𝑈 (Ξ) ⊂ 𝐺 such that

Ξ ∩𝑈 (Ξ) ⊂ Λ2 ∩𝑈 (Ξ).

Proof. Choose a finite subset 𝐹 ⊂ 𝐺 such that Ξ ⊂ 𝐹Λ. Define the open subset

𝑈 (Ξ) := 𝐺 \
���

⋃
𝑓 ∈𝐹, 𝑓 ∉Λ

𝑓Λ
���.

Since 𝑒 ∈ 𝑓Λ implies 𝑓 ∈ Λ−1 = Λ, the subset 𝑈 (Ξ) contains the identity. We thus have

𝑈 (Ξ) ∩ Ξ ⊂ 𝑈 (Ξ) ∩ 𝐹Λ

⊂
⋃

𝑓 ∈𝐹, 𝑓 ∈Λ

𝑓Λ

⊂ Λ2. �
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Lemma 4.2 asserts that the restriction of the group operations of G to some neighbourhood of the
identity in Λ gives rise to a structure of a local topological group. But it is well known that a local
topological group Ω with a continuous embedding into a global group H can be globalised, and that the
procedure gives rise to a topological group structure on the subgroup of H generated by the image of Ω
(see [Gol10] for this and more on local groups).

Proof of Theorem 4.1. For all 𝛾 ∈ Γ, let𝑈 (𝛾) be the neighbourhood of the identity such that 𝛾Λ4𝛾−1 ∩
𝑈 (𝛾) ⊂ Λ2 (Lemma 4.2). Choose a neighbourhood basis for the identity B made of closed subsets in
G and define BΛ as the family of subsets {Λ2 ∩𝑈−1𝑈 |𝑈 ∈ B}. The subsets in BΛ are all contained in
and commensurable to Λ2 by Lemma 2.2. Take any 𝑈 ∈ B and any 𝛾 ∈ Γ and choose 𝑉 ∈ B such that
𝛾(𝑉−1𝑉)2𝛾−1 ⊂ 𝑈 (𝛾) ∩𝑈. Then

𝛾
(
𝑉−1𝑉 ∩ Λ2

)2
𝛾−1 ⊂ 𝛾(𝑉−1𝑉)2𝛾−1 ∩ 𝛾Λ4𝛾−1

⊂ 𝑈 (𝛾) ∩𝑈 ∩ 𝛾Λ4𝛾−1

⊂ 𝑈 ∩ Λ2.

So BΛ checks all conditions of a neighbourhood basis, so there is a topology T on Γ making Γ
into a topological group and for which BΛ is neighbourhood basis about e [Bou89b, Ch. III, §1.2,
Proposition 1]. We can moreover prove that the inclusion map Γ → 𝐺 is continuous. We will achieve
this in a number of steps.

First, take 𝜆 ∈ Λ2 and take any 𝑈 ∈ B with 𝑈−1𝑈 ⊂ 𝑈 (𝑒). Then

Λ2 ∩ 𝜆𝑈−1𝑈 = 𝜆(𝜆−1Λ2 ∩𝑈−1𝑈) ⊂ 𝜆(Λ4 ∩𝑈−1𝑈) = 𝜆(Λ2 ∩𝑈−1𝑈).

Remark that Λ2 ∩ 𝜆𝑈−1𝑈 is a neighbourhood of 𝜆 in the subspace topology of Λ2 ⊂ 𝐺 and, because
Λ2 ∩ 𝑈−1𝑈 ∈ BΛ, 𝜆(Λ2 ∩ 𝑈−1𝑈) is a neighbourhood of 𝜆 in Γ equipped with T . We have therefore
showed that the identity map 𝑖𝑑 : Λ2 → Λ2 is continuous, where the source space is equipped with the
subspace topology from G and the target space is equipped with the subspace topology from Γ equipped
with T .

Remark now that the inverse map of 𝑖𝑑Λ2 is simply the restriction to Λ2 of the inclusion map
Γ → 𝐺. So we have proved continuity in the wrong direction. To reverse it, we will use the fact
that a bijective continuous map from a compact space to a Hausdorff space has a continuous inverse.
Since

⋂
Ξ∈BΛ

Ξ ⊂
⋂
𝑈 ∈B𝑈

−1𝑈 = {𝑒}, Γ equipped with T is indeed Hausdorff. Therefore, 𝑖𝑑Λ2 has
a continuous inverse, and Λ2 is a compact subset of e in Γ equipped with T . In particular, Γ is
locally compact, and the restriction of the inclusion map Γ → 𝐺 to Λ2 is continuous. Since Λ2 is a
neighbourhood of e, Γ → 𝐺 is a continuous group homomorphism. �

We can now turn to the proof of Theorem 1.3. This result is akin to Cartan’s closed-subgroup theorem
as it shows that closed approximate subgroups of Lie groups have a Lie group structure, at least locally.

Proof of Theorem 1.3. Apply Theorem 4.1 to (Λ2 ∩ 𝑉2, 〈Λ〉), where V is any symmetric compact
neighbourhood of the identity in G. Note that Λ2∩𝑉2 is indeed an approximate subgroup by Lemma 2.3.
This yields an injective continuous group homomorphism 𝜙 : 𝐻 → 𝐺 with image 〈Λ〉 and such that
𝜙−1(Λ2 ∩ 𝑉2) is a compact neighbourhood of the identity. Since finitely many translates of Λ cover
Λ2∩𝑉2, 𝜙−1(Λ) has nonempty interior as well. The approximate subgroup 𝜙−1(Λ) is therefore contained
in the interior of 𝜙−1(Λ3). We have, moreover, that for any 𝐾 ⊂ 𝐺 compact, the subset 𝐾 ∩Λ is covered
by finitely many left-translates of Λ2 ∩𝑉2. So 𝜙−1(𝐾 ∩ Λ) is compact and 𝜙 |𝜙−1 (Λ) is proper.

If, moreover, G is a Lie group, then H is a Lie group as a consequence of [Bou89c, Ch. III, §8,
Corollary 1]. �

In particular, it enables one to define unambiguously the Lie algebra associated to a closed
approximate subgroup of a Lie group. Note that this last fact could also be proved as a consequence of
Lemma 4.2 and [Bou89c, Chapter III, §8, Prop. 2].
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Corollary 4.3. Let Λ be a compact approximate subgroup of a Lie group G. Suppose that Λ is contained
in a subgroup Γ of G that commensurates Λ. Let 𝔤 denote the Lie algebra of G. Then there is a Lie
subalgebra 𝔥 of 𝔤, invariant under the adjoint action of Γ and such that for any compact symmetric
neighbourhood 𝑉 ⊂ 𝔥 of 0, Λ is commensurable with the approximate subgroup exp(𝑉).
Proof. This result is essentially an application of the above and [Bou89c, Ch. III, §8, Prop. 2]. We
sketch a proof and refer the reader to the relevant part of [Bou89c, Ch. III, §8] for background. Apply
Theorem 4.1 to (Λ, Γ). There is an injective continuous group homomorphism 𝜙 : 𝐻 → 𝐺 with image
Γ and such that 𝜙−1(Λ2) is a compact neighbourhood of the identity. Since G is a Lie group and 𝜙 is
injective, H is a Lie group [Bou89c, Ch. III, §8, Cor. 1]. Let 𝔥′ denote the Lie algebra of H and 𝔥 its
image through the differential 𝑑𝜙 of 𝜙. The map 𝑑𝜙 yields a linear isomorphism between 𝔥′ and 𝔥. Then
𝔥 is obviously invariant under the adjoint action of 𝜙(𝐻) = Γ. Moreover, for any compact symmetric
neighbourhood V of 0 in 𝔥′, exp(𝑉) is a compact symmetric neighbourhood of e in H, and hence
commensurable to 𝜙−1(Λ2). Thus, 𝜙(exp(𝑉)) = exp(𝑑𝜙(𝑉)) is commensurable to Λ as claimed. �

We will use Lemma 4.2 and the point of view of local groups once more later on in Section 5 to
define – at least locally – the quotient of an ambient group by a closed approximate subgroup. This
will then enable us to build local Borel sections of closed approximate subgroups (see Lemma 5.16).
We will also make use of this point of view when proving the structure theorem for amenable closed
approximate subgroups (Theorem 1.6).

4.2. Closed approximate subgroups of Euclidean spaces

As a first consequence, we investigate the structure of closed approximate subgroups of Euclidean
spaces. A key ingredient is a result due to Schreiber concerning the coarse structure of approximate
subgroups of Euclidean spaces ([Sch73]). A new proof of this result was recently given by Fish [Fis19]
(see also the generalisation to linear real soluble groups [Mac22b]).
Theorem Schreiber, [Sch73, Fis19]. For any approximate subgroup Λ in a Euclidean space V, there is
a vector subspace 𝑉 ′ ⊂ 𝑉 and a compact neighbourhood of the identity 𝐾 ⊂ 𝑉 such that Λ ⊂ 𝑉 ′ + 𝐾
and 𝑉 ′ ⊂ Λ + 𝐾

We sketch here a proof making use of the structure of amenable approximate subgroups that we
will establish below (Section 5). Identify V with R𝑛, and let ‖ · ‖∞ be the sup norm on R𝑛. Define
𝐿 := {𝑥 ∈ Z𝑛 |∃𝜆 ∈ Λ, ‖𝑥 − 𝜆‖∞ ≤ 1}. We have Λ ⊂ [−1; 1]𝑛 + 𝐿 and 𝐿 ⊂ [−1; 1]𝑛 + Λ. Then
L is an approximate subgroup. By Proposition 5.7, 𝐿 + 𝐿 + 𝐿 + 𝐿 has a good model. So by part (2)
of Proposition 3.9, there is an approximate subgroup 𝐿 ′ commensurable to L that has a good model
𝑓 : 〈𝐿 ′〉 → R𝑛. So f extends to an R-linear map 𝑓 ′ from the R-span of 𝐿 ′ to R𝑛. The vector subspace
we are looking for is the kernel of 𝑓 ′. We leave verification of the above details to the reader.

Let us now state the main result of this section:
Proposition 4.4. Let Λ be a closed approximate subgroup of R𝑛. There are two vector subspaces𝑉𝑜 and
𝑉𝑑 of R𝑛, a uniformly discrete approximate subgroup Λ𝑑 ⊂ 𝑉𝑑 and a compact approximate subgroup
𝐾 ⊂ 𝑉𝑑 such that 𝑉𝑜 ⊕ 𝑉𝑑 = R𝑛 and Λ is commensurable to 𝑉𝑜 + Λ𝑑 + 𝐾 . Furthermore,

1. there is a vector subspace 𝑉𝑒 ⊂ 𝑉𝑑 such that we can choose K to be any compact neighbourhood of
the identity in 𝑉𝑒 and 𝑉𝑒 ∩ Λ2

𝑑 = {0};
2. there are a non-negative integer m, a linear map 𝜙 : R𝑚 → 𝑉𝑑 , a subspace 𝑉 ′

𝑑 ⊂ R𝑚 with
𝑉 ′
𝑑 ∩ ker(𝜙) = {0} such that Λ𝑑 is contained in and commensurable to 𝜙

(
Z𝑚 ∩

(
𝑉 ′
𝑑 + [−𝑎; 𝑎]𝑚

) )
for

some real 𝑎 > 0.

Proof. While we have used additive notations in the statement, we will stick with multiplicative notations
in the proof for the sake of consistency. We will use several times the following claim:
Claim 4.2.1. Let Λ be a closed approximate subgroup in R𝑛; there exists a relatively compact subset
𝐾 ′ ⊂ Λ2 with 𝐾 ′ ⊂ Λ4 that generates 〈Λ〉.
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This is a consequence of Schreiber’s theorem and was already worked out in [Mac22b, Prop. 3] in a
broader context.

Proof of Claim 4.2.1. Take Λ ⊂ 𝐻𝐾 and 𝐻 ⊂ Λ𝐾 where K is symmetric compact and H is a vector
subspace, as given by Schreiber’s Theorem. Let B be a closed ball in H, so H is generated by B as a
group and B is compact. Take 𝜆 ∈ Λ arbitrary and ℎ ∈ 𝐻 such that 𝜆 ∈ ℎ𝐾 . Take ℎ1, . . . , ℎ𝑟 ∈ 𝐵 with
ℎ = ℎ1 · · · ℎ𝑟 . Since 𝐻 ⊂ Λ𝐾 , pick 𝜆𝑖 ∈ Λ such that ℎ1 · · · ℎ𝑖 ∈ 𝜆𝑖𝐾 for 1 ≤ 𝑖 < 𝑟 and 𝜆 = 𝜆𝑟 and
𝜆0 = 0. Then, 𝜆−1

𝑖−1𝜆𝑖 ∈ ℎ𝑖𝐾
2 ⊂ 𝐵𝐾2, so

𝜆 = 𝜆𝑟 =
𝑟∏
𝑖=1

𝜆−1
𝑖−1𝜆𝑖 ∈ (Λ2 ∩ (𝐵𝐾2))𝑟 .

Thus, 〈Λ〉 is generated by 𝐾 ′ = Λ2 ∩ (𝐵𝐾2), which is relatively compact and contained in Λ2. Since Λ
is an approximate subgroup, 𝐾 ′ ⊂ 𝐹Λ with 𝐹 ⊂ Λ3 finite, so 𝐾 ′ ⊂ 𝐹Λ ⊂ Λ4 as Λ is closed. �

We start with two sub-cases. Suppose first that Λ is uniformly discrete. Then 〈Λ〉 is finitely generated
(Claim 4.2.1), so 〈Λ〉 � Z𝑚. Take a linear map 𝜙 : R𝑚 → R𝑛 such that the restriction of 𝜙 toZ𝑚 yields an
isomorphism 〈Λ〉 � Z𝑚. Apply now Schreiber’s theorem toΛ′ := 𝜙−1(Λ)∩Z𝑚. We get a vector subspace
𝑉 ′
𝑑 ⊂ R𝑚 and a box 𝐵 := [−𝑎; 𝑎]𝑚 for some real 𝑎 > 1 such that Λ′ ⊂ 𝑉 ′

𝑑𝐵 and 𝑉 ′
𝑑 ⊂ Λ′𝐵. Thus, Λ′ is

contained in and commensurable withZ𝑚∩𝑉 ′
𝑑𝐵, so 𝜙(Z𝑚∩𝑉 ′

𝑑𝐵) indeed contains and is commensurable
with 𝜙(Λ′) = Λ. It remains to prove 𝑉 ′

𝑑 ∩ ker 𝜙 = {0}. Otherwise, 𝐷 :=
(
𝑉 ′
𝑑 ∩ ker 𝜙

)
𝐵 ∩ Z𝑚 is infinite.

But 𝜙(𝐷) ⊂ 𝜙(𝐵), which is bounded. In addition, 𝜙(𝐷) ⊂ 𝜙(Z𝑚 ∩ 𝑉 ′
𝑑𝐵) and 𝜙(Z𝑚 ∩ 𝑉 ′

𝑑𝐵) is covered
by finitely many translates of Λ, and hence is uniformly discrete. So 𝜙(𝐷) is finite. Since 𝜙 is injective
on Z𝑚, we reach a contradiction.

Suppose now that Λ has nonempty interior. Then the interior of Λ2 is symmetric, contains the identity
and is commensurable to Λ. Hence, it is an open approximate subgroup commensurable to Λ. Take
V and K as in Schreiber’s theorem. We know that 𝐾2 is covered by finitely many translates of Λ. So
𝑉𝐾 ⊂ Λ𝐾2 is covered by finitely many translates of Λ. But Λ ⊂ 𝑉𝐾 , so Λ and 𝑉𝐾 are commensurable.
So 𝑉𝑜 := 𝑉 and Λ𝑑 := {𝑒} work.

Let us go back to the general case. Let 𝑉𝑜 be the largest vector subspace covered by finitely many
left-translates of Λ, and take 𝑉𝑑 any supplementary space. Now, Λ is contained in 𝑉𝑜

(
𝑉𝑑 ∩ Λ𝑉−1

𝑜

)
. But

𝑉𝑜 ∩Λ2 is commensurable to𝑉𝑜 and finitely many translates of 𝑉𝑑 ∩Λ2 cover 𝑉𝑑 ∩Λ𝑉𝑜 by Lemma 2.3.
So 𝑉𝑑 ∩ Λ𝑉𝑜 and (𝑉𝑑 ∩ Λ2) are commensurable. So Λ is covered by finitely many translates of (and,
thus, commensurable to) (𝑉𝑜 ∩ Λ2) (𝑉𝑑 ∩ Λ2). In turn, Λ is commensurable to 𝑉𝑜 (𝑉𝑑 ∩ Λ2).

Now, let 𝑖 : 𝐿 → R𝑛 be the injective Lie group homomorphism given by Theorem 1.3 applied to
𝑉𝑑∩Λ2 (recall thatΛ2 ⊂ Λ4 so is commensurable withΛ), and letΛ′ denote the inverse image of𝑉𝑑∩Λ2.
Assume as we may that 𝐿 = 〈Λ′〉. Let 𝐿0 denote the connected component of the identity of L. Then 𝐿0

is a connected torsion free abelian lie group, and hence, 𝐿0 � R𝑘 . Note, moreover, that 𝑖 |𝐿0 is an injective
continuous group homomorphism, and hence an R-linear map and a homeomorphism onto its image.
We have that (Λ′)2 ∩ 𝐿0 is an approximate subgroup with nonempty interior so it is commensurable to
𝑉 ′𝑊 (by the above paragraph), where 𝑉 ′ ⊂ 𝐿0 is a vector subspace and W is a compact neighbourhood
of the identity in 𝐿0. By construction of𝑉𝑑 , we know that𝑉 ′ = {0}. So (Λ′)2∩𝐿0 is a relatively compact
neighbourhood of the identity in 𝐿0. Recall now that 𝑖 |Λ′ is proper, and hence, 𝑖 |Λ′4 is proper as well. But
L is a torsion-free abelian Lie group, and there is a compact subset C contained in (𝑉𝑑 ∩ Λ2)4 = 𝑖(Λ′4)
that generates 𝑖(〈Λ′〉) (Claim 4.2.1). So L is generated by the compact subset 𝑖−1(𝐶). Thus, 𝐿/𝐿0 is a
finitely generated abelian group, concluding 𝐿 � R𝑘 ⊕ Z𝑙 for some non-negative integers 𝑘, 𝑙. So we
can identify L with a closed subgroup of R𝑘 × R𝑙 with 𝐿0 = R𝑘 × {0}.

According to Schreiber’s theorem, there is vector subspace𝑉 ⊂ R𝑘×R𝑙 and a compact neighbourhood
of the identity 𝐾 ⊂ R𝑘 × R𝑙 such that Λ′ ⊂ 𝑉𝐾 and 𝑉 ⊂ Λ′𝐾 . We claim that 𝐿0 ∩ 𝑉 = {0}. Indeed,
𝐿0 ∩ 𝑉 ⊂ Λ′𝐾 so 𝐿0 ∩ 𝑉 ⊂ Λ′𝐾0, where 𝐾0 := (𝐿0 ∩ 𝑉)Λ′ ∩ 𝐾 . Now, 𝐾0 is a relatively compact
subset of L, and since Λ′ has nonempty interior in L, finitely many translates of Λ′ cover 𝐾0. So finitely
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many translates of 𝑖(Λ′) cover 𝑖(𝑉 ∩ 𝐿0). Thus, 𝑖(𝑉 ∩ 𝐿0) is a subspace of 𝑉𝑜. But 𝑖(𝑉 ∩ 𝐿0) ⊂ 𝑉𝑑 , so
𝑖(𝑉 ∩ 𝐿0) ⊂ 𝑉𝑑 ∩𝑉𝑜 = {0}. In turn, 𝑉 ∩ 𝐿0 = {0} by injectivity of i.

So choose a vector subspace𝑉 ′ such that 𝐿0 ⊕𝑉 ⊕𝑉 ′ = R𝑘 ×R𝑙 . The projection of L to𝑉 ⊕𝑉 ′ parallel
to 𝐿0 is then a discrete subgroup Γ ⊂ 𝑉 ⊕𝑉 ′, and we find 𝐿 = 𝐿0 ⊕ Γ. Moreover, the projection of Λ′ to
𝐿0 is contained in K, so it is a bounded subset with nonempty interior. Since Λ′2∩𝐿0 is a neighbourhood
of {0} and 𝐿0 is connected, the projection of Λ′ to 𝐿0 is contained in (Λ′2∩𝐿0)𝑚 for some 𝑚 > 0. So for
every 𝜆 ∈ Λ′, there is 𝜆0 ∈ (Λ′2 ∩ 𝐿0)𝑚 such that 𝜆𝜆−1

0 ∈ Γ (i.e., Λ′ ⊂ (Λ′2 ∩ 𝐿0)𝑚(Λ′2𝑚+1 ∩Γ)). So Λ′

is commensurable to
(
Λ′2 ∩ Γ

) (
Λ′2 ∩ 𝐿0) by Lemma 2.3. As 𝑖

|Λ′2 is proper, we can set Λ𝑑 = 𝑖(Λ′2 ∩Γ),

𝐾 = 𝑖(Λ′2 ∩ 𝐿0) and 𝑉𝑒 := 𝑖(𝐿0). Note that indeed Λ𝑑 is discrete because Γ is, K is compact because
Λ′2 ∩ 𝐿0 is relatively compact and Λ′2 ∩ 𝐿0 is an approximate subgroup commensurable to Λ′2 ∩ 𝐿0

because Λ′2 ∩ 𝐿0 ⊂ Λ′4 ∩ 𝐿0 and Lemma 2.3. Remark finally that since K has nonempty interior in
𝑉𝑒, it must be commensurable with any compact neighbourhood of the origin in 𝑉𝑒. This concludes the
proof of (1) and of the result. �

The situation becomes even more striking when Λ is a closed approximate subgroup in a one
dimensional Euclidean space:

Corollary 4.5. Let Λ be a closed approximate subgroup of R. Then one and only one of the following
is true:

1. Λ is finite;
2. there are real numbers 0 < 𝑎 < 𝑏 < ∞ such that [−𝑎; 𝑎] ⊂ Λ2 ⊂ [−𝑏; 𝑏];
3. Λ is a uniform approximate lattice (i.e., uniformly discrete and relatively dense);
4. there is 𝑛 ∈ N such that Λ𝑛 = R.

In particular, Λ is uniformly discrete, or Λ has nonempty interior.

Proof. By Proposition 4.4, there are three cases:𝑉𝑜 = R and𝑉𝑒 = 𝑉𝑑 = {0},𝑉𝑑 = 𝑉𝑒 = R and𝑉𝑜 = {0},
or𝑉𝑑 = R and𝑉𝑒 = 𝑉𝑜 = {0}. The first case corresponds to (4). In the second case, Λ is commensurable
to a closed interval, so (2). In the third case, Λ = Λ𝑑 is uniformly discrete. If Λ is finite, then we get (1).
If Λ is infinite, then we get (3) by [Fis19, Prop. 3.1]. �

4.3. Structure of compact approximate subgroups

We prove the following now:

Theorem 4.6 (Structure of compact approximate subgroups). LetΛ be a compact approximate subgroup
of a Hausdorff topological group G, and let 〈Λ〉 be the subgroup it generates. Then 〈Λ〉 admits a structure
of locally compact group such that the inclusion 〈Λ〉 ⊂ 𝐺 is continuous and Λ ⊂ 〈Λ〉 is a compact
subset with nonempty interior. Moreover, for every 𝜀 > 0, there is an approximate subgroup Λ′ ⊂ Λ16

that generates a subgroup open in the topology of 〈Λ〉 and a compact subgroup 𝐻 ⊂ Λ′ normalised by
Λ′ such that

(i) Λ can be covered by 𝑂𝐾,𝜀 (1) translates of Λ′;
(ii) 〈Λ′〉/𝐻 is a Lie group of dimension 𝑂𝐾 (1).

If 𝔩 ′ denotes the Lie algebra of 〈Λ′〉/𝐻 and Λ′′ the image of Λ′ in 〈Λ′〉/𝐻, then there exists a norm | · |

on 𝔩 ′ such that

(iii) for 𝑋,𝑌 ∈ 𝔩 ′, we have | [𝑋,𝑌 ] | ≤ 𝑂𝐾 (|𝑋 | |𝑌 |) ;
(iv) for 𝑔 ∈ Λ′′, the operator norm (induced by | · |) of Ad(𝑔) − Id is 𝑂𝐾 (𝜀);
(v) there is a convex set 𝐵 ⊂ 𝔩 ′ such that Λ′′/exp(𝐵) is a finite 𝑂𝐾,𝜀 (1)-approximate local group.

Proof. Recall that Kreitlon-Carolino proved the statement of Theorem 4.6 with the additional assump-
tion that Λ is open ([Car15, Thm. 1.25]). We will show how Theorem 4.6 reduces to this situation. Let
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L and 𝑓 : 𝐿 → 𝐺 be the locally compact group and the homomorphism given by Theorem 4.1 and
𝑉 ⊂ 𝐿 be a neighbourhood such that 𝑓 (𝑉) = Λ2. Then V is a compact neighbourhood of the identity,
so there is an open symmetric subset �̃� such that 𝑉 ⊂ �̃� ⊂ 𝑉2. The subset �̃� is thus an open relatively
compact 𝐾6-approximate subgroup. But f is an injective continuous homomorphism, so [Car15, Thm.
1.25] applied to �̃� yields Theorem 4.6. �

4.4. Bohr-type compactification

We mention yet another application of Theorem 4.1 that generalises further the Bohr compactification
of a discrete group.

Proposition 4.7. Let Γ be a group that commensurate an approximate subgroup Λ ⊂ Γ. Then there is
a group homomorphism 𝑓0 : Γ → 𝐻0 (unique up to continuous group isomorphism 𝐻0 → 𝐻 ′

0) with
dense range and 𝑓0(Λ) relatively compact that satisfies the following universal property:

(∗) if 𝑓 : Γ → 𝐻 is a group homomorphism with H locally compact and 𝑓 (Λ) relatively compact, then
there is a continuous group homomorphism 𝜙 : 𝐻0 → 𝐻 such that 𝑓 = 𝜙 ◦ 𝑓0.

Proof. Let R be a set of representatives of group homomorphisms 𝑓 : Γ → 𝐻 with H locally
compact, dense image and 𝑓 (Λ) relatively compact, up to the following equivalence: 𝑓1 : Γ → 𝐻1
and 𝑓2 : Γ → 𝐻2 are equivalent if there is a continuous group isomorphism 𝜙 : 𝐻1 → 𝐻2 such
that 𝜙 ◦ 𝑓1 = 𝑓2. Notice that R is not empty as it contains the map to the trivial group. Then the
group 𝐻R :=

∏
𝑓 :Γ→𝐻1∈R 𝐻2 equipped with the product topology is a Hausdorff topological group,

and 𝑓R(Λ) is relatively compact where 𝑓R : Γ → 𝐻R is the diagonal map. One readily sees that 𝑓R
satisfies the universal property (∗). The topological group 𝐻R need not be locally compact however.
By Theorem 4.1, there are a locally compact group 𝐻0, a group homomorphism 𝑓0 : Γ → 𝐻0 and a
continuous group homomorphism 𝜙 : 𝐻0 → 𝐻R such that 𝑓R = 𝜙 ◦ 𝑓0. �

The above proposition can be interpreted as existence of a smallest Meyer subset containing a given
approximate subgroup Λ. Given 𝑓0 : Γ → 𝐻0 as in Proposition 4.7, set Λ0 := 𝑓 −1

0 ( 𝑓0 (Λ2)). Note that
by construction, 𝑓0(Λ2) is a compact neighbourhood of the identity in 𝐻0. So Λ0 is an approximate
subgroup and has a good model. We see now that if Λ′ contains Λ and has a good model f, then f must
factor through 𝑓0. Therefore, 𝑓 (Λ0) is relatively compact and finitely many left-translates of Λ′ cover
Λ0. This discussion yields the following:

Lemma 4.8. Let Γ be a group that commensurates an approximate subgroup Λ ⊂ Γ. Let 𝑓0 : Γ → 𝐻0
be as in Proposition 4.7. Then

1. Λ has a good model if and only if 𝑓0 is a good model;
2. Λ is Meyer subset if and only if it is commensurable to 𝑓 −1

0 ( 𝑓0(Λ)).

Remark 4.9. Hrushovski’s [Hru22, §5.8] yields moreover the following fascinating result: if Λ ⊂ Λ0
are as above, then the numbers 𝑛 ≥ 0 such that there are pairwise non-commensurable approximate
subgroups Λ ⊂ Λ𝑛 ⊂ . . . ⊂ Λ1 ⊂ Λ0 are bounded.

5. Amenable approximate subgroups

5.1. Amenable approximate subgroups: definition

Definition 5.1. Let Λ be a closed approximate subgroup of a locally compact group G. Define B(Λ) as
the set of those Borel subsets of G that are covered by finitely many left-translates of Λ. We say that Λ
is amenable if there exists a finitely additive measure m defined on B(Λ) such that

1. (finiteness) 0 < 𝑚(Λ) < ∞ ;
2. (left-invariance) for all 𝑔 ∈ 𝐺 and 𝑋 ∈ B(Λ), we have 𝑚(𝑔𝑋) = 𝑚(𝑋).
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According to Theorem 4.1, compact approximate subgroups of topological groups are amenable,
and m is easily obtained from a Haar measure (and Lemma 5.2 below). We will see in Subsection 5.4
below that any closed approximate subgroup of an amenable locally compact group is amenable.

The definition above is extremely close to the definition of definably amenable approximate subgroups
introduced by Massicot and Wagner in [MW15]. There they study finitely additive measures defined
on definable subsets in some structure. When Λ is discrete, our definition is, in fact, a special case of
definably amenable approximate subgroup (with all subsets of 〈Λ〉 being definable). However, it does
not seem obvious how to present Definition 5.1 as a special case of definably amenable approximate
subgroups when Λ is not discrete. Indeed, algebras of Borel subsets and of definable subsets behave
differently with respect to set operations such as projections.

We note now that Definition 5.1 is, in fact, local:

Lemma 5.2. Let m be a finitely additive measure defined on the Borel subsets of Λ and such that

1. (finiteness) 𝑚(Λ) = 1;
2. (local left-invariance) 𝑚(𝑔𝑋) = 𝑚(𝑋) whenever 𝑔 ∈ 𝐺, 𝑋 ⊂ Λ and 𝑔𝑋 ⊂ Λ.

Then Λ is amenable, and m can be extended to a finitely additive measure as in Definition 5.1.

Proof. Consider 𝑋 ∈ B(Λ) and 𝑋1, . . . , 𝑋𝑟 a Borel partition of X such that there are 𝑓1, . . . , 𝑓𝑟 ∈ 𝐺
with 𝑓𝑖𝑋𝑖 ⊂ Λ. We will prove that the quantity

∑𝑟
𝑖=1 𝑚( 𝑓𝑖𝑋𝑖) depends only on X. Defining �̃�(𝑋) =∑𝑟

𝑖=1 𝑚( 𝑓𝑖𝑋𝑖) then yields the extension we are looking for. Take 𝑌1, . . . , 𝑌𝑠 a second partition with
𝑔1, . . . , 𝑔𝑠 ∈ 𝐺 as above. We have

𝑟∑
𝑖=1

𝑚( 𝑓𝑖𝑋𝑖) =
𝑟∑
𝑖=1

𝑠∑
𝑗=1

𝑚( 𝑓𝑖 (𝑋𝑖 ∩ 𝑌 𝑗 ))

=
𝑠∑
𝑗=1

𝑟∑
𝑖=1

𝑚( 𝑓𝑖𝑔
−1
𝑗 𝑔 𝑗 (𝑋𝑖 ∩ 𝑌 𝑗 ))

=
𝑠∑
𝑗=1

𝑟∑
𝑖=1

𝑚(𝑔 𝑗 (𝑋𝑖 ∩ 𝑌 𝑗 ))

=
𝑠∑
𝑗=1

𝑚(𝑔 𝑗𝑌 𝑗 ),

where we have used local left-invariance to go from the second to the third line. �

As an immediate corollary we find the following:

Lemma 5.3. Let Λ and Ξ be closed approximate subgroups of some locally compact group. If Λ and Ξ
are commensurable and Ξ is amenable, then Λ is amenable.

Note that a careful study of elementary properties of invariant finitely additive measures was carried
out in [HKP22].

5.2. Amenable approximate subgroups of linear groups

We will exploit the strong Tits’ alternative, following an idea from [BGT11], to prove the following:

Lemma 5.4. Let k be any field. Let Λ be an amenable closed K-approximate subgroup of some locally
compact group. Let 𝜓 : Λ5 → GL𝑑 (𝑘) be a local group homomorphism (i.e., 𝜓(𝑥𝑦) = 𝜓(𝑥)𝜓(𝑦)

whenever 𝑥, 𝑦, 𝑥𝑦 ∈ Λ5). Assume that 𝜓 is continuous and has countable image. Then there is Λ′ ⊂ Λ2

commensurable with Λ such that every finite subset of 𝜓(Λ′) generates a virtually soluble subgroup.
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Proof. Fix m an invariant finitely additive measure as in Definition 5.1. By the strong Tits alternative
[Bre08, Thm. 1.1], there is an integer 𝑁 := 𝑁 (𝑑) such that for every subset 𝐹 ⊂ GL𝑑 (𝑘) finite, either
F generates a virtually soluble subgroup or 𝐹𝑁 contains two elements generating a free group. We will
apply this result in combination with the following:

Claim 5.2.1. Let 𝑋 ⊂ Λ5 be a Borel subset and 𝑥, 𝑦 ∈ Λ5 be such that 𝜓(𝑥) and 𝜓(𝑦) generate a free
group, and {𝑥, 𝑦, 𝑥−1, 𝑦−1}𝑋 ⊂ Λ5. Then

𝑚({𝑥, 𝑦, 𝑥−1, 𝑦−1}𝑋) ≥ 3𝑚(𝑋).

Suppose first that the claim is true. Since Λ4 has a good model (Proposition 5.7), there is 𝑆 ⊂ Λ4 an
approximate subgroup commensurable with Λ such that 𝑆𝑙 ⊂ Λ4, where 𝑙 ≥ 𝑁

(
4 log3(𝐾) + 1

)
. Take a

finite symmetric subset 𝐹 ⊂ 𝑆 and assume for a contradiction that 𝜓(𝐹) does not generate a virtually
soluble subgroup. According to the strong Tits alternative and the claim,

3𝑙/𝑁𝑚(Λ) ≤ 𝑚(𝐹𝑙Λ) ≤ 𝑚(Λ5) ≤ 𝐾4𝑚(Λ).

Hence, 3𝑙/𝑁 = 3𝐾4 ≤ 𝐾4: a contradiction. So Λ′ := 𝑆 works. It remains only to prove the claim.

Proof of Claim 5.2.1. Let 𝑥, 𝑦 ∈ 𝑋 be two elements such that 𝐹2 := 〈𝜓(𝑥), 𝜓(𝑦)〉 is free. Choose R a
system of right representatives of 𝜓(Λ) over 𝐹2. For every reduced word 𝑤 ∈ 𝐹2 \ {𝑒} (in the letters
𝜓(𝑥), 𝜓(𝑦)), define the subset Λ𝑤 as the subset of those elements 𝜆 of Λ such that 𝜓(𝜆) = 𝑣𝑟 with
𝑟 ∈ 𝑅 and 𝑣 ∈ 𝐹2, where v starts with w when written as a reduced word. In other words, 𝑣 = 𝑤𝑣′ for
some 𝑣′ ∈ 𝐹2 and the last letter of the reduced word w is not equal to the inverse of the first letter of the
reduced word 𝑣′. Since R and 𝐹2 are countable, Λ𝑤 is Borel. We define, moreover, Λ𝑒 := Λ ∩ 𝜓−1(𝑅).
We have the disjoint union decomposition

Λ =
⊔

𝑤 ∈{𝑒}∪𝜓{𝑥,𝑦,𝑥−1 ,𝑦−1 }

Λ𝑤 . (5.1)

Furthermore, we have

{𝑥, 𝑦, 𝑥−1, 𝑦−1}Λ ⊃
⊔

𝛼∈{𝑥,𝑦,𝑥−1 ,𝑦−1 }

𝛼Λ𝑒 �
⊔

𝛼,𝛽∈{𝑥,𝑦,𝑥−1 ,𝑦−1 }
𝛼≠𝛽−1

𝛼Λ𝜓 (𝛽) . (5.2)

Therefore, a combination of (5.1) and (5.2) yields

𝑚({𝑥, 𝑦, 𝑥−1, 𝑦−1}Λ) ≥ 3𝑚(Λ). �

The proof is now complete. �

In the case of characteristic 0 fields, we obtain a stronger result thanks to the Tits’ alternative ([Tit72,
Thm. 1]) in characteristic 0.

Corollary 5.5. With notations as in Lemma 5.4. If k has characteristic 0, then 𝜓(Λ′) generates a
virtually soluble subgroup.

We will also invoke Lemma 5.4 in the case of a positive characteristic field. In that situation as well,
we will be able to draw strong information by combining it with well-known results of Tits’ [Tit72,
Prop. 2.8].
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5.3. Structure of amenable approximate subgroups

The main result of this subsection is the following:

Proposition 5.6. Let Λ be an amenable closed approximate subgroup of a 𝜎-compact locally compact
group G. There is Λ′ ⊂ Λ4 a closed approximate subgroup commensurable to Λ that has a good model
𝑓 : 〈Λ′〉 → 𝐻 such that

1. H is a connected Lie group;
2. 𝑓

|Λ′2 is continuous;
3. if 𝑝 : 𝐻 → 𝑆 denotes the projection to the quotient S of H by its maximal solvable normal subgroup,

then (𝑝 ◦ 𝑓 ) (Λ′) is a neighbourhood of the identity.

The first step towards Proposition 5.6 is to prove a result in the spirit of Hrushovski’s stabilizer
theorem from [Hru12]:

Proposition 5.7. Let Λ be a closed approximate subgroup of a 𝜎-compact locally compact group G. If
Λ is amenable, then Λ4 has a good model f such that 𝑓

|Λ4 is continuous.

Hrushovski’s study of near-subgroups ([Hru12]) immediately implies the above Proposition 5.7 when
Λ is discrete. To deal with the general case, we rely on a variation of an argument due to Massicot–
Wagner in [MW15] about a definably amenable approximate subgroup inspired by Sanders’ [San12]
and Croot–Sisask’s [CS10], who proved it for finite abelian approximate groups.

Lemma 5.8. LetΛ be an amenable closed approximate subgroup of a𝜎-compact locally compact group
G, and let k be a positive integer. There is an approximate subgroup 𝑆 ⊂ Λ2 commensurable to Λ such
that 𝑆𝑘 ⊂ Λ4.

Proof. Let Ξ ⊂ Λ be Haar measurable such that 𝑚(Ξ) ≥ 𝑡𝑚(Λ) for some 𝑡 ∈ (0; 1]. Set 𝑋 (Ξ) :=
{𝑔 ∈ Λ2 |𝑚(𝑔Ξ ∩ Ξ) ≥ 𝑠𝑡𝑚(Λ)}, where 𝑠 = 𝑡

2𝐾 . By the proof of [MW15, Thm. 12], the approximate
subgroup Λ is covered by at most 𝑁 := � 1

𝑠 � left-translates of 𝑋 (Ξ).
Define now

𝑓 (𝑡) := inf
{
𝑚(ΞΛ)
𝑚(Λ)

����Ξ ⊂ Λ closed, 𝑚(Ξ) ≥ 𝑡𝑚(Λ)

}
.

Note that f is well defined since the product of two 𝜎-compact subsets is a 𝜎-compact subset, and hence
Borel. We also know that 𝑓 (𝑡) ∈ [1;𝐾] for all 𝑡 ≤ 1. Take 𝑡 ≥ 𝑐𝐾,𝑘 such that 𝑓 ( 𝑡22𝐾 ) ≥ (1 − 1

4𝑘 ) 𝑓 (𝑡)

(where we can choose 𝑐𝐾,𝑘 = 1
(2𝐾 )2𝑛−1 with 𝑛 =

⌈
log(𝐾 )

log( (1− 1
4𝑘 )

−1)

⌉
; see [MW15, Lem. 11]) and choose

Ξ ⊂ Λ closed such that 𝑚(Ξ) ≥ 𝑡𝑚(Λ) and 𝑚(ΛΞ)
𝑚(Λ) ≤ (1 + 1

4𝑘 ) 𝑓 (𝑡).
If 𝑔 ∈ 𝑋 (Ξ), we have

𝑚(𝑔ΞΛ ∩ ΞΛ) ≥ 𝑚((𝑔Ξ ∩ Ξ)Λ)

≥ 𝑓

(
𝑡2

2𝐾

)
𝑚(Λ)

≥

(
1 −

1
4𝑘

)
𝑓 (𝑡)𝑚(Λ)

≥
1 − 1

4𝑘

1 + 1
4𝑘
𝑚(ΞΛ).
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Hence,

𝑚((𝑔ΞΛ)Δ (ΞΛ)) ≤ 2

(
1 −

1 − 1
4𝑘

1 + 1
4𝑘

)
𝑚(ΞΛ)

<
1
𝑘
𝑚(ΞΛ).

Thus, by the telescopic formula for symmetric differences, we have

𝑚((𝑔1 · · · 𝑔𝑘ΞΛ)Δ (ΞΛ)) < 𝑚(ΞΛ). (*)

As a consequence, 𝑋 (Ξ)𝑘 ⊂ Λ4 and � 2𝐾
𝑡 � ≤ 2𝐾

𝑐𝐾,𝑘
≤ (2𝐾)24 log(𝐾 )𝑘+1 translates of 𝑋 (Ξ) cover Λ. �

Remark 5.9. For the proof of Lemma 5.8 to work, the finitely additive measure m need not be defined on
all Borel subsets, but only on a certain lattice of subsets generated by Λ, finite intersections of translates
of Λ and certain products of such subsets. We point to [HKP22] where ideas of that nature are studied
in detail.
Proof of Proposition 5.7. Let 𝜙 : �̃� → 𝐺 be the map given by the closed approximate subgroup
theorem (Theorem 1.3). We know that 𝜙 |𝜙−1 (Λ) is an homeomorphism onto its image. So 𝜙−1(Λ) is
amenable as well. From now on, we will therefore assume that Λ has nonempty interior in G. By
Lemma 5.8, there is a closed approximate subgroup Λ1 ⊂ Λ2 commensurable to Λ and such that
Λ8

1 ⊂ Λ4. According to Lemma 5.3, the closed approximate subgroup Λ1 is amenable. We can thus
build inductively a sequence of closed approximate subgroups (Λ𝑛)𝑛≥0 commensurable to Λ such that
Λ0 = Λ and (Λ4

𝑛+1)
2 ⊂ Λ8

𝑛+1 ⊂ Λ4
𝑛 for all integers 𝑛 ≥ 0. By Theorem 3.5 applied to the sequence

(Λ4
𝑛)𝑛≥0, we obtain that Λ4 has a good model. But now, for all 𝑛 ≥ 0, the approximate subgroup Λ𝑛 is

commensurable to Λ. According to the Baire category theorem, we have that the interior of Λ𝑛 is not
empty. Hence, Λ4

𝑛 is a neighbourhood of the identity. So we see that the restriction to Λ4 of the good
model built in the proof of Theorem 3.5 – see (4) of Theorem 3.5 – is, in fact, continuous. �

Proof of Proposition 5.6. In the proof that follows, we will repeatedly use a number of fundamental
results from Lie theory, including Lie’s theorem, which provides a correspondence between Lie groups
and Lie algebras [Var84, Thm. 2.8.2]. We refer the interested reader more generally to [Var84] where
this relationship is explored in detail. In this proof, we provide pointers based on this reference.

Let us assume – as in the proof of Proposition 5.7 – that the interior of Λ is not empty. Note
that, then, 〈Λ〉 is an open subgroup. According to Proposition 5.7, Λ4 has a continuous good model
𝑓0 : 〈Λ〉 → 𝐻0 with range dense in 𝐻0. Take 𝑊0 ⊂ 𝐻0 a relatively compact neighbourhood of the
identity such that 𝑓 −1

0 (𝑊0) ⊂ Λ4. According to the Gleason–Yamabe theorem, there are a symmetric
compact neighbourhood of the identity 𝑊1 ⊂ 𝑊0 and a compact subgroup 𝐾 ⊂ 𝑊1 normal in the group
𝐻1 generated by 𝑊1 such that 𝐻 := 𝐻1/𝐾 is a connected Lie group. Write Λ1 := 𝑓 −1

0 (𝑊1), and let
𝑓 : 〈Λ1〉 → 𝐻 denote the map obtained that way. The Baire category theorem therefore implies that
〈Λ1〉 is an open subgroup in G. Let 𝑊2 be a neighbourhood of the identity in H – to be chosen later –
contained in the projection of 𝑊1, and write Λ2 := 𝑓 −1(𝑊2). By Lemma 3.2, the closed approximate
subgroup Λ2 is commensurable to Λ. So f restricted to 〈Λ2〉 satisfies (1) and (2).

Let V be a symmetric compact neighbourhood of the identity in G. Consider the subset
𝐴 := 𝑓 (Λ2

2 ∩𝑉2). According to Lemma 2.3, Λ2
2 ∩𝑉

2 – and, hence, A – is an approximate subgroup. By
Lemma 2.3 again, Λ2

2 ∩ 𝑉2 is commensurated by 〈Λ2〉. So A is commensurated by 𝑓 (〈Λ2〉). Since f is
continuous, A is compact. Let 𝔥 denote the Lie algebra of H and 𝔞 denote the Lie algebra of A (Corol-
lary 4.3). Note first that since 𝔞 depends only on the commensurability class of A, 𝔞 is independent
of the choices of V and 𝑊2. Furthermore, since A is commensurated by 𝑓 (〈Λ2〉), the Lie algebra 𝔞 is
normalised by the dense subgroup 𝑓 (〈Λ2〉). So 𝔞 is an ideal.
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To prove (3), it suffices now to show that 𝔥/𝔞 is soluble. By Ado’s theorem, there is a Lie subgroup
L of some GL𝑛 (R) with Lie algebra isomorphic to 𝔥/𝔞 ([Var84, Thm. 3.17.8]) together with a local Lie
group homomorphism 𝜙 : 𝐻 → 𝐿 such that the differential 𝑑𝜙 can be identified to the quotient map
𝔥 → 𝔥/𝔞. When H is simply connected, existence of the homomorphism is ensured by [Var84, Thm.
2.7.5], and existence of a local homomorphism in general is then provided by [Var84, Thm. 2.8.2].
Assume 𝑊2 chosen sufficiently small for 𝜙 to be defined over 𝑊10

2 . Notice that the Lie algebra of the
compact approximate subgroup 𝜙(𝐴) is 𝑑𝜙(𝔞) = {0}. In other words, 𝜙(𝐴) is finite (Theorem 1.3 and
[Var84, Thm. 2.7.3. (i) and 2.8.2]). But, the group G is 𝜎-finite, so Λ2 is covered by countably many
left-translates of V. Hence, Λ2 is covered by countably many translates of Λ2

2 ∩ 𝑉2. This implies that
𝑓 (Λ2) is covered by countably many left-translates of A and that 𝜙◦ 𝑓 (Λ2) is countable. Since Λ5

2 ⊂ Λ7
2,

𝜙◦ 𝑓 (Λ5
2) is countable as well. The map 𝜓 := 𝜙◦ 𝑓

|Λ5
2

is therefore a well-defined continuous map that has
countable image. According to Corollary 5.5, there is X commensurable to Λ2 such that 𝜓(𝑋) generates
a virtually soluble subgroup. Note that 𝑓 (Λ2) has nonempty interior in H and 𝜙 is open (because 𝑑𝜙
is surjective and [Var84, Thm. 2.7.3. (i), 2.8.2 and Lem. 2.5.3]). So 𝜓(Λ2) is dense in a subset with
nonempty interior of L. Now, this means that 𝜓(𝑋) is dense in a subset with nonempty interior. So L is
a virtually soluble connected Lie group, and hence, its Lie algebra 𝔥/𝔞 is soluble [Var84, Cor. 3.18.9].

In particular, 𝔞 contains all the semi-simple Lie sub-algebras in 𝔥. Write 𝔰 the Lie algebra of S
and 𝑑𝜋 the differential of the natural projection 𝜋 : 𝐻0 → 𝑆. The kernel of the differential 𝑑𝜋 is the
maximal solvable Lie algebra of 𝔥. Indeed, the kernel of 𝑑𝜋 is a soluble ideal by definition so contained
in the maximal soluble Lie algebra 𝔯. Conversely, the group corresponding to 𝔯 ([Var84, Thm. 2.5.2])
is a normal connected soluble subgroup [Var84, Cor. 3.18.9], thus contained in the radical. As 𝑑𝜋 is
surjective, 𝑑𝜋(𝔞) = 𝔰 by the Levi decomposition [Var84, Thm. 3.14.1]. So 𝜋(𝐴) has Lie algebra 𝔰,
which means that A has nonempty interior (Theorem 1.3 and [Var84, Thm. 2.7.3. (i) and 2.8.2]). So f
satisfies (1) − (3). �

We can now derive Theorem 1.6:
Proof of Theorem 1.6. Apply Proposition 5.6 to find Λ′ ⊂ Λ4 approximate subgroup commensurable
to Λ and 𝑓 : 〈Λ′〉 → 𝐻 good model with dense image in a connected Lie group H, 𝑓 |Λ′ continuous and
𝑝 ◦ 𝑓 (Λ′) a neighbourhood of the identity in 𝐻/𝑅, where 𝑝 : 𝐻 → 𝐻/𝑅 is the quotient homomorphism
by the radical. First, using that f is a good model, pick a compact symmetric neighbourhood W of
the identity of H such that 𝑓 −1(𝑊2) ⊂ Λ′. Since 𝑓 −1(𝑊) is commensurable to Λ′ (Corollary 3.3), we
get that 𝑝 ◦ 𝑓 ( 𝑓 −1(𝑊)) is commensurable to 𝑝 ◦ 𝑓 (Λ′), so it has nonempty interior. Also, as 𝑓 |Λ′ is
continuous, 𝑓 −1(𝑊) has nonempty interior in Λ′. Now, there is a compact subset A of 𝑓 −1(𝑊) with
nonempty interior in Λ′ such that 𝑝 ◦ 𝑓 (𝐴) has nonempty interior. Indeed, 𝑓 −1(𝑊) is a closed subset
of a 𝜎-compact locally compact group, so there is a countable family (𝐴𝑛)𝑛≥0 of compact subsets
such that

⋃
𝑛≥0 𝐴𝑛 = 𝑓 −1(𝑊). Thus, 𝑝 ◦ 𝑓 ( 𝑓 −1(𝑊)) ⊂

⋃
𝑛≥0 𝑝 ◦ 𝑓 (𝐴𝑛). Since 𝑝 ◦ 𝑓 ( 𝑓 −1(𝑊)) has

nonempty interior, 𝑝 ◦ 𝑓 (𝐴𝑛) has nonempty interior for some n by the Baire category theorem, and we
can take 𝐴 = 𝐴𝑛. Since p is continuous, there is a compact symmetric subset 𝑊1 ⊂ 𝑊 with nonempty
interior such that 𝑝(𝑊1) ⊂ 𝑝 ◦ 𝑓 (𝐴). Then, 𝑓 −1(𝑊1) ⊂ Λ4 is commensurable to Λ by Corollary 3.3.
For any 𝜆 ∈ 𝑓 −1(𝑊1), there is 𝑎 ∈ 𝐴 such that 𝑓 (𝑎−1𝜆) ∈ 𝑅. Now, 𝑓 (𝑎−1𝜆) ∈ 𝑊2 ∩ 𝑅. Taking
Λ𝑠𝑜𝑙 = 𝑓 −1(𝑊2 ∩ 𝑅) ⊂ Λ′ ⊂ Λ4, we conclude that 𝑓 −1(𝑊1) ⊂ 𝐴Λ𝑠𝑜𝑙 , so Λ ⊂ 𝐹𝐴Λ𝑠𝑜𝑙 with F finite
subset of Λ11. It follows that 𝑉 := 𝐹𝐴 ∪ {𝑒} ∪ (𝐹𝐴)−1 is a compact symmetric subset of Λ12 with
nonempty interior in Λ12 such that Λ ⊂ 𝑉Λ𝑠𝑜𝑙 . Obviously, Λ ⊂ 𝑉Λ𝑠𝑜𝑙∪Λ𝑠𝑜𝑙𝑉 ⊂ Λ18, so𝑉Λ𝑠𝑜𝑙∪Λ𝑠𝑜𝑙𝑉
is an approximate subgroup commensurable to Λ, establishing (3). Consider 〈Λ𝑠𝑜𝑙〉/ker 𝑓 with the
quotient topology from the induced topology given by Theorem 1.3. By the Isomorphism Theorem
(for groups and topological spaces), the induced map 〈Λ𝑠𝑜𝑙〉/ker 𝑓 → 𝑅 is a continuous 1-to-1 group
homomorphism. By [Bou89c, Ch. III, §8, Cor. 1], 〈Λ𝑠𝑜𝑙〉/ker 𝑓 is a Lie group getting (2). As R is a
soluble group, 〈Λ𝑠𝑜𝑙〉/ker 𝑓 is soluble, getting (1). �

Remark 5.10. We can furthermore obtain dimensional bounds by applying the proof strategy of [BGT12,
Lem. 10.4] (with additional input the recent [AJTZ21]). One can obtain that way 𝑁 ′ ⊂ Λ′

𝑠𝑜𝑙 ⊂ Λ20
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satisfying (1), (2) and (3) of Theorem 1.6 and such that 〈Λ′
𝑠𝑜𝑙〉/𝑁

′ has dimension 𝑂 (𝐾20). We believe
that this bound is far from sharp and could be replaced by a logarithmic one. Thus, we refrain exploring
that direction.

Under additional assumptions, the structure of amenable approximate subgroups appears even more
strikingly:

Corollary 5.11. Let Λ be an amenable uniformly discrete approximate subgroup of a 𝜎-compact locally
compact group G. Then there isΛ′ ⊂ Λ4 commensurable toΛ and a closed subgroup 𝑁 ⊂ Λ′ normalised
by Λ′ such that 〈Λ′〉/𝑁 is soluble.

Corollary 5.12. Let Λ be an amenable closed approximate subgroup of a totally disconnected
𝜎-compact locally compact group G. Then there is Λ′ ⊂ Λ4 and a closed subgroup 𝑁 ⊂ Λ′ normalised
by Λ′ such that 〈Λ′〉/𝑁 is soluble.

Sketch of the proof. Apply Proposition 5.6 to obtain the good model 𝑓 : 〈Λ′〉 → 𝐻. Recall that f has
dense range and H is a connected Lie group, and write 𝑝 : 𝐻 → 𝐻/𝑅 the quotient by the radical.
Then 𝑝 ◦ 𝑓 (Λ′) contains a neighbourhood of the identity, and 𝑝 ◦ 𝑓 |Λ′ is continuous with respect to
the topology inherited from Theorem 1.3. But this topology is totally disconnected, and Λ′ contains
a neighbourhood of the identity. By the van Dantzig theorem [Tao14, Thm. 1.6.7], there is a compact
subgroup 𝐾 ⊂ Λ′ which is open in the topology from Theorem 1.3. Since H is a Lie group, 𝑝 ◦ 𝑓 (𝐾) is
finite. But Λ′ is covered by countably many translates of K, so 𝑝 ◦ 𝑓 (Λ′) is countable. Hence, 𝐻/𝑅 is
discrete (i.e., trivial).

5.4. Approximate Subgroups in Amenable Groups

Our goal in this section is to exhibit a natural family of amenable approximate subgroups – that is, to
prove the following:

Proposition 5.13. Let Λ be a closed approximate subgroup in a second countable locally compact
group G. Let H be an amenable closed normal subgroup of G, and suppose that the projection of Λ to
𝐺/𝐻 is relatively compact. Then Λ is amenable.

The proof consists of two steps. We first show that any neighbourhood of a normal amenable subgroup
is an amenable approximate subgroup (Proposition 5.14). We then prove heredity of amenability for
closed approximate subgroups (Proposition 5.15).

Proposition 5.14. Let G be a locally compact group, let H be a closed amenable normal subgroup and
let 𝑊 ⊂ 𝐺 be a compact symmetric neighbourhood of the identity. Then 𝑊𝐻 is an amenable closed
approximate subgroup of G.

Proof. Let us first recall some notations and definitions (see [Gre69] for more details). Fix a left-
Haar measure 𝜇𝐺 on G. Define the left- and right-translates of a function 𝑓 : 𝐺 → R by 𝑔 ∈ 𝐺 as
the maps 𝑔 𝑓 : 𝑥 ↦→ 𝑓 (𝑔−1𝑥) and 𝑓𝑔 : 𝑥 ↦→ 𝑓 (𝑥𝑔), respectively. A function 𝑓 : 𝐺 → R is right-
uniformly continuous if it is continuous for the right uniformity – that is, for any real number 𝜖 > 0,
there is a neighbourhood 𝑈 (𝜖) ⊂ 𝐺 of the identity such that for all 𝑔 ∈ 𝑈 (𝜖) and 𝑥 ∈ 𝐺, we have
| 𝑓 (𝑥) − 𝑔 𝑓 (𝑥) | < 𝜖 . The set of right-uniformly continuous bounded functions on G will be denoted by
𝐶𝑏,𝑟𝑢 (𝐺). Likewise, the set of continuous bounded functions (resp. continuous functions with compact
support) on G will be denoted by 𝐶𝑏 (𝐺) (resp. 𝐶𝑐 (𝐺)). We have 𝐶𝑐 (𝐺) ⊂ 𝐶𝑏,𝑟𝑢 (𝐺) ⊂ 𝐶𝑏 (𝐺).
One readily checks that G acts continuously by left-translations on the normed vector space 𝐶𝑏,𝑟𝑢 (𝐺)

equipped with the norm | | · | |∞. A linear map 𝐹 : 𝑋 → R is said left-invariant if the subspace
𝑋 ⊂ 𝐶𝑏,𝑟𝑢 (𝐺) is stable by the G-action and if for every 𝑔 ∈ 𝐺 and 𝑓 ∈ 𝑋 , we have 𝐹 (𝑔 𝑓 ) = 𝐹 ( 𝑓 ). It is
said positive if for all 𝑓 ∈ 𝑋 with 𝑓 ≥ 0, we have 𝐹 ( 𝑓 ) ≥ 0.
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The vector subspace of 𝐶0
𝑏,𝑟𝑢 (𝐺) we want to consider is

𝑋 := { 𝑓 ∈ 𝐶𝑏,𝑟𝑢 (𝐺) | 𝑝(supp( 𝑓 )) is relatively compact.},

where 𝑝 : 𝐺 → 𝐺/𝐻 is the natural projection. We will prove the following claim.

Claim 5.4.1. There exists a nontrivial left-invariant positive linear map 𝑚 : 𝑋 → R.

Proof. Fix 𝜇𝐺/𝐻 a right-Haar measure on 𝐺/𝐻. First of all, note that X is stable under the action of
G. Since H is an amenable locally compact group, there is a left-invariant mean 𝑚𝐻 : 𝐶𝑏 (𝐻) → R

according to [Gre69, Thm. 2.2.1]. This means that 𝑚𝐻 is a left-invariant positive linear functional such
that for any 𝑓 ∈ 𝐶𝑏 (𝐻), we have 𝑚𝐻 ( 𝑓 ) ≤ || 𝑓 | |∞ and 𝑚𝐻 (1𝐻 ) = 1. Take 𝑓 ∈ 𝑋 and consider the map

𝑓 : 𝐺 → R

𝑥 ↦→ 𝑚𝐻
(
𝑥 𝑓 |𝐻

)
,

where 𝑥 𝑓 |𝐻 := (𝑥 𝑓 )|𝐻 . We will show that 𝑓 is continuous and invariant under left-translation by
elements of H. Indeed, if ℎ, 𝑥 ∈ 𝐻 and 𝑔 ∈ 𝐺, then ℎ𝑔 𝑓 (𝑥) = (𝑔 𝑓 ) (ℎ

−1𝑥). But ℎ−1𝑥 ∈ 𝐻 if and only if

𝑥 ∈ 𝐻. So ℎ𝑔 𝑓 |𝐻 =
ℎ

(
𝑔 𝑓 |𝐻

)
, and hence, for 𝑥 ∈ 𝐺, we have

ℎ 𝑓 (𝑥) = 𝑓 (ℎ−1𝑥) = 𝑚𝐻

(
ℎ−1𝑥

𝑓 |𝐻

)
= 𝑚𝐻

(
ℎ−1

(
𝑥 𝑓 |𝐻

) )
= 𝑚𝐻

(
𝑥 𝑓 |𝐻

)
= 𝑓 (𝑥).

Moreover, for any 𝑥1, 𝑥2 ∈ 𝐺, we have

| 𝑓 (𝑥1) − 𝑓 (𝑥2) | = |𝑚𝐻 (𝑥1 𝑓 |𝐻 ) − 𝑚𝐻 (𝑥2 𝑓 |𝐻 ) | = |𝑚𝐻 (𝑥1 𝑓 |𝐻 − 𝑥2 𝑓 |𝐻 ) | ≤ | | 𝑥1 𝑓 − 𝑥2 𝑓 | |∞.

But f is right-uniformly continuous, so 𝑓 is continuous. Therefore, there exists a unique continuous
function 𝑓𝐺/𝐻 : 𝐺/𝐻 → R such that

(
𝑓𝐺/𝐻 ◦ 𝑝

)
(𝑥) = 𝑚𝐻 (𝑥 𝑓 |𝐻 ) (recall that p denotes the natural

projection). The map 𝑓 ↦→ 𝑓𝐺/𝐻 is linear, sends non-negative functions to non-negative functions and
| | 𝑓𝐺/𝐻 | |∞ ≤ || 𝑓 | |∞ for all 𝑓 ∈ 𝐶𝑏,𝑟𝑢 (𝐺). Furthermore, we have supp( 𝑓𝐺/𝐻 ) ⊂ 𝑝(supp( 𝑓 )), so 𝑓𝐺/𝐻 is
a continuous function with compact support. We are thus able to define

𝑚 : 𝑋 −→ R

𝑓 ↦−→

∫
𝐺/𝐻

𝑓𝐺/𝐻 (𝑡)𝑑𝜇𝐺/𝐻 (𝑡).

The map m is a positive linear map with |𝑚( 𝑓 ) | ≤ | | 𝑓 | |∞. Choose a compact neighbourhood of the
identity 𝑈 ⊂ 𝐺 and 𝑓 ∈ 𝑋 such that 𝑓 (𝑥) = 1 for all 𝑥 ∈ 𝑈𝐻. To ensure such a map exists, we proceed
as follows. There exists by Urysohn’s lemma a compactly supported continuous function 𝑓0 defined on
𝐺/𝐻 such that 𝑓0(𝑥) = 1 for all 𝑥 ∈ 𝑝(𝑈). The map 𝑓0 is in particular right uniformly continuous. Since
p is moreover right-uniformly continuous on G and 𝐺/𝐻, 𝑓0 ◦ 𝑝 is thus right uniformly continuous.
So 𝑓 := 𝑓0 ◦ 𝑝 works. Then for all 𝑥 ∈ 𝑈𝐻, we have 𝑥 𝑓 |𝐻 = 1, so 𝑓𝐺/𝐻 (𝑝(𝑥)) = 1. This implies
𝑚( 𝑓 ) ≥ 𝜇𝐺/𝐻 (𝑝(𝑈)) > 0, so m is nontrivial. It only remains to check that m is left-invariant. Take
𝑔, 𝑥 ∈ 𝐺 and 𝑓 ∈ 𝑋 . Then (

(𝑔 𝑓 )𝐺/𝐻 ◦ 𝑝
)
(𝑥) = 𝑚𝐻 ((

𝑥
(𝑔 𝑓 ))|𝐻 )

= 𝑚𝐻 ((𝑥𝑔 𝑓 )|𝐻 )

= ( 𝑓𝐺/𝐻 ◦ 𝑝) (𝑥𝑔)

= 𝑓𝐺/𝐻 (𝑝(𝑥)𝑝(𝑔)).
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Therefore, (𝑔 𝑓 )𝐺/𝐻 = ( 𝑓𝐺/𝐻 )𝑝 (𝑔) . But 𝜇𝐺/𝐻 is right-invariant, so

𝑚(𝑔 𝑓 ) =
∫
𝐺/𝐻

(𝑔 𝑓 )𝐺/𝐻 (𝑡)𝑑𝜇𝐺/𝐻 (𝑡)

=
∫
𝐺/𝐻

(
𝑓𝐺/𝐻

)
𝑝 (𝑔) (𝑡)𝑑𝜇𝐺/𝐻 (𝑡)

=
∫
𝐺/𝐻

𝑓𝐺/𝐻 (𝑡)𝑑𝜇𝐺/𝐻 (𝑡)

= 𝑚( 𝑓 ).

So Claim 5.4.1 is proved. �

Write 𝑌 := { 𝑓 ∈ 𝐿∞(𝐺) : 𝑝(supp( 𝑓 )) rel. compact}. Following the proof of [Gre69, Lem. 2.2.2],
one now sees that for any 𝜙 ∈ 𝐶𝑐 (𝐺) taking non-negative values and such that

∫
𝐺
𝜙(𝑡)𝑑𝜇𝐺 (𝑡) = 1, the

map

𝑚𝜙 : 𝑌 −→ R

𝑓 ↦−→ 𝑚(𝜙 ∗ 𝑓 )

is independent of 𝜙 and 𝑚𝜙 is nontrivial, left-invariant and positive. Let us recall the argument here.
The map 𝑚𝜙 is positive because m is positive and because 𝜙 ∗ 𝑓 takes non-negative values as soon as
f and 𝜙 take non-negative values. That 𝑚𝜙 takes finite values is due to the fact that for 𝜙 continuous
compactly supported and 𝑓 ∈ 𝑌 , we have 𝜙 ∗ 𝑓 ∈ 𝑋 – indeed, 𝑝(supp 𝜙 ∗ 𝑓 ) is clearly relatively compact
and 𝜙 ∗ 𝑓 is right uniformly continuous by [Gre69, Lem. 2.1.2]. Furthermore, let K denote the support
of 𝜙, and let 𝑓 ∈ 𝑋 be a non-negative function with 𝑓 (𝑥) = 1 for all 𝑥 ∈ 𝐾−1𝐾𝐻 (we have explained
how to construct such a function in the proof of Claim 5.4.1). Then 𝜙 ∗ 𝑓 (𝑥) = 1 for all 𝑥 ∈ 𝐾𝐻. So
𝑚(𝜙 ∗ 𝑓 ) ≥ 𝜇𝐺/𝐻 (𝑝(𝐾)) > 0 by the proof of Claim 5.4.1. It remains to prove the independence on 𝜙.
Take 𝑓 ∈ 𝑌 and write

𝑚 𝑓 : 𝐶𝑐 (𝐺) −→ R

𝜙 ↦−→ 𝑚(𝜙 ∗ 𝑓 ).

We will show that 𝑚 𝑓 is a Haar measure. By using linearity of m and bilinearity of convolution, we may
reduce to the case where f takes non-negative values. In addition, for 𝑔 ∈ 𝐺, 𝑓 ∈ 𝑌 and 𝜙 ∈ 𝐶𝑐 (𝐺),
we have 𝑔 (𝜙 ∗ 𝑓 ) = (𝑔𝜙) ∗ 𝑓 . Therefore, 𝑚 𝑓 is a left-invariant, positive linear functional because m is.
By the Riesz–Markov representation theorem, there is a Radon measure 𝜆 such that 𝑚 𝑓 (𝜙) =

∫
𝐺
𝜙𝑑𝜆.

Since 𝑚 𝑓 is left-invariant, 𝜆 is a Haar measure – that is, there is a constant 𝑘 ( 𝑓 ) such that

𝑚𝜙 ( 𝑓 ) = 𝑚 𝑓 (𝜙) = 𝑘 ( 𝑓 )

∫
𝐺
𝜙𝑑𝜇𝐺 .

Hence, if 𝜙1, 𝜙2 ∈ 𝐶𝑐 (𝐺) with
∫
𝐺
𝜙𝑖𝑑𝜇𝐺 = 1 for 𝑖 = 1, 2, then 𝑚𝜙1 ( 𝑓 ) = 𝑚𝜙2 ( 𝑓 ), which proves

independence on 𝜙. That 𝑚𝜙 is left-invariant is now a consequence of the independence on 𝜙; see
the argument in [Gre69, Prop. 2.1.3] which holds verbatim. So the map defined over Borel subsets
𝐵 ∈ B(𝑊𝐻) – where𝑊 ⊂ 𝐺 is a symmetric compact neighbourhood of the identity – by 𝐵 ↦→ 𝑚𝜙 (1𝐵)
is as in Definition 5.1. So 𝑊𝐻 is amenable. �

We will now prove the second step.
Proposition 5.15. Let Λ and Ξ be two closed approximate subgroups of a second countable locally
compact group G, and suppose that Λ ⊂ Ξ. If Ξ is amenable, then Λ is amenable.

We start with a lemma that is essentially about building a local section of approximate subgroups.
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Lemma 5.16. Let Λ be a closed approximate subgroup in a first-countable locally compact group G.
For any neighbourhood of the identity W of G, there is a Borel subset 𝑆 ⊂ 𝑊 such that 𝑆Λ2 has nonempty
interior and 𝑆−1𝑆 ∩ Λ2 = {𝑒}. Suppose moreover that G is second-countable, and take 𝑋 ⊂ 𝐺. Then
there is a Borel subset 𝑆′ ⊂ 𝑋𝑊 with (𝑆′)−1𝑆′ ∩ Λ2 = {𝑒} and 𝑋 ⊂ 𝑆′Λ4.

Proof. Let V be a symmetric compact neighbourhood of the identity with𝑉6 contained in the intersection
of W and an open neigbourhood U of e given by Lemma 4.2 such that Λ8 ∩𝑈 ⊂ Λ2 ∩𝑈. Define the
relation ∼ on V by 𝑔 ∼ ℎ if and only if 𝑔 ∈ ℎΛ2. We have that ∼ is reflexive and symmetric because
𝑒 ∈ Λ2 and Λ2 is symmetric. In addition, given 𝑔1, 𝑔2, 𝑔3 ∈ 𝑉 such that 𝑔1 ∼ 𝑔2 and 𝑔2 ∼ 𝑔3, we have
𝑔1 ∈ 𝑔2Λ2 ⊂ 𝑔3Λ4. So 𝑔−1

3 𝑔1 ∈ Λ4 ∩ 𝑉2 ⊂ Λ2, which yields 𝑔1 ∼ 𝑔3. Hence, ∼ is an equivalence
relation. Write Y the quotient space 𝑉/∼ endowed with the quotient topology, and let 𝑞 : 𝑉 → 𝑌 be the
quotient map. Notice that Λ2 ∩𝑈 = Λ4 ∩𝑈 = Λ2 ∩𝑈. This means that 𝑔 ∼ ℎ if and only if 𝑔 ∈ ℎΛ2.
Take any subset 𝑋 ⊂ 𝑉 ; then 𝑞−1(𝑞(𝑋)) = 𝑋Λ2 ∩ 𝑉 = 𝑋Λ2 ∩ 𝑉 . This implies that q is a continuous
surjective map. Since V is compact, q is furthermore a perfect proper map. As the image of a compact
space by a continuous map, Y is thus compact. Since q is a continuous closed map and V is normal, Y
is a normal space [Eng89, Thm. 1.5.20]. Moreover, since G is first-countable and 𝑉 ⊂ 𝐺 is compact, V
is second countable. Now, the image of a second countable space by a perfect map is second countable
[Eng89, Thm. 3.7.19], so Y is second countable. So Y is metrizable by [Eng89, Thm. 4.2.8]. By a
theorem of Federer and Morse [FM43, Thm. 5.1], there is a Borel subset 𝑆 ⊂ 𝑉 such that 𝑞 |𝑆 is bijective
(i.e., 𝑆−1𝑆 ∩ Λ2 = {𝑒} and 𝑉 ⊂ 𝑆Λ2).

Now, suppose G is second countable. Since 𝑋 is second countable, there is a sequence (𝑔𝑛)𝑛≥0 of
elements of X with 𝑔0 = 𝑒 such that (𝑔𝑛𝑆Λ2)𝑛≥0 covers 𝑋 . Define recursively 𝑆0 = 𝑆 and

𝑆𝑛+1 = 𝑔𝑛+1𝑆 \
⋃
𝑚≤𝑛

𝑆𝑚Λ2 ⊂ 𝑋𝑊

for all 𝑛 ≥ 0. We claim that 𝑆𝑛 is a Borel subset for all 𝑛 ≥ 0. If 𝑛 = 0, the result is clear. We proceed
now by induction on n. By assumption, 𝑆𝑚 is a Borel subset for all 𝑚 < 𝑛. Moreover,

𝑆−1
𝑚 𝑆𝑚 ∩ Λ2

2
⊂ 𝑆−1𝑆 ∩ Λ2

2
⊂ 𝑆−1𝑆 ∩ Λ2 = {𝑒},

where the second inclusion is a consequence of 𝑆−1𝑆 ⊂ 𝑈 and Λ2 ⊂ Λ4. Therefore, the multiplication
map 𝐺 × 𝐺 → 𝐺 is injective when restricted to the Borel subset 𝑆𝑚 × Λ2. Since G and 𝐺 × 𝐺 are
second countable locally compact groups – hence, Polish spaces – we thus have by the Lusin–Souslin
theorem [Kec95, Thm. 15.1] that 𝑆𝑚Λ2 is Borel, and so is 𝑆𝑛. Define now 𝑆∞ :=

⋃
𝑛≥0 𝑆𝑛. We have

that 𝑆−1
∞ 𝑆∞ ∩Λ2 =

⋃
𝑛≥0

(
𝑆−1
𝑛 𝑆𝑛 ∩ Λ2

)
= {𝑒} as 𝑆𝑛 ∩ 𝑆𝑚Λ2 = ∅ for all 𝑛 > 𝑚. Also, by induction on n,

𝑔𝑛𝑆 ⊂ 𝑆∞Λ2 for all 𝑛 ≥ 0. So 𝑋 ⊂ 𝑆∞Λ2
2
⊂ 𝑆∞Λ4 (in fact, we find 𝑋 ⊂ 𝑆∞Λ4). �

Proof of Proposition 5.15. By Theorem 1.3, we can assume that Ξ has nonempty interior in G. Take
a Borel section S given by Lemma 5.16 applied to the approximate subgroup Λ, the subset 𝑋 = Ξ
and 𝑊 ⊂ Ξ2. Set 𝑆′ := 𝑆−1. We have Ξ ⊂ Λ4𝑆′ and Λ𝑆′ ⊂ Ξ4. In addition, the multiplication map
Λ× 𝑆′ → Λ𝑆′ is a bijective measurable map. Hence, by the Lusin–Souslin theorem [Kec95, Thm. 15.1]
(note that the hypotheses are verified since G and 𝐺 ×𝐺 are second countable locally compact groups,
hence Polish), if 𝐵 ⊂ Λ is any Borel subset, then 𝐵𝑆′ is Borel. For all Borel subsets 𝐵 ⊂ Λ, define
therefore 𝑚′(𝐵) := 𝑚(𝐵𝑆′). We have that 𝑚′ is a locally left-invariant finitely additive measure with
𝑚′(Λ) < ∞. And we claim that 0 < 𝑚′(Λ). There is indeed a finite subset F of G such that Ξ ⊂ 𝐹Λ𝑆′.
By left-invariance of m, we find that 𝑚′(Λ) ≥ 1

|𝐹 |
𝑚(Ξ) > 0. We conclude by invoking Lemma 5.2. �

Proof of Proposition 5.13. We have that Λ is contained in𝑊𝐻 with W a symmetric compact neighbour-
hood of the identity. But𝑊𝐻 is amenable by Proposition 5.14. SoΛ is amenable by Proposition 5.15. �
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Corollary 5.17. Let G be an amenable second countable locally compact group. If Λ ⊂ 𝐺 is a closed
approximate subgroup, then Λ is amenable.

Proof. Corollary 5.17 is a consequence of Proposition 5.13 applied to G, and 𝐻 = 𝐺. �

Corollary 5.18. If Λ is an approximate subgroup of a countable discrete amenable group G, then Λ is
amenable.

Proof. The group G equipped with the discrete topology is an amenable second countable locally com-
pact group. Moreover, Λ is obviously a closed approximate subgroup in this topology. So Corollary 5.18
is a consequence of Corollary 5.17. �

5.5. Structure of approximate subgroups in amenable groups

The Meyer-type theorem (Theorem 1.5) is the most immediate consequence of the above results:

Proof of Theorem 1.5. Since Λ is uniformly discrete and G is Hausdorff, Λ is closed. Also, as Λ is
uniformly discrete, it is amenable by Corollary 5.17, and so the approximate subgroup Λ4 = Λ4 has
a good model, f say, by Proposition 5.7. Thus, the approximate subgroup Λ4 is contained in and
commensurable to a model set by Proposition 1.2. (In fact, the proof of Proposition 1.2 reveals that
Λ4 ker( 𝑓 ) ⊂ Λ8 is a model set). �

Another key consequence is the fact that approximate lattices are uniform, when considered in the
right ambient group:

Proposition 5.19. Let Λ be an approximate lattice in an amenable locally compact second countable
group G.

1. there is 𝐿 ⊂ 𝐺 a closed subgroup such that Λ is covered by finitely many cosets of L, and Λ2 ∩ 𝐿 is
a uniform approximate lattice in L;

2. if G is an S-adic Lie group (i.e., locally a finite product of real and p-adic Lie groups; see, for
example, [BQ14]), then Λ is a uniform approximate lattice.

Proof. We know that Λ is amenable (Proposition 5.15). Let Λ′ and 𝑓 : 〈Λ′〉 → 𝐻 be given by
Proposition 5.6. Since Λ′ is uniformly discrete and G is second countable, Λ′ is countable. Write
𝑝 : 𝐻 → 𝐻/𝑅 the projection to the quotient of H by the radical. We know that 𝑝 ◦ 𝑓 (Λ′) contains a
neighbourhood of the identity. Since 𝐻/𝑅 is connected and Λ′ is countable, 𝐻/𝑅 must be trivial. So
H is soluble. Hence, 𝐺 × 𝐻 is amenable (for soluble groups are amenable and products of amenable
groups are amenable). By Proposition 3.18, the graph Γ 𝑓 of f is a lattice in 𝐺 ×𝐻. According to [BQ14,
Prop. 3.7], Γ 𝑓 is a uniform lattice in Γ 𝑓 (𝐺0 × 𝐻), where 𝐺0 denotes the connected component of the
identity in G. But Γ 𝑓 (𝐺0 × 𝐻) = 〈Λ′〉𝐺0 × 𝐻. Write 𝐿 := 〈Λ′〉𝐺0; then L satisfies the conclusions of
(1) by [BH18, Prop. 2.13].

Let us prove (2). There are Λ′ commensurable to Λ and 𝑓 : 〈Λ′〉 → 𝐻 a good model of Λ′ with dense
image and target a connected Lie group without nontrivial normal compact subgroups by Corollary 5.17,
Proposition 5.7 and Proposition 3.9.(2). As in the first paragraph, we also have that H is soluble. So the
graph Γ 𝑓 ⊂ 𝐺×𝐻 of f is a lattice by Proposition 3.18, and there is a symmetric compact neighbourhood
of the identity 𝑊0 ⊂ 𝐻 such that Λ′ ⊂ 𝑃0 (𝐺, 𝐻, Γ 𝑓 ,𝑊0) ⊂ Λ′2. Since 𝐺 × 𝐻 is amenable, we know
by [BQ14, Prop. 5.1] that Γ 𝑓 is a uniform lattice in 𝐺 × 𝐻 ′. So Λ′ – hence, Λ – is uniform by [BH18,
Prop. 2.13]. �

We are also able to prove finite generation of discrete approximate subgroups of soluble Lie groups
– extending a classical result concerning discrete subgroups (see [Rag72, Prop. 3.8]):

Proposition 5.20. Let R be a connected soluble Lie group. If Λ ⊂ 𝑅 is a uniformly discrete approximate
subgroup, then 〈Λ〉 is finitely generated.
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Proof. According to Corollary 5.17 and Proposition 5.7, the approximate subgroup Λ4 has a good
model. According to Lemma 3.4, there is an approximate subgroup Λ′ ⊂ Λ4 that has a good model
𝑓 : 〈Λ′〉 → 𝐻 with dense image and target a connected Lie group. Since 〈Λ′〉 is soluble, we obtain that
H is soluble. Now, the graph of f, denoted by Γ 𝑓 , is a discrete subgroup of the connected soluble Lie
group 𝑅 × 𝐻 (Lemma 3.17), and therefore, Γ 𝑓 is finitely generated by [Rag72, Prop. 3.8]. Let 𝐹1 ⊂ Λ′

be a finite set of generators of 〈Λ′〉 and 𝐹2 ⊂ 〈Λ〉 be a finite subset such that Λ ⊂ 𝐹2Λ′. Then 𝐹1 ∪ 𝐹2
is a finite set that generates 〈Λ〉. �

6. Generalisation of theorems of Mostow and Auslander

6.1. Strong approximate lattices

In this section, we will also consider objects related to approximate lattices called ‘strong approximate
lattices’. They are defined as follows.

Let G be a locally compact second countable group, and let C (𝐺) be the set of closed subsets of G.
The Chabauty-Fell topology on C (𝐺) is defined by the subbase of open subsets

𝑈𝑉 = {𝐹 ∈ C (𝐺) |𝐹 ∩𝑉 ≠ ∅} and 𝑈𝐾 = {𝐹 ∈ C (𝐺) |𝐹 ∩ 𝐾 = ∅}

for all 𝑉 ⊂ 𝐺 open and 𝐾 ⊂ 𝐺 compact. One can check that the map

𝐺 × C (𝐺) → C (𝐺)

(𝑔, 𝐹) ↦→ 𝑔𝐹

defines a continuous action of the group G on C (𝐺) and that C (𝐺) is a compact second countable set
(see [Fel62]). Convergence in the Chabauty-Fell topology can also be characterised in the following
way: a sequence (𝐹𝑖)𝑖≥0 converges to 𝐹 ∈ C (𝐺) if and only if (1) for every 𝑥 ∈ 𝐹, there are 𝑥𝑖 ∈ 𝐹𝑖 for
all 𝑖 ∈ N such that 𝑥𝑖 → 𝑥 as 𝑖 → ∞; (2) If 𝑥𝑖 ∈ 𝐹𝑖 for all 𝑖 ∈ N, then every accumulation point of (𝑥𝑖)𝑖≥0
lies in F (see [BHS19, §2.2]). Given a closed subset F of G, we define the invariant hull Ω𝐹 of F as the
closure of the G-orbit of F (i.e., 𝐺 · 𝐹) equipped with the induced continuous G-action. Note that if H
is a closed subgroup, then Ω𝐻 is isomorphic as a compact G-space to the one-point compactification of
𝐺/𝐻 ([BHS19, Lemm. 6]).

Definition 6.1 [BH18]. Let Λ be an approximate subgroup of a locally compact second countable group
G. We say that Λ is a strong approximate lattice if

1. Λ is uniformly discrete – that is, Λ2 ∩𝑉 = {𝑒} for some neighbourhood of the identity V;
2. there is a G-invariant Borel probability measure 𝜈 on ΩΛ with 𝜈({∅}) = 0 (we say that 𝜈 is proper).

In particular, a subgroup is a lattice if and only if it is a strong approximate lattice.
We proved in [Mac22a, §2.2.8] that all strong or uniform approximate lattices are approximate

lattices, but it is not known whether the converse holds or not. Nonetheless, when the ambient group is
amenable, the notions of strong approximate lattices and approximate lattices are equivalent ([Mac22a,
Lem. 2.2.32]).

Finally, it was shown in [BHP18, Cor. 3.5] that model sets built with windows satisfying mild
regularity assumptions are strong approximate lattices.

6.2. Intersections of approximate lattices and closed subgroups

We will show a general theorem about intersections of approximate lattices and closed subgroups.
Proposition 6.3 is close in spirit to a classical fact about lattices (see, for instance, [Rag72, Thm. 1.13]).
See also [BH22] for other results around this topic in the framework of strong (and) uniform approximate
lattices.
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We start with a related property concerning measures on the hull:

Proposition 6.2. Let G be a second countable locally compact group, 𝑋0 ⊂ 𝐺 be a uniformly discrete
and 𝐻 ⊂ 𝐺 be a closed normal subgroup. Write 𝑝 : 𝐺 → 𝐺/𝐻 be the natural projection, and suppose
that Ω𝑋0 admits a proper G-invariant Borel probability measure 𝜈0. If 𝑝(𝑋0) is uniformly discrete, then
there is 𝑋 ∈ Ω𝑋0 such that Ω𝑋∩𝐻 admits a proper H-invariant Borel probability measure.

Proof. Let P (𝑋0, 𝐻) denote the set of H-invariant Borel probability measures. Since 𝜈0 ∈ P (𝑋0, 𝐻)

and is proper, take 𝜈1 that appears in the ergodic decomposition ([EW11, Thm. 8.20]) of 𝜈0. Then
𝜈1 ∈ P (𝑋0, 𝐻) is ergodic and 𝜈1({∅}) = 0. Then 𝜈1 is a Borel probability measure on the compact
metrizable space 𝑋0, so 𝜈1(𝑋0 \ 𝐾) = 0, where K denotes the support of 𝜈1. The compact subset K is
H-invariant, and for any open subset 𝑈 ⊂ Ω𝑋0 , we have 𝜈1 (𝑈 ∩ 𝐾) = 0 if and only if 𝑈 ∩ 𝐾 = ∅. Thus,
according to, for example, [Zim84, Prop. 2.1.7], there is 𝑋1 ∈ 𝐾 such that 𝐾 = 𝐻 · 𝑋1. Furthermore,
𝑋1 ≠ ∅ since 𝐻 · ∅ = {∅} and 𝜈1 ({∅}) = 0. Choose now 𝑥1 ∈ 𝑋1. Then 𝑒 ∈ 𝑥−1

1 𝑋1 ⊂ 𝑋−1
0 𝑋0 by [BH18,

Lem. 4.6]. Moreover, the subgroup H is normal so the pull-back 𝜈2 :=
(
𝑥−1

1
)
∗
𝜈1 is an H-invariant ergodic

Borel probability measure with 𝜈2({∅}) = 0 and support 𝑥−1
1 𝐾 = 𝐻 · 𝑋2, where 𝑋2 = 𝑥−1

1 𝑋1. Define the
map

𝜋 : 𝐻 · 𝑋2 −→ C (𝐻)

𝑋 ↦−→ 𝑋 ∩ 𝐻.

We see that 𝜋 is H-equivariant. We claim moreover that 𝜋 is continuous. Since 𝑝(𝑋0) is uniformly
discrete, there is an open subset 𝑈 ⊂ 𝐺 such that 𝑋−1

0 𝑋0𝐻 ∩𝑈 = 𝐻. Note that for all 𝑋 ∈ 𝐻 · 𝑋2, we
have 𝑋 ⊂ 𝑋−1

2 𝑋2 = 𝑋−1
1 𝑋1 ⊂ 𝑋−1

0 𝑋0 by [BH18, Lem. 4.6]. So 𝑝(𝑋) ⊂ 𝑝(𝑋−1
0 𝑋0) for all 𝑋 ∈ 𝐻 · 𝑋2.

So for any open subset 𝑉 ∈ 𝐻, we have

𝜋−1(𝑈𝑉 ) = 𝜋−1 ({𝑌 ∈ C (𝐻) |𝑌 ∩𝑉 ≠ ∅})

= {𝑋 ∈ 𝐻 · 𝑋2 |𝑋 ∩ (𝑈 ∩𝑊) ≠ ∅}

= 𝑈𝑈∩𝑊 ∩ 𝐻 · 𝑋2,

where𝑊 ⊂ 𝐺 is any open subset such that 𝐻∩𝑊 = 𝑉 . Likewise for any compact subset 𝐿 ⊂ 𝐻, we have

𝜋−1 (𝑈𝐿) = 𝜋−1 ({𝑌 ∈ C (𝐻) |𝑌 ∩ 𝐿 = ∅})

= {𝑋 ∈ 𝐻 · 𝑋2 |𝑋 ∩ 𝐿 = ∅}

= 𝑈𝐿 ∩ 𝐻 · 𝑋2,

where we consider 𝐿 ⊂ 𝐻 ⊂ 𝐺. So 𝜋 is indeed a continuous map. Thus, 𝜋(𝐻 · 𝑋2) is a compact
subset of C (𝐻), and 𝜋(𝑋2) = 𝑋2 ∩ 𝐻 has dense orbit in 𝜋(𝐻 · 𝑋2). So 𝜋(𝐻 · 𝑋2) = Ω𝑋2∩𝐻 . Set
𝜈3 := 𝜋∗

(
(𝜈2)|𝐻 ·𝑋2

)
, where (𝜈2)|𝐻 ·𝑋2

is the restriction of the measure 𝜈2 to its support 𝐻 · 𝑋2, which
is a well-defined H-invariant ergodic Borel probability measure since Ω𝑋0 is metric compact. Then 𝜈3
is a H-invariant ergodic Borel probability measure on Ω𝑋2∩𝐻 . Suppose now that 𝜈3({∅}) > 0; then
𝜈3 ({∅}) = 1 by ergodicity. Thus, 𝜋−1 ({∅}) is an H-invariant compact co-null subset of 𝐻 · 𝑋2, which
means 𝜋−1 ({∅}) = 𝐻 · 𝑋2 because 𝐻 · 𝑋2 is the support of 𝜈2. Therefore, 𝜋(𝑋2) = ∅: a contradiction.
Hence, 𝜈3({∅}) = 0, so 𝜈3 is a proper H-invariant Borel probability measure on Ω𝑋2∩𝐻 . So 𝑋 := 𝑋2
works. �

Proposition 6.3. Let Λ be a uniformly discrete approximate subgroup of a locally compact group G.
Assume that H is a closed subgroup of G such that 𝑝(Λ) is locally finite where 𝑝 : 𝐺 → 𝐺/𝐻 is the
natural map. We have
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1. if Λ is a uniform approximate lattice, then Λ2 ∩ 𝐻 is a uniform approximate lattice in H;
2. if Λ is a strong approximate lattice, G is second countable and H is normal and amenable, then

Λ2 ∩ 𝐻 is a strong approximate lattice in H;
3. if Λ is an approximate lattice, G is second countable and H is normal, then Λ2 ∩𝐻 is an approximate

lattice in H.

Proof. We will first prove (1). We know that Λ2 ∩ 𝐻 is an approximate subgroup according to Lemma
2.3. Moreover, since Λ is uniformly discrete, so is Λ2 ∩𝐻. We must prove that Λ2 ∩𝐻 is co-compact in
H. Let 𝐾 ⊂ 𝐺 be a compact subset such that 𝐾Λ = 𝐺. Since 𝑝(Λ) is locally finite, there is 𝐹 ⊂ Λ finite
such that 𝐾−1𝐻 ∩ Λ ⊂ 𝐹𝐻. Take any ℎ ∈ 𝐻; then there are 𝜆 ∈ Λ and 𝑘 ∈ 𝐾 such that 𝑘𝜆 = ℎ, which
implies 𝜆 ∈ 𝐾−1𝐻 ∩ Λ, and we can find 𝑓 ∈ 𝐹 such that 𝑓 −1𝜆 ∈ 𝐻 ∩ Λ2. Therefore, ℎ ∈ 𝐾𝐹

(
𝐻 ∩ Λ2) .

Let us move on to the proof of (2). Again, note that Λ2∩𝐻 is uniformly discrete and is an approximate
subgroup according to Lemma 2.3. By Proposition 6.2, there is 𝑃 ⊂ Λ2 such that Ω𝑃∩𝐻 admits a
proper H-invariant Borel probability measure. If H is amenable, there is by [Ros81, Thm. 1.10] an
admissible probability measure 𝜇 on H such that any 𝜇-stationary Borel probability measure on ΩΛ2∩𝐻

is H-invariant (see [BH18, Rem. 4.14] for the necessary definitions). Any H-invariant measure is 𝜇-
stationary, so Ω𝑃∩𝐻 admits a proper 𝜇-stationary Borel probability measure. Since Λ2 ∩ 𝐻 ⊃ 𝑃 ∩ 𝐻,
we know according to [BHS19, Lem. 31 and Cor. 10] that ΩΛ2∩𝐻 admits a proper 𝜇-stationary Borel
probability measure. Hence, ΩΛ2∩𝐻 admits a proper H-invariant Borel probability measure, meaning
that the approximate subgroup Λ2 ∩ 𝐻 ⊃ 𝑃 ∩ 𝐻 is a strong approximate lattice in H.

Let us show (3). We will rely on an equivalent definition of approximate lattices established in
[Hru22, App. A] and the quotient formula for the Haar measure. Since 𝑝(Λ) is locally finite and is an
approximate subgroup, it is uniformly discrete. Therefore, we may choose 𝐹𝐺/𝐻 a measurable subset
of positive Haar measure (possibly infinite) such that the multiplication map 𝑝(Λ) × 𝐹𝐺/𝐻 → 𝐺/𝐻 is
one-to-one. Take a measurable section of 𝐹𝐺/𝐻 in G – that is, a Borel subset �̃�𝐺/𝐻 ⊂ 𝐺 such that the
projection from �̃�𝐺/𝐻 ⊂ 𝐺 to 𝐹𝐺/𝐻 is bijective (such a subset exists by [Keh84, Thm., p156]). Let now
𝐹𝐻 ⊂ 𝐻 be any Borel subset of positive measure such that the multiplication (Λ2 ∩ 𝐻) × 𝐹𝐻 → 𝐻 is
one-to-one. We first notice that the multiplication map Λ × 𝐹𝐻 �̃�𝐺/𝐻 → 𝐺 is one-to-one. Indeed, take
𝜆1, 𝜆2 ∈ Λ, 𝑓1, 𝑓2 ∈ �̃�𝐺/𝐻 and 𝑓1, 𝑓2 ∈ 𝐹𝐻 such that 𝜆1 𝑓1 𝑓1 = 𝜆2 𝑓2 𝑓2. Projecting to 𝐺/𝐻, we see that
𝑓1 = 𝑓2 and 𝑝(𝜆1) = 𝑝(𝜆2). So 𝜆−1

2 𝜆1 𝑓1 = 𝑓2. But 𝜆−1
2 𝜆1 ∈ Λ2 ∩ 𝐻, so 𝑓1 = 𝑓2 and 𝜆1 = 𝜆2. By the

Lusin–Souslin theorem [Kec95, Thm. 15.1], 𝐹𝐻 �̃�𝐺/𝐻 is measurable. And by [Hru22, Prop. A.2], we
see that 𝐹𝐻 �̃�𝐺/𝐻 has finite Haar measure. According to the quotient formula [Bou04, Ch. VIII, §2.7,
Prop. 10], there are left-Haar measures 𝜇𝐻 and 𝜇𝐺/𝐻 on H and 𝐺/𝐻, respectively, such that∫

𝐺
𝑓 (𝑔)𝑑𝜇𝐺 (𝑔) =

∫
𝐺/𝐻

∫
𝐻
𝑓 (ℎ𝑞(𝑔))Δ (𝑞(𝑔))𝑑𝜇𝐻 (ℎ)𝑑𝜇𝐺/𝐻 (𝑔),

where 𝑞 : 𝐺/𝐻 → 𝐺 denotes a Borel section and Δ : 𝐺 → R>0 is the unique scalar such that Δ (𝑔)𝜇𝐻
is the push-forward measure of 𝜇𝐻 under conjugation by 𝑔 ∈ 𝐺. By uniqueness of Haar measures
up to scalars, Δ is a well-defined group homomorphism, and testing the equality of measures against
continuous functions shows that Δ is continuous. Since 𝐹𝐻 �̃�𝐺/𝐻 has finite Haar measure, we deduce
from the quotient formula that 𝐹𝐻 has finite measure. So by [Hru22, Prop. A.2], again Λ2 ∩ 𝐻 is an
approximate lattice in H.

To fully exploit the quotient formula, we show now that Δ (𝑔) = 1 for all 𝑔 ∈ 𝐺 (mimicking the proof
of unimodularity from [BH18]). Let 𝑈 ⊂ 𝐻 be a symmetric neighbourhood of the identity such that
𝑈2 ∩ Λ6 = {𝑒}. For all 𝜆 ∈ Λ, we have 𝜆−1𝑈2𝜆 ∩ (Λ2 ∩ 𝐻)2 = {𝑒}. By [Hru22, Prop. A.2],

Δ (𝜆)𝜇𝐻 (𝑈) ≤ 𝜇𝐻 (𝜆−1𝑈𝜆) ≤ 𝐶,

where C is a real number independent of 𝜆. Hence, Δ (Λ) ⊂ R>0 is bounded away from +∞ (and 0 by
symmetry). But Λ2 has property (S) (see Definition 6.7 and Proposition 6.8). So one sees that Δ (𝐺)

is bounded (i.e., Δ (𝐺) = {1}). By the quotient formula once more, both 𝐹𝐻 and 𝐹𝐺/𝐻 have finite
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Haar measure in H and 𝐺/𝐻, respectively. So by [Hru22, Prop. A.2] again, both Λ2 ∩ 𝐻 and 𝑝(Λ) are
approximate lattices. �

Remark 6.4. We use Proposition 6.3 in the companion paper [Mac23] to define and study a notion
of irreducibility for approximate lattices. In the language of [Mac23], part (2) reduces to showing that
Λ2 ∩ 𝐻 is a ★-approximate lattice, a notion close to the one of strong approximate lattice.

We prove next a converse of sorts of Proposition 6.3:

Lemma 6.5. Let Λ be a uniformly discrete approximate subgroup of a locally compact group G. Assume
that H is a closed subgroup of G such that Λ2 ∩ 𝐻 is a uniform approximate lattice in H. Then 𝑝(Λ) is
a locally finite subset of 𝐺/𝐻 where 𝑝 : 𝐺 → 𝐺/𝐻 is the natural map.

Proof. Let 𝐾 ⊂ 𝐺/𝐻 be a compact subset. Then there is a compact subset 𝐿 ⊂ 𝐺 such that 𝑝(𝐿) = 𝐾 .
SinceΛ2∩𝐻 is relatively dense in H, there is a compact subset 𝐿 ′ ⊂ 𝐺 such that 𝐿𝐻 ⊂ 𝐿 ′

(
Λ2 ∩ 𝐻

)
. Take

𝜆 ∈ Λ ∩ 𝐿𝐻. Since 𝜆 ∈
(
𝐿 ′
(
Λ2 ∩ 𝐻

) )
, we have 𝜆 ∈

( (
𝐿 ′ ∩ Λ3) (Λ2 ∩ 𝐻

) )
. So 𝑝(Λ) ∩ 𝐾 ⊂ 𝑝(𝐿 ′ ∩Λ3),

which is indeed finite. �

As a first application, we investigate the intersections of uniform approximate lattices with
centralisers:

Corollary 6.6. Let Λ be a uniform approximate lattice in a locally compact group G. Then for all
𝛾 ∈ 〈Λ〉, the approximate subgroup Λ2 ∩𝐶 (𝛾) is a uniform approximate lattice in 𝐶 (𝛾) the centraliser
of 𝛾. Moreover, if G is a Lie group and 〈Λ〉 is dense in G, then Λ2 ∩ 𝑍 (𝐺) is a uniform approximate
lattice in 𝑍 (𝐺) the centre of G.

Proof. Let 𝑛 ≥ 0 be an integer such that 𝛾 ∈ Λ𝑛, and consider the map

𝜑 : 𝐺 −→ 𝐺

𝑔 ↦−→ 𝑔𝛾𝑔−1.

Then 𝜑 factors as 𝜑 = 𝜓◦𝑝, where𝜓 : 𝐺/𝐶 (𝛾) → 𝐺 is a continuous injective map and 𝑝 : 𝐺 → 𝐺/𝐶 (𝛾)
is the natural map. But 𝜑(Λ) ⊂ Λ𝑛+2 and so is locally finite. Hence, 𝑝(Λ) is locally finite as well. By
part (1) of Proposition 6.3, we deduce that Λ2 ∩ 𝐶 (𝛾) is a uniform approximate lattice in 𝐶 (𝛾).

Now if G is a Lie group and 〈Λ〉 is dense in G, then 𝑍 (𝐺) =
⋂
𝛾∈〈Λ〉 𝐶 (𝛾). But 𝑍 (𝐺) is a Lie

group and so are the 𝐶 (𝛾)’s. Thus, there are 𝛾1, . . . , 𝛾𝑟 ∈ 〈Λ〉 such that dim(𝑍 (𝐺)) = dim(
⋂
𝑖 𝐶 (𝛾𝑖)).

Consider now the map

𝜑 : 𝐺 −→ 𝐺𝑟

𝑔 ↦−→ (𝑔𝛾1𝑔
−1, . . . , 𝑔𝛾𝑟𝑔

−1).

As above, 𝜑 factors as 𝜑 = 𝜓 ◦ 𝑝 with 𝜓 : 𝐺/(
⋂
𝑖 𝐶 (𝛾𝑖)) → 𝐺𝑟 an injective and continuous map and

𝑝 : 𝐺 → 𝐺/(
⋂
𝑖 𝐶 (𝛾𝑖)) the natural map. But 𝜑(Λ) ⊂

∏
1≤𝑖≤𝑟 Λ

𝑛+2, where n is a positive integer such
that {𝛾1, . . . , 𝛾𝑟 } ⊂ Λ𝑛. Thus, 𝜑(Λ) is locally finite and so is 𝑝(Λ). By part (1) of Proposition 6.3, we
deduce that Λ2 ∩

⋂
𝑖 𝐶 (𝛾𝑖) is a uniform approximate lattice in

⋂
𝑖 𝐶 (𝛾𝑖). But 𝑍 (𝐺) is an open subgroup

of
⋂
𝑖 𝐶 (𝛾𝑖), so 𝑝′(Λ2∩

⋂
𝑖 𝐶 (𝛾𝑖)) is obviously locally finite where 𝑝′ :

⋂
𝑖 𝐶 (𝛾𝑖) → (

⋂
𝑖 𝐶 (𝛾𝑖))/𝑍 (𝐺)

is the natural map. By part (1) of Proposition 6.3, once again we have that(
Λ2 ∩

⋂
𝑖

𝐶 (𝛾𝑖)

)2

∩ 𝑍 (𝐺) ⊂ Λ4 ∩ 𝑍 (𝐺)

is a uniform approximate lattice in 𝑍 (𝐺). By Lemma 2.3, we find thatΛ2∩𝑍 (𝐺) is a uniform approximate
lattice in 𝑍 (𝐺). �
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6.3. Borel density for approximate lattices

The Borel density theorem asserts that lattices in simple algebraic groups are Zariski-dense. The usual
route to show Borel density-type theorems for groups with finite co-volume is to start by proving that
the subgroup considered has property (S) (see, for example, [Bor60]).

Definition 6.7 (Definition 1.1, [Bor60]). Let G be a locally compact group. A closed subset 𝑋 ⊂ 𝐺 has
property (S) if for all neighbourhoods 𝑊 ⊂ 𝐺 of the identity and all 𝑔 ∈ 𝐺, there is 𝑛 ∈ N such that
𝑔𝑛 ∈ 𝑊𝑋𝑊 .

Approximate lattices have property (S). Hence, they exhibit similar density properties.

Proposition 6.8. Let G be a locally compact second countable group. We have

1. if Λ is an approximate lattice in G, then Λ2 has property (𝑆) ([Hru22, A.11]) ;
2. if X is a closed subset and Ω𝑋 has a proper G-invariant Borel probability measure, then 𝑋−1𝑋 has

property (𝑆).

While the (2) will not be needed, it serves as an illustration of the method to prove both (1) and (2).

Proof. Let us prove (2). By assumption, there is a proper G-invariant Borel probability measure 𝜈 on
Ω𝑋 . If W is any symmetric neighbourhood of the identity, then the open subset𝑈𝑊 satisfies 𝜈

(
𝑈𝑊

)
> 0.

Indeed, 𝑈𝑊 is open and

Ω𝑋 \ {∅} =
⋃
𝑔∈𝐺

𝑈𝑔𝑊 =
⋃
𝑔∈𝐺

𝑔𝑈𝑊 .

Since G is second countable, we can find 𝐷 ⊂ 𝐺 countable such that

Ω𝑋 \ {∅} =
⋃
𝑑∈𝐷

𝑑𝑈𝑊 .

But 𝜈(Ω𝑋 \ {∅}) = 1, so there is 𝑑 ∈ 𝐷 such that 0 < 𝜈(𝑑𝑈𝑊 ) = 𝜈(𝑈𝑊 ). Therefore, for any 𝑔 ∈ 𝐺,
there is an integer 1 ≤ 𝑛 <

(
𝜈
(
𝑈𝑊

) )−1 such that 𝜈(𝑈𝑊 ∩𝑔𝑛𝑈𝑊 ) > 0. So we can find 𝑃 ∈ 𝑈𝑊 ∩𝑔𝑛𝑈𝑊 .
Thus, 𝑃 ∩𝑊 ≠ ∅ and 𝑃 ∩ 𝑔𝑛𝑊 ≠ ∅. That implies that 𝑃−1𝑃 ∩𝑊𝑔𝑛𝑊 ≠ ∅. But 𝑃−1𝑃 ⊂ 𝑋−1𝑋 ([BH18,
Lem. 4.6]), so 𝑔𝑛 ∈ 𝑊𝑋−1𝑋𝑊 . �

Remark 6.9. Borel density for approximate lattices was first investigated in [BHS19]. Their method
was completely different, however. The proof of Proposition 6.8 has the advantage of yielding a short
proof that can be directly applied to cases not covered by [BHS19] – for instance, approximate lattices
in S-adic Lie groups.

6.4. Proof of Theorem 1.7

We will make use of the Tits alternative over local fields (see [Tit72]). For lack of an exact reference,
we include a proof relying on [Tit72]:

Lemma 6.10. Let k be a local field. Let Γ be a subgroup inG(𝑘) the k-points of a simple algebraic group
G defined over k (i.e., G admits no nontrivial connected normal subgroup defined over k). Suppose that
all finitely generated subgroups of Γ are virtually soluble; then Γ is not Zariski-dense.

Proof. When k has characteristic 0, the Tits’ alternative [Tit72, Thm. 1] implies that Γ is virtually
soluble. So it cannot be Zariski-dense. Suppose that k has positive characteristic. Suppose that Γ is
Zariski-dense. If Γ contains a finite subset X that generates an infinite subgroup, then choose one such
that the Zariski-closure 𝐻𝑋 of 〈𝑋〉 has maximal dimension. By maximality, one finds that the Zariski-
connected component of the identity of 𝐻𝑋 is normalised by Γ. Therefore, 𝐻𝑋 = G(𝑘). But 〈𝑋〉 is
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virtually soluble: a contradiction. So every finite subset generates a finite subgroup. Notice now that the
prime field of k is a finite subfield. So any element algebraic over the prime field of k is contained in a
finite subfield of k and, thus, is a root of unity. By the structure of the unit group of local fields [Neu99,
Prop. 5.7(ii)], we find that there are only finitely many elements that are algebraic over the prime field
of k (i.e., the intersection 𝑘𝑎 of k with the algebraic closure of its prime field is a finite subfield).
Apply now [Tit72, Thm. 4] to Γ ⊂ G(𝑘). Since every finite subset of Γ generates a finite subgroup, the
subgroup G1 is the trivial subgroup ([Tit72, Thm. 4. (i)]). By [Tit72, Thm. 4.(iv)] now, Γ is isomorphic
to a subgroup of G𝑎 (𝑘𝑎), where G𝑎 is an algebraic semi-simple group defined over the finite field 𝑘𝑎.
Hence, Γ is finite. So Γ is not Zariski-dense. �

Proof of Theorem 1.7. Let W be a relatively compact neighbourhood of the identity in G. Define the
uniformly discrete subset Λ𝐴 := Λ2 ∩ 𝑊−1𝑊𝐴. The subset Λ𝐴 is an approximate subgroup that is
commensurated by 〈Λ〉. Indeed, first notice that both Λ2 and 𝑊−1𝑊𝐴 are commensurated by 〈Λ〉, and
then apply Lemma 2.2. We know in addition that Λ𝐴 is an amenable discrete approximate subgroup
(Proposition 5.15). Let 𝑝𝑆 : 𝐺 → 𝑆 be the natural projection to any simple factor S of 𝐺/𝐴. Now
Lemma 5.4 provides an approximate subgroup Λ′

𝐴 commensurable with Λ𝐴 such that every finite subset
of 𝑝𝑆 (Λ′

𝐴) generates a virtually soluble subgroup. Since G is second countable and Λ𝐴 uniformly
discrete, Λ𝐴 is countable. Moreover, S is the group of k-points of a simple algebraic group defined over a
local field, so we can apply Lemma 5.4. By Lemma 6.10, the group generated by 𝑝𝑆 (Λ′

𝐴) is not Zariski-
dense. In particular, the Zariski-closed Zariski-connected subgroup H provided by [BHS19, Thm. 17]
applied to 𝑝𝑆 (Λ′

𝐴) is a proper subgroup of S. Indeed, recall that [BHS19, Thm. 17] implies that there is
𝑔 ∈ 𝑆 normalising H and 𝐹 ⊂ 𝑆 finite such that

𝑔𝐻 ⊂ 𝑝𝑆 (Λ′
𝐴)
𝑍
⊂ 𝐹𝐻,

where 𝑝𝑆 (Λ′
𝐴)
𝑍

denotes the Zariski-closure of 𝑝𝑆 (Λ′
𝐴). Notice now that the commensurator of 𝑝𝑆 (Λ′

𝐴)

contains 𝑝𝑆 (〈Λ〉) and so is Zariski-dense. If 𝑠 ∈ 𝑆 is any element commensurating 𝑝𝑆 (Λ′
𝐴), then there

is 𝐹 ′ ⊂ 𝑆 finite such that 𝑠𝑝𝑆 (Λ′
𝐴)𝑠

−1 ⊂ 𝐹 ′𝑝𝑆 (Λ′
𝐴) ⊂ 𝐹 ′𝐹𝐻. Hence, 𝑠𝑔𝑠−1(𝑠𝐻𝑠−1) ⊂ 𝐹 ′𝐹𝐻, which

implies that 𝑠𝐻𝑠−1 ⊂ 𝐻 since H is Zariski-connected. So H is normalised by the commensurator of
𝑝𝑆 (Λ′

𝐴) – which is Zariski-dense – and is a proper subgroup of S. Since S is almost simple, H must be
finite. We conclude that 𝑝𝑆 (Λ′

𝐴) – hence, 𝑝𝑆 (Λ𝐴) – is finite. As a conclusion, the projection of Λ𝐴 to
𝐺/𝐴 must be finite (i.e., the projection of Λ to 𝐺/𝐴 is uniformly discrete). �

Theorem 1.7 now implies a crucial decomposition theorem for approximate lattices answering a
question raised in [Hru22, Question 7.11]:

Corollary 6.11 (Auslander–Mostow-type theorem for approximate lattices). Let Λ be an approximate
lattice in a locally compact second countable group G. Let A be an amenable closed normal subgroup,
and suppose that 𝐺/𝐴 is a finite direct product of simple algebraic groups over local fields as a
topological group. Suppose also that the projections of 〈Λ〉 to all compact simple factors of 𝐺/𝐴 are
Zariski-dense. Then

1. Λ2 ∩ 𝐴 is an approximate lattice in A;
2. the projection of Λ to 𝐺/𝐴 is an approximate lattice in 𝐺/𝐴.

Note that the assumption on compact factors is not part of [Hru22, Question 7.11]. Without this
additional assumption, however, [Hru22, Question 7.11] admits a negative answer as can already be
seen from [Gen15, §3]. This assumption is moreover easy to impose, as it is in particular satisfied when
〈Λ〉 projects to a Zariski-dense subgroup of 𝐺/𝐴.

Proof. We have that 〈Λ〉 has property (S) (Proposition 6.8). By the Borel density theorem [Wan71, Cor.
1.4] (and [Mar91, Ch. I, Prop. 2.3.6], see more generally [Mar91, Ch. I, §2] for relevant backkground),
we have that the projection of 〈Λ〉 to any non-compact simple factor is Zariski-dense. By our assumption,
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the projection of 〈Λ〉 to any compact simple factor is also Zariski-dense. So we can invoke Theorem 1.7
and conclude that the projection of Λ to 𝐺/𝐴 is uniformly discrete, and hence locally finite. By
Proposition 6.3, we obtain the desired result. �

Corollary 6.11 enables us to decompose many approximate lattices into a semi-simple part and an
amenable part. In light of Theorem 1.5 and [Hru22, Mac23], both parts are known to be Meyer subsets.
This invites us to wonder the following:

Question 2. With the notations of Corollary 6.11. Let 𝑝 : 𝐺 → 𝐺/𝐴 denote the natural projection. We
know that both 𝑝(Λ) and Λ2 ∩ 𝐴 are contained in model sets. Is Λ contained in a model set?

In [Hru22] is provided an example of an approximate lattice in a central extension of SL2(R) ×
SL2 (Q𝑝) by Q𝑝 with no good model, showing that the answer to Question 2 can be negative in some
instances. A general answer to Question 2 should therefore take the (Lie, algebraic, connected, etc.)
structure of the ambient group G into account. See [Hru22, Question 7.12] for a related question and
discussions around this topic.

Acknowledgements. I am indebted to my PhD supervisor, Emmanuel Breuillard, for his encouragements and advice. I am deeply
grateful to Tobias Hartnick and Ehud Hrushovski for many enlightening discussions. I would also like to thank Anand Pillay and
Krzysztof Krupiński for pointing out the model-theoretic origin of Theorem 3.6. It is my pleasure to thank the anonymous referee
whose many valuable comments have helped improve substantially the quality of this work.

Competing interests. The authors have no competing interest to declare.

Funding statement. This work was supported by the UK Engineering and Physical Sciences Research Council (EPSRC) grant
EP/L016516/1 for the University of Cambridge Centre for Doctoral Training, the Cambridge Centre for Analysis. This material
is based upon work supported by the National Science Foundation under Grant No. DMS- 1926686.

References

[AJTZ21] J. An, Y. Jing, C.-M. Tran and R. Zhang, ‘On the small measure expansion phenomenon in connected noncompact
nonabelian groups’, Preprint, 2021, arXiv:2111.05236.

[Aus63] L. Auslander, ‘On radicals of discrete subgroups of Lie groups’, Am. J. Math. 85(2) (1963), 145–150.
[BG13] M. Baake and U. Grimm, Aperiodic Order. Volume 1. A Mathematical Invitation (Encycl. Math. Appl.) vol. 149

(Cambridge University Press, Cambridge, 2013).
[BGT11] E. Breuillard, B. Green and T. Tao, ‘A note on approximate subgroups of gl_n (c) and uniformly nonamenable groups’,

Preprint, 2011, arXiv:1101.2552.
[BGT12] E. Breuillard, B. Green and T. Tao, ‘The structure of approximate groups’, Publ. Math. Inst. Hautes Études Sci. 116(1)

(2012), 115–221. MR 3090256
[BH18] M. Björklund and T. Hartnick, ‘Approximate lattices’, Duke Math. J. 167(15) (2018), 2903–2964.
[BH22] M. Björklund and T. Hartnick, ‘Spectral theory of approximate lattices in nilpotent Lie groups’, Math. Ann. 384(3–4)

(2022), 1675–1745.
[BHP18] M. Björklund, T. Hartnick and F. Pogorzelski, ‘Aperiodic order and spherical diffraction, I: auto-correlation of regular

model sets’, Proc. Lond. Math. Soc. (3) 116(4) (2018), 957–996. MR 3789837
[BHP22] M. Björklund, T. Hartnick and F. Pogorzelski, ‘Aperiodic order and spherical diffraction. II: Translation bounded

measures on homogeneous spaces’, Math. Z. 300(2) (2022), 1157–1201.
[BHS19] M. Björklund, T. Hartnick and T. Stulemeijer, ‘Borel density for approximate lattices’, Forum Math. Sigma 7 (2019),

27. Id/No e40.
[Bor60] A. Borel, ‘Density properties for certain subgroups of semi-simple groups without compact components’, Ann. Math.

72(1) (1960), 179–188.
[Bou89a] N. Bourbaki, Elements of Mathematics. General Topology, second edn. (Springer-Verlag, Berlin, 1989), Chapters 1–4.

Transl. from the French.
[Bou89b] N. Bourbaki, Elements of Mathematics. General Topology, second edn. (Springer-Verlag, Berlin, 1989), Chapters 1–4.

Transl. from the French.
[Bou89c] N. Bourbaki, Elements of Mathematics. Lie Groups and Lie Algebras, second edn. (Springer-Verlag, Berlin, 1989),

Chapters 1–3. Transl. from the French.
[Bou04] N. Bourbaki, Elements of Mathematics Integration II (Springer, Berlin, 2004), Chapters 7–9. Transl. from the 1963

and 1969 French originals by Sterling K. Berberian,
[BQ14] Y. Benoist and J.-F. Quint, ‘Lattices in S-adic Lie groups’, J. Lie Theory 24(1) (2014), 179–197.

https://doi.org/10.1017/fms.2024.67 Published online by Cambridge University Press

https://arxiv.org/abs/2111.05236
https://arxiv.org/abs/1101.2552
https://doi.org/10.1017/fms.2024.67


40 S. Machado

[Bre08] E. Breuillard, ‘A strong tits alternative’, Preprint, 2008, arXiv:0804.1395.
[Bro81] R. Brooks, ‘Some remarks on bounded cohomology’, in Riemann Surfaces and Related Topics: Proceedings of the

1978 Stony Brook Conference vol. 97 (1981), pp. 53–63.
[Car15] P. K. Carolino, ‘The structure of locally compact approximate groups’, ProQuest LLC, Ann Arbor, MI, 2015, PhD

Thesis, University of California, Los Angeles. MR 3438951
[CM09] P.-E. Caprace and N. Monod, ‘Isometry groups of non-positively curved spaces: discrete subgroups’, J. Topol. 2(4)

(2009), 701–746. MR 2574741
[CS10] E. Croot and O. Sisask, ‘A probabilistic technique for finding almost-periods of convolutions’, Geom. Funct. Anal.

20(6) (2010), 1367–1396. MR 2738997
[Eng89] R. Engelking, General Topology (Sigma Ser. Pure Math.) vol. 6, rev. and compl. edn. ed. (Heldermann Verlag, Berlin,

1989).
[EW11] M. Einsiedler and T. Ward, Ergodic Theory. With a View Towards Number Theory (Grad. Texts Math.) vol. 259

(Springer, London, 2011).
[Fan23] A. R. Fanlo, ‘On piecewise hyperdefinable groups’, J. Math. Log. 23(3) (2023), 68. Id/No 2250027.
[Fel62] J. M. G. Fell, ‘A Hausdorff topology for the closed subsets of a locally compact non-Hausdorff space’, Proc. Amer.

Math. Soc. 13 (1962), 472–476. MR 139135
[Fis19] A. Fish, ‘Extensions of Schreiber’s theorem on discrete approximate subgroups inR𝑑’, J. Éc. Polytech. Math. 6 (2019),

149–162. MR 3915195
[FM43] H. Federer and A. P. Morse, ‘Some properties of measurable functions’, Bull. Amer. Math. Soc. 49(4) (1943), 270–277.

MR 7916
[Gen15] A. Geng, ‘When are radicals of Lie groups lattice-hereditary?’, New York J. Math. 21 (2015), 321–331.
[GM71] S. Grosser and M. Moskowitz, ‘Compactness conditions in topological groups’, J. Reine Angew. Math. 246 (1971),

1–40.
[Gol10] I. Goldbring, ‘Hilbert’s fifth problem for local groups’, Ann. of Math. (2) 172(2) (2010), 1269–1314. MR 2680491
[Gre69] F. P. Greenleaf, Invariant Means on Topological Groups and Their Applications (Van Nostrand Mathematical Studies)

no. 16, (Van Nostrand Reinhold Co., New York-Toronto, Ont.-London, 1969). MR 0251549
[HKP22] E. Hrushovski, K. Krupiński and A. Pillay, ‘Amenability, connected components, and definable actions’, Selecta. Math.

28(1) (2022), 56. Id/No 16.
[Hru12] E. Hrushovski, ‘Stable group theory and approximate subgroups’, J. Amer. Math. Soc. 25(1) (2012), 189–243. MR

2833482
[Hru22] E. Hrushovski, ‘Beyond the lascar group’, Preprint, 2022, arXiv:2011.12009v3.
[JTZ23] Y. Jing, C.-M. Tran and R. Zhang, ‘A nonabelian Brunn-Minkowski inequality’, Geom. Funct. Anal. 33(4) (2023),

1048–1100.
[Kec95] A. S. Kechris, Classical Descriptive Set Theory (Grad. Texts Math.) vol. 156 (Springer-Verlag, Berlin, 1995).
[Keh84] E. T. Kehlet, ‘Cross sections for quotient maps of locally compact groups’, Math. Scand. 55 (1984), 152–160.
[Kot04] D. Kotschick, ‘What is . . . a quasi-morphism?’, Notices Am. Math. Soc. 51(2) (2004), 208–209.
[Kru17] K. Krupiński, ‘Definable topological dynamics’, J. Symb. Log. 82(3) (2017), 1080–1105.
[Mac20] S. Machado, ‘Approximate lattices and Meyer sets in nilpotent Lie groups’, Discrete Anal. 2020 (2020), 18.

Id/No 1.
[Mac22a] S. Machado, ‘Discrete approximate subgroups of lie groups’, PhD thesis, University of Cambridge, 2022.
[Mac22b] S. Machado, ‘Infinite approximate subgroups of soluble Lie groups’, Math. Ann. 382(1–2) (2022), 285–301. MR

4377305
[Mac23] S. Machado, ‘Approximate lattices in higher-rank semi-simple groups’, Geom. Funct. Anal. 33(4) (2023), 1101–1140.
[Mar91] G. A. Margulis, Discrete Subgroups of Semisimple Lie Groups (Ergebnisse der Mathematik und ihrer Grenzgebiete

(3) [Results in Mathematics and Related Areas (3)]) vol. 17 (Springer-Verlag, Berlin, 1991). MR 1090825
[Mey72] Y. Meyer, Algebraic Numbers and Harmonic Analysis (North-Holland Math. Libr.) vol. 2 (Elsevier (North-Holland),

Amsterdam, 1972).
[Mos71] G. D. Mostow, ‘Arithmetic subgroups of groups with radical’, Ann. of Math. (2) 93(3) (1971), 409–438. MR 0289713
[MW15] J.-C. Massicot and F. O. Wagner, ‘Approximate subgroups’, J. Éc. Polytech. Math. 2 (2015), 55–64. MR 3345797
[Neu99] J. Neukirch, Algebraic Number Theory (Grundlehren Math. Wiss.) vol. 322 (Springer, Berlin, 1999). Transl. from the

German by Norbert Schappacher.
[Rag72] M. S. Raghunathan, Discrete Subgroups of Lie Groups (Ergeb. Math. Grenzgeb.) vol. 68 (Springer-Verlag, Berlin,

1972).
[Ros81] J. Rosenblatt, ‘Ergodic and mixing random walks on locally compact groups’, Math. Ann. 257 (1981), 31–42.
[San12] T. Sanders, ‘Approximate groups and doubling metrics’, Math. Proc. Cambridge Philos. Soc. 152(3) (2012), 385–404.

MR 2911137
[Sch73] J.-P. Schreiber, ‘Approximations diophantiennes et problèmes additifs dans les groupes abéliens localement compacts’,

Bull. Soc. Math. Fr. 101 (1973), 297–332 (French).
[SW13] Y. Shalom and G. A. Willis, ‘Commensurated subgroups of arithmetic groups, totally disconnected groups and adelic

rigidity’, Geom. Funct. Anal. 23(5) (2013), 1631–1683.
[Tao08] T. Tao, ‘Product set estimates for non-commutative groups’, Combinatorica 28(5) (2008), 547–594. MR 2501249

https://doi.org/10.1017/fms.2024.67 Published online by Cambridge University Press

https://arxiv.org/abs/0804.1395
https://arxiv.org/abs/2011.12009v3
https://doi.org/10.1017/fms.2024.67


Forum of Mathematics, Sigma 41

[Tao14] T. Tao, Hilbert’s Fifth Problem and Related Topics (Graduate Studies in Mathematics) vol. 153 (American Mathemat-
ical Society, Providence, RI, 2014). MR 3237440

[Tit72] J. Tits, ‘Free subgroups in linear groups’, J. Algebra 20(2) (1972), 250–270.
[Toi20] M. C. H. Tointon, Introduction to Approximate Groups (Lond. Math. Soc. Stud. Texts) vol. 94 (Cambridge University

Press, Cambridge, 2020).
[Tza03] K. Tzanev, ‘Hecke 𝐶∗-algebras and amenability’, J. Operator Theory 50(1) (2003), 169–178. MR 2015025
[Var84] V. S. Varadarajan, Lie Groups, Lie Algebras, and Their Representations (Grad. Texts Math.) vol. 102, (Springer, New

York, 1984). Reprint of the 1974 edition edition.
[Wan71] S. P. Wang, ‘On density properties of s-subgroups of locally compact groups’, Ann. Math. 94(2) (1971), 325–329.
[Yam53] H. Yamabe, ‘A generalization of a theorem of Gleason’, Ann. Math. 58(2) (1953), 351–365.
[Zim84] R. J. Zimmer, Ergodic Theory and Semisimple Groups (Monogr. Math.) vol. 81 (Birkhäuser, Cham, 1984).

https://doi.org/10.1017/fms.2024.67 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.67

	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Preliminaries on approximate subgroups and commensurability
	2.3 Approximate lattices and cut-and-project schemes

	3 Good models: definition, first properties and examples
	3.1 About the definition of good models
	3.2 Group-theoretic characterisation of good models
	3.3 Universal properties and compatibility with limits
	3.4 An approximate subgroup without a good model
	3.5 Good models and cut-and-project schemes

	4 A closed-approximate-subgroup theorem
	4.1 Globalisation in Hausdorff topological groups
	4.2 Closed approximate subgroups of Euclidean spaces
	4.3 Structure of compact approximate subgroups
	4.4 Bohr-type compactification

	5 Amenable approximate subgroups
	5.1 Amenable approximate subgroups: definition
	5.2 Amenable approximate subgroups of linear groups
	5.3 Structure of amenable approximate subgroups
	5.4 Approximate Subgroups in Amenable Groups
	5.5 Structure of approximate subgroups in amenable groups

	6 Generalisation of theorems of Mostow and Auslander
	6.1 Strong approximate lattices
	6.2 Intersections of approximate lattices and closed subgroups
	6.3 Borel density for approximate lattices
	6.4 Proof of Theorem 1.7

	References

