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Generating Ideals in Rings
of Integer-Valued Polynomials

David E. Rush

Abstract. Let R be a one-dimensional locally analytically irreducible Noetherian domain with finite residue
fields. In this note it is shown that if | is a finitely generated ideal of the ring Int(R) of integer-valued poly-
nomials such that for each x € R the ideal 1(x) = {f(x) | f € 1} isstrongly n-generated, n > 2, then I is
n-generated, and some variations of this result.

Let R be an integral domain with quotient field K and let Int(R) be the ring of integer-
valued polynomials on R. Thus Int(R) = {f € K[X] | f(R) € R}. The ring Int(R)
has been much studied since it was considered in the 1919 articles of Ostrowski [10] and
Polya [11] for the case that R is the ring of integers in an algebraic number field. For exam-
ple see [2] and the references listed there. In [6] Gilmer and Smith answered a question of
Brizolis [1] by showing that in the case that R is the ring Z of rational integers, each finitely
generated ideal of Int(R) is generated by two elements. Since Int(Z) is a Prifer domain
[2, Theorem V1.1.7], the finitely generated ideals of Int(R) are invertible. Results showing
that each invertible ideal of Int(R) is two-generated for larger classes of one-dimensional
domains R were given in [3], [9], [12], [4], [13] and [2, Theorem VII1.4.3]. In this note
we give some results on numbers of generators of possibly non-invertible finitely generated
ideals of Int(R). In particular, if for example R is local with multiplicity e(R) it follows
e(R) + 1 is a uniform bound on the number of elements required to generate any finitely
generated ideal | of the two-dimensional non-Noetherian ring Int(R). We say that an ideal
I of aring A is n-generated if it can be generated by n elements, and strongly n-generated if
each nonzero element of | is a member of an n-element generating set for I. The ring A is
said to have the n-generator property (strong n-generator property) if each finitely generated
ideal of R is n-generated (strongly n-generated). It is shown that if R is a one-dimensional
Noetherian locally analytically irreducible integral domain with finite residue fields, and if
I is a finitely generated ideal of Int(R) such that for some integer n > 2, 1(x) is strongly
n-generated for each x € R, then | is n-generated. If in addition R is a semilocal, then 1(x)
is (n — 1)-generated for each x € R if and only if | is strongly n-generated. We give some of
our results for the ring of integer-valued polynomials in several variables.

1 Preliminary Results

Let R be a Noetherian integral domain with quotient field K. If d is a positive integer
we let INt(R@) = {f € K[Xy,...,Xq] | fR®) C R}. (We write S© for cartesian
product to distinguish it from a product of ideals.) We write X for (Xy,...,Xq) and a
for (a;,...,ds) € R@. Anideal I of Int(R®) is said to be unitary if | "R # {0}. Let
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I(@) = {f(a) | f € 1}. Following [2] we say that Int(R@) has the almost strong Skolem
property if for finitely generated unitary ideals | and J of Int(R®), 1(a) = J(a) for each
a e R@ = | = J. Recall that a local ring (R, m) is said to be analytically irreducible if its
m-adic completion (R, ) is an integral domain, and a Noetherian domain R is said to be
locally analytically irreducible if Ry, is analytically irreducible for each maximal ideal m of
R. The relevance of this property lies in the following theorem:

Theorem 1.1 ([2, Proposition X1.3.8]) If R be a one-dimensional locally analytically irre-
ducible domain with finite residue fields, then Int(R@) has the almost strong Skolem property.

The following result will be needed later.

Lemma 1.2 ([8, Proposition 4.2]) If R is a zero-dimensional ring and M is a finitely gen-
erated R-module such that My, is n-generated for each maximal ideal m of R, then M is n-
generated.

We also need the following simple lemmas which help to clarify the strong n-generator
hypothesis which is often imposed on the ideals I (x) in what follows. For this we note that
only the ideal {0} is 0-generated.

Lemma 1.3 Let | be afinitely generated ideal of the integral domain A, and letn € Z,n > 1.

(1) If 1 is strongly n-generated and S is a multiplicative subset of A, then 1As is a strongly
n-generated ideal of Ag.

(2) If A has nonzero Jacobson radical, then | is strongly n-generated if and only if I is (n — 1)-
generated.

Proof Statement (1) is clear. For (2) let J be the Jacobson radical of R. For the only if
part of (2) first assume n > 1. If I # {0} is strongly n-generated let {a;,...,a,} be a
generating set for | with a; € JI — {0}. Then | = (a,...,an)A by Nakayama’s Lemma.
The case n = 1 is similar. The converse implication in (2) is clear. [ ]

Lemma 1.4 Let I be a finitely generated ideal of the one-dimensional Noetherian integral
domain Aand letn € Z, n > 1. Consider the following properties of I.

(1) lis(n — 1)-generated.
(2) 1isstrongly n-generated.
(3) 1An is (n — 1)-generated for each maximal ideal m of A.

Then (1) = (2) & (3),and if n > 3, (1), (2) and (3) are equivalent.

Proof That (1) = (2) is clear, and (2) = (3) follows from Lemma 1.3.

The implication (3) = (2) isclear if n = 1. Thus letn > 2 and let | # {0} be such that
I is an (n — 1)-generated ideal of Ay, for each maximal ideal m of A. Leta; € | — {0}.
Then I/a;A is an ideal of A/a;A which is locally (n — 1)-generated. But since A/a;A is
zero-dimensional, 1 /a;A is (n — 1)-generated by Lemma 1.2. Thus a; is a member of an
n-element generating set for I.

That (3) = (1) if n > 3 follows from a Theorem of Forster and Swan. For example see
[7, p. 108, Corollary 2.14]. ]
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The proof of the following lemma is the same as that given in the proof of [2, Proposi-
tion X1.3.10]. See [2, Proposition V11.1.11] for the one variable case.

Lemmal.5 LetR beaone-dimensional Noetherian domain and I a finitely generated unitary
ideal of Int(R™). Then there is a nonzero ideal J of R such that if a,b € R® and a; — b; € J
fori € {1,...,d} thenI(a) = I(b).

2 The n-Generator Property in Int(R)

The following result includes the result [2, Proposition X1.3.10] which gives the case that R
is Dedekind (and then n = 2).

Theorem 2.1 Let R be a one-dimensional locally analytically irreducible domain with finite
residue fields, and let | be a finitely generated unitary ideal of Int(R®). If for some integer
n > 2, 1(x) is strongly n-generated for each x € R, then I can be generated by n elements.
Moreover, one of the generators may be chosentobeany r € I NR — {0}.

Proof Let r € I N R — {0}. It follows from [2, Proposition X1.2.9] that the ring
Int(R@)/r(Int(R)) is zero-dimensional. Thus by Lemma 1.2 it suffices to show that
the ideal 1/r(Int(R®)) is locally (n — 1)-generated. In particular since Int(R@)s =
Int((Rs)@) for each multiplicative subset S of R [2, Corollary X1.1.8], we may assume
R s local. Then by Lemma 1.3, 1(x) is (n — 1)-generated for each x € R.

By Lemma 1.5 there is a nonzero ideal J of R such that if a,b € R@, and a; — b; € J
for each i then I(a) = I(b). Since I is finitely generated, we may choose hy, ..., hg € I such
that for each x € R, hy(x), ..., he(x) are generators of I(x). We may assume k > n — 1.
Let Ag, ..., A be the subsets of {hy,...,h¢} having cardinality n — 1. If x € R@, then
since R is local and 1(x) is n-generated, we have I(x) = Ai(X)R = (Ai ), r)R for some
ie{l,... e}

LetW; = {y € R® | I(y)R = (Ai(y),r)R}. We may choose ¢ € N such that m® C J
and such that if x; — a; € m°® for each i then h;(x) — hj(a) € rRforeach j € {1,... e}.
Then if x € a+ (1)@ we have 1(x) = 1(a) and (A;(a),r)R = (Ai(x),r)R. It follows that
Wi is an open and closed subset of R®@ for each i.

LetU; =Wjandfori € {2,...,e} letU; = W; — (U U --- UU;j_1). The subsets U;
are open and closed in R. Let X be the characteristic function of the set U; for each j. Let
t > 0 be such that mt C rR. Since Int(R®) is dense in C(R®, R) [2, Proposition XI.2.4],
there exist g; € Int(R@) such that

gj() —xjx) emt for xeR® and j=1,...e

Let Ai = {his,...,hin_1}, and let fj = hyjg; + - -+ + hejge. Then for each x € R@ and
j=1,...,n—1, wehave

f00 =D hii0 (i) — xi(] + Y hij )i (%).
i=1 i-1
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For x € U this gives fj(x) — hsj(x) € m' C rR. If x € Us we have I(x) = (r,A{(x))R. Since
f;(x) — hsj(x) € IR, thisis (r, fi(x), ..., fi_1(X))R. Now since (r, ;.. ., f,_1) Int(R) and
I are unitary, (r, fy, ..., f,_1) INt(R) = | by Theorem 1.1. ]

In the case of integer-valued polynomials in one variable, a standard argument (given in
the next proof) shows that it is not necessary to restrict to unitary ideals as was done in the
previous Theorem.

Theorem 2.2 Let R be a one-dimensional locally analytically irreducible domain with finite
residue fields, and let | be a finitely generated ideal of Int(R). If I(x) is strongly n-generated for
each x € R, n > 2, then | is n-generated. Moreover, one of the generators may be chosen to be
any g € | such that gK[X] = IK[X].

Proof If I is not unitary, choose a finite subset A of | such that | = A(Int(R)). Ifgelis
such that IK[X] = gK[X], then A = gA; for some finite subset A; of K[X], and A;K[X] =
K[X]. Leta € R — {0} be such that aA; C R[X]. Then aA;(Int(R)) = I, is unitary,
gly = al and I1(x) is strongly n-generated since 1(x) is. Further, if I is n-generated, | is
also. Thus it suffices to consider the case that | is unitary, and g € 1 N R. The result now
follows from Theorem 2.1. ]

Corollary 2.3 Let R be a one-dimensional locally analytically irreducible Noetherian domain
with finite residue fields. If R has the strong n-generator property, n > 2, then Int(R) has the
n-generator property.

Recall that a one-dimensional local Noetherian domain (R, m) has the n-generator prop-
erty for n = e(R), the multiplicity of R [14, Theorem 3.1.1]. Thus we have the following:

Corollary 2.4 Let R be a one-dimensional locally analytically irreducible Noetherian domain
with finite residue fields, and I C Int(R®) a finitely generated ideal such that e(Ry) < n for
each maximal ideal m of R containing | N R. If either I is unitary or d = 1, then | can be
generated by n + 1 elements.

We end this section by noting that Theorem 2.2 gives, via a result of Gilmer [5], an
alternate proof of the following well-known result. See [2, Chapter V1] for an exposition of
when Int(R) is Prifer.

Theorem 2.5 If R is a Dedekind domain with finite residue fields, then Int(R) is Priifer.

Proof Since R is Dedekind, each ideal of R is strongly 2-generated, and thus by Theo-
rem 2.2 each finitely generated ideal of Int(R) is 2-generated. But by [5, Corollary 3], if
for some integer n each finitely generated ideal of an integral domain D is n-generated, the
integral closure D’ of D is Priifer. But Int(R) is easily seen to be integrally closed since R is
[2, Proposition VI]. Thus Int(R) is Priifer. ]

3 The Strong n-Generator Property in Int(R)

We now consider what can be said when the hypothesis of the strong n-generator property
on the ideals 1(x) is weakened to the n-generator property. Since the n-generator property
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trivially implies the strong (n + 1)-generator property, then for R as in Theorem 2.2, if |
is a finitely generated ideal of Int(R) such that 1(x) is n-generated for each x € R, then by
Theorem 2.2 | is (n + 1)-generated. The following result shows that in the case that R is
semilocal, Int(R) has the strong (n + 1)-generator property. Further, there is a converse.

Theorem 3.1 Let R be a semilocal one-dimensional domain which is locally analytically irre-
ducible and has finite residue fields, and let | be a finitely generated ideal of Int(R). Then I is
strongly (n + 1)-generated if and only if 1(x) is n-generated for each x € R.

Proof (=) Letx € R. Foranya € I(x) — {0} let f; € I be sucha = f;(x). Since |
is strongly (n + 1)-generated there exist f,, ..., foe1 € 1 such that | = (fy, fa, ..., fhs1).
Then I(x) = (a, f2(X), ..., fr1(X))R. Thus I(x) is strongly (n + 1)-generated. Since R is
semilocal, it follows from part (2) of Lemma 1.3 that 1(X) is n-generated.

(<) Asinthe proof of Theorem 2.2 we may assume | isunitary. Letg € 1—{0}. To show
that g is one of n+1 generatorsletb € J(INR)—{0} where J is the Jacobson radical of R. By
Theorem 2.2 there exist fy,..., fy € I'suchthatl = (b, f;,..., f,) Int(R). Foreachd € R
the polynomials h; = f; +bd also have the property that I = (b, hy, ..., hy) Int(R). Since R
is not a field, R is infinite, and thus we may choose d so that (g, hy, . .., hn)K[X] = K[X].
(In fact if f; #£ 0 we can choose d so that (g, h;)K[X] = K[X].)

To show | = (g,hy,...,hy) Int(R) let ug + Z?:lvihi = 1, u,v; € K[X]. Then for
some ¢ € R we have cu,cv; € R[X], and then (cu)g + ELl(CVi)hi =cel Thenl =
(b,hy, ..., hy) Int(R) C (c,b,hy,...,hy)) Int(R) C (g,b,hy,...,hy) Int(R) C I. Thus | =
(9,b,hy, ..., hy) Int(R). But for each x € R, 1(x) = (9(x), b, hy(X), ..., ha(X))R C JI(x) +
(9(x), h1(x), ..., hn(X))R. Thus we have 1(x) = (g(x), h1(x), ..., ha(x))R by Nakayama’s
Lemma. Since R is locally analytically irreducible, Int(R) has the almost strong Skolem
property by Theorem 1.1. Thus since | and (g, hy,...,hy) Int(R) are unitary, | =
(9, hyg,...,hy) Int(R). ]

Corollary 3.2 ([2, Proposition VI11.3.9]) Let R be a one-dimensional local domain which
is analytically irreducible and has finite residue fields, and let | be a finitely generated unitary
ideal of Int(R). Then I is invertible if and only if I(x) is principal for each x € R.

Proof If 1(x) is principal for each x € R, then I is strongly 2-generated by Theorem 3.1,
and thus locally principal by Lemma 1.3. The converse is clear. ]

We now have the following counterpart to Corollaries 2.3 and 2.4.

Corollary 3.3 Let R be a one-dimensional locally analytically irreducible semilocal Noethe-
rian domain with finite residue fields and let n > 2. The following are equivalent:

(1) e(Rm) < n — 1for each maximal ideal m of R;
(2) R hasthe (n — 1)-generator property;
(3) Int(R) has the strong n-generator property.

If instead of the strong n-generator hypothesis on the ideals I (x) we have an n-generator
hypothesis on the localization 1y, for each maximal ideal M of Int(R), as occurs when |
is invertible, it is easier to bound the generators of 1. To illustrate we conclude with a
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generalization of [2, Theorem VII1.4.3] which is the case n = 1 of the following result.
Although the proof is essentially the same, we include it for the convenience of the reader.

Theorem 3.4 Let R be a one-dimensional Noetherian domain and I a finitely generated ideal
of Int(R) such that the ideal I, of Int(R)y is n-generated for each maximal ideal M of Int(R).
Then | is generated by n + 1-elements, one of which can be chosen to be any element g € I such
that gK[X] = IK[X].

Proof We can reduce to the case where | is unitary and g € | N R as in the proof of
Theorem 2.2. Then Int(R)/g(Int(R)) is zero-dimensional by [2, Theorem V.2.2], and
the ideal 1/(g) of Int(R)/g(Int(R)) is locally n-generated. Since Int(R)/g(Int(R)) is zero-
dimensional, 1/(g) is n-generated by Lemma 1.2. Thus I is (n + 1)-generated. ]
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