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Characterizations of Besov-Type and
Triebel–Lizorkin–Type Spaces via Averages
on Balls

Ciqiang Zhuo, Winfried Sickel, Dachun Yang, and Wen Yuan

Abstract. Let ℓ ∈ N and α ∈ (0, 2ℓ). In this article, the authors establish equivalent characterizations
of Besov-type spaces, Triebel–Lizorkin-type spaces, and Besov–Morrey spaces via the sequence { f −
Bℓ ,2−k f }k consisting of the diòerence between f and the ball average Bℓ ,2−k f . _ese results lead to
the introduction of Besov-type spaces, Triebel–Lizorkin-type spaces, and Besov–Morrey spaces with
any positive smoothness order on metric measure spaces. As special cases, the authors obtain a new
characterization of Morrey–Sobolev spaces and Qα spaces with α ∈ (0, 1), which are of independent
interest.

1 Introduction

Besov and Triebel–Lizorkin spaces are known to be complicated objects (see [17,28]).
Besov-type and Triebel–Lizorkin-type spaces are counterparts (generalizations) de-
ûned by using Morrey spaces instead of Lebesgue spaces, hence even more compli-
cated (see [31, 32, 36]). _ere exists some need for simple descriptions. Usually one
starts with a deûnition by using tools from Fourier analysis. For a given tempered dis-
tribution f , the basic objects one has to study are convolutions φk ∗ f , where {φk}k
is a smooth dyadic decomposition of unity. In this article, we present a possible way
to replace the sequence {φk ∗ f }k by { f − Bℓ ,2−k f }k , where Bℓ ,2−k f denotes a certain
ball average of f .

Of course, the characterization of classes of functions via ball averages has a certain
history. We continue with a few rather detailed comments.

Recently, based on a new characterization of Sobolev spaces obtained in [2], there
have been some attempts to characterize Sobolev spaces, Besov spaces, and Triebel–
Lizorkin spaces on Rn via ball averages (see, for example, [3, 7–9, 19, 34, 35]). _ese
new characterizations only depend on the metric of Rn and the Lebesgue measure,
andhence provide somepossibleways to introduce the corresponding function spaces
with positive smoothness s ∈ (0,∞) on metric measure spaces.
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In particular, recall that in [35], Yang et al. proved that the Triebel–Lizorkin space
Ḟαp,q(Rn) with α ∈ (0, 2) and p, q ∈ (1,∞] can be characterized via the square func-
tion

Sα ,q( f )(x) ∶= {∑
k∈Z

2kαq
∣ f (x) − B2−k f (x)∣

q
}

1
q
, for all x ∈ Rn ,

where, for all t ∈ (0,∞) and x ∈ Rn ,

Bt f (x) ∶=
1

∣B(x , t)∣ ∫B(x ,t)
f (y) dy.

A similar characterization for Besov spaces Ḃs
p,q(Rn) was also obtained in [35]. Re-

cently, via introducing a higher order average operator, Dai et al. [8] further estab-
lished the corresponding characterization of Besov and Triebel–Lizorkin spaces for
any smoothness order. Moreover, by combining the ideas used in [21] and [7], Yang
and Yuan [34] also characterized Besov and Triebel–Lizorkin spaces with arbitrary
positive smoothness on Rn in terms of some pointwise inequalities involving ball
averages. One common advantage of all these new characterizations of Besov and
Triebel–Lizorkin spaces, established in [8, 34], lies in the fact that they depend only
on themetric ofRn and the Lebesguemeasure, and hencemay be used to deûne these
spaces with higher order smoothness on metric measure spaces.

_e main purpose of this paper is to characterize Besov-type spaces, Triebel–Li-
zorkin-type spaces, and Besov–Morrey spaces via ball averages. Recall that the Besov-
type space Ḃs ,τ

p,q(Rn) and the Triebel–Lizorkin-type space Ḟ s ,τ
p,q(Rn) were introduced

in [31, 32] in order to clarify the relations among Besov spaces, Triebel–Lizorkin
spaces, and Q spaces (see [5, 14]). Inhomogeneous Besov-type spaces Bs ,τ

p,q(Rn), re-
stricted to Banach cases, were considered for the ûrst time in [11–13], and later in-
vestigated in [36] for a full range of parameters. Moreover, the Besov-type and the
Triebel–Lizorkin-type spaces have several applications in partial diòerential equa-
tions (see, for example, [29, 30, 37]). On the other hand, the inhomogeneous Besov–
Morrey spaces, restricted to Banach cases, originate from the study of Navier–Stokes
equations by Kozono and Yamazaki [22]. In 2005, Tang and Xu [27] introduced in-
homogeneous Besov–Morrey and Triebel–Lizorkin–Morrey spaces for the full set of
parameters, and, later on, Sawano and Tanaka [23] introduced their homogeneous
versions in 2007. _ese spaces form a more general scale of function spaces than
the classical Besov and Triebel–Lizorkin spaces, and includeMorrey spaces, Morrey–
Sobolev spaces, and Q spaces as special cases. _e characterizations of these spaces
via ball averages could serve as a starting point to develop the theory of these spaces
for any positive smoothness on metric measure spaces. However, as we believe, these
characterizations are interesting for their own sake.
Before stating the main results of this article, we ûrst recall some basic notation.

Let S(Rn) denote the set of all Schwartz functions on Rn , equipped with the usual
topology, and S′(Rn) its topological dual, namely, the collection of all bounded linear
functionals on S(Rn) equipped with the weak-∗ topology. Let S∞(Rn) be the set
of all Schwartz functions φ satisfying ∫Rn φ(x)xβ dx = 0 for all β ∈ Zn

+
, equipped

with the same topology as S′(Rn), and S′
∞
(Rn) its topological dual equipped with

the weak-∗ topology. For any φ ∈ S(Rn), we use φ̂ to denote its Fourier transform,

https://doi.org/10.4153/CMB-2016-076-7 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2016-076-7


Characterizations via Averages on Balls 657

namely, for all x ∈ Rn , φ̂(ξ) ∶= ∫Rn φ(x)e−ix ⋅ξ dx, and φ∨ to denote its inverse Fourier
transform. Also, we need the notation that, for any φ ∈ S(Rn), j ∈ Z and x ∈ Rn ,
φ j(x) ∶= 2 jnφ(2 jx). For all j ∈ Z and m ∈ Zn , denote by Q jm the dyadic cube
2− j([0, 1)n + m) on Rn and let Q ∶= {Q jm ∶ j ∈ Z, m ∈ Zn}. For any Q ∈ Q, we use
l(Q) to denote its side length.

Let ℓ ∈ N and t ∈ (0,∞). _e 2ℓ-th order average operator Bℓ ,t is deûned by

(1.1) Bℓ ,t f (x) ∶= −
2

(
2ℓ
ℓ )

ℓ

∑
j=1

(−1) j
(

2ℓ
ℓ − j

)B jt f (x), for all x ∈ Rn , f ∈ L1
loc(R

n
),

here and herea�er, for any k, r ∈ N with k ≥ r, (k
r) denotes the binomial coeõcient.

Obviously, B1,t f = Bt f . For any q ∈ (0,∞), denote by Lq
loc(R

n) the set of all q-locally
integrable functions on Rn .

Recall that in [8, _eorem 1.3], Dai et al. established equivalent characterizations
of the Besov space Ḃαp,q(Rn) and the Triebel–Lizorkin space Ḟαp,q(Rn) via the dif-
ferences { f − Bℓ ,2−k f }k∈Z. Notice that the diòerence f − Bℓ ,2−k f , depending only
on the metric of Rn and the Lebesgue measure, can be easily deûned on any metric
measure space. _us, the characterizations of Ḃαp,q(Rn) and Ḟαp,q(Rn) in [8, _eo-
rem 1.3] provide a possible way to introduce Besov and Triebel–Lizorkin spaces with
arbitrary positive smoothness order on metric measure spaces. Moreover, as it is in-
dicated by [8, _eorem 1.3], the diòerences { f − Bℓ ,2−k f }k∈Z play the same role as
the convolutions {φk ∗ f }k∈Z in the deûnitions of Besov and Triebel–Lizorkin spaces.
_erefore, it is natural to ask whether or not the diòerences { f − Bℓ ,2−k f }k∈Z can be
used to characterize more general Besov-type spaces, Triebel–Lizorkin-type spaces
and Besov–Morrey spaces.

Next we recall the deûnitions of homogeneous Besov-type spaces, Triebel–Lizor-
kin-type spaces, Besov–Morrey spaces, and Triebel–Lizorkin–Morrey spaces; see [23,
31, 32].

Deûnition 1.1 Let α ∈ R, τ ∈ [0,∞), q ∈ (0,∞], and φ ∈ S(Rn) satisfy that
(1.2)
supp φ̂ ⊂ {ξ ∈ Rn

∶ 1/2 ≤ ∣ξ∣ ≤ 2} and ∣φ̂(ξ)∣ ≥ constant > 0 if 3/5 ≤ ∣ξ∣ ≤ 5/3.

(i) Let p ∈ (0,∞]. _en the homogeneous Besov-type space Ḃα ,τp,q(Rn) and the
homogeneous Triebel–Lizorkin-type space Ḟα ,τp,q (Rn) (p ∈ (0,∞)) are, respectively, de-
ûned as the collections of all f ∈ S′

∞
(Rn) such that

∥ f ∥Ḃα ,τp,q(Rn
)
∶= sup

Q∈Q

1
∣Q∣τ

{
∞

∑
k=− log2 l(Q)

2kαq
∥φk ∗ f ∥

q

Lp
(Q)

}
1/q

< ∞,

∥ f ∥Ḟα ,τp,q(Rn
)
∶= sup

Q∈Q

1
∣Q∣τ

∥{
∞

∑
k=− log2 l(Q)

2kαq
∣φk ∗ f ∣q}

1/q
∥

Lp
(Q)

< ∞

with the usual modiûcations made when p = ∞ or q = ∞.
(ii) Let 0 < p ≤ u < ∞. _en the Besov–Morrey spaces Ṅα

u ,p,q(Rn) and the
Triebel–Lizorkin–Morrey space Ėαu ,p,q(Rn) are, respectively, deûned to be the set of
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all f ∈ S′
∞
(Rn) such that

∥ f ∥Ṅα
u ,p,q(Rn

)
∶= {∑

k∈Z
sup
Q∈Q

1
∣Q∣q/p−q/u ∥2kαφk ∗ f ∥

q

Lp
(Q)

}
1/q

< ∞,

∥ f ∥Ėαu ,p,q(Rn
)
∶= sup

Q∈Q

1
∣Q∣1/p−1/u ∥{∑

k∈Z
2kαq

∣φk ∗ f ∣q}
1/q

∥
Lp

(Q)

< ∞

with the usual modiûcation made when q = ∞.

Remark 1.2 (i) We point out that the spaces

Ḃs ,τ
p,q(R

n
), Ḟ s ,τ

p,q(R
n
), Ṅα

u ,p,q(R
n
), and Ėαu ,p,q(R

n
)

are independent of the choice of functions φ satisfying (1.2) (see [23, 31, 32]).
(ii) Let φ be as in (1.2). _en it is well known that there exists a functionψ ∈ S(Rn)

satisfying (1.2) such that∑k∈Z φ̂(2k ξ)ψ̂(2k ξ) = 1 for all ξ ∈ Rn ∖ {0}; see [18, (6.9)].
(iii) If τ ∈ [0, 1/p), then the sums∑∞

k=− log2 l(Q)
in Deûnition 1.1(i) can be equiva-

lently replaced by∑k∈Z (see [24, _eorem 1(ii) and Proposition 3.3]).
(iv) Obviously,

Ḃs ,0
p,q(R

n
) = Ḃs

p,q(R
n
) and Ḟ s ,0

p,q(R
n
) = Ḟ s

p,q(R
n
),

where Ḃs
p,q(Rn) and Ḟ s

p,q(Rn) are, respectively, the homogeneous Besov and Triebel–
Lizorkin spaces (see [17, 28, 36]).

_e main results of this article are stated as follows.

_eorem 1.3 Let ℓ ∈ N and α ∈ (0, 2ℓ). Let Bℓ ,2−k for k ∈ Z be as in (1.1) with t
replaced by 2−k .

(i) Let p ∈ (1,∞), τ ∈ [0, 1/p), and q ∈ (0,∞].
If f ∈ Ḃα ,τp,q(Rn), then there exists some g ∈ Lp

loc(R
n) ∩ S′

∞
(Rn) such that g = f in

S′
∞
(Rn) and

(1.3) 9g9Ḃα ,τp,q(Rn
)
≤ C∥ f ∥Ḃα ,τp,q(Rn

)

with C being a positive constant independent of f , where

9g9Ḃα ,τp,q(Rn
)
∶= sup

Q∈Q

1
∣Q∣τ

{∑
k∈Z

2kαq
∥ g − Bℓ ,2−k g∥

q

Lp
(Q)

}
1/q

.

Conversely, if f ∈ L1
loc(R

n) ∩ S′
∞
(Rn) and 9 f9Ḃα ,τp,q(Rn

)
< ∞, then

f ∈ Ḃα ,τp,q(R
n
) and ∥ f ∥Ḃα ,τp,q(Rn

)
≤ C 9 f9Ḃα ,τp,q(Rn

)

with C being a positive constant independent of f .
(ii) Let p ∈ (0,∞), τ ∈ (1/p,∞) and q ∈ (0,∞], or p ∈ (0,∞), τ = 1/p and q = ∞,

or p = ∞, τ ∈ [0,∞) and q ∈ (0,∞].
If f ∈ Ḃα ,τp,q(Rn), then there exists some g ∈ L1

loc(R
n) ∩ S′

∞
(Rn) such that f = g in

S′
∞
(Rn) and9g9Ḃα ,τp,q(Rn

)
≤ C∥ f ∥Ḃα ,τp,q(Rn

)
with C being a positive constant independent

of f , where

9g9Ḃα ,τp,q(Rn
)
∶= sup

k∈Z
sup
y∈Rn

2k[α+n(τ−1/p)]
∣g(y) − Bℓ ,2−k g(y)∣.
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Conversely, if

f ∈ L1
loc(R

n
) ∩ S′

∞
(Rn

) and 9 f9Ḃα ,τp,q(Rn
)
< ∞,

then
f ∈ Ḃα ,τp,q(R

n
) and ∥ f ∥Ḃα ,τp,q(Rn

)
≤ C 9 f9Ḃα ,τp,q(Rn

)

with C being a positive constant independent of f .

Remark 1.4 In _eorem 1.3, we formally gave two diòerent deûnitions of

9 ⋅ 9Ḃα ,τp,q(Rn
)
.

Please notice that in part (i) we have the restriction τ ∈ [0, 1/p), whereas in part (ii)
we have, beside others, the restriction τ ∈ [1/p,∞).

_eorem 1.5 Let ℓ ∈ N and α ∈ (0, 2ℓ).
(i) Let p ∈ (1,∞), τ ∈ [0, 1/p) and q ∈ (1,∞]. If f ∈ Ḟα ,τp,q (Rn), then there exists

g ∈ Lp
loc(R

n) ∩ S′
∞
(Rn) such that g = f in S′

∞
(Rn) and 9g9Ḟα ,τp,q(Rn

)
≤ C∥ f ∥Ḟα ,τp,q(Rn

)

with C being a positive constant independent of f , where

9g9Ḟα ,τp,q(Rn
)
∶= sup

Q∈Q

1
∣Q∣τ

∥{∑
k∈Z

2kαq
∣g − Bℓ ,2−k g∣

q
}

1/q
∥

Lp
(Q)

.

Conversely, if f ∈ L1
loc(R

n) ∩ S′
∞
(Rn) and 9 f9Ḟα ,τp,q(Rn

)
< ∞, then

f ∈ Ḟα ,τp,q (R
n
) and ∥ f ∥Ḟα ,τp,q(Rn

)
≤ C 9 f9Ḟα ,τp,q(Rn

)

with C being a positive constant independent of f .
(ii) Let p ∈ (0,∞), τ ∈ [ 1

p ,∞) and q ∈ (1,∞]. If f ∈ Ḟα ,τp,q (Rn), then there exists
g ∈ L1

loc(R
n) ∩ S′

∞
(Rn) such that f = g in S′

∞
(Rn) and 9g9Ḟα ,τp,q(Rn

)
≤ C∥ f ∥Ḟα ,τp,q(Rn

)

with C being a positive constant independent of f , where, when τ ∈ (1/p,∞) and q ∈

(0,∞], or τ = 1/p and q = ∞,

9g9Ḟα ,τp,q(Rn
)
∶= sup

k∈Z
sup
y∈Rn

2k[α+n(τ−1/p)]
∣g(y) − Bℓ ,2−k g(y)∣

and, when τ = 1/p and q ∈ (0,∞),

9g9Ḟα ,τp,q(Rn
)
∶= sup

Q∈Q
{

1
∣Q∣

∫
Q

∞

∑
k=log2 l(Q)

2k[α+n(τ−1/p)]q
∣g(y) − Bℓ ,2−k g(y)∣

q dy}
1/q

.

Conversely, if f ∈ L1
loc(R

n) ∩ S′
∞
(Rn) and 9 f9Ḟα ,τp,q(Rn

)
< ∞, then f ∈ Ḟα ,τp,q (Rn)

and ∥ f ∥Ḟα ,τp,q(Rn
)
≤ C 9 f9Ḟα ,τp,q(Rn

)
with C being a positive constant independent of f .

Remark 1.6 (i) Since Ḃα ,0p,q(Rn) = Ḃαp,q(Rn) and Ḟα ,0p,q (Rn) = Ḟαp,q(Rn), we
know that _eorems 1.3 and 1.5 when τ = 0 generalize [8, _eorem 1.3].

(ii) Recall that, for any α ∈ (0, 1),

Ḟα ,
1
2−

α
n

2,2 (Rn
) = Qα(Rn

)
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(see [31, Corollary 3.1]), where the space Qα(Rn) is deûned to be the set of all mea-
surable functions f ∈ L2

loc(R
n) such that

∥ f ∥Qα(Rn
) ∶= sup

R
{

1
∣R∣1−2α/n ∫R

∫
R

∣ f (x) − f (y)∣2

∣x − y∣n+2α dx dy}
1/2

< ∞,

with the supremum being taken over all cubes R in Rn (see [5, 6, 14]). By this and
_eorem 1.5(i), we obtain the following equivalent characterization of Qα(Rn) with
α ∈ (0, 1): f ∈ Qα(Rn) if and only if f ∈ L2

loc(R
n) ∩ S′

∞
(Rn) and 9 f9Qα(Rn

) < ∞;
moreover, 9 f9Qα(Rn

) ∼ ∥ f ∥Qα(Rn
), with the implicit equivalent positive constants

independent of f , where

9 f9Qα(Rn
) ∶= sup

R∈Q

1
∣R∣1/2−α/n

{∫
R
∑
k∈Z

22kα
∣ f (x) − B2−k f (x)∣

2 dx}
1/2

.

(iii) Since it was proved in [24,_eorem 1(ii)] that Ėαu ,p,q(Rn) = Ḟ
α , 1

p−
1
u

p,q (Rn)with
equivalent quasi-norms, it follows that _eorem 1.5(i) also gives a new characteriza-
tion of the homogeneous Triebel–Lizorkin–Morrey space Ėαu ,p,q(Rn).

Similarly, we have the following equivalent characterization of the Besov–Morrey
space via the diòerences { f − Bℓ ,2−k f }k∈Z.

_eorem 1.7 Let ℓ ∈ N and α ∈ (0, 2ℓ). Let q ∈ (0,∞] and 1 < p ≤ u < ∞.
If f ∈ Ṅα

u ,p,q(Rn), then there exists g ∈ Lp
loc(R

n) ∩ S′
∞
(Rn) such that g = f in

S′
∞
(Rn) and

(1.4) 9g9Ṅα
u ,p,q(Rn

)
≤ C∥ f ∥Ṅα

u ,p,q(Rn
)

with C being a positive constant independent of f , where

9g9Ṅα
u ,p,q(Rn

)
∶= {∑

k∈Z
2kαq sup

Q∈Q

1
∣Q∣(1/p−1/u)q ∥ g − Bℓ ,2−k g∥

q

Lp
(Q)

}
1/q

.

Conversely, if f ∈ L1
loc(R

n) ∩ S′
∞
(Rn) and 9 f9Ṅα

u ,p,q(Rn
)
< ∞, then

f ∈ Ṅα
u ,p,q(R

n
) and ∥ f ∥Ṅα

u ,p,q(Rn
)
≤ C 9 f9Ṅα

u ,p,q(Rn
)

with C being a positive constant independent of f .

_is article is organized as follows. We prove_eorems 1.3, 1.5, and 1.7 in Section 2
by borrowing some ideas from the proof of [8, _eorem 1.3]. _e main step in the
proofs of _eorems 1.3(i) and 1.5(i) consists in writing f − Bℓ ,2−k f as a sum of con-
volutions by using the representation of f obtained in [36, Proposition 8.2] via the
Calderón reproducing formula. _en the pointwise estimates of the related convolu-
tion kernels established in [8] are used to control the diòerence f −Bℓ ,2−k f by certain
maximal functions. Finally, by establishing a Feòerman–Stein vector-valued inequal-
ity of the Hardy–Littlewoodmaximal operator (see Proposition 2.3 below) onMorrey
spaces and the fact that, when τ ∈ [0, 1/p), the sum ∑

∞

k=− log2 l(Q)
in deûnitions of

Ḃα ,τp,q(Rn) and Ḟα ,τp,q (Rn) can be equivalently replaced by ∑ j∈Z (see Remark 1.2(iii)),
we complete the proofs of _eorems 1.3(i) and 1.5(i). Observing that, when p, q, τ,
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and α being as in _eorem 1.3(ii) or _eorem 1.5(ii), the Besov-type or the Triebel–
Lizorkin-type spaces simply become the Besov or the Triebel–Lizorkin spaces (see
Lemma 2.5). _us, by this and [8, _eorem 1.3], the proofs of _eorems 1.3(ii) and
1.5(ii) become trivial.

In Section 3, we further obtain the inhomogeneous variants of _eorems 1.3 and
1.5 (see _eorems 3.3 and 3.4 below).
As mentioned in Remark 1.6(i), when τ = 0, _eorems 1.3 and 1.5 go back to the

characterizations of Ḃαp,q(Rn) and Ḟαp,q(Rn) via averages on balls for all α ∈ (0,∞)

obtained in [8, _eorem 1.3], which was also proved in [35, _eorem 1.1] when-
ever α ∈ (0, 2). It should be pointed out that, for the higher smoothness order
α ∈ (2N , 2N + 2) with N ∈ N, [35, _eorem 1.2] presents another equivalent char-
acterization of Ḃαp,q(Rn) and Ḟαp,q(Rn) via Taylor expansions, which is diòerent from
_eorems 1.3 and 1.5. We also point out that, diòerently from the Littlewood–Paley
type characterizations in _eorems 1.3 and 1.5, the last two authors in [34] character-
ized Ḃαp,q(Rn) and Ḟαp,q(Rn) with α ∈ (0,∞), p ∈ (1,∞], and q ∈ (0,∞] (q ∈ (1,∞]

for Ḟαp,q(Rn)) via some pointwise inequalities involving ball averages, which are in
spirit more close to the pointwise characterizations of these spaces via Hajłasz gradi-
ent sequences obtained in [21].
Finally, we make some conventions on notation in this article. Let N ∶= {1, 2, . . .}

and Z+ ∶= N ∪ {0}. We denote by C a positive constant that is independent of the
main parameters, but may depend on n, α, τ, p, q, or u and vary from line to line. _e
symbol f ≲ g means f ≤ Cg. If f ≲ g and g ≲ f , then we write f ∼ g. For any s ∈ R,
we use the symbol ⌊s⌋ to denote the maximal integer that is less or equal to s.

2 Proofs of Theorems 1.3, 1.5, and 1.7

In this section, we give the proofs of _eorems 1.3, 1.5, and 1.7. We begin with the
following notation. For all x ∈ Rn , let J(x) ∶= 1

∣B(0,1)∣ χB(0,1)(x) and, for all t ∈ (0,∞),
Jt(x) ∶= t−n J(x/t). _en, for all f ∈ L1

loc(R
n) ∩ S′(Rn), t ∈ (0,∞) and x ∈ Rn ,

(Bℓ ,t f )(x) = −
2

(
2ℓ
ℓ )

ℓ

∑
j=1

(−1) j
(

2ℓ
ℓ − j

)( f ∗ J jt)(x)

and hence, for all ξ ∈ Rn ,

(2.1) (Bℓ ,t f )∧(ξ) = mℓ(tξ) f̂ (ξ),

where, for all x ∈ Rn , mℓ(x) ∶= − 2
(
2ℓ
ℓ )
∑

ℓ
j=1(−1)

j( 2ℓ
ℓ− j)Ĵ( jx).

_e following lemma is just [8, Lemma 2.1].

Lemma 2.1 For all ℓ ∈ N and s ∈ R, let

A l(s) ∶= γn
4ℓ

(
2ℓ
ℓ )
∫

1

0
(1 − u2

)
n−1
2 ( sin

us
2
)

2ℓ
du,

where γn ∶= [∫
1
0 (1 − u2)

n−1
2 du]−1. _en, for all x ∈ Rn , mℓ(x) = 1 − Aℓ(∣x∣). Further-

more, ( ⋅ )−2ℓAℓ( ⋅ ) is a smooth function on R and there exist positive constants c1 and
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c2 such that, for all s ∈ (0, 4], c1 ≤ s−2ℓAℓ(s) ≤ c2 and, for all i ∈ N,

sup
s∈R

∣(
d
ds

)
i
(
Aℓ(s)
s2ℓ

)∣ < ∞.

Recall that theHardy–Littlewood maximal operator M is deûned by setting, for all
f ∈ L1

loc(R
n) and x ∈ Rn ,M( f )(x) ∶= supB∋x

1
∣B∣ ∫B ∣ f (y)∣ dy, where the supremum

is taken over all balls B in Rn containing x. Notice that, for all f ∈ S′(Rn) and m ∈

S(Rn), m ∗ f is a well-deûned smooth function (see [20, _eorem 2.3.20]). _en we
have the following conclusion, which is a slight variant of [8, Lemma 2.2], the details
being omitted.

Lemma 2.2 Let {Tt}t∈(0,∞) be a family of operators given by

Tt f (x) ∶= ([m(t ⋅ )]∨) ∗ f (x), x ∈ Rn , t ∈ (0,∞), f ∈ S′(Rn
) ∩ L1

loc(R
n
),

for some m ∈ S(Rn). _en there exists a positive constant C such that for all f ∈

S′(Rn) ∩ L1
loc(R

n) and all x ∈ Rn ,

sup
t∈(0,∞)

∣Tt f (x)∣ ≤ C[∥∇n+1m∥L1
(Rn

) + ∥m∥L1
(Rn

)]M( f )(x).

We also need the following Feòerman–Stein vector-valued inequality with respect
to the Hardy–Littlewoodmaximal function. _e scalar case can be found in [4] or [1].

Proposition 2.3 Let p ∈ (1,∞) and τ ∈ [0, 1/p).
(i) If q ∈ (1,∞), then there exists a positive constant C such that for all sequences

{ f j} j∈Z of locally integrable functions on Rn ,

sup
Q∈Q

1
∣Q∣τ

∥{∑
j∈Z

[M( f j)]q}
1
q
∥

Lp
(Q)

≤ C sup
Q∈Q

1
∣Q∣τ

∥{∑
j∈Z

∣ f j ∣q}
1
q
∥

Lp
(Q)

.

(ii) If q ∈ (0,∞), then there exists a positive constant C such that for all sequences
{ f j} j∈Z of locally integrable functions on Rn ,

(2.2) sup
Q∈Q

1
∣Q∣τ

[∑
j∈Z

∥M( f j)∥
q
Lp

(Q)
]

1
q
≤ C sup

Q∈Q

1
∣Q∣τ

[∑
j∈Z

∥ f j∥
q
Lp

(Q)
]

1
q
.

We observe that the conclusion of Proposition 2.3(i) is a slight variant of [27,
Lemma 2.5], in which the supremum is taken over all balls, the details of its proof
being omitted. Moreover, the proof of Proposition 2.3(ii) is similar to that of [27,
Lemma 2.5]; for completeness, we give some details.

Proof of Proposition 2.3(ii) For any given cube Q ∈ Q and j ∈ Z, let f 0j ∶= f j χ2Q
and, for each i ∈ N, f (i)j ∶= f j χ(2i+1Q)/(2iQ). _en for all x ∈ Rn ,

f j(x) =
∞

∑
i=0
f (i)j (x).
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When q ∈ (1,∞), by the Fatou Lemma and the Minkowski inequality, we have

[∑
j∈Z

∥M( f j)∥
q
Lp

(Q)
]

1
q
≤

∞

∑
i=0

{∑
j∈Z

∥M( f (i)j )∥
q
Lp

(Q)
}

1
q
=∶

∞

∑
i=0

H(i ,Q).(2.3)

For i = 0, notice that there exist 4n dyadic cubes {Rη}4n

η=1 of Rn such that l(Rη) =
l(Q) and 2Q ⊂ ⋃

4n

η=1 Rη . By this and the boundedness ofM on Lp(Rn) for p ∈ (1,∞)

(see [15] or [26]), we know that

H(0,Q) ≲ {∑
j∈Z

∥ f j∥
q
Lp

(2Q)
}

1
q
≲

4n

∑
η=1

{∑
j∈Z

∥ f j∥
q
Lp

(Rη)
}

1
q

(2.4)

≲ ∣Q∣
τ sup

Q̃∈Q

1
∣Q̃∣τ

[∑
j∈Z

∥ f j∥
q
Lp

(Q̃)
]

1
q
.

For i ∈ N, by the deûnition ofM, the fact that supp f (i)j ⊂ (2i+1Q)/(2iQ), and the
Hölder inequality, we ûnd that, for any x ∈ Q,

M( f (i)j )(x) ≲ [2i l(Q)]
−n
∫

2i+1Q
∣ f j(y)∣ dy ≲ [2i l(Q)]

−
n
p ∥ f j∥Lp

(2i+1Q) .(2.5)

Since there exist 4n dyadic cubes {R̃η}4n

η=1 satisfying that

2i+1Q ⊂
4n

⋃
η=1

R̃η and l(R̃η) = 2i l(Q),

from this and (2.5), we deduce that

H(i ,Q) ≲ 2−
n
p i
{∑

j∈Z
∥ f j∥

q
Lp

(2i+1Q)
}

1
q
≲ 2−

n
p i

4n

∑
η=1

{∑
j∈Z

∥ f j∥
q
Lp

(R̃η)
}

1
q

(2.6)

≲ 2(τ−
1
p )ni

∣Q∣
τ sup

Q̃∈Q

1
∣Q̃∣τ

[∑
j∈Z

∥ f j∥
q
Lp

(Q̃)
]

1
q
.

Combining (2.3), (2.4), (2.6), and the fact that τ ∈ [0, 1/p), we conclude that, for
any given dyadic cube Q,

[
∞

∑
j∈Z

∥M( f j)∥
q
Lp

(Q)
]

1
q
≲ ∣Q∣

τ sup
Q̃∈Q

1
∣Q̃∣τ

[∑
j∈Z

∥ f j∥
q
Lp

(Q̃)
]

1
q
,

which implies that (2.2) holds true. _is ûnishes the proof of Proposition 2.3(ii).

From the proofs of [36, Proposition 8.2] and [16, (2.6)], we easily deduce the fol-
lowing conclusion, the details being omitted.

Lemma 2.4 Let p ∈ (1,∞] (p ∈ (1,∞) for Ḟα ,τp,q (Rn)), q ∈ (0,∞], τ ∈ [0,∞), and
α ∈ (0,∞). _en Ḟα ,τp,q (Rn) (or Ḃα ,τp,q(Rn)) ⊂ Lp

loc(R
n) in the sense of S′

∞
(Rn); pre-

cisely, for any f ∈ Ḟα ,τp,q (Rn) or Ḃα ,τp,q(Rn), there exists a sequence {Pj} j∈Z of polynomials
of degree not more than ⌊α + nτ − n/p⌋ such that∑ j∈Z(ψ j ∗ φ j ∗ f + Pj) converges in
Lp

loc(R
n) to a function g ∈ Lp

loc(R
n) and f = g in S′

∞
(Rn), where ψ and φ are as in

Remark 1.2(ii).
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To show _eorems 1.3 and 1.5, we also need the following Lemma 2.5. _e con-
clusions (i) and (iii) of Lemma 2.5 were obtained in [33, _eorem 1], and (ii) was
established in [17, Corollary 5.7]. Recall that, for any s ∈ R and q ∈ (0,∞], the space
Ḟ s
∞,q(Rn) is deûned to be the set of all f ∈ S′

∞
(Rn) such that

∥ f ∥Ḟ s∞,q(Rn
)
∶= sup

Q∈Q
{

1
∣Q∣

∫
Q

∞

∑
k=− log2 l(Q)

2ksq
∣φk ∗ f (y)∣q dy}

1/q
< ∞

with the usual modiûcation made when q = ∞ (see [17]), and the space Ḃs
∞,∞(Rn) is

deûned to be the sets of all f ∈ S′
∞
(Rn) such that

∥ f ∥Ḃs∞,∞(Rn
)
∶= sup

k∈Z
sup
x∈Rn

2ks
∣ f ∗ φk(x)∣ < ∞.

Lemma 2.5 Let s ∈ R.
(i) For all p ∈ (0,∞), q ∈ (0,∞), and τ ∈ (1/p,∞), or q = ∞ and τ ∈ [1/p,∞), it

holds true that Ḟ s ,τ
p,q(Rn) = Ḟ s+n(τ−1/p)

∞,∞ (Rn) with equivalent quasi-norms.
(ii) For all p ∈ (0,∞), q ∈ (0,∞), it holds true that Ḟ s ,1/p

p,q (Rn) = Ḟ s
∞,q(Rn) with

equivalent quasi-norms.
(iii) For all p ∈ (0,∞], q ∈ (0,∞), and τ ∈ (1/p,∞), or q = ∞ and τ ∈ [1/p,∞), it

holds true that Ḃs ,τ
p,q(Rn) = Ḃs+n(τ−1/p)

∞,∞ (Rn) with equivalent quasi-norms.

Now we prove_eorem 1.3.

Proof of_eorem 1.3 To prove this theorem, we let φ and ψ be as in Remark 1.2(ii).
We ûrst show (i). Let f ∈ Ḃα ,τp,q(Rn) and

(2.7) g ∶= ∑
j∈Z

(ψ j ∗ φ j ∗ f + Pj)

be as in Lemma 2.4. _en by Lemma 2.4, we know that g ∈ Lp
loc(R

n) and f = g in
S′
∞
(Rn). _us, we identify f with g in the proof below.
Nowweprove (1.3). To this end, letQ be a given dyadic cube. Notice that the degree

of each Pj is not more than ⌊α + nτ − n
p ⌋ < 2ℓ and, for any k ∈ Z ∩ [− log2 l(Q),∞)

and any polynomial P of degree less than 2ℓ, P − Bℓ ,2−kP = 0. _en it follows from
(2.7) that for all k ∈ Z,

g − Bℓ ,2−k g = (∑
j≥k

+∑
j<k

)(I − Bℓ ,2−k)(ψ j ∗ φ j ∗ f ),(2.8)

where I denotes the identity operator.
For the sum∑ j≥k , by (1.1) and the fact that, for all j ∈ Z and h ∈ L1

loc(R
n), ∣ψ j∗h∣ ≲

M(h), we know that for all x ∈ Rn ,

∣ (I − Bℓ ,2−k)(ψ j ∗ φ j ∗ f )(x)∣ ≲M(M(φ j ∗ f ))(x).(2.9)
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Using this, the Minkowski inequality, and the Hardy-type inequality (see [10,
Lemma 2.3.4] or [8, Lemma 2.4]), we ûnd that

∑
k∈Z

2kαq
∥∑

j≥k
(I − Bℓ ,2−k)(ψ j ∗ φ j ∗ f )∥

q

Lp
(Q)

(2.10)

≲ ∑
k∈Z

2kαq
[∑

j≥k
∥M(M(φ j ∗ f ))∥

Lp
(Q)

]
q

≲ ∑
k∈Z

2kαq
∥M(M(φk ∗ f ))∥

q

Lp
(Q)

.

For the sum∑ j<k , from (2.1) and Lemma 2.1, we deduce that, for all ξ ∈ Rn ,

[(I − Bℓ ,2−k)(ψ j ∗ φ j ∗ f )]
∧

(ξ) = ψ̂(2− jξ)[1 −mℓ(2−k ξ)](φ j ∗ f )∧(ξ)

= ψ̂(2− jξ)Aℓ(2−k ξ)(φ j ∗ f )∧(ξ),

where Aℓ(ξ) ∶= 1 −mℓ(ξ) for all ξ ∈ Rn . _us, we obtain

(2.11) (I −Bℓ ,2−k)(ψ j ∗φ j ∗ f )(x) = ([mℓ
k , j(2

− j
⋅ )]

∨) ∗φ j ∗ f (x), for all x ∈ Rn ,

where mℓ
k , j(ξ) ∶= ψ̂(ξ)Aℓ(2 j−k ∣ξ∣) for all ξ ∈ Rn .

Since ψ̂ ∈ S(Rn) has compact support, it follows from Lemma 2.1 that, for any
k, j ∈ Z, mℓ

k , j ∈ S(R
n). Moreover, observing that ψ ∈ S(Rn) and supp ψ̂ ⊂ {ξ ∈ Rn ∶

1
2 ≤ ∣ξ∣ ≤ 2}, by Lemma 2.1 again, we then know that, for all j < k, β ∈ Zn

+
and ξ ∈ Rn ,

∣∂βmℓ
k , j(ξ)∣ ≲ 22ℓ( j−k)χ

{ξ∈Rn
∶

1
2 ≤∣ξ∣≤2}

(ξ)

and hence ∥mℓ
k , j∥L1

(Rn
) + ∥∇n+1mℓ

k , j∥L1
(Rn

) ≲ 22ℓ( j−k). Using this, (2.11), and Lemma
2.2, we ûnd that, for all j ∈ Z with j < k and x ∈ Rn ,

(2.12) ∣ (I − Bℓ ,2−k)(ψ j ∗ φ j ∗ f )(x)∣ ≲ 22ℓ( j−k)M(φ j ∗ f )(x).

_erefore, from (2.12), the Hardy-type inequality (see [10, Lemma 2.3.4] or [8,
Lemma 2.4]), and the fact that α ∈ (0, 2ℓ), we conclude that

∑
k∈Z

2kαq
∥∑

j<k
(I − Bℓ ,2−k)(ψ j ∗ φ j ∗ f )∥

q

Lp
(Q)

≲ ∑
k∈Z

2k(α−2ℓ)q
[∑

j<k
22ℓ j∥M(φ j ∗ f )∥ Lp

(Q)
]

q

≲ ∑
k∈Z

2kαq∥M(φk ∗ f )∥
q
Lp

(Q)
.

(2.13)

Combining (2.8), (2.10), (2.13), Proposition 2.3(ii), and Remark 1.2(iii), we con-
clude that

9g9Ḃα ,τp,q(Rn
)
≲ sup

Q∈Q

1
∣Q∣τ

{∑
k∈Z

2kαq
∥M(M(φk ∗ f ))∥

q

Lp
(Q)

}
1/q

≲ sup
Q∈Q

1
∣Q∣τ

{∑
k∈Z

2kαq∥φk ∗ f ∥
q
Lp

(Q)
}

1/q
∼ ∥ f ∥Ḃα ,τp,q(Rn

)
,

which implies (1.3).
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Conversely, let f ∈ L1
loc(R

n) ∩ S′
∞
(Rn) and 9 f9Ḃα ,τp,q(Rn

)
< ∞. _en by [8, (2.16)],

we ûnd that, for all k ∈ Z and x ∈ Rn ,

(2.14) ∣ f ∗ φk(x)∣ ≲M( f − Bℓ ,2−k f )(x).

_us, from this and Proposition 2.3(ii), we deduce that

∥ f ∥Ḃα ,τp,q(Rn
)
≲ sup

Q∈Q

1
∣Q∣τ

{∑
k∈Z

2kαq∥M( f − Bℓ ,2−k f )∥
q
Lp

(Q)
}

1/q

≲ sup
Q∈Q

1
∣Q∣τ

{∑
k∈Z

2kαq∥ f − Bℓ ,2−k f ∥
q
Lp

(Q)
}

1/q
∼ 9 f9Ḃα ,τp,q(Rn

)
,

namely, f ∈ Ḃα ,τp,q(Rn) and ∥ f ∥Ḃα ,τp,q(Rn
)
≲ 9 f9Ḃα ,τp,q(Rn

)
. _is ûnishes the proof of _e-

orem 1.3(i).
Next we prove (ii) by considering two cases.

Case I: p ∈ (0,∞), τ ∈ (1/p,∞), and q ∈ (0,∞] or p ∈ (0,∞), τ = 1
p , and q = ∞ or

p = ∞, τ ∈ (0,∞), and q ∈ (0,∞]. In this case, by Lemma 2.5(iii), it holds true that
Ḃα ,τp,q(Rn) = Ḃα+n(τ−1/p)

∞,∞ (Rn). From this and [8, _eorem 1.3(i)], we further deduce
that, in this case, the conclusion (ii) of _eorem 1.3 holds true.

Case II: p = ∞, τ = 0 and q ∈ (0,∞]. In this case, Ḃα ,τp,q(Rn) = Ḃα
∞,q(Rn). _en

the desired conclusion also follows from [8, _eorem 1.3(i)]. _is ûnishes the proof
of _eorem 1.3(ii) and hence the proof of _eorem 1.3.

Proof of_eorem 1.5 _e proof of (i) is similar to that of_eorem 1.3(i), the details
being omitted.

To prove (ii), if τ ∈ (1/p,∞) and q ∈ (1,∞], then, by Lemma 2.5(i), we know that

(2.15) Ḟα ,τp,q (R
n
) = Ḟα+n(τ−1/p)

∞,∞ (Rn
).

Moreover, by Lemma 2.5(ii), we ûnd that, for all q ∈ (0,∞], Ḟα ,1/pp,q (Rn) = Ḟα
∞,q(Rn).

_erefore, by this, (2.15) and [8,_eorem 1.3(ii)], we conclude that the conclusion (ii)
of _eorem 1.5 holds true. _is ûnishes the proof of _eorem 1.5.

Proof of_eorem 1.7 Let f ∈ Ṅα
u ,p,q(Rn). _en, by (i) and (iii) of Deûnition 1.1,

we ûnd that f ∈ Ḃ
α , 1

p−
1
u

p,q (Rn). _us, by _eorem 1.3, we know that there exists g ∈

Lp
loc(R

n) such that g = f in S′
∞
(Rn). Moreover, (2.8) holds true.

Next we show (1.4). By (2.9), the Minkowski inequality, the Hardy-type inequality
(see [10, Lemma 2.3.4] or [8, Lemma 2.4]) and the boundedness ofM on the Morrey
space (see Proposition 2.3(ii)), we ûnd that

∑
k∈Z

2kαq sup
Q∈Q

1
∣Q∣(1/p−1/u)q ∥∑

j≥k
(I − Bℓ ,2−k)(ψ j ∗ φ j ∗ f )∥

q

Lp
(Q)

(2.16)

≲ ∑
k∈Z

2kαq
[∑

j≥k
sup
Q∈Q

1
∣Q∣1/p−1/u ∥M(M(φ j ∗ f ))∥

Lp
(Q)

]
q

≲ ∑
k∈Z

2kαq sup
Q∈Q

1
∣Q∣(1/p−1/u)q ∥φk ∗ f ∥

q

Lp
(Q)

.

https://doi.org/10.4153/CMB-2016-076-7 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2016-076-7


Characterizations via Averages on Balls 667

On the other hand, by (2.12), theMinkowski inequality and theHardy-type inequality
again (see [10, Lemma 2.3.4] or [8, Lemma 2.4]), we know that

∑
k∈Z

2kαq sup
Q∈Q

1
∣Q∣(1/p−1/u)q ∥∑

j<k
(I − Bℓ ,2−k)(ψ j ∗ φ j ∗ f )∥

q

Lp
(Q)

(2.17)

≲ ∑
k∈Z

2k(α−2ℓ)q
[∑

j<k
22ℓ j sup

Q∈Q

1
∣Q∣1/p−1/u ∥M(φ j ∗ f )∥

Lp
(Q)

]
q

≲ ∑
k∈Z

2kαq sup
Q∈Q

1
∣Q∣(1/p−1/u)q ∥φk ∗ f ∥

q
Lp

(Q)
.

Combining (2.8), (2.16) and (2.17), we conclude that (1.4) holds true.
Conversely, let f ∈ L1

loc(R
n) ∩ S′

∞
(Rn) and 9 f9Ṅα

u ,p,q(Rn
)
< ∞. _en, from (2.14)

and the boundedness ofM on the Morrey space (see Proposition 2.3(ii)), we deduce
that

∥ f ∥Ṅα
u ,p,q(Rn

)
≲ {∑

k∈Z
2kαq sup

Q∈Q

1
∣Q∣(1/p−1/u)q ∥M( f − Bℓ ,2−k f )∥

q

Lp
(Q)

}
1/q

≲ {∑
k∈Z

2kαq sup
Q∈Q

1
∣Q∣(1/p−1/u)q ∥ f − Bℓ ,2−k f ∥

q

Lp
(Q)

}
1/q

∼ 9 f9Ṅα
u ,p,q(Rn

)
,

which implies that f ∈ Ṅα
u ,p,q(Rn). _is ûnishes the proof of _eorem 1.7.

3 Inhomogeneous Spaces

In this section, we aim to present the inhomogeneous versions of_eorems 1.3 and 1.5.
For the corresponding conclusions in case of Besov and Triebel–Lizorkin spaces we
refer the reader to [8, _eorem 3.1].
A pair of functions (φ, Φ) is said to be admissible if φ ∈ S(Rn) satisûes (1.2), Φ ∈

S(Rn) satisûes supp Φ̂ ⊂ {ξ ∈ Rn ∶ ∣ξ∣ ≤ 2}, and ∣Φ̂(ξ)∣ ≥ constant > 0 when ∣ξ∣ ≤ 5
3 .

Deûnition 3.1 Let τ ∈ [0,∞), α ∈ R, p, q ∈ (0,∞], and (φ, Φ) be a pair of admis-
sible functions. _en the inhomogeneous Besov-type space Bs ,τ

p,q(Rn) and the inhomo-
geneous Triebel–Lizorkin-type space F s ,τ

p,q(Rn) (p ∈ (0,∞)) are, respectively, deûned
to be the sets of all f ∈ S′(Rn) such that

∥ f ∥Bs ,τ
p,q(Rn

)
∶= sup

Q∈Q

1
∣Q∣τ

{
∞

∑
k=max{0,− log2 l(Q)}

2kαq
∥φk ∗ f ∥

q
Lp

(Q)
}

1/q
< ∞,

∥ f ∥F s ,τ
p,q(Rn

)
∶= sup

Q∈Q

1
∣Q∣τ

∥{
∞

∑
k=max{0,− log2 l(Q)}

2kαq
∣φk ∗ f ∣q}

1/q
∥

Lp
(Q)

< ∞,

where φ0 is replaced by Φ.

In what follows, denote by C(Rn) the set of all complex-valued uniformly con-
tinuous functions on Rn equipped with the sup-norm and by C∞(Rn) the set of all
smooth functions onRn . Let Ψ ∈ C∞(Rn) be a radial function with compact support
such that, when ∣x∣ ≤ 1, Ψ(x) = 1 and, when ∣x∣ ≥ 3/2, Ψ(x) = 0. If we let Ψ0 ∶= Ψ and
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Ψ( j)( ⋅ ) ∶= Ψ(2− j ⋅ )−Ψ(2− j+1 ⋅ ) for all j ∈ N, thenwe obtain a smooth decomposition
of unity, namely, for all x ∈ Rn ,∑∞

j=0 Ψ
( j)(x) = 1. For all x ∈ Rn , let

(3.1) φ0(x) ∶= Ψ̂(−x) and φ ∶= Ψ̂(2 ⋅ )(−x).

_en, for all j ∈ N and x ∈ Rn , φ j(x) ∶= 2 jnφ(2 jx) = Ψ̂( j)(−x).
For any 1 < p ≤ u < ∞, let Mu

p(Rn) denote the well-known Morrey space that is
deûned to be the set of all p-locally integrable functions f such that

∥ f ∥Mu
p(Rn

) ∶= sup
Q∈Q

1
∣Q∣1/p−1/u {∫Q

∣ f (x)∣p dx}
1/p

< ∞.

We ûrst present the following technical lemma.

Lemma 3.2 Let q ∈ (0,∞], s ∈ (0,∞), p ∈ [1,∞], and τ ∈ [0, 1/p).
(i) For all f ∈ Bs ,τ

p,q(Rn), it holds true that

∥ f ∥Bs ,τ
p,q(Rn

)
∼ ∥ f ∥

M
p/(1−pτ)
p (Rn

)
+ ∥̃ f ∥Bs ,τ

p,q(Rn
)

with the implicit equivalent positive constants independent of f , where

∥̃ f ∥Bs ,τ
p,q(Rn

)
∶= sup

Q∈Q

1
∣Q∣τ

{
∞

∑
k=1

2kαq
∥φk ∗ f ∥

q
Lp

(Q)
}

1/q
.

(ii) For all f ∈ F s ,τ
p,q(Rn), it holds true that

∥ f ∥F s ,τ
p,q(Rn

)
∼ ∥ f ∥

M
p/(1−pτ)
p (Rn

)
+ ∥̃ f ∥F s ,τ

p,q(Rn
)

with the implicit equivalent positive constants independent of f , where

∥̃ f ∥F s ,τ
p,q(Rn

)
∶= sup

Q∈Q

1
∣Q∣τ

∥{
∞

∑
k=1

2kαq
∣φk ∗ f ∣q}

1/q
∥

Lp
(Q)

.

Proof By similarity, we only prove (ii). From [36, Proposition 2.1(ii)], we deduce
that, for all τ ∈ [0,∞), s ∈ (0,∞), p ∈ [1,∞] and q ∈ (0,∞], F s ,τ

p,q(Rn) ↪ F0,τp,1 (Rn),
which, together with the fact that

F0,τp,1 (R
n
) ↪M

p/(1−pτ)
p (Rn

)

(see [36, Proposition 2.7(i)]), implies that

F s ,τ
p,q(R

n
) ↪M

p/(1−pτ)
p (Rn

).

More precisely, let φ0 and φ be as in (3.1). _en f = ∑∞

j=0 φ j ∗ f in S′(Rn), and it
was proved in [36, Proposition 2.7(i)] that ∑∞

j=0 φ j ∗ f converges in M
p/(1−pτ)
p (Rn).

Moreover, for any f ∈ F s ,τ
p,q(Rn), we have

(3.2) ∥ f ∥
M

p/(1−pτ)
p (Rn

)
≲ ∥ f ∥F s ,τ

p,q(Rn
)
.

On the other hand, due to τ ∈ [0, 1/p), by [36, Corollary 3.3(i)], we ûnd that, for
any f ∈ F s ,τ

p,q(Rn),

∥ f ∥F s ,τ
p,q(Rn

)
∼ sup

Q∈Q

1
∣Q∣τ

∥{
∞

∑
k=0

2kαq
∣φk ∗ f ∣q}

1/q
∥

Lp
(Q)

.
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_us, if f ∈ F s ,τ
p,q(Rn), then, by the boundedness ofM on the Morrey space (see, for

example, [1, _eorem 12]) and the fact that ∣Φ ∗ f ∣ ≲M( f ), we conclude that

∥ f ∥F s ,τ
p,q(Rn

)
≲ ∥Φ ∗ f ∥

M
p/(1−pτ)
p (Rn

)
+ ∥̃ f ∥F s ,τ

p,q(Rn
)
≲ ∥ f ∥

M
p/(1−pτ)
p (Rn

)
+ ∥̃ f ∥F s ,τ

p,q(Rn
)
.

Conversely, from (3.2), we easily deduce that for any f ∈ F s ,τ
p,q(Rn),

∥ f ∥
M

p/(1−pτ)
p (Rn

)
+ ∥̃ f ∥F s ,τ

p,q(Rn
)
≲ ∥ f ∥F s ,τ

p,q(Rn
)
.

_is ûnishes the proof of Lemma 3.2.

By Lemma 3.2, [33, _eorem 2], [36, Proposition 2.4(iii)], [8, _eorem 3.1], and
some arguments similar to those used in the proof of _eorem 1.3, we obtain the
following results, the details being omitted.

_eorem 3.3 Let ℓ ∈ N and α ∈ (0, 2ℓ).
(i) Let p ∈ (1,∞), τ ∈ [0, 1/p), and q ∈ (0,∞]. _en f ∈ Bα ,τp,q(Rn) if and only if

f ∈ S′(Rn) ∩M
p/(1−pτ)
p (Rn) and

9 f9Bα ,τp,q(Rn
)
∶= ∥ f ∥

M
p/(1−pτ)
p (Rn

)
+ sup

Q∈Q

1
∣Q∣τ

{
∞

∑
k=1

2kαq
∥ f − Bℓ ,2−k f ∥

q
Lp

(Q)
}

1/q

is ûnite. Moreover, 9 ⋅9Bα ,τp,q(Rn
)
∼ ∥ f ∥Bα ,τp,q(Rn

)
with the implicit equivalent positive con-

stants independent of f .
(ii) Let p ∈ (0,∞), τ ∈ (1/p,∞), and q ∈ (0,∞] or p ∈ (0,∞), τ = 1

p , and q = ∞
or p = ∞, τ ∈ [0,∞) and q ∈ (0,∞]. _en f ∈ Bα ,τp,q(Rn) if and only if f ∈ C(Rn) and

9 f9Bα ,τp,q(Rn
)
∶= ∥ f ∥L∞(Rn

) + sup
k∈N

2k[α+n(τ−1/p)]
∥ f − Bℓ ,2−k f ∥L∞(Rn

) < ∞.

_eorem 3.4 Let ℓ ∈ N and α ∈ (0, 2ℓ).
(i) Let p ∈ (1,∞), τ ∈ [0, 1/p), and q ∈ (1,∞]. _en f ∈ Fα ,τp,q (Rn) if and only if

f ∈ S′(Rn) ∩M
p/(1−pτ)
p (Rn) and

9 f9Fα ,τp,q(Rn
)
∶= ∥ f ∥

M
p/(1−pτ)
p (Rn

)
+ sup

Q∈Q

1
∣Q∣τ

∥{
∞

∑
k=1

2kαq
∣ f − Bℓ ,2−k f ∣

q
}

1/q
∥

Lp
(Q)

is ûnite. Moreover, 9 ⋅9Fα ,τp,q(Rn
)
∼ ∥ f ∥Fα ,τp,q(Rn

)
with the implicit equivalent positive con-

stants independent of f .
(ii) Let p ∈ (0,∞), τ ∈ [ 1

p ,∞) and q ∈ (1,∞]. _en f ∈ Fα ,τp,q (Rn) if and only if

f ∈ M
p/(1−pτ)
p (Rn) ∩ S′

∞
(Rn) and 9 f9Fα ,τp,q(Rn

)
is ûnite, where, when τ ∈ (1/p,∞)

and q ∈ (0,∞], or τ = 1/p and q = ∞,

9 f9Fα ,τp,q(Rn
)
∶= ∥ f ∥

M
p/(1−pτ)
p (Rn

)
+ sup

k∈N
sup
y∈Rn

2k[α+n(τ−1/p)]
∣g(y) − Bℓ ,2−k g(y)∣,
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and when τ = 1/p and q ∈ (0,∞),

9 f9Fα ,τp,q(Rn
)

∶= ∥ f ∥L∞(Rn
)

+ sup
Q∈Q

ℓ(Q)≤1

{
1

∣Q∣
∫

Q

∞

∑
k=− log2 l(Q)

2k[α+n(τ−1/p)]
∣ f (y) − Bℓ ,2−k f (y)∣

q dy}
1/q

.

Moreover, ∥ f ∥Fα ,τp,q(Rn
)
∼ 9 f9Fα ,τp,q(Rn

)
with the implicit equivalent positive constants in-

dependent of f .

We end this section by the following interesting remark.

Remark 3.5 (i) Let m ∈ N and 1 < p ≤ u < ∞. _en by [25, _eorem 3.1], we
know that

F
m , 1

p−
1
u

p,2 (Rn
) =WmMu

p(R
n
),

whereWmMu
p(Rn) denotes the Sobolev–Morrey space, which is deûned to be the set

of all f ∈ Mu
p(Rn) such that all distributional derivatives Dα f of order α ∈ Zn

+
with

∣α∣ ≤ m belong to Mu
p(Rn), equipped with the norm

∥ f ∥WmMu
p(Rn

) ∶= ∑
∣α∣≤m

∥Dα f ∥Mu
p(Rn

) .

From this and _eorem 3.4, we easily deduce that, for all ℓ ∈ N, m ∈ N ∩ (0, 2ℓ) and
1 < p ≤ u < ∞, f ∈WmMu

p(Rn) if and only if f ∈ S′(Rn) ∩Mu
p(Rn) and

9 f9WmMu
p(Rn

) ∶= ∥ f ∥Mu
p(Rn

) + ∥{
∞

∑
k=1

22kα
∣ f − Bℓ ,2−k f ∣

2
}

1/2
∥
Mu

p(Rn
)

< ∞;

moreover, 9 f9WmMu
p(Rn

) is equivalent to ∥ f ∥WmMu
p(Rn

) with the implicit equivalent
positive constants independent of f .

(ii) Similar result for the inhomogeneous Besov–Morrey space Nα
u ,p,q(Rn) (see

[22,27,36]) corresponding to_eorem 3.3(i) also holds true, the details being omitted
here.
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