
How to deal with genotype uncertainty in variance
component quantitative trait loci analyses

XIA SHEN1, 2*, LARS RÖNNEGÅRD2, 3
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Summary

Dealing with genotype uncertainty is an ongoing issue in genetic analyses of complex traits. Here we consider
genotype uncertainty in quantitative trait loci (QTL) analyses for large crosses in variance component models,
where the genetic information is included in identity-by-descent (IBD) matrices. An IBD matrix is one
realization from a distribution of potential IBD matrices given available marker information. In QTL analyses,
its expectation is normally used resulting in potentially reduced accuracy and loss of power. Previously,
IBD distributions have been included in models for small human full-sib families. We develop an
Expectation–Maximization (EM) algorithm for estimating a full model based on Monte Carlo imputation for
applications in large animal pedigrees. Our simulations show that the bias of variance component estimates
using traditional expected IBD matrix can be adjusted by accounting for the distribution and that the
calculations are computationally feasible for large pedigrees.

1. Introduction

Variance component models have played an import-
ant role in detecting quantitative trait loci (QTL) for
the last couple of decades in both animal breeding
(Fernando & Grossman, 1989; Goddard, 1992;
Arendonk et al., 1994; Wang et al., 1995; George
et al., 2000) and human genetics (Goldgar, 1990;
Schork, 1993; Fulker & Cardon, 1994; Olson, 1995;
Xu & Atchley, 1995; Blangero et al., 2001). To con-
struct the variance–covariance matrix of the random
QTL effect, identity-by-descent (IBD) probabilities
are required. The IBD probabilities describe the cor-
relation structure between individuals with respect to
the frequency of their shared (common) alleles. The
genetic variance component estimates, and the corre-
sponding likelihoods, are usually calculated using an
estimated IBD matrix.

The IBD matrix can be estimated from marker
information using either deterministic (Wang et al.,
1995; Pong-Wong et al., 2001; Besnier & Carlborg,
2007) or stochastic algorithms (Thompson & Heath,

1999; Pérez-Enciso et al., 2000; Mao & Xu, 2005). All
these methods actually calculate an average IBD
matrix, where each entry is the average frequency of
shared alleles, based on partially informative markers.
Namely, all the IBD values are known in the statisti-
cal models. Instead of using the average IBD matrix,
which we refer to as the expectation method (Xu,
1996), the uncertainty of the IBD matrix itself may
also be included in the likelihood. Such a method
accounting for the uncertainty of the IBD matrix is
referred to as the distribution method. The likelihood
function that the distribution method uses is called
the full likelihood function, in contrast to the expec-
tation method that uses an approximated likelihood
function.

Comparison of distribution methods with expec-
tation methods has been a thoroughly investigated
problem in human genetics, especially for regression
models in QTL analysis and genome-wide association
studies (GWAS). Using genotype imputation, GWAS
can gain power at positions with uncertain genotypes
(Marchini & Howie, 2010) where the expectation
method gives good power and accuracy (Kutalik et al.,
2011) by using SNP probabilities as covariates. For
QTL analyses based on regression models, the QTL
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effect is treated as fixed, and several studies have ap-
plied the idea of a full likelihood function (Elston &
Stewart, 1971; Morton & Maclean, 1974; Lander &
Botstein, 1989), which is referred to as the maximum
likelihood (ML) method in QTL analysis and has
been implemented in, for instance, MAPMAKER-
QTL (Lander & Botstein, 1989). The implementation
is based on an Expectation–Maximization (EM)
algorithm (Dempster et al., 1977). However, ML esti-
mates based on a regression model can be approxi-
mated very well by the simple Haley–Knott (HK)
regression (Haley & Knott, 1992), which is the corre-
sponding expectation method using line-origin prob-
abilities as covariates.

In random effect models, the QTL effect is regarded
as random, and considering a full likelihood method
is still important to avoid losing statistical power
(Schork, 1993). Replacing the IBD matrix using its
expectation can only approximate the ML estimates,
and the approximation was shown, by means of
simulations, to be non-negligible in the analyses of
sib-pairs (Kruglyak & Lander, 1995). To resolve these
problems, a weighted likelihood approach has been
implemented in the software packageMx (Eaves et al.,
1996) for the analysis of small human pedigrees where
the probability of IBD states are used as weights.
However, knowing the distribution of the IBD matrix
is crucial for deriving the full likelihood function. In
human full-sib studies, the closed form of the joint
distribution of the additive IBD matrix and the
dominance IBD matrix has been derived, but this is
feasible only for pedigrees including small full-sib
families (Gessler & Xu, 1996; Xu, 1996). These earlier
studies show that the full likelihood function is
statistically more powerful and often gives higher
likelihood at the QTL.

Three problems were raised from previous studies.
First, for animal pedigrees, deriving the distribution
of the IBD matrix is infeasible due to the large size.
Therefore, approximating the full likelihood function
using a Monte Carlo strategy is a reasonable idea but
has not been implemented (Xu, 1996). Second, full-sib
studies in humans calculate IBD probabilities for F1

individuals. For a crossing design in animals, where
e.g. F2 individuals are studied, deriving the IBD dis-
tribution is difficult even for small pedigrees. An ap-
plication of the distribution method to F2 individuals
has therefore not been investigated before, even
though the theory was claimed to be able to extend to
different kinds of crosses. Third, when there is in-
breeding, for instance, in an F2 intercross, diagonal
elements of the IBD matrix need to be adjusted. After
adjusting for inbreeding, the full likelihood theory
still holds. If the marker density is low or the markers
are partially informative, the difference between
the distribution method and the expectation method
might be substantial for experimental crosses as well.

The aim of our study is to evaluate the performance
of the distribution method in animal intercross de-
signs by assessing the magnitude and direction of bias
for the expectation method. We try to account for the
above problems and investigate the full likelihood
function for animal pedigrees. The rest of this paper is
arranged as follows. We first describe the statistical
model that our study is based on and introduce the
theory about the full likelihood. Two illustrative ex-
amples of F2 pedigrees are simulated, where one is
used to show the difference from full-sib studies, and
the other is used to show the performance of the dis-
tribution method in adjusting the bias of heritability
estimates. We compare the distribution method with
the expectation method for a real experimental data-
set, with simulations based on real genotypes for
comparing the power of the two methods. The paper
is concluded by discussing possible applications and
suggesting future developments.

2. Methods and materials

(i) Models and likelihoods

We consider the variance component QTL model
(Fernando & Grossman, 1989; Goldgar, 1990):

y=Xb+Zc+�, (1)

where y is the trait response vector for N individuals,
b is the fixed effect vector, c is the multivariate
normal-distributed random QTL effect with a zero
mean and variance–covariance matrix V(c)=1

2
s2
gIq

and e is the normal-distributed error term with a zero
mean and variance–covariance matrix V(�)=s2

eIN. X
and Z are the design matrices. sg

2 is the genotypic
variance and se

2 is the residual variance. Z relates
individuals and their inherited allelic substitution
effects. Given the IBD matrix P, the variance–
covariance matrix of the phenotype y is V=
V(y)=s2

gP+s2
eI. The relationship betweenP and Z is

given by (Rönnegård & Carlborg, 2007) :

P=
1

2
ZZk: (2)

To adjust the bias of variance component estimates
due to estimating the fixed effects, restricted maxi-
mum likelihood (REML) is commonly used instead of
ML. If h=(sg

2, se
2)k is the vector of variance compo-

nents, the likelihood function is given by

L(hjP, y)=j2pVjx1=2

� exp x
1

2
(yxXb̂)0Vx1(yxXb̂)

� �

� X0V
x1

X

2p

����
����
x1=2

:

(3)
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If the alleles cannot be traced unambiguously through
the pedigree, e.g. because the markers are not fully
informative, the conditional expectation of P has
been used as a known matrix for the estimation of
likelihood (3) (expectation method). Regarding P as
random, a joint distribution f(y,P|h) is considered for
estimating the likelihood (distribution method), i.e.
the full likelihood. In this paper, the terms ‘distribu-
tion method’ and ‘full likelihood method’ are used
interchangeably. ‘ is used to denote the logarithm of
the corresponding likelihood L.

Given the incomplete marker information, there is
a probability space in which the IBD matrix P is dis-
tributed. The expectation method uses an approxi-
mated likelihood

LE=L(hjy,E[P]), (4)

where the variation of P is not considered since E[P]
is inserted as a known matrix. Instead of calculating
the expected IBD matrix E[P], the full likelihood
function takes the variation of P into account by
considering the joint distribution of h and P. Infer-
ence of h should be made from the marginal likeli-
hood of h integrating out P. Hence, based on profile
likelihood (3), the distribution method uses the mar-
ginal likelihood

LD=L(hjy)
=g

P

L(h,Pjy)

=g
P

L(hjy,P)P(P)

=EP[L(hjy,P)]:

(5)

Thus, the difference between LE and LD is the differ-
ence between calculating the function of an expec-
tation and calculating an expectation of the function.
Non–linearity of function L(hjy,P) with respect to P
affects the difference between LE and LD.

(ii) Computation of the full likelihood

Since the distribution of P is rather complicated,
marginal likelihood (5), involving an expectation with
respect to P, is hardly derivable unless the number of
individuals is extremely small. Therefore, we propose
a Monte Carlo strategy that approximates likelihood
(5) by

~LLD (hjy) � 1

m
g
m

i=1
L(hjy,Pi), (6)

where m is the number of imputed IBD matrices
drawn based on the marker information. Each impute
Pi corresponds to an incidence matrix Zi, and eqn (2)
holds, so that 1

2
ZiZ

k
i=Pi. ~LLD (hjy)jh=ĥ converges to

LD(hjy)jh=ĥ as mp‘, where ĥ is the ML estimate of
LD(hjy).

The estimate of h is identical for all the imputes of
L(hjy,Pi), namely, instead of maximizing each im-
puted likelihood, the entire sum gm

i=1
L(hjy,Pi) needs

to be maximized. The first and second derivatives
of log L(hjy,Pi) with respect to h have closed solu-
tions (Harville, 1977). Let ‘=log ~LL(hjy) and
‘i=log L(hjy,Pi). ‘ is the target log-likelihood to
maximize. Using the derivatives @‘i=@h and @2‘i=h@hk,
a Newton–Raphson-based EM algorithm can be used
to estimate h.

Algorithm. Given a set of imputed IBD matrices (or corre-
sponding incidence matrices), estimation of variance compo-
nents h using the full likelihood function can be made via the
following steps:

(i) Find an initial estimate ĥ0.
(ii) Loop on k until convergence.

ĥk = ĥkx1 xd
@2‘

@h@hk

� �x1

h= ĥkx1

@‘

@h

� �
h= ĥkx1

, (7)

where d is a step size constant and

@‘

@h
= g

m

i=1
wi

@‘i
@h

, (8)

@2‘

@h@hk = g
m

i=1
wi

@‘i
@h

� �
@‘i
@h

� �k

+
@2‘i

@h@hk

 !

x
@‘

@h

� �
@‘

@h

� �k

:

(9)

In eqns (8) and (9), the weights are defined as

wi=
L(hjy,Pi)

gm

i=1 L(hjy,Pi)
: (10)

(iii) Take the converged estimate ĥ as the final variance
component estimates.

This algorithm is based on Newton–Raphson
iterations but is an EM algorithm since the weights in
gradient and hessian need to be updated using the
current variance component estimates. There are two
advantages with this implementation. First, imputing
incidence matrices (Zi) is much easier than creating
the IBD matrices (Pi) that is not required in the pro-
posed algorithm. Second, for large pedigrees with a
few founders, when the marker is partially informa-
tive, the rank of E P½ � is much greater than the rank of
Zi. A low rank of Zi increases the computational ef-
ficiency for maximizing the likelihood function
(Rönnegård et al., 2007).

(iii) Simple illustrative examples

Two pedigrees were simulated for showing different
properties of the method. Pedigree I was simulated
for showing that the non-negligible bias from the
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expectation method could be adjusted by the distri-
bution method. Pedigree II was simulated for showing
that the proven relationship between the likelihood
estimate from the expectation method and that from
the distribution method for full-sib families is not true
for F2 intercrosses.

(a) Pedigree I

In an F2 intercross (Fig. 1a), a single pair of grand-
parents were mated to produce one male and two fe-
male F1 progeny. They were thereafter mated to
obtain five F2 offspring. At a putative QTL, genotypes
were simulated for each individual, and there are four
alleles (A, B, C and D) throughout the pedigree. The
phenotypic value for individual i was simulated by

yi=m+ci1+ci2+�i, (11)

where m=50, �i � N (0, 1), and ci1 and ci2 correspond
to the paternal and maternal allele substitution
effects. Five sets of allele substitution effects were
simulated according to five different sg

2 values. For
instance, given the sample variance of sg

2=15, the
allelic effects can be assigned as cA=3, cB=6, cC=9
and cD=12, which give a consistent estimate for
the genetic variance, and the simulated phenotypic
values were 64.87, 56.21, 61.28, 69.20 and 62.08 for
individuals 6–10, respectively, for this particular set
of allelic effects. In Fig. 1a, the kinship information
is known but the genotypes are not observed. The
(narrow sense) heritability (Lynch & Walsh, 1997) of

the studied trait is defined as the intra-class corre-
lation by

h2=
s2
g

s2
g+s2

e

, (12)

which measures how large proportion of the trait
variation is determined by inheritance. We used both
the expectation and the distribution method to esti-
mate h2 using the five animals in the F2 generation.
Note that equivalently, this example compares the
variance component estimates using the two methods
given an uninformative marker (no marker infor-
mation) in QTL analyses.

(b) Pedigree II

One male was mated to three females to produce six
F1 individuals, and the F1s were mated to obtain 10 F2

offspring (Fig. 2). At a putative QTL, allele substi-
tution effects for the eight alleles of the founders were
simulated from a normal distribution with a zero
mean and a standard deviation of 3, and they were
inherited through the pedigree (Table 1). The pheno-
types were calculated by summing the allele substi-
tution effects, an overall mean of 200 and an error
term drawn from N (0, 1). Assuming a complete
link to the QTL, two sets of marker genotypes were
simulated (Markers I and II). We computed the log-
likelihood function using both the expectation and the
distribution method.

(a) (b)

Fig. 1. Pedigree I – a simulated F2 intercross with 10 individuals including two founders. (a) A three-generation intercross
with five offspring, three parents and two grandparents. Squares and circles denote male and female animals, respectively,
with indices inside. Bubbles with arrows pointing to each animal indicate the true genotypes that are not observed. (b) For
the distribution method and the expectation method, asymptotic trend of bias in estimating the narrow sense heritability is
displayed with respect to the heritability of the trait.
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(iv) Analyses of experimental data

(a) Simulation using real genotypes

An F2 cross was bred from two European wild boars
mated to eight large white sows (Andersson et al.,
1994). Four F1 boars were mated to 22 F1 sows to
produce 191 recorded F2 offspring in 26 families. The
genetic information on chromosome 6 came from 22
genotyped micro-satellite markers at 0.0, 8.6, 36.6,

49.7, 50.5, 62.9, 79.2, 80.4, 83.7, 84.1, 84.8, 90.6, 95.4,
100.7, 101.9, 115.9, 116.7, 119.0, 120.2, 124.0, 127.0
and 170.9 cM. In order to investigate the power of
the distribution method and the expectation method
for this real dataset, we simulated a QTL at 25 cM
harboured by the two flanking markers at 8.6 and
36.6 cM. This simulated QTL position has low mar-
ker information since it is in the middle of the long-
interval between two markers with low information

Table 1. The tabular form of pedigree II. Two markers that have a complete link to the QTL were simulated. ‘D
and ‘E are log-likelihood from the distribution method and the expectation method, respectively. Given marker I,
‘D>‘E, while given marker II, ‘D<‘E.

ID Sire ID Dam ID Sex

Marker genotypes
Phenotypic
values

True allelic effects

Marker I Marker II Paternal Maternal

1 0 0 M gg Gg 188.5349 x6.5498 x5.4410
2 0 0 F gg Gg 194.1120 x4.6096 1.6403
3 0 0 F GG gg 202.1803 1.6783 1.7518
4 0 0 F GG GG 210.5896 4.3443 6.4353
5 1 2 M gg GG 195.1616 x6.5498 1.6403
6 1 4 M Gg Gg 200.2790 x5.4410 6.4353
7 1 4 F Gg GG 198.2070 x6.5498 4.3443
8 1 3 F Gg Gg 194.9456 x6.5498 1.7518
9 6 8 M gg Gg 191.1532 x5.4410 x6.5498
10 5 7 F gg GG 194.0887 1.6403 x6.5498
11 5 7 F gg GG 193.7124 1.6403 x6.5498
12 6 7 M GG GG 211.0225 6.4353 4.3443
13 6 8 F Gg gg 197.7793 x5.4410 1.7518
14 6 8 F GG GG 208.6419 6.4353 1.7518
15 5 8 F gg GG 195.7440 1.6403 x6.5498
16 6 7 M Gg Gg 199.2124 x5.4410 4.3443
17 5 8 M gg GG 193.6632 1.6403 x6.5498
18 6 8 F Gg GG 200.4391 6.4353 x6.5498

PIC 0.3515 0.3047
‘D x15.4621 x25.4558
‘E x16.9452 x21.6901

Fig. 2. Pedigree II – a simulated F2 intercross with 18 individuals including four founders. Squares and circles denote male
and female animals, respectively, with indices inside. Each dashed curve connects the same individual for the purpose of
clear display.
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content. IBD probabilities at the QTL were calculated
taking into account all the marker information across
the chromosome. We simulated the phenotype under
three different scenarios for the heritability, 90%,
10% and 0%. For each scenario, 1000 replicates were
simulated, where for each replicate, we calculated the
LRT statistics both for the expectation and the dis-
tribution methods.

(b) Analysis of a real phenotype

Ameat quality trait (reflectance value, EEL) recorded
in the pig cross is strongly affected by the halothane
gene located on chromosome 6 at position 80.4 cM.
One of the founder boars was heterozygote (HalN/
Haln) for this gene while all the other founders were
homozygotes (HalN/HalN) for the wild-type allele. In
our analyses, we include sex, litter and slaughter
weight as fixed effects (Knott et al., 1998). The causal
mutation underlying this QTL had previously been
evidenced by Lundström et al. (1995), and the dataset
is here used to illustrate the properties of both the
expectation and the distribution method. The statistic
used for QTL scan was the likelihood-ratio test (LRT)
statistic that which is equivalentto the maximized
likelihood function value but always non-negative. A
permutation test was performed to obtain a signifi-
cance threshold.

To understand the informativeness of each marker,
the polymorphism information content (PIC) was
used and determined using the following equation:

PIC=1x g
t

i=1
p2
ix2 g

tx1

i=1
g
t

j=i+1
p2
i p

2
j

 !
, (13)

where pi is the frequency of the ith allele and t is the
number of alleles (Botstein et al., 1980).

3. Results and discussion

(i) Simple illustrative examples

(a) Pedigree I

The conventional expectation method estimates h2

using likelihood (4), where the variance–covariance
matrix of the genetic random effect is the relationship
matrix in this example, since it is assumed that no
marker information is known. Hence, for the F2 in-
dividuals the expected IBD matrix is

E[P]=

1�250 0�625 0�750 0�750 0�750
0�625 1�250 0�625 0�625 0�625
0�750 0�625 1�250 0�750 0�750
0�750 0�625 0�750 1�250 0�750
0�750 0�625 0�750 0�750 1�250

0
BBBB@

1
CCCCA

(14)

The simulated true value of h2 is given by
sc
2 /(sc

2+se
2), where c=(cA, cB, cC, cD)k, i.e. the vector

of allelic effects, and s represents the standard
deviation.

The aim here was to estimate the heritability h2 by
estimating the variance components sg

2 and se
2. For

the simulation with sg
2=15, the simulated true h2 is

0.9375. The estimate by the distribution method con-
verged to 0.9087 using 10 000 Monte Carlo imputes,
and the bias was therefore, x0.0288 (Table 2). The
expectation method using the expected IBD matrix
(14) gave an estimate of 0.4485 and a bias ofx0.4890.
The comparison of all the five sets of simulated allelic
effects shows an asymptotic trend of the bias by both
methods, with respect to heritability (Fig. 1b). The
results show that the difference between the two
methods increases with the heritability, and this is
consistent with the comparison done in full-sib fam-
ilies (Xu, 1996). From this example, the distribution
method tends to be robust in variance component es-
timation and more reliable than the expectation
method. For large sample or low heritability, the
difference between the two methods will become
small ; however, the distribution method still gains
power, which we show in the analyses of experimental
data.

(b) Pedigree II

The purpose of this simulated example was to show
that the relationship ‘D>‘E that has been proved for
full-sib families (Xu, 1996) does not always hold, not
to compare the two methods. We show here that this
inequality does not hold for F2 intercross designs.
Based on the information of marker I, the maximized
log-likelihood value of the distribution method
was greater than that of the expectation method.

Table 2. Heritability estimates for pedigree I. Using
the distribution method, variance components were
estimated with different number of Monte Carlo
imputes. Compared to the simulated true value, the
heritability estimated by the distribution method had
much less bias than that estimated by the expectation
method.

Method
No.
imputes

Estimated
h2* Bias

Distribution
method

100 0.8462 x0.0913
200 0.8669 x0.0706
500 0.8829 x0.0546
1000 0.8955 x0.0420
2000 0.9037 x0.0338
5000 0.9086 x0.0289
10 000 0.9087 x0.0288

Expectation method — 0.4485 x0.4890

Simulated value — 0.9375 —

* Narrow sense heritability, defined as sg
2/(sg

2+se
2).
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However, the inequality was reversed for marker II
(Table 1).

It has been claimed that the distribution method is
more powerful in QTL detection due to larger likeli-
hood estimates. It is not always true that larger like-
lihood estimates will lead to more powerful QTL
detection, because the likelihood estimates for non-
QTL positions might also be inflated. Thus, a QTL
detection method gains power when the interval har-
bouring the QTL produces a relatively larger likeli-
hood than those intervals not harbouring any QTL.
As shown above, the inequality ‘D>‘E does not
necessarily hold in F2 intercrosses, but this does not
mean that the expectation method is potentially more
powerful in QTL detection. In order to assess this
question for the two methods, a larger simulation and
a full genome scan need to be performed (see the next
subsection).

(ii) Analyses of experimental data

(a) Simulation using real genotypes

For each of the 1000 replicates, we compared the log-
likelihood values (equivalent to LRT statistics) from
the two methods, namely, the power of detecting the
simulated QTL harboured by two flanking partially
informative markers (Fig. 3). Since the sample size in
this simulation was much bigger than the previous
two illustrative examples, the approximation of the
expectation method was better so that the result from
it is closer to the distribution method. However, for a
heritable trait, the distribution method is more
powerful than the expectation method (Fig. 3a, b).
When the heritability is low (10%), the distribution
method still gains power (Fig. 3b). When the herita-
bility is 0% (no QTL effect, non-heritable), the dis-
tribution method produces significantly less (P-value
=2.3r10x14 from a Wilcoxon test) false positives
than the expectation method (Fig. 3c). This suggests
that the distribution method has a tendency to im-
prove location accuracy in a variance component
QTL scan, which is also found in the analysis of a real
phenotype (see below).

(b) Analysis of a real phenotype

A variance-component–based QTL scan was per-
formed on chromosome 6 for the European
wild boarrlarge white intercross (Fig. 4). Both the
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(c) h 2 = 0%
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53·2%

Fig. 3. Simulation results for power of interval mapping.
A QTL was simulated at 25 cM of pig chromosome 6. The
two markers flanking the interval harbouring the QTL are
located at 8.6 cM and 36.6 cM. The real experimental
genotypes for 191 F2 individuals were used to simulate
phenotypes, assuming a narrow sense heritability of 0.9,
0.1, and 0. 1000 simulations were used for comparing the
log-likelihood from the expectation and the distribution

methods. The points above/below the diagonal are in
red/blue, indicating that the distribution method has larger
power than the expectation method (a, b), or that the
distribution method has lower false positive rate than the
expectation method (c). The numbers in colour show the
corresponding percentages of the sets of points.
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expectation and the distribution method detected a
significant signal but with different intervals harbour-
ing the QTL. The conventional expectation method
provided an interval longer than 20 cM, but the scan
using the full likelihood function refined the peak and
shortened the interval down to around 10 cM.

As shown in our first illustrative example above,
the expectation method has a tendency of under-
estimating the genetic variance at a QTL. Further-
more, it might also overestimate the genetic variance
at tested loci with no QTL that are linked to the QTL.
Based on our simulations, analyses and the results
from previous studies (Gessler & Xu, 1996), we con-
clude that the expectation method is a compromising
approximation, which loses power of localizing QTL
compared with the full likelihood method.

(iii) Further extensions and developments

Epistasis has been emphasized to be common and
important in genetic control of complex traits
(Carlborg & Haley, 2004). A potential extension for
our implemented algorithm is to extend it for detect-
ing epistasis, and the idea is straightforward. Consider
the variance component model including epistatic
effects as

y=Xb+ZAvA+ZBvB+ZABvAB+", (15)

where vA and vB are the main random QTL effects
of loci A and B, with C(vA, vB)=0, and vAB is the
random interaction effect, where C denotes co-
variance. The IBD matrix PAB for the epistatic ef-
fects in the variance structure of model (19), V(y)=
PAs

2
A+PBs

2
B+PABs

2
AB+Is2

e, can be calculated as
the Hadamard product of the two IBD matrices at
loci A and B (Stern et al., 1996), i.e. PAB=PA �PB.
If the expectation method is applied,PAB is estimated
as E[PA] � E[PB], which is not always a good ap-
proximation if the two loci are linked (Rönnegård
et al., 2008). Using our proposed algorithm, after
getting a number of Monte Carlo imputes for the IBD
matrices atloci A and B, the full likelihood can be
approached by

EPA�PB
[L(hjy,PA �PB)] �

1

m
g
m

i=1
L(hjy,PAi �PBi) :

(16)

Substituting the sum into eqn (6), the same EM al-
gorithm can be applied.

In the sample space of P, there exists a model-
based ‘best ’ IBD matrix based on the maximum full
likelihood. This implies, after profiling out (estimat-
ing and inserting back into likelihood) the fixed ef-
fects, as in eqn (3), that the best IBD matrix and
its corresponding estimate of ĥ maximize the joint

Chromosomal position (cM)

L
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T
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Expectation method
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Fig. 4. QTL scan using LRT statistic along pig chromosome 6. The meat quality trait (reflectance value, EEL) is strongly
affected by the halothane gene located at 80.4 cM on the chromosome. By adjusting bias of likelihood estimates,
thedistribution method refined the peak of the traditional variance component QTL scan using the expectation method
and thereby shortened the confidence interval for the QTL. Information for each micro-satellite marker is shown as their
PIC.
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likelihood L(h, P|y). By maximizing the joint likeli-
hood with respect to h and P simultaneously, it is
possible to infer the best IBD matrix and thereby the
best variance component estimates. Nevertheless, our
algorithm is not implemented for maximizing the
joint likelihood but the marginal. More advanced
methods, e.g. those used in phylogenetic tree esti-
mation, using the optimality criterion of ML, often
under a Bayesian framework, might be utilized to es-
timate variance components and the incidence matrix
jointly (Felsenstein, 2004). Identifying the optimal
IBD matrix is NP-hard1 using these methods, and so
heuristic search and optimization methods most likely
need to be used to identify a reasonably good inci-
dence matrix that fits the data. In genetic applications,
using Bayesian methods, Gibbs sampling can be used
to estimate the incidence matrix; however, it is not
guaranteed that the chain is irreducible in large com-
plex problems, and even if the chain is irreducible,
mixing can be quite slow (Sorensen & Gianola, 2002).
Bayesian computation can be introduced when it is
possible and reasonable to joint-estimate the model,
otherwise, inference should focus on the variance
components. Hence, we suggest that our suggested
full likelihood method should be used rather than
Bayesian joint estimation of variance components
and the true IBD matrices at each putative QTL po-
sition.

In principle, the distribution method derived in this
paper can be extended to any general pedigree or
population, as long as the genotype probabilities can
be calculated. Namely, the algorithm itself has no as-
sumption on the design. Using the genotype prob-
abilities calculated from half-sib designs, backcrosses,
advanced intercross lines, or even imputed SNP data
from population–based studies, the distribution
method can be applied in all situations. The key mo-
tivation for using the distribution method is to deal
with genotype uncertainty. In experimental crosses,
the Monte Carlo step samples IBD matrices, whereas
for imputed data in GWAS, we might sample IBS
(identity-by-state) matrices. For GWAS using real–
typed SNPs, there is no need to apply a full likelihood
method as there is no difference between the distri-
bution method and the expectation method when the
real genotypes are observed.

4. Conclusion

We have evaluated a full likelihood approach based
on variance component QTL models for intercross
populations. By means of simulation, we have shown
that the full likelihood method is able to correct bias
of the traditional variance component method using

expected IBD matrices. Also, we used simulations
to show that the previously reported relationship be-
tween the likelihoods of the distribution and expec-
tation methods does not always hold in general
pedigrees. The full likelihood method was compared
with the expectation method in experimental cross
data, and the former was found to be able to improve
the precision of QTL detection. The algorithm de-
scribed in this paper has been implemented in a
package written in R (R Development Core Team,
2010) and is available on request.
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