19–23 June 2023 Otranto Italy

Proceedings of the International Astronomical Union

Strong Gravitational Lensing in the Era of Big Data

Edited by

Hannah Stacey Alessandro Sonnenfeld Claudio Grillo

ISSN 1743-9213

International Astronomical Union

CAMBRIDGE UNIVERSITY PRESS

STRONG GRAVITATIONAL LENSING IN THE ERA OF BIG DATA ${\rm IAU~SYMPOSIUM~381}$

COVER ILLUSTRATION:

Webb's First Deep Field (NIRCam Image) (Credit: NASA, ESA, CSA, STScI)

IAU SYMPOSIUM PROCEEDINGS SERIES

Chief Editor

JOSÉ MIGUEL RODRIGUEZ ESPINOSA, General Secretariat

Instituto de Astrofisica de Andalucía

Glorieta de la Astronomia s/n

18008 Granada

Spain

IAU-general.secretary@iap.fr

Editor
DIANA WORRALL, Assistant General Secretary
HH Wills Physics Laboratory
University of Bristol
Tyndall Avenue
Bristol
BS8 1TL
UK
IAU-assistant.general.secretary@iap.fr

INTERNATIONAL ASTRONOMICAL UNION UNION ASTRONOMIQUE INTERNATIONALE

International Astronomical Union

STRONG GRAVITATIONAL LENSING IN THE ERA OF BIG DATA

PROCEEDINGS OF THE 381st SYMPOSIUM OF THE INTERNATIONAL ASTRONOMICAL UNION OTRANTO, ITALY 19–23 JUNE 2023

Edited by

HANNAH STACEY

European Southern Observatory; Max Planck Institute for Astrophysics, Germany

ALESSANDRO SONNENFELD

Shanghai Jiao Tong University

and

CLAUDIO GRILLO

University of Milan; INAF-IASF Milan, Italy

CAMBRIDGE UNIVERSITY PRESS University Printing House, Cambridge CB2 8BS, United Kingdom 1 Liberty Plaza, Floor 20, New York, NY 10006, USA 10 Stamford Road, Oakleigh, Melbourne 3166, Australia

© International Astronomical Union 2024

This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of the International Astronomical Union.

First published 2024

Printed in Great Britain by Henry Ling Limited, The Dorset Press, Dorchester, DT1 1HD

Typeset in System LATEX 2ε

A catalogue record for this book is available from the British Library of Congress Cataloguing in Publication data

This journal issue has been printed on FSC^{TM} -certified paper and cover board. FSC is an independent, non-governmental, not-for-profit organization established to promote the responsible management of the world's forests. Please see www.fsc.org for information.

ISBN 9781009398992 hardback ISSN 1743-9213

Table of Contents

Preface	viii
Editors	Х
List of Participants	xi
Chapter 1	
Strong Lensing by Galaxies: Past Highlights, Current Status, and Future Prospects	3
The "External" Shears In Strong Lens Models	13
Strong lensing by edge-on galaxies in UNIONS	17
Joint lensing-dynamics constraint on the elliptical galaxy mass profile from the largest galaxy-galaxy lens sample	23
Strong Lens Detection 2.0: Machine Learning and Transformer Models	28
The last stand before Rubin: semi-automated inverse modelling of galaxy-galaxy strong lensing systems	31
Lens Discovery in the Era of Wide-area Surveys	35
Chapter 2	
Gravitational lenses in hydrodynamical simulations	41
Lensed radio arcs at milli-arcsecond resolution: Methods, science results, and current status	46
Clumpiness of lens galaxies as a window on dark matter	52
Angular structure and gravitational imaging	58

vi Contents

Effectively Investigating Dark Matter Microphysics With Strong Gravitational Lensing Anisotropies	63
Chapter 3	
High-precision strong lensing models of galaxy clusters in the JWST era	71
Combined strong and weak gravitational lensing mass measurements in clusters of galaxies	79
Simulating high-realistic galaxy scale strong lensing in galaxy clusters to train deep learning methods	85
Shapes and Centroids of 39 Strong Lensing Galaxy Clusters from the Sloan Giant Arcs Survey	94
MAximum-entropy ReconStruction (MARS): A New Strong-lensing Reconstruction Algorithm for the JWST Era	102
Chapter 4	
The present & future of lensed supernovae: from ZTF to LSST	109
Extended surface brightness modeling of three sources strongly lensed by an ultra-massive elliptical galaxy	113
Large data set of lensed quasars: higher accuracy on H_0 ? The angular structures viewpoint	120
Accounting for population-level systematic effects using a hierarchical strategy	125
Time Delay Cosmograpy of SDSSJ1433 with the 2.1m Wendelstein Telescope	131

Contents	371
COTOCTOS	V I

Impact of Galaxy Dynamics on Modified Gravity Constraints from Strong Lensing Systems	135
Chapter 5	
Learning about the structure of strongly lensed AGNs from their lightcurves	141
Where are the Eddington-limited starbursts? Gravitational lensing provides a way forward for sub-kiloparsec views of star formation	147
Stellar mass fraction and quasar accretion disk size in SDSS J1004+4112 from photometric follow-up	157
Probing the Structure of SDSS J1004+4112 through Microlensing Analysis of Spectroscopic Data	162
Author Index	169

Preface

Strong gravitational lensing is a powerful and mature technique for probing galaxies and the Universe as a whole. In the past twenty years, strong lensing observations have enabled unique studies, such as measurements of the dark matter distribution in galaxies and galaxy clusters, detections of substructure in galaxies, measurements of the expansion rate of the Universe with time-delay lenses, and high-resolution analyses of strongly lensed high-redshift galaxies. While these efforts have improved our understanding of galaxy evolution and cosmology, there are still open questions that strong lensing observations can help to address. What is the nature of dark matter and dark energy? Is the history of the Universe well described by a flat \land cold dark matter model? The answers to these questions have profound fundamental physics implications.

The field of strong lensing is about to be revolutionised by the advent of new observational facilities, such as Euclid, the Rubin Observatory, the Roman Space Telescope and the Chinese Space Station Telescope. These telescopes and their associated surveys are expected to lead to the discovery of around 100000 new strong lenses, an increase of more than two orders of magnitude with respect to the current sample size of confirmed lenses. Such a large amount of data gives us the potential for carrying out strong lensing studies with very high precision. At the same time, however, it poses new challenges: to fully take advantage of this improvement in precision, it is necessary for the accuracy of the models used to interpret these data to improve as well. Furthermore, traditional analysis methods, based on the detailed study of a few select systems, do not scale well to very large sample sizes. With this symposium, we brought together observational and theoretical researchers in the community to review the progress of the field and develop a roadmap for the new era of strong gravitational lensing.

The goals of the symposium were

- to understand the preparedness of the community to analyse and adapt to forthcoming big data;
- to assess the progress of the field in regard to precision lens modelling and modelling of high-angular-resolution data, and to understand what developments are needed:
- to find synergies between observations and simulations of dark matter and the high-redshift Universe;
- to determine the scientific questions that strong lensing will address over the next decade and foster collaboration.

Four major subjects were covered during the week: cosmology, dark matter, galaxies and galaxy clusters, and high-redshift sources. Each subject had dedicated sessions with invited and contributed talks, as well as posters and discussion sessions. Sessions dedicated to the same subject were spread out over multiple days to encourage synergies between the different science aspects and methodology.

The proposed symposium date of June, 2023, was auspicious as it preceded the first data release from flagship survey facilities. In the past few years, many new astronomers have entered the field, started groups and introduced fresh and innovative ideas. During the symposium, these researchers presented the state-of-the-art techniques they developed to resolve structure in the early Universe, test the nature of dark matter, test fundamental physics and efficiently analyse forthcoming big data sets, demonstrating

Preface ix

that the strong lensing community is well-placed to address critical scientific questions in astrophysics. A selection of the work presented is summarised in these proceedings.

Hannah Stacey Alessandro Sonnenfeld Claudio Grillo

Editors

Hannah Stacey (European Southern Observatory; Max Planck Institute for Astrophysics, Germany) Alessandro Sonnenfeld (Shanghai Jiao Tong University) Claudio Grillo (University of Milan; INAF-IASF Milan, Italy)

Organizing Committee

Scientific Organizing Committee

Hannah Stacey (European Southern Observatory; Max Planck Institute for Astrophysics, Germany)
Alessandro Sonnenfeld (Shanghai Jiao Tong University, China)
Claudio Grillo (University of Milan; INAF-IASF Milan, Italy)
Simona Vegetti (Max Planck Institute for Astrophysics, Germany)
Simon Birrer (Stony Brook University, USA)
Marusa Bradac (University of Ljubljana, Slovenia; University of California Davis, USA)
Eros Vanzella (INAF Bologna, Italy)
Kenneth Wong (National Astronomical Observatory of Japan)

Local Organizing Committee

Francesca Rizzo (Dawn Cosmic Centre, Denmark) Federica Bradascio (Cea Saclay, France) Virginia Ajani (Eth Zurich, Switzerland) Fabio Convenga (Karlsruhe Institute, Germany) Victoria Strait (Dawn Cosmic Centre, Denmark) Luca Di Mascolo (University of Trieste, Italy)

List of Participants

Grasiele Romanzini Bezerra

Karina Rojas

Aristeidis Amvrosiadis Durham University
Dominique Sluse University of Liège
Uros Mestric University of Milano

Ashish Kumar Meena Ben-Gurion University of the Negev Irham Taufik Andika Technical University of Munich Patrick Kamieneski Arizona State University

Cristiana Spingola INAF Institute for Radioastronomy Q.Daniel Wang University of Massachusetts Amherst

Raquel Forés-Toribio University of Valencia Carina Fian University of Valencia Edoardo Borsato University of Padua

Favio Neira École Polytechnique Fédérale de Lausanne

Felipe Ávila Universidad Valparaíso Aprajita Verma Oxford University

John McKean University of Groningen; Netherlands Institute

for Radio Astronomy

Andrea Bolamperti University of Padua; European Southern Observatory

Brazilian Center for Research in Physics

Hannah Turner Durham University
Martin Millon Stanford University
Chin Yi Tan University of Chicago

Tania Barone Swinburne University of Technology Nan Li National Astronomical Observatories,

Chinese Academy of Sciences

Devon Williams

Javier Alejandro Acevedo Barroso

Karl Glazebrook

Nandini Sahu

Jimena Gonzalez

University of California Los Angeles

École polytechnique fédérale de Lausanne
Swinburne University of Technology
University of New South Wales
University of Wisconsin-Madison

Kamal Bora Swinburne University of Technology; Indian

Institute of Technology University of Portsmouth

Alejandra Melo Max Planck Institute for Astrophysics

Bharath Chowdhary Nagam University of Groningen

João Paulo França Brazilian Center for Research in Physics Hareesh Thuruthipilly National Center for Nuclear Research

Philip Holloway Oxford University

Timo Anguita Universidad Andrés Bello Daniel Ballard University of Portsmouth

Dorota Bayer Swinburne University of Technology
Devon Powell Max Planck Institute for Astrophysics
Conor O'Riordan Max Planck Institute for Astrophysics

Di Wen University of Groningen Joshua Fagin City University of New York

Birendra Dhanasingham University of New Mexico Albuquerque

Chris Fassnacht University of California Davis

Daniel Gilman University of Toronto

Georgios Vernardos City University of New York Sergei Gleyzer University of Alabama

Sebastian Wagner-Carena Stanford University

Tyler Hughes Swinburne University of Technology

Wolfgang Enzi University of Portsmouth
Dan Ryczanowski University of Birmingham

Hakon Dahle University of Oslo

Shawn Knabel University of California Los Angeles Justin Pierel Space Telescope Science Institute

Sydney Erickson Stanford University
Lyne Van de Vyvere University of Liège
Matthew Gomer University of Liège

Nikki Arendse Oskar Klein Centre, Stockholm University Raoul Canameras Max Planck Institute for Astrophysics

Graham Smith University of Birmingham

Martin Makler Universidad Nacional de San Martín
Satadru Bag Max Planck Institute for Astrophysics
Carlos Melo-Carneiro Universidade Federal do Rio Grande do Sul
Giacomo Queirolo Max Planck Institute for Extraterrestrial Physics;

Origins Excellence Cluster;

Ludwig Maximilian University of Munich

Henry Best City University of New York
James Chan City University of New York

Shuaibo Geng National Center for Nuclear Research

Giuseppe Angora University of Ferrara Giovanni Granata University of Milan Stefan Schuldt University of Milan

Han Wang Max Planck Institute for Astrophysics

Pietro Bergamini University of Milan Davide Abriola University of Milan

Lukas Furtak Ben-Gurion University of the Negev

Raven Gassis University of Cincinnati Lorenzo Bazzanini University of Ferrara Sangjun Cha Yonsei University

Jackson ODonnellUniversity of California Santa CruzCameron LemonÉcole Polytechnique Fédérale de Lausanne

Alessandro Sonnenfeld Shanghai Jiao Tong University

Ana Acebron University of Milan
Ana Sainz de Murieta University of Portsmouth
Anna Nierenberg University of California Merced

Anowar Shajib University of Chicago
Bridget Ierace City University of New York

Claudio Grillo University of Milan Francesca Rizzo Cosmic Dawn Center

Gabriel Bartosch Caminha Technical University of Munich; Max Planck

Institute for Astrophysics University of Bologna

Hannah Stacey Max Planck Institute for Astrophysics

James Nightingale Durham University

Kenneth Wong National Astronomical Observatory of Japan

Luke Weisenbach University of Portsmouth
Masamune Oguri Chiba University
Massimo Meneghetti INAF-OAS Bologna

Matt O'Dowd City University of New York

Piero Rosati University of Ferrara

Quinn Minor City University of New York

Richard Massey Durham University

Giulia Despali

Rui Li Chinese Academy of Sciences

Russell Smith Durham University Samuel Lange Durham University

Sherry Suyu Technical University of Munich; Max Planck

Institute for Astrophysics Simon Birrer Stony Brook University Thomas Collett University of Portsmouth University of Portsmouth

Tommaso Treu University of California Los Angeles

Wenshuo Xu Tsinghua University Yan Liang Tsinghua University

Tian Li

Brian Welch NASA Goddard Space Flight Center

Shude Mao Tsinghua University China Zizhao He Chinese Academy of Sciences Luca Di Mascolo Università degli Studi di Trieste Fabio Convenga Karlsruhe Institute of Technology

