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Abstract. Finite Cartesian products of operators play a central role in monotone operator theory
and its applications. Extending such products to arbitrary families of operators acting on different
Hilbert spaces is an open problem, which we address by introducing the Hilbert direct integral
of a family of monotone operators. The properties of this construct are studied, and conditions
under which the direct integral inherits the properties of the factor operators are provided. The
question of determining whether the Hilbert direct integral of a family of subdifferentials of
convex functions is itself a subdifferential leads us to introducing the Hilbert direct integral of
a family of functions. We establish explicit expressions for evaluating the Legendre conjugate,
subdifferential, recession function, Moreau envelope, and proximity operator of such integrals. Next,
we propose a duality framework for monotone inclusion problems involving integrals of linearly
composed monotone operators and show its pertinence toward the development of numerical
solution methods. Applications to inclusion and variational problems are discussed.

1 Introduction

LetH be a real Hilbert space with scalar product ⟨⋅ ∣ ⋅⟩H and power set 2H. An operator
A∶H→ 2H is monotone if

(∀x ∈ H)(∀y ∈ H)(∀x∗ ∈ Ax)(∀y∗ ∈ Ay) ⟨x − y ∣ x∗ − y∗⟩H ⩾ 0.(1.1)

Cartesian products of monotone operators are important constructs that arise in many
foundational and practical aspects of the theory [3, 6, 7, 16, 22, 37]. Such products can
be defined in a straightforward manner for a finite family (Ak)1⩽k⩽p of monotone
operators acting, respectively, on real Hilbert spaces (Hk)1⩽k⩽p . Thus, if one denotes
by H = H1 ⊕ ⋅ ⋅ ⋅ ⊕Hp the Hilbert direct sum of (Hk)1⩽k⩽p and by x = (x1 , . . . , xp) a
generic vector in H, the product operator is [3]

A∶H → 2H∶ x ↦ {x∗ ∈H ∣ (∀k ∈ {1, . . . , p}) x∗k ∈ Akxk}.(1.2)
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2 M. N. Bùi and P. L. Combettes

A fundamental instance of an infinite product arises in [6] in the context of evolution
equations. There, (Ω,F, μ) is a measure space, H is a separable real Hilbert space,
A∶H→ 2H is a monotone operator, H = L2(Ω,F, μ;H), and a product operator is
defined as

A∶H → 2H∶ x ↦ {x∗ ∈H ∣ (∀μ ω ∈ Ω) x∗(ω) ∈ A(x(ω))},(1.3)

where, following [36], the symbol ∀μ means “for μ-almost every.” Another instance
of an infinite product appears in [1, Section III.2] in the context of nonautonomous
evolution equations, where μ is the Lebesgue measure, (At)t∈[0,T] is a family of
monotone operators from H to 2H, H = L2([0, T];H), and

A∶H → 2H∶ x ↦ {x∗ ∈H ∣ (∀μ t ∈ [0, T]) x∗(t) ∈ At(x(t))}.(1.4)

Similar examples arise in probability theory [4], circuit theory [15], approximation
theory [18], calculus of variations [21], partial differential equations [22], variational
analysis [32], convex analysis [35], and evolution systems [37]. In terms of modeling,
(1.2) is limited to a finite number of operators, (1.3) requires that all the factor operators
be identical to A, and (1.4) imposes that all the factor spaces be identical to H and
operates with the standard Lebesgue measure space [0, T]. The above examples are
not based on a common mathematical setup and the question of defining a unifying
theory for arbitrary products of monotone operators acting on different spaces is open.
This question is not only of theoretical interest, but it is also motivated by applications
in areas such as dynamical systems, stochastic optimization, and inverse problems. It
is the objective of the present paper to fill this gap by introducing such a framework,
studying the properties of the resulting product operators, and exploring some of their
applications.

To support our framework, we bring into play the notion of a direct integral of
Hilbert spaces, which is an attempt to extend Hilbert direct sums from finite families
to arbitrary ones. This construction originates in papers published around World War
II [23, 24, 26, 30]. We follow [20, Section II.§1].

Definition 1.1 [20, Définition II.§1.1] Let (Ω,F, μ) be a complete σ-finite measure
space, let (Hω)ω∈Ω be a family of real Hilbert spaces, and let ∏ω∈Ω Hω be the usual
real vector space of mappings x defined on Ω such that (∀ω ∈ Ω)x(ω) ∈ Hω . Suppose
that G is a vector subspace of∏ω∈Ω Hω which satisfies the following:

[A] For every x ∈ G, the function Ω → R∶ω ↦ ∥x(ω)∥Hω
is F-measurable.

[B] For every x ∈ ∏ω∈Ω Hω ,

[ (∀y ∈ G) Ω → R∶ω ↦ ⟨x(ω) ∣ y(ω)⟩Hω
is F-measurable ] ⇒ x ∈ G.(1.5)

[C] There exists a sequence (en)n∈N in G such that (∀ω ∈ Ω) span{en(ω)}n∈N = Hω .

Then ((Hω)ω∈Ω ,G) is an F-measurable vector field of real Hilbert spaces.

We shall operate within the framework of [20, Section II.§1.5], which revolves
around the following assumption.
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Hilbert direct integrals of monotone operators 3

Assumption 1.2 Let (Ω,F, μ) be a complete σ-finite measure space, let ((Hω)ω∈Ω ,G)
be an F-measurable vector field of real Hilbert spaces, and set

H = {x ∈ G ∣ ∫
Ω
∥x(ω)∥2

Hω
μ(dω) < +∞}.(1.6)

Let H be the real vector space of equivalence classes of μ-a.e. equal mappings in H

equipped with the scalar product

⟨⋅ ∣ ⋅⟩H∶H ×H → R∶ (x , y) ↦ ∫
Ω
⟨x(ω) ∣ y(ω)⟩Hω

μ(dω),(1.7)

where we adopt the common practice of designating by x both an equivalence class in
H and a representative of it in H. Then H is a Hilbert space [20, Proposition II.§1.5(i)],
called the Hilbert direct integral of (Hω)ω∈Ω relative to G. Following [20, Définition
II.§1.3], we write

H =
G

∫
⊕

Ω
Hω μ(dω).(1.8)

We are now in a position to propose a definition for an arbitrary product of set-
valued operators acting on different Hilbert spaces.

Definition 1.3 Suppose that Assumption 1.2 is in force and, for every ω ∈ Ω, let
Aω ∶Hω → 2Hω . The Hilbert direct integral of the operators (Aω)ω∈Ω relative to G is

G

∫
⊕

Ω
Aω μ(dω)∶H → 2H∶ x ↦ {x∗ ∈H ∣ (∀μ ω ∈ Ω) x∗(ω) ∈ Aω(x(ω))}.(1.9)

In tandem with Definition 1.3, we introduce the following notion of an arbitrary
direct sum of functions defined on different Hilbert spaces. In the convex case, the
subdifferential operator will serve as a bridge between Definitions 1.3 and 1.4. Indeed,
we shall establish in Theorem 4.7 that, under suitable assumptions,

∂(
G

∫
⊕

Ω
fω μ(dω)) =

G

∫
⊕

Ω
∂fω μ(dω).(1.10)

Definition 1.4 Suppose that Assumption 1.2 is in force and, for every ω ∈ Ω, let
fω ∶Hω → [−∞,+∞]. Suppose that, for every x ∈ H, the function Ω → [−∞,+∞]∶ω ↦
fω(x(ω)) is F-measurable. The Hilbert direct integral of the functions (fω)ω∈Ω relative
to G is

G

∫
⊕

Ω
fω μ(dω)∶H → [−∞,+∞]∶ x ↦ ∫

Ω
fω(x(ω))μ(dω),(1.11)

where we adopt the customary convention that the integral ∫Ω ϑdμ of an F-
measurable function ϑ∶Ω → [−∞,+∞] is the usual Lebesgue integral, except when
the Lebesgue integral ∫Ω max{ϑ , 0}dμ is +∞, in which case ∫Ω ϑdμ = +∞.

The remainder of the paper is as follows. Section 2 presents our notation and
provides preliminary results. The Hilbert direct integral of a family of set-valued
operators introduced in Definition 1.3 is studied in Section 3. In particular, we establish
conditions under which properties such as monotonicity, maximal monotonicity,
cocoercivity, and averagedness are transferable from the factor operators to the Hilbert
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4 M. N. Bùi and P. L. Combettes

direct integral. We also establish formulas for the domain, range, inverse, resolvent,
and Yosida approximation of this integral. Section 4 focuses on the Hilbert direct
integral of functions of Definition 1.4. We provide conditions for evaluating the
Legendre conjugate, the subdifferential, the recession function, the Moreau envelope,
and the proximity operator of the Hilbert direct integral of a family of functions by
applying these operations to each factor and then taking the Hilbert direct integral of
the resulting family. In Section 5, the results of Section 3 are used to investigate integral
inclusion problems involving a family of linearly composed monotone operators. In
this context, we propose a duality theory and discuss some applications.

2 Notation and theoretical tools

2.1 Notation

We follow the notation of [3], to which we refer for a detailed account of the following
notions.

LetH be a real Hilbert space with identity operator IdH, scalar product ⟨⋅ ∣ ⋅⟩H, and
associated norm ∥⋅∥H. The weak convergence of a sequence (xn)n∈N to x is denoted
by xn ⇀ x, and xn → x denotes its strong convergence.

Let C be a nonempty closed convex subset of H. Then ιC is the indicator function
of C, dC is the distance function to C, projC is the projection operator onto C, C⊖ is
the polar cone of C, and NC is the normal cone operator of C.

Let T ∶H →H and τ ∈]0,+∞[. Then T is nonexpansive if it is 1-Lipschitzian, τ-
averaged if τ ∈]0, 1[ and IdH + τ−1(T − IdH) is nonexpansive, τ-cocoercive if

(∀x ∈H)(∀y ∈H) ⟨x − y ∣Tx − Ty⟩H ⩾ τ∥Tx − Ty∥2
H ,(2.1)

and T is firmly nonexpansive if it is 1-cocoercive.
Let A∶H → 2H. The domain of A is dom A = {x ∈H ∣ Ax ≠ ∅}, the range of A

is ran A = ⋃x∈dom A Ax, the set of zeros of A is zer A = {x ∈H ∣ 0 ∈ Ax}, and the
graph of A is gra A = {(x , x∗) ∈H ×H ∣ x∗ ∈ Ax}. The inverse of A is the operator
A−1∶H → 2H with graph gra A−1 = {(x∗ , x) ∈H ×H ∣ x∗ ∈ Ax}. The resolvent of A
is JA = (IdH + A)−1, and the Yosida approximation of A of index γ ∈]0,+∞[ is γA =
(IdH − JγA)/γ = (γIdH + A−1)−1. Suppose that A is monotone (see (1.1)). Then A
is maximally monotone if there exists no monotone operator B∶H → 2H such that
gra A ⊂ gra B ≠ gra A. In this case, dom JA =H, JA is firmly nonexpansive, and for
every x ∈ dom A, Ax is nonempty, closed, and convex, and we set 0Ax = projAx 0.

We denote by Γ0(H) the class of functions f ∶H →]−∞,+∞] which are lower
semicontinuous, convex, and such that dom f = {x ∈H ∣ f (x) < +∞} ≠ ∅. Let f ∈
Γ0(H). The conjugate of f is Γ0(H) ∋ f ∗∶ x∗ ↦ supx∈H(⟨x ∣ x∗⟩H − f (x)) and the
subdifferential of f is the maximally monotone operator

∂ f ∶H → 2H∶ x ↦ {x∗ ∈H ∣ (∀y ∈H) ⟨y − x ∣ x∗⟩H + f (x) ⩽ f (y)}.(2.2)

The proximity operator prox f = J∂ f of f maps every x ∈H to the unique minimizer
of the function H →]−∞,+∞]∶ y ↦ f (y) + ∥x − y∥2

H/2, the Moreau envelope of f of

https://doi.org/10.4153/S0008414X2400049X Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X2400049X
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index γ ∈]0,+∞[ is γ f ∶H → R∶ x ↦ miny∈H( f (y) + ∥x − y∥2
H/(2γ)), and rec f is the

recession function of f.

2.2 Integrals of set-valued mappings

Let (Ω,F, μ) be a complete σ-finite measure space, and let H be a separable real
Hilbert space. For every p ∈ [1,+∞[, set

L p(Ω,F, μ;H) =

{x∶Ω → H ∣ x is (F,BH)-measurable and ∫
Ω
∥x(ω)∥p

H μ(dω) < +∞},(2.3)

where BH stands for the Borel σ-algebra of H. The Lebesgue (also called Bochner
[25]) integral of a mapping x ∈L 1(Ω,F, μ;H) is denoted by ∫Ω x(ω)μ(dω). We
denote by Lp(Ω,F, μ;H) the space of equivalence classes of μ-a.e. equal mappings
in L p(Ω,F, μ;H) (see [36, Section V.§7] for background). The Aumann integral of a
set-valued mapping X∶Ω → 2H is

∫
Ω

X(ω)μ(dω) =

{∫
Ω

x(ω)μ(dω) ∣ x ∈L 1(Ω,F, μ;H) and (∀μ ω ∈ Ω) x(ω) ∈ X(ω)}.(2.4)

2.3 Hilbert direct integrals of Hilbert spaces

Going back to Definition 1.1 and Assumption 1.2, the following examples of Hilbert
direct integrals will be used repeatedly.

Example 2.1 Here are instances of measurable vector fields and Hilbert direct
integrals based on [20, Examples on pages 142, 143, and 148].
(i) Let p ∈ N/{0} and let (αk)1⩽k⩽p ∈]0,+∞[p . Set

Ω = {1, . . . , p}, F = 2{1, . . . , p} and (∀k ∈ {1, . . . , p}) μ({k}) = αk .(2.5)

Let (Hk)1⩽k⩽p be separable real Hilbert spaces, and let G = H1 × ⋅ ⋅ ⋅ ×Hp be the
usual Cartesian product vector space. Then ((Hk)1⩽k⩽p ,G) is an F-measurable
vector field of real Hilbert spaces and G

∫
⊕

Ω Hω μ(dω) is the weighted Hilbert
direct sum of (Hk)1⩽k⩽p , that is, the Hilbert space obtained by equipping G with
the scalar product

((xk)1⩽k⩽p , (yk)1⩽k⩽p) ↦
p

∑
k=1

αk⟨xk ∣ yk⟩Hk
.(2.6)

(ii) In the setting of (i), suppose that (∀k ∈ {1, . . . , p})αk = 1. Then
G

∫
⊕

Ω
Hω μ(dω) = H1 ⊕ ⋅ ⋅ ⋅ ⊕Hp(2.7)

is the standard Hilbert direct sum of (Hk)1⩽k⩽p .
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6 M. N. Bùi and P. L. Combettes

(iii) Let (αk)k∈N be a sequence in ]0,+∞[ and set

Ω = N, F = 2N , and (∀k ∈ N) μ({k}) = αk .(2.8)

Let (Hk)k∈N be separable real Hilbert spaces and set G = ∏k∈NHk . Then
((Hk)k∈N ,G) is an F-measurable vector field of real Hilbert spaces and
G

∫
⊕

Ω Hω μ(dω) is the Hilbert space obtained by equipping the vector space

H = {(xk)k∈N ∈ G ∣ ∑
k∈N

αk∥xk∥2
Hk
< +∞}(2.9)

with the scalar product

((xk)k∈N , (yk)k∈N) ↦ ∑
k∈N

αk⟨xk ∣ yk⟩Hk
.(2.10)

(iv) Let (Ω,F, μ) be a complete σ-finite measure space, let H be a separable real
Hilbert space, and set

[ (∀ω ∈ Ω) Hω = H ] and G = {x∶Ω → H ∣ x is (F,BH)-measurable}.(2.11)

Then ((Hω)ω∈Ω ,G) is an F-measurable vector field of real Hilbert spaces and
G

∫
⊕

Ω
Hω μ(dω) = L2(Ω,F, μ;H).(2.12)

The following results are given as remarks in [20, Section II.§1.3]. We provide proofs
for completeness.
Lemma 2.2 Let (Ω,F, μ) be a complete σ-finite measure space, and let ((Hω)ω∈Ω ,G)
be an F-measurable vector field of Hilbert spaces. Then the following hold:
(i) Let x and y be in G. Then the function Ω → R∶ω ↦ ⟨x(ω) ∣ y(ω)⟩Hω

is
F-measurable.

(ii) Let x ∈ ∏ω∈Ω Hω and y ∈ G be such that x = y μ-a.e. Then x ∈ G.
(iii)Let ξ∶Ω → R be F-measurable, and let x ∈ G. Then the mapping ξx∶ω ↦

ξ(ω)x(ω) lies in G.
(iv) Let (xn)n∈N be a sequence in G, and let x ∈ ∏ω∈Ω Hω . Suppose that (∀μ ω ∈ Ω)

xn(ω) ⇀ x(ω). Then x ∈ G.
(v) There exists a sequence (un)n∈N in G such that

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(∀n ∈ N) ∫
Ω
∥un(ω)∥2

Hω
μ(dω) < +∞

(∀ω ∈ Ω) {un(ω)}n∈N = Hω .
(2.13)

Proof (i): Since G is a vector subspace of ∏ω∈Ω Hω , x + y ∈ G and x − y ∈ G.
Hence, by property [A] in Definition 1.1, the functions Ω → R∶ω ↦ ∥x(ω) + y(ω)∥Hω
and Ω → R∶ω ↦ ∥x(ω) − y(ω)∥Hω

are F-measurable. Therefore, the assertion fol-
lows from the polarization identity (∀ω ∈ Ω)4⟨x(ω) ∣ y(ω)⟩Hω

= ∥x(ω) + y(ω)∥2
Hω
−

∥x(ω) − y(ω)∥2
Hω

.
(ii): Take z ∈ G. Then (∀μ ω ∈ Ω)⟨x(ω) ∣ z(ω)⟩Hω

= ⟨y(ω) ∣ z(ω)⟩Hω
. At the same

time, since y and z lie in G, we deduce from (i) that the function Ω → R∶ω ↦
⟨y(ω) ∣ z(ω)⟩Hω

is F-measurable. Hence, the completeness of (Ω,F, μ) implies that
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Hilbert direct integrals of monotone operators 7

the function Ω → R∶ω ↦ ⟨x(ω) ∣ z(ω)⟩Hω
is also F-measurable. Consequently, prop-

erty [B] in Definition 1.1 forces x ∈ G.
(iii): We have ξx ∈ ∏ω∈Ω Hω . On the other hand, for every y ∈ G, it results from (i)

that the function ω ↦ ⟨ξ(ω)x(ω) ∣ y(ω)⟩Hω
= ξ(ω)⟨x(ω) ∣ y(ω)⟩Hω

isF-measurable.
Hence, we conclude via property [B] in Definition 1.1 that ξx ∈ G.

(iv): Let Ξ ∈ F be such that μ(Ξ) = 0 and (∀ω ∈ ∁Ξ)xn(ω) ⇀ x(ω). Moreover, set

[ (∀n ∈ N) yn = 1∁Ξ xn ] and y = 1∁Ξ x ,(2.14)

and let z ∈ G. For every n ∈ N, it results from (iii) that yn ∈ G and, in turn, from (i)
that the function Ω → R∶ω ↦ ⟨yn(ω) ∣ z(ω)⟩Hω

is F-measurable. Additionally,

(∀ω ∈ Ξ) lim⟨yn(ω) ∣ z(ω)⟩Hω
= 0 = ⟨y(ω) ∣ z(ω)⟩Hω

(2.15)

and

(∀ω ∈ ∁Ξ) lim⟨yn(ω) ∣ z(ω)⟩Hω
= lim⟨xn(ω) ∣ z(ω)⟩Hω

= ⟨x(ω) ∣ z(ω)⟩Hω
= ⟨y(ω) ∣ z(ω)⟩Hω

.(2.16)

Hence, the function Ω → R∶ω ↦ ⟨y(ω) ∣ z(ω)⟩Hω
is F-measurable as the pointwise

limit of a sequence of F-measurable functions. Therefore, appealing to property [B] in
Definition 1.1, we deduce that y ∈ G. Consequently, since x = y μ-a.e., (ii) yields x ∈ G.

(v): Property [C] in Definition 1.1 guarantees the existence of a sequence (en)n∈N
in G such that (∀ω ∈ Ω) span{en(ω)}n∈N = Hω . Now let (rn)n∈N be an enumeration
of the set

⎧⎪⎪⎨⎪⎪⎩

n
∑
k=0

αk ek

11111111111
n ∈ N and (αk)0⩽k⩽n ∈ Qn+1

⎫⎪⎪⎬⎪⎪⎭
.(2.17)

Then

(∀n ∈ N) rn ∈ G(2.18)

and

(∀ω ∈ Ω) {rn(ω)}n∈N = Hω .(2.19)

Since (Ω,F, μ) is σ-finite, we obtain an increasing sequence (Ωk)k∈N in F of finite
μ-measure such that ⋃k∈N Ωk = Ω. Set

(∀n ∈ N)(∀m ∈ N)(∀k ∈ N) Ξn ,m ,k = {ω ∈ Ωk ∣ ∥rn(ω)∥Hω
⩽ m}

and sn ,m ,k = 1Ξn ,m ,k rn .(2.20)

For every n ∈ N, it results from (2.18) and property [A] in Definition 1.1 that the
function Ω → R∶ω ↦ ∥rn(ω)∥Hω

is F-measurable. Therefore, for every n ∈ N, every
m ∈ N, and every k ∈ N, Ξn ,m ,k ∈ F and we thus infer from (iii) and (2.18) that
sn ,m ,k ∈ G whereas, by (2.20),

∫
Ω
∥sn ,m ,k(ω)∥2

Hω
μ(dω) ⩽ μ(Ξn ,m ,k)m ⩽ μ(Ωk)m < +∞.(2.21)

Next, take ω ∈ Ω, x ∈ Hω , and ε ∈]0, 1[. By (2.19), there exists n ∈ N such that
∥rn(ω) − x∥Hω

⩽ ε. In turn, the triangle inequality gives ∥rn(ω)∥Hω
⩽ ε + ∥x∥Hω

.
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However, since ⋃k∈N Ωk = Ω, there exists k ∈ N such that ω ∈ Ωk . Therefore, upon
choosing m ∈ N such that m ⩾ ε + ∥x∥Hω

, we deduce that ω ∈ Ξn ,m ,k . Thus, combining
with (2.20) yields ∥sn ,m ,k(ω) − x∥Hω

= ∥rn(ω) − x∥Hω
⩽ ε. ∎

Lemma 2.3 [20, Proposition II.§1.5(ii)] Suppose that Assumption 1.2 is in force and
let (xn)n∈N be a sequence in H which converges strongly to a point x ∈H. Then there
exists a strictly increasing sequence (kn)n∈N in N such that (∀μ ω ∈ Ω)xkn(ω) → x(ω).

3 Hilbert direct integrals of set-valued operators

We study the properties of the Hilbert direct integrals of set-valued operators intro-
duced in Definition 1.3. Let us first point out an important special case of Definition 1.3.
Definition 3.1 Suppose that Assumption 1.2 is in force and, for every ω ∈ Ω, let Cω
be a subset of Hω . The Hilbert direct integral of the sets (Cω)ω∈Ω relative to G is

G

∫
⊕

Ω
Cω μ(dω) = {x ∈H ∣ (∀μ ω ∈ Ω) x(ω) ∈ Cω}.(3.1)

We first record the following facts, which are direct consequences of Definitions 1.3
and 3.1.
Proposition 3.2 Suppose that Assumption 1.2 is in force and, for every ω ∈ Ω, let
Aω ∶Hω → 2Hω be a set-valued operator. Set

A =
G

∫
⊕

Ω
Aω μ(dω).(3.2)

Then the following hold:
(i) dom A = {x ∈H ∣ (∃ x∗ ∈ H)(∀μ ω ∈ Ω) x∗(ω) ∈ Aω(x(ω))}.
(ii) ran A = {x∗ ∈H ∣ (∃ x ∈ H)(∀μ ω ∈ Ω) x∗(ω) ∈ Aω(x(ω))}.

(iii)zer A =
G

∫
⊕

Ω
zerAω μ(dω).

(iv) A−1 =
G

∫
⊕

Ω
A−1

ω μ(dω).
(v) Suppose that, for every ω ∈ Ω, Aω is monotone. Then A is monotone.
Remark 3.3. Regarding Proposition 3.2(i), consider the setting of Example 2.1(iii)
and suppose that, in addition, (∀k ∈ N)Hk = R. For every k ∈ N, setAk ∶Hk → Hk ∶ x↦
k/√αk . Then

dom(
G

∫
⊕

Ω
Aω μ(dω)) = ∅.(3.3)

The following result examines the interplay between the properties of the direct
integral and those of its factor operators.
Proposition 3.4 Suppose that Assumption 1.2 is in force and, for every ω ∈ Ω, let
Tω ∶Hω → Hω be strong-to-weak continuous. Set

T =
G

∫
⊕

Ω
Tω μ(dω)(3.4)

and suppose that the following are satisfied:
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[A] For every x ∈ H, the mapping ω ↦ Tω(x(ω)) lies in G.
[B] There exists z ∈ H such that the mapping ω ↦ Tω(z(ω)) lies in H.
Then the following hold:

(i) Let β ∈ [0,+∞[. Then the following are equivalent:
(a) For μ-almost every ω ∈ Ω, Tω is β-Lipschitzian.
(b) dom T =H and T is β-Lipschitzian.

(ii) Let τ ∈]0,+∞[. Then the following are equivalent:
(a) For μ-almost every ω ∈ Ω, Tω is τ-cocoercive.
(b) dom T =H and T is τ-cocoercive.

(iii) Let α ∈]0, 1[. Then the following are equivalent:
(a) For μ-almost every ω ∈ Ω, Tω is α-averaged.
(b) dom T =H and T is α-averaged.

Proof Observe that T is at most single-valued. On the other hand, Lemma 2.2(v)
states that there exists a sequence (un)n∈N in H such that

(∀ω ∈ Ω) {un(ω)}n∈N = Hω .(3.5)

(i)(a)⇒(i)(b): Let Ξ ∈ F be such that μ(Ξ) = 0 and, for every ω ∈ ∁Ξ, Tω is
β-Lipschitzian. Then

(∀x ∈ H)(∀y ∈ H)(∀ω ∈ ∁Ξ) ∥Tω(x(ω)) −Tω(y(ω))∥
Hω
⩽ β∥x(ω) − y(ω)∥Hω

.
(3.6)

In turn, since G is a vector subspace of ∏ω∈Ω Hω , we infer from [A] and (1.6) that,
for every x ∈ H and every y ∈ H, the mapping ω ↦ Tω(x(ω)) −Tω(y(ω)) lies in
H. Thus, [B] implies that, for every x ∈ H, the mapping ω ↦ Tω(x(ω)) lies in H

as the sum of two mappings in H, namely ω ↦ Tω(x(ω)) −Tω(z(ω)) and ω ↦
Tω(z(ω)). Therefore, dom T =H. Additionally, it results from (3.6) and (1.7) that T
is β-Lipschitzian.

(i)(b)⇒(i)(a): Fix temporarily n ∈ N and m ∈ N. For every Ξ ∈ F such that μ(Ξ) <
+∞, since 1Ξun ∈ H and 1Ξum ∈ H thanks to Lemma 2.2(iii), we derive from (1.7) that

∫
Ξ
∥Tω(un(ω)) −Tω(um(ω))∥2

Hω
μ(dω) = ∥T(1Ξun) − T(1Ξum)∥2

H

⩽ β2∥1Ξun − 1Ξum∥2
H

= ∫
Ξ

β2∥un(ω) − um(ω)∥2
Hω

μ(dω).(3.7)

Hence, since (Ω,F, μ) is σ-finite, there exists Ξn ,m ∈ F such that

μ(Ξn ,m) = 0
and (∀ω ∈ ∁Ξn ,m) ∥Tω(un(ω)) −Tω(um(ω))∥

Hω
⩽ β∥un(ω) − um(ω)∥Hω

.

(3.8)
Now set Ξ = ⋃n∈N,m∈N Ξn ,m , let ω ∈ ∁Ξ, let x ∈ Hω , and let y ∈ Hω . Then, Ξ ∈ F with
μ(Ξ) = 0 and, in view of (3.5), there exist sequences (kn)n∈N and (ln)n∈N in N such
that ukn(ω) → x and u ln(ω) → y. At the same time, by (3.8),

(∀n ∈ N) ∥Tω(ukn(ω)) −Tω(u ln(ω))∥
Hω
⩽ β∥ukn(ω) − u ln(ω)∥Hω

.(3.9)
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10 M. N. Bùi and P. L. Combettes

Thus, since ∥⋅∥Hω
is weakly lower semicontinuous, letting n → +∞ and invoking the

strong-to-weak continuity of Tω , we get ∥Tωx −Tωy∥Hω
⩽ β∥x − y∥Hω

.
(ii) and (iii): Argue as in (i). ∎

Proposition 3.5 Suppose that Assumption 1.2 is in force and, for every ω ∈ Ω, let
Aω ∶Hω → 2Hω be a set-valued operator. Set

A =
G

∫
⊕

Ω
Aω μ(dω)(3.10)

and let γ ∈]0,+∞[. Then

JγA =
G

∫
⊕

Ω
JγAω μ(dω) and γA =

G

∫
⊕

Ω
γAω μ(dω).(3.11)

Proof Set T = G

∫
⊕

Ω JγAω μ(dω). We derive from Definition 1.3 and [3, Proposition
23.2(ii)] that

(∀x ∈H) Tx = {p ∈H ∣ (∀μ ω ∈ Ω) p(ω) ∈ JγAω(x(ω))}
= {p ∈H ∣ (∀μ ω ∈ Ω) γ−1(x(ω) − p(ω)) ∈ Aω(p(ω))}
= {p ∈H ∣ γ−1(x − p) ∈ Ap}
= JγAx .(3.12)

Likewise, upon setting R = G

∫
⊕

Ω
γAω μ(dω), we deduce from Definition 1.3 and [3,

Proposition 23.2(iii)] that

(∀x ∈H) Rx = {p ∈H ∣ (∀μ ω ∈ Ω) p(ω) ∈ γAω(x(ω))}
= {p ∈H ∣ (∀μ ω ∈ Ω) p(ω) ∈ Aω(x(ω) − γp(ω))}
= {p ∈H ∣ p ∈ A(x − γp)}
= γAx ,(3.13)

which completes the proof. ∎
Assumption 3.6 Assumption 1.2 and the following are in force:
[A] For every ω ∈ Ω, Aω ∶Hω → 2Hω is maximally monotone.
[B] For every x ∈ H, the mapping ω ↦ JAω(x(ω)) lies in G.
[C] dom G

∫
⊕

Ω Aω μ(dω) ≠ ∅.

Proposition 3.7 Suppose that Assumption 3.6 is in force. Then the following hold:
(i) For every ω ∈ Ω, A−1

ω ∶Hω → 2Hω is maximally monotone.
(ii) For every x ∈ H, the mapping ω ↦ JA−1

ω
(x(ω)) lies in G.

(iii) dom G

∫
⊕

Ω A−1
ω μ(dω) ≠ ∅.

Proof We infer from Assumption 3.6[A] and [3, Propositions 20.22 and 23.20]
that, for every ω ∈ Ω, A−1

ω is maximally monotone and JA−1
ω
= IdHω − JAω . In turn, for

every x ∈ H, since G is a vector subspace of ∏ω∈Ω Hω , it follows from Assumption
3.6[B] that the mapping ω ↦ JA−1

ω
(x(ω)) lies in G as the difference of the mappings

x and ω ↦ JAω(x(ω)). Finally, Proposition 3.2(iv) and Assumption 3.6[C] yield
dom G

∫
⊕

Ω A−1
ω μ(dω) = ran G

∫
⊕

Ω Aω μ(dω) ≠ ∅. ∎
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The main result of this section is the following theorem, which establishes the main
properties of Hilbert direct integrals of maximally monotone operators. Special cases
of items (i) and (ii) corresponding to scenarios described in Example 2.1 can be found
in [1, 3, 6, 18, 32].

Theorem 3.8 Suppose that Assumption 3.6 is in force and set

A =
G

∫
⊕

Ω
Aω μ(dω).(3.14)

Then the following hold:

(i) A is maximally monotone.
(ii) Let γ ∈]0,+∞[ and x ∈ H. Then the following are satisfied:

(a) The mapping ω ↦ JγAω(x(ω)) lies inH and JγAx =
G

∫
⊕

Ω
JγAω(x(ω))μ(dω).

(b) The mapping ω ↦ γAω(x(ω)) lies in H and γAx =
G

∫
⊕

Ω
γAω(x(ω))μ(dω).

(iii) dom A =
G

∫
⊕

Ω
domAω μ(dω) =

G

∫
⊕

Ω
domAω μ(dω).

(iv) ran A =
G

∫
⊕

Ω
ranAω μ(dω) =

G

∫
⊕

Ω
ranAω μ(dω).

(v) Let x ∈ H be such that (∀ω ∈ Ω)x(ω) ∈ domAω . Then the following are satisfied:
(a) The mapping ω ↦ 0Aω(x(ω)) lies in G.
(b) Suppose that x ∈ dom A. Then the mapping ω ↦ 0Aω(x(ω)) lies in H and

0Ax =
G

∫
⊕

Ω
0Aω(x(ω))μ(dω).

Proof (i): By [3, Proposition 23.2(i)] and Assumption 3.6[C], ran JA = dom A ≠ ∅
and there thus exist z and r in H such that r ∈ JAz or, equivalently, z − r ∈ Ar. Hence,
for μ-almost every ω ∈ Ω, z(ω) − r(ω) ∈ Aω(r(ω)) and, therefore, the monotonicity
of Aω yields r(ω) = JAω(z(ω)). Thus, because r ∈ H, we infer from Lemma 2.2(ii)
that the mapping ω ↦ JAω(z(ω)) lies in H. In turn, appealing to Assumption 3.6[B],
we deduce from Proposition 3.4(iii) (applied to the firmly nonexpansive operators
(JAω)ω∈Ω) and Proposition 3.5 that JA∶H →H is firmly nonexpansive. Consequently,
[3, Proposition 23.8(iii)] guarantees that A is maximally monotone.

(ii): Use (i), Proposition 3.5, and Lemma 2.2(ii).
(iii): By (i) and [3, Corollary 21.14], dom A is a nonempty closed convex subset of

H. Fix temporarily x ∈ H, let (γn)n∈N be a sequence in ]0, 1[ such that γn ↓ 0, and set

p = projdom A x and (∀n ∈ N) pn ∶ω ↦ JγnAω(x(ω)).(3.15)

We infer from (ii)(a) that, for every n ∈ N, pn ∈ H and pn = Jγn Ax. Thus, it follows from
(i) and [3, Theorem 23.48] that pn → p in H. In turn, Lemma 2.3 ensures that there
exist a strictly increasing sequence (kn)n∈N inN and a set Ξ ∈ F such that μ(Ξ) = 0 and
(∀ω ∈ ∁Ξ)pkn(ω) → p(ω). On the other hand, we deduce from Assumption 3.6[A]
and [3, Theorem 23.48] that (∀ω ∈ ∁Ξ)pkn(ω) = Jγkn Aω(x(ω)) → projdom Aω

(x(ω)).
Therefore, (∀ω ∈ ∁Ξ)p(ω) = projdom Aω

(x(ω)). Hence, because p ∈ H, it results from
Lemma 2.2(ii) that the mapping ω ↦ projdom Aω

(x(ω)) is a representative in H of
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12 M. N. Bùi and P. L. Combettes

projdom A x. This confirms that

projdom A =
G

∫
⊕

Ω
projdom Aω

μ(dω).(3.16)

Therefore, using Definition 3.1, we get

dom A = {x ∈H ∣ x = projdom A x}

= {x ∈H ∣ (∀μ ω ∈ Ω) x(ω) = projdom Aω
(x(ω))}

= {x ∈H ∣ (∀μ ω ∈ Ω) x(ω) ∈ domAω}

=
G

∫
⊕

Ω
domAω μ(dω).(3.17)

Thus, G

∫
⊕

Ω domAω μ(dω) is a closed subset of H. Consequently, we deduce from
Proposition 3.2(i) and Definition 3.1 that

dom A ⊂
G

∫
⊕

Ω
domAω μ(dω) ⊂

G

∫
⊕

Ω
domAω μ(dω) = dom A,(3.18)

which furnishes the desired identities.
(iv): In the light of Proposition 3.2(iv) and Proposition 3.7, the claim follows from

(iii) applied to the family (A−1
ω )ω∈Ω .

(v): Let (γn)n∈N be a sequence in ]0, 1[ such that γn ↓ 0, and set

p∶ω ↦ 0Aω(x(ω)) and (∀n ∈ N) pn ∶ω ↦ γnAω(x(ω)).(3.19)

Then, on account of (ii)(b),

(∀n ∈ N) pn ∈ H and pn = γn Ax .(3.20)

(v)(a): For every ω ∈ Ω, since Aω is maximally monotone and x(ω) ∈ domAω , [3,
Corollary 23.46(i)] yields pn(ω) → p(ω). Hence, thanks to Lemma 2.2(iv), we obtain
p ∈ G.

(v)(b): Set q = 0Ax. It follows from (3.20), (i), and [3, Corollary 23.46(i)] that
pn → q in H. Thus, we infer from Lemma 2.3 that there exists a strictly increasing
sequence (kn)n∈N in N such that (∀μ ω ∈ Ω)pkn(ω) → q(ω). In turn, p = q μ-a.e. and
we conclude by invoking Lemma 2.2(ii). ∎

Example 3.9 Consider the setting of Example 2.1(iii) and suppose that, in addi-
tion, (∀k ∈ N)αk = 1 and Hk = R. Then H = �2(N). Now define (∀k ∈ N) Ak ∶Hk →
Hk ∶ x↦ 2kx. Then

dom(
G

∫
⊕

Ω
Aω μ(dω)) =

⎧⎪⎪⎨⎪⎪⎩
(xk)k∈N ∈ �2(N)

11111111111
∑
k∈N

4k ∣xk ∣2 < +∞
⎫⎪⎪⎬⎪⎪⎭

≠ �2(N) =
G

∫
⊕

Ω
domAω μ(dω).(3.21)

The closure operation in items (iii) and (iv) in Theorem 3.8 can therefore not be
omitted.
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Corollary 3.10 Let (Ω,F, μ) be a complete σ-finite measure space, letH be a separable
real Hilbert space, and for every ω ∈ Ω, let Aω ∶H→ 2H be maximally monotone. Set
H = L2(Ω,F, μ;H) and

A∶H → 2H∶ x ↦ {x∗ ∈H ∣ (∀μ ω ∈ Ω) x∗(ω) ∈ Aω(x(ω))}.(3.22)

Suppose that dom A ≠ ∅. Then the following are equivalent:
(i) A is maximally monotone.

(ii) For every x ∈ H, the mapping Ω → H∶ω ↦ JAωx is (F,BH)-measurable.
(iii) For every open set V in H⊕H, {ω ∈ Ω ∣ V ∩ graAω ≠ ∅} ∈ F.

Proof In the light of Example 2.1(iv), H is the Hilbert direct integral of the
F-measurable vector field ((Hω)ω∈Ω ,G) defined by

[ (∀ω ∈ Ω) Hω = H ] and G = {x∶Ω → H ∣ x is (F,BH)-measurable}.(3.23)

Additionally, by (3.22),

A =
G

∫
⊕

Ω
Aω μ(dω).(3.24)

(i)⇒(ii): We have dom A ≠ ∅ and JA∶H →H [3, Corollary 23.11(i)]. Thus, invoking
Proposition 3.5 and Lemma 2.2(ii), we deduce that

(∀x ∈L 2(Ω,F, μ;H)) the mapping Ω → H∶ω ↦ JAω(x(ω)) lies in L 2(Ω,F, μ;H).
(3.25)

Next, take x ∈ H. Since (Ω,F, μ) is σ-finite, there exists an increasing
sequence (Ωn)n∈N in F of finite μ-measure such that ⋃n∈N Ωn = Ω. In turn,
{1Ωnx}n∈N ⊂L 2(Ω,F, μ;H) and (∀ω ∈ Ω) 1Ωn(ω)x→ x. Hence, on account of
(3.25), we deduce that, for every n ∈ N, the mapping Ω → H∶ω ↦ JAω(1Ωn(ω)x) is
(F,BH)-measurable. In addition, the continuity of the operators (JAω)ω∈Ω yields
(∀ω ∈ Ω)JAω(1Ωn(ω)x) → JAωx. Altogether, it results from Lemma 2.2(iv) that the
mapping Ω → H∶ω ↦ JAωx is (F,BH)-measurable.

(ii)⇒(i): Applying [14, Lemma III.14] to the mapping Ω ×H→ H∶ (ω, x) ↦ JAωx,
we deduce that, for every x ∈ G, the mapping ω ↦ JAω(x(ω)) lies in G. Therefore, in
the setting of (3.23), the family (Aω)ω∈Ω satisfies Assumption 3.6. Consequently, we
conclude via (3.24) and Theorem 3.8(i) that A is maximally monotone.

(ii)⇔(iii): Combine [1, Lemme 2.1] and [1, Théorème 2.1]. ∎

Remark 3.11. The implication (iii)⇒(i) in Corollary 3.10 is stated in [32, Theorem
5.1].

Proposition 3.12 Suppose that Assumption 1.2 is in force. Let G be a separable real
Hilbert space, and, for every ω ∈ Ω, let Lω ∶G→ Hω be linear and bounded. Suppose
that, for every z ∈ G, the mapping

eLz∶ω ↦ Lωz(3.26)

lies in G. Then the following holds:
(i) The function Ω → R∶ω ↦ ∥Lω∥ is F-measurable.
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Suppose additionally that ∫Ω∥Lω∥2 μ(dω) < +∞ and define

L∶G→H∶ z↦ eLz.(3.27)

Then the following hold:

(ii) L is well defined, linear, and bounded with ∥L∥ ⩽
√
∫Ω∥Lω∥2 μ(dω).

(iii)Let x∗ ∈ G. Then the mapping Ω → G∶ω ↦ L∗ω(x∗(ω)) is (F,BG)-measurable.
(iv) Let x∗ ∈ H. Then the mapping Ω → G∶ω ↦ L∗ω(x∗(ω)) is Lebesgue μ-integrable.
(v) L∗∶H → G∶ x∗ ↦ ∫Ω L∗ω(x∗(ω))μ(dω).
Proof (i): Let {zn}n∈N be a dense subset of {z ∈ G ∣ ∥z∥G ⩽ 1}. On the one hand,
property [A] in Definition 1.1 ensures that, for every n ∈ N, the function Ω → R∶ω ↦
∥Lωzn∥Hω

is F-measurable. On the other hand, thanks to the continuity of the
operators (Lω)ω∈Ω ,

(∀ω ∈ Ω) ∥Lω∥ = sup
z∈G
∥z∥G⩽1

∥Lωz∥Hω
= sup

n∈N
∥Lωzn∥Hω

.(3.28)

Altogether, the function Ω → R∶ω ↦ ∥Lω∥ is F-measurable.
(ii): For every z ∈ G, we deduce from (3.26) that

∫
Ω
∥(eLz)(ω)∥2

Hω
μ(dω) = ∫

Ω
∥Lωz∥2

Hω
μ(dω) ⩽ ∥z∥2

G ∫Ω
∥Lω∥2 μ(dω) < +∞(3.29)

and, in turn, from (1.6) that eLz ∈ H. This confirms that L is well defined. In addition,
the linearity of the operators (Lω)ω∈Ω guarantees that of L. The last claims follow from
(3.29) and (1.7).

(iii): For every z ∈ G, Lemma 2.2(i) implies that the function Ω → R∶ω ↦
⟨z ∣L∗ω(x∗(ω))⟩G = ⟨Lωz ∣ x∗(ω)⟩Hω

is F-measurable. In turn, invoking the separabi-
lity of G, as well as the fact that (Ω,F, μ) is complete and σ-finite, we derive from [36,
Théorème 5.6.24] that the mapping Ω → G∶ω ↦ L∗ω(x∗(ω)) is (F,BG)-measurable.

(iv): By the Cauchy–Schwarz inequality,

∫
Ω
∥L∗ω(x∗(ω))∥

G
μ(dω) ⩽ ∫

Ω
∥Lω∥ ∥x∗(ω)∥Hω

μ(dω)

⩽
√
∫

Ω
∥Lω∥2 μ(dω)

√
∫

Ω
∥x∗(ω)∥2

Hω
μ(dω)

< +∞.(3.30)

Hence, the assertion follows from [36, Théorème 5.7.21].
(v): Take x∗ ∈H. It results from (1.7), (3.27), (3.26), (iv), and [36, Théorème 5.8.16]

that
(∀z ∈ G) ⟨z ∣ L∗x∗⟩G = ⟨Lz ∣ x∗⟩H

= ∫
Ω
⟨Lωz ∣ x∗(ω)⟩Hω

μ(dω)

= ∫
Ω
⟨z ∣L∗ω(x∗(ω))⟩

G
μ(dω)

= ⟨z ∣ ∫
Ω
L∗ω(x∗(ω))μ(dω)⟩

G

,(3.31)

which completes the proof. ∎
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4 Hilbert direct integrals of functions

We study the Hilbert direct integrals of families of functions introduced in Defini-
tion 1.4.

Lemma 4.1 Let H be a real Hilbert space, and let T ∶H →H. Then the following hold:
(i) There exists f ∈ Γ0(H) such that T = prox f if and only if T is nonexpansive and

cyclically monotone, that is, for every 2 ⩽ n ∈ N and every (x1 , . . . , xn+1) ∈Hn+1

such that xn+1 = x1,
n
∑
k=1
⟨xk+1 − xk ∣Txk⟩ ⩽ 0.(4.1)

(ii) There exists a nonempty closed convex subset C of H such that T = projC if and
only if

(∀x ∈H)(∀y ∈H) ⟨Ty − Tx ∣ x − Tx⟩ ⩽ 0.(4.2)

Proof (i): The core of our argument is implicitly in [28, Corollaire 10.c]. Suppose that
there exists f ∈ Γ0(H) such that T = prox f . Then, on account of [28, Corollaire 10.c]
and [3, Proposition 22.14], T is nonexpansive and cyclically monotone. Conversely,
suppose that T is nonexpansive and cyclically monotone. Then T is monotone and
it thus follows from [3, Corollary 20.28] that T is maximally monotone. Therefore,
Rockafellar’s cyclic monotonicity theorem [3, Theorem 22.18] guarantees the existence
of a function φ ∈ Γ0(H) such that T = ∂φ. We conclude by invoking [28, Corollaire
10.c].

(ii): See [38, Theorem 1.1]. ∎

Remark 4.2. In connection with Lemma 4.1(i), a characterization of proximity
operators based on firm nonexpansiveness and an alternative cyclic inequality is
provided in [2, Theorem 6.6].

In [27, 28], Moreau showed that the convex combination of finitely many prox-
imity operators acting on the same Hilbert space is a proximity operator. Here is a
generalization of this result.

Theorem 4.3 Suppose that Assumption 1.2 is in force. Let G be a separable real Hilbert
space, and, for every ω ∈ Ω, let fω ∈ Γ0(Hω) and let Lω ∶G→ Hω be linear and bounded.
Suppose that the following are satisfied:
[A] For every x ∈ H, the mapping ω ↦ proxfω

(x(ω)) lies in G.
[B] There exists z ∈ H such that the mapping ω ↦ proxfω

(z(ω)) lies in H.
[C] For every z ∈ G, the mapping eLz∶ω ↦ Lωz lies in G.
[D] ∫Ω∥Lω∥2 μ(dω) ⩽ 1.
Then

(∃g ∈ Γ0(G))(∀z ∈ G) proxg z = ∫Ω
L∗ω(proxfω

(Lωz))μ(dω).(4.3)

Proof Set T = G

∫
⊕

Ω proxfω
μ(dω). Then, on account of Proposition 3.4(i), T ∶H →H

is nonexpansive. Next, items (ii) and (v) of Proposition 3.12 ensure that the operator
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16 M. N. Bùi and P. L. Combettes

L∶G→H∶ z↦ eLz is well defined, linear, and bounded, with ∥L∥ ⩽ 1, and its adjoint is
given by

L∗∶H → G∶ x∗ ↦ ∫
Ω
L∗ω(x∗(ω))μ(dω).(4.4)

Hence, L∗ ○ T ○ L∶G→ G is nonexpansive and

(∀z ∈ G) L∗(T(Lz)) = ∫
Ω
L∗ω(proxfω

(Lωz))μ(dω).(4.5)

Therefore, in the light of Lemma 4.1(i), it remains to show that L∗ ○ T ○ L is cyclically
monotone. Toward this end, let 2 ⩽ n ∈ N and let (z1 , . . . , zn+1) ∈ Gn+1 be such that
zn+1 = z1. Then, appealing to the cyclic monotonicity of the operators (proxfω

)ω∈Ω ,

(∀ω ∈ Ω)
n
∑
k=1
⟨Lωzk+1 − Lωzk ∣proxfω

(Lωzk)⟩Hω
⩽ 0.(4.6)

Thus, it follows from (1.7) that
n
∑
k=1
⟨zk+1 − zk ∣ L∗(T(Lzk))⟩G =

n
∑
k=1
⟨Lzk+1 − Lzk ∣T(Lzk)⟩H

=
n
∑
k=1
∫

Ω
⟨Lωzk+1 − Lωzk ∣proxfω

(Lωzk)⟩Hω
μ(dω)

= ∫
Ω

n
∑
k=1
⟨Lωzk+1 − Lωzk ∣proxfω

(Lωzk)⟩Hω
μ(dω)

⩽ 0,(4.7)

which concludes the proof. ∎

Remark 4.4. Identifying the function g in (4.3) is a natural question, which led to
the introduction of the notion of integral proximal mixtures in [12].

Proposition 4.5 Suppose that Assumption 1.2 is in force and, for every ω ∈ Ω, let
Aω ∶Hω → 2Hω be maximally monotone. Set

A =
G

∫
⊕

Ω
Aω μ(dω).(4.8)

Then the following hold:
(i) Suppose that there exists f ∈ Γ0(H) such that A = ∂ f . Then, for μ-almost every

ω ∈ Ω, there exists fω ∈ Γ0(Hω) such that Aω = ∂fω .
(ii) Suppose that there exists a nonempty closed convex subset C of H such that A = NC .

Then, for μ-almost every ω ∈ Ω, there exists a nonempty closed convex subset Cω of
Hω such that Aω = NCω .

Proof Lemma 2.2(v) asserts that there exists a sequence (un)n∈N in H such that

(∀ω ∈ Ω) {un(ω)}n∈N = Hω .(4.9)

(i): Set I = {(ik)1⩽k⩽n+1 ∈ Nn+1 ∣ 2 ⩽ n ∈ N and in+1 = i1}, fix temporarily i =
(ik)1⩽k⩽n+1 ∈ I, and let Θ ∈ F be such that μ(Θ) < +∞. Then, by Lemma 2.2(iii),
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{1Θu ik}1⩽k⩽n ⊂ H. In turn, since JA∶H →H, it follows from Proposition 3.5 and
Lemma 2.2(ii) that, for every k ∈ {1, . . . , n}, a representative in H of JA(1Θu ik) is the
mapping

ω ↦
⎧⎪⎪⎨⎪⎪⎩

JAω(u ik(ω)), if ω ∈ Θ,
JAω0, if ω ∈ ∁Θ.

(4.10)

At the same time, for every k ∈ {1, . . . , n}, a representative inH of 1Θu ik is the mapping

ω ↦
⎧⎪⎪⎨⎪⎪⎩

u ik(ω), if ω ∈ Θ,
0, if ω ∈ ∁Θ.

(4.11)

Hence, since JA = prox f is cyclically monotone by virtue of [3, Example 23.3] and
Lemma 4.1, we derive from (1.7) that

∫
Θ

n
∑
k=1
⟨u ik+1(ω) − u ik(ω) ∣ JAω(u ik(ω))⟩

Hω
μ(dω)

=
n
∑
k=1
⟨1Θu ik+1 − 1Θu ik ∣ JA(1Θu ik)⟩H ⩽ 0.(4.12)

Therefore, thanks to the fact that (Ω,F, μ) is σ-finite, there exists Ξi ∈ F such that

μ(Ξi) = 0 and (∀ω ∈ ∁Ξi)
n
∑
k=1
⟨u ik+1(ω) − u ik(ω) ∣ JAω(u ik(ω))⟩

Hω
⩽ 0.(4.13)

Now set Ξ = ⋃i∈I Ξi. Since I is countable, Ξ ∈ F and μ(Ξ) = 0. Additionally, (4.13)
implies that

(∀i = (ik)1⩽k⩽n+1 ∈ I)(∀ω ∈ ∁Ξ)
n
∑
k=1
⟨u ik+1(ω) − u ik(ω) ∣ JAω(u ik(ω))⟩

Hω
⩽ 0.

(4.14)

To proceed further, take ω ∈ ∁Ξ, let 2 ⩽ n ∈ N, and let (x1 , . . . , xn+1) be a family in
Hω such that xn+1 = x1. For every k ∈ {1, . . . , n}, we infer from (4.9) that there exists
a sequence (ik ,m)m∈N in N such that u ik ,m(ω) → xk . Set (∀m ∈ N)in+1,m = i1,m . Then,
for every m ∈ N, because (ik ,m)1⩽k⩽n+1 ∈ I, it results from (4.14) that

n
∑
k=1
⟨u ik+1,m(ω) − u ik ,m(ω) ∣ JAω(u ik ,m(ω))⟩

Hω
⩽ 0.(4.15)

Therefore, the continuity of JAω forces ∑n
k=1⟨xk+1 − xk ∣ JAωxk⟩Hω

⩽ 0. Consequently,
since JAω is nonexpansive, we conclude via Lemma 4.1(i) that there exists fω ∈ Γ0(Hω)
such that JAω = proxfω

.
(ii): Argue as in (i). ∎
Let us collect the main properties of Hilbert direct integral functions under the

umbrella of the following assumption.

Assumption 4.6 Assumption 1.2 and the following are in force:
[A] For every ω ∈ Ω, fω ∈ Γ0(Hω).
[B] For every x ∈ H, the mapping ω ↦ proxfω

(x(ω)) lies in G.
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18 M. N. Bùi and P. L. Combettes

[C] There exists r ∈ H such that the function ω ↦ fω(r(ω)) lies in L 1(Ω,F, μ;R).
[D] There exist s∗ ∈ H and ϑ ∈L 1(Ω,F, μ;R) such that

(∀μ ω ∈ Ω) fω ⩾ ⟨⋅ ∣ s∗(ω)⟩Hω
+ ϑ(ω).(4.16)

The following theorem presents the main properties of Hilbert direct integrals of
convex functions. In the literature, such properties are available only in the setting of
Examples 2.1(i) and 2.1(iv); see [3, 11, 14, 35], where different techniques are employed
which are not applicable in our general context.

Theorem 4.7 Suppose that Assumption 4.6 is in force and define

f =
G

∫
⊕

Ω
fω μ(dω).(4.17)

Then the following hold:

(i) f is well defined.
(ii) f ∈ Γ0(H).
(iii) ∂ f =

G

∫
⊕

Ω
∂fω μ(dω).

(iv) Let γ ∈]0,+∞[ and x ∈ H. Then the mapping ω ↦ proxγfω
(x(ω)) lies in H and

proxγ f x =
G

∫
⊕

Ω
proxγfω

(x(ω))μ(dω).

(v) dom f =
G

∫
⊕

Ω
dom fω μ(dω) =

G

∫
⊕

Ω
dom fω μ(dω).

(vi) Argmin f =
G

∫
⊕

Ω
Argmin fω μ(dω).

(vii) Let β ∈ [0,+∞[ and suppose that, for every ω ∈ Ω, dom fω = Hω and fω is
Gâteaux differentiable on Hω . Then the following are equivalent:
(a) For μ-almost every ω ∈ Ω, ∇fω is β-Lipschitzian.
(b) dom f =H, f is Fréchet differentiable, and ∇ f is β-Lipschitzian.

(viii) Let γ ∈]0,+∞[. Then γ f =
G

∫
⊕

Ω
γfω μ(dω).

(ix) f ∗ =
G

∫
⊕

Ω
f∗ω μ(dω).

(x) rec f =
G

∫
⊕

Ω
rec fω μ(dω).

Proof According to (4.16), there exists Ξ ∈ F such that

μ(Ξ) = 0(4.18)

and

(∀x ∈ G)(∀ω ∈ ∁Ξ) fω(x(ω)) ⩾ ⟨x(ω) ∣ s∗(ω)⟩Hω
+ ϑ(ω).(4.19)

Let us define

p∶ω ↦ proxfω
(r(ω) + s∗(ω)).(4.20)
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Since r + s∗ ∈ H, Assumption 4.6[B] ensures that p ∈ G. In addition, we deduce from
[3, Proposition 16.44] that

(∀ω ∈ Ω) r(ω) + s∗(ω) − p(ω) ∈ ∂fω(p(ω))(4.21)

and, in turn, from (2.2) and (4.19) that

(∀ω ∈ ∁Ξ) fω(r(ω)) − ⟨r(ω) ∣ s∗(ω)⟩Hω

⩾ fω(p(ω)) + ⟨r(ω) − p(ω) ∣ r(ω) + s∗(ω) − p(ω)⟩
Hω
− ⟨r(ω) ∣ s∗(ω)⟩Hω

= fω(p(ω)) − ⟨p(ω) ∣ s∗(ω)⟩Hω
+ ∥r(ω) − p(ω)∥2

Hω

⩾ ϑ(ω) + ∥r(ω) − p(ω)∥2
Hω

.(4.22)

On the other hand, thanks to items [C] and [D] in Assumption 4.6, the function ω ↦
fω(r(ω)) − ⟨r(ω) ∣ s∗(ω)⟩Hω

− ϑ(ω) lies in L 1(Ω,F, μ;R). Therefore, it results from
(4.22) that r − p ∈ H and, since r ∈ H by Assumption 4.6[C], we get

p ∈ H.(4.23)

Now set

A =
G

∫
⊕

Ω
∂fω μ(dω).(4.24)

Assumption 4.6[A] and [28, Proposition 12.b] imply that the operators (∂fω)ω∈Ω are
maximally monotone. Moreover, since r + s∗ ∈ H, we infer from (4.21) and (4.23) that
p ∈ dom A. Moreover, Assumption 4.6[B] and [3, Example 23.3] guarantee that, for
every x ∈ H, the mapping ω ↦ J∂fω(x(ω)) lies in G. Altogether,

the family (∂fω)ω∈Ω satisfies the assumption of Theorem 3.8.(4.25)

Hence, it follows from Theorem 3.8(i) that

A is maximally monotone(4.26)

and from Theorem 3.8(ii)(a) and [3, Example 23.3] that

(∀γ ∈]0,+∞[)(∀x ∈ H) the mapping ω ↦ proxγfω
(x(ω)) lies in H.(4.27)

(i): We must show that, for every x ∈ H, the function Ω →]−∞,+∞]∶ω ↦
fω(x(ω)) is F-measurable. To do so, we employ a Moreau envelope approximation
technique inspired by [1]. Take x ∈ H. For every γ ∈]0,+∞[, let Ψγ be the mapping
defined on [0, 1] ×Ω by

(∀(t, ω) ∈ [0, 1] ×Ω) Ψγ(t, ω)
= r(ω) + t(x(ω) − r(ω)) − proxγfω

(r(ω) + t(x(ω) − r(ω)))(4.28)

and define

ϕγ ∶ [0, 1] ×Ω → R∶ (t, ω) ↦ ⟨x(ω) − r(ω) ∣Ψγ(t, ω)⟩
Hω

.(4.29)

Then, for every γ ∈]0,+∞[, the continuity of the mappings (Ψγ(⋅ , ω))ω∈Ω ensures
that the functions (ϕγ(⋅ , ω))ω∈Ω are continuous, while (4.27) and Lemma 2.2(i)
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ensure that the functions (ϕγ(t, ⋅))t∈[0,1] are F-measurable. Hence, the functions
(ϕγ)γ∈]0,+∞[ are B[0,1] ⊗ F-measurable [14, Lemma III.14]. In turn, invoking the
fact that (Ω,F, μ) is σ-finite, we deduce that, for every γ ∈]0,+∞[, the function
Ω → R∶ω ↦ ∫

1
0 ϕγ(t, ω)dt isF-measurable. Therefore, for every γ ∈]0,+∞[, since [3,

Proposition 12.30] implies that

(∀ω ∈ Ω) γfω(x(ω)) − γfω(r(ω))

= γ−1∫
1

0
⟨x(ω) − r(ω) ∣Ψγ(t, ω)⟩

Hω
dt = γ−1∫

1

0
ϕγ(t, ω)dt,(4.30)

we infer that the function Ω → R∶ω ↦ γfω(x(ω)) − γfω(r(ω)) is F-measurable.
However, [3, Proposition 12.33(ii)] and Assumption 4.6[C] give

(∀ω ∈ Ω) fω(x(ω)) − fω(r(ω)) = lim
γ↓0
(γfω(x(ω)) − γfω(r(ω))).(4.31)

Hence, the function Ω →]−∞,+∞]∶ω ↦ fω(x(ω)) − fω(r(ω)) is F-measurable.
Consequently, invoking Assumption 4.6[C] once more, we conclude that the function
Ω →]−∞,+∞]∶ω ↦ fω(x(ω)) is F-measurable.

(ii): By (4.19), (4.18), and Assumption 4.6[D],

(∀x ∈H) f (x) = ∫
Ω
fω(x(ω))μ(dω)

⩾ ∫
Ω
⟨x(ω) ∣ s∗(ω)⟩Hω

μ(dω) + ∫
Ω

ϑ(ω)μ(dω) > −∞,(4.32)

which yields

−∞ ∉ f (H).(4.33)

At the same time, since the functions (fω)ω∈Ω are convex by Assumption 4.6[A], so
is f. Moreover, Assumption 4.6[C] implies that dom f ≠ ∅. Therefore, it remains to
show that f is lower semicontinuous. Take ξ ∈ R, let (xn)n∈N be a sequence in H, let
x ∈H, and suppose that

sup
n∈N

f (xn) ⩽ ξ and xn → x .(4.34)

Then Lemma 2.3 asserts that there exists a strictly increasing sequence (kn)n∈N in N

such that (∀μ ω ∈ Ω)xkn(ω) → x(ω). Let us define

(∀n ∈ N) ρn ∶Ω →]−∞,+∞]∶ω ↦ fω(xkn(ω)) − ⟨xkn(ω) ∣ s∗(ω)⟩Hω
.(4.35)

By (i) and Lemma 2.2(i), the functions (ρn)n∈N are F-measurable. Additionally,

(∀n ∈ N) ρn ⩾ ϑ μ-a.e. and ∫
Ω

ρn(ω)μ(dω) = f (xkn) − ⟨xkn ∣ s∗⟩H(4.36)

and, since the functions (fω)ω∈Ω are lower semicontinuous, (∀μ ω ∈ Ω)fω(x(ω)) −
⟨x(ω) ∣ s∗(ω)⟩Hω

⩽ lim ρn(ω). Thus, we derive from Fatou’s lemma and (4.34) that

f (x) − ⟨x ∣ s∗⟩H = ∫
Ω
(fω(x(ω)) − ⟨x(ω) ∣ s∗(ω)⟩Hω

)μ(dω)

⩽ ∫
Ω

lim ρn(ω) μ(dω)
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⩽ lim∫
Ω

ρn(ω)μ(dω)

= lim ( f (xkn) − ⟨xkn ∣ s∗⟩H)
⩽ ξ − ⟨x ∣ s∗⟩H .(4.37)

Hence, f (x) ⩽ ξ and we conclude via [3, Lemma 1.24] that f is lower semicontinuous.
(iii): Let (x , x∗) ∈ gra A and let Θ ∈ F be such that μ(Θ) = 0 and (∀ω ∈

∁Θ)x∗(ω) ∈ ∂fω(x(ω)). For every y ∈H, thanks to the inequalities

(∀ω ∈ ∁Θ) ⟨y(ω) − x(ω) ∣ x∗(ω)⟩
Hω
+ fω(x(ω)) ⩽ fω(y(ω)),(4.38)

we obtain ⟨y − x ∣ x∗⟩H + f (x) ⩽ f (y). Hence, (x , x∗) ∈ gra ∂ f and we thus have
gra A ⊂ gra ∂ f . Consequently, the monotonicity of ∂ f and (4.26) force ∂ f = A.

(iv): Combine (ii), [3, Example 23.3], (iii), (4.25), and Theorem 3.8(ii)(a).
(v): We derive from (ii), [3, Proposition 16.38], (iii), (4.25), and Theorem 3.8(iii)

that

dom f = dom ∂ f =
G

∫
⊕

Ω
dom ∂fω μ(dω) =

G

∫
⊕

Ω
dom fω μ(dω).(4.39)

This shows that G

∫
⊕

Ω dom fω μ(dω) is a closed subset of H. On the other hand, for
every x ∈ dom f , it results from Definition 1.4 that, for μ-almost every ω ∈ Ω, x(ω) ∈
dom fω and, therefore, that x ∈ G

∫
⊕

Ω dom fω μ(dω). Consequently,

dom f ⊂
G

∫
⊕

Ω
dom fω μ(dω) ⊂

G

∫
⊕

Ω
dom fω μ(dω) = dom f ,(4.40)

which yields the desired identities.
(vi): This follows from Fermat’s rule, (iii), and Proposition 3.2(iii).
(vii): Appealing to (4.25), we deduce from Theorem 3.8(v)(a) and [3, Proposition

17.31(i)] that, for every x ∈ H, the mapping ω ↦ 0(∂fω)(x(ω)) = ∇fω(x(ω)) lies in G.
In addition, by (iii),

∂ f =
G

∫
⊕

Ω
∇fω μ(dω).(4.41)

Furthermore, for every ω ∈ Ω, [3, Corollary 17.40] asserts that∇fω ∶Hω → Hω is strong-
to-weak continuous. Consequently, in the light of [3, Proposition 17.41], the assertion
follows from Proposition 3.4(i) applied to the operators (∇fω)ω∈Ω .

(viii): Take x ∈ H and define q∶ω ↦ proxγfω
(x(ω)). Then (iv) asserts that q ∈ H and

q = proxγ f x. Hence, we derive from (ii), [3, Remark 12.24], and Definition 1.4 that

γ f (x) = f (proxγ f x) + (2γ)−1∥x − proxγ f x∥2
H

= ∫
Ω
(fω(q(ω)) + (2γ)−1∥x(ω) − q(ω)∥2

Hω
)μ(dω)

= ∫
Ω

γfω(x(ω))μ(dω),(4.42)

as claimed.
(ix): Let x∗ ∈ H, let (γn)n∈N be a sequence in ]0, 1[ such that γn ↓ 0, and define

(∀n ∈ N) ϑn ∶Ω → R∶ω ↦ γn(f∗ω)(x∗(ω)).(4.43)
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22 M. N. Bùi and P. L. Combettes

For every n ∈ N, since Moreau’s decomposition theorem [3, Theorem 14.3(i)] gives

(∀ω ∈ Ω) ϑn(ω) = γ−1
n ∥x∗(ω)∥2

Hω
− γ−1

n fω(γ−1
n x∗(ω)),(4.44)

it follows from (viii) that ϑn ∈L 1(Ω,F, μ;R). Further, we deduce from [3, Proposi-
tion 12.33(ii)] that

(∀ω ∈ Ω) (ϑn(ω))n∈N is increasing and ϑn(ω) ↑ f∗ω(x∗(ω))(4.45)

and, therefore, that the function Ω →]−∞,+∞]∶ω ↦ f∗ω(x∗(ω)) is F-measurable.
On the other hand, invoking (4.44), (viii), Moreau’s decomposition theorem, and [3,
Proposition 12.33(ii)], we obtain

∫
Ω

ϑn(ω)μ(dω) = ∫
Ω
(γ−1

n ∥x∗(ω)∥2
Hω
− γ−1

n fω(γ−1
n x∗(ω)))μ(dω)

= γ−1
n ∥x∗∥2

H − γ−1
n f (γ−1

n x∗)
= γn( f ∗)(x∗)
→ f ∗(x∗) as n → +∞.(4.46)

Thus, in view of (4.45), we infer from the Beppo Levi monotone convergence theorem
[5, Theorem 2.8.2 and Corollary 2.8.6] that

f ∗(x∗) = lim∫
Ω

ϑn(ω)μ(dω) = ∫
Ω

lim ϑn(ω) μ(dω) = ∫
Ω
f∗ω(x∗(ω))μ(dω).

(4.47)

(x): Assumption 4.6[C] ensures that (∀ω ∈ Ω)r(ω) ∈ dom fω . Now take x ∈H and
set

(∀α ∈]0,+∞[) θα ∶Ω →]−∞,+∞]∶ω ↦
fω(r(ω) + αx(ω)) − fω(r(ω))

α
.(4.48)

Then, for every α ∈]0,+∞[, since r + αx ∈ H and r ∈ H, it results from (i) that θα is
F-measurable. On the other hand, by Assumption 4.6[A] and [3, Propositions 9.27
and 9.30(ii)], we obtain

(∀ω ∈ Ω) the net (θα(ω))α∈]0,+∞[ is increasing

and (rec fω)(x(ω)) = lim
α↑+∞

θα(ω).(4.49)

Altogether, we infer from the Beppo Levi monotone convergence theorem, Assump-
tion 4.6[C], (ii), and [3, Proposition 9.30(ii)] that

∫
Ω
(rec fω)(x(ω))μ(dω) = ∫

Ω
lim

α↑+∞
θα(ω) μ(dω)

= lim
α↑+∞∫Ω

θα(ω)μ(dω)

= lim
α↑+∞

1
α
(∫

Ω
fω(r(ω) + αx(ω))μ(dω) − ∫

Ω
fω(r(ω))μ(dω))

= lim
α↑+∞

f (r + αx) − f (r)
α

= (rec f )(x),(4.50)

which completes the proof. ∎
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Remark 4.8. Consider Theorem 4.7 in the special case of Example 2.1(iv). Then
(ii), (iii), (iv), (ix), and (x) were obtained, respectively, in [34, Corollary, p. 227],
[34, Equation (25)], [3, Proposition 24.13], [34, Theorem 2], and [4, Proposition II.1].
On the other hand, in the special case of Example 2.1(iii), (iv) was obtained in [18,
Corollary 2.2].

Example 4.9 Consider the setting of Example 2.1(iii) and suppose, in addition, that
(∀k ∈ N)αk = 1 and Hk = R. Then H = �2(N). Now set (∀k ∈ N)fk = ∣⋅∣. Then

dom(
G

∫
⊕

Ω
fω μ(dω)) = �1(N) ≠ �2(N) =

G

∫
⊕

Ω
dom fω μ(dω).(4.51)

Thus, the closure operation in Theorem 4.7(v) must not be omitted.

Every maximally monotone operator on R is the subdifferential of a function in
Γ0(R) [3, Corollary 22.23]. The following result is an extension of this fact.

Corollary 4.10 Let (Ω,F, μ) be a complete σ-finite measure space and, for every
ω ∈ Ω, let Aω ∶R→ 2R be maximally monotone. Set H = L2(Ω,F, μ;R) and

A∶H → 2H∶ x ↦ {x∗ ∈H ∣ (∀μ ω ∈ Ω) x∗(ω) ∈ Aω(x(ω))}.(4.52)

Then the following are equivalent:

(i) A is maximally monotone.
(ii) There exists f ∈ Γ0(H) such that A = ∂ f .

(iii) dom A ≠ ∅ and, for every x ∈ R, the function Ω → R∶ω ↦ JAωx is F-measurable.

Proof (ii)⇒(i): Use Moreau’s theorem [28, Proposition 12.b].
(i)⇒(iii): This is a special case of Corollary 3.10.
(iii)⇒(ii): Set G = {x∶Ω → R ∣ x is F-measurable}. Then, as seen in Example

2.1(iv), H = G

∫
⊕

Ω R μ(dω). For every ω ∈ Ω, [3, Corollary 22.23] asserts that there
exists gω ∈ Γ0(R) such that Aω = ∂gω . Next, since dom A ≠ ∅ and (Ω,F, μ) is com-
plete, there exist r and s∗ in L 2(Ω,F, μ;R) such that

(∀μ ω ∈ Ω) s∗(ω) ∈ Aω(r(ω)) = ∂gω(r(ω))(4.53)

and

(∀ω ∈ Ω) r(ω) ∈ domAω ⊂ domgω .(4.54)

Now set

(∀ω ∈ Ω) fω = gω − gω(r(ω)).(4.55)

Then the functions (fω)ω∈Ω lie in Γ0(R) and, by [3, Proposition 24.8(i) and Example
23.3], (∀ω ∈ Ω)proxfω

= proxgω
= JAω . In turn, appealing to the continuity of the

operators (JAω)ω∈Ω , we deduce from [14, Lemma III.14] that the mapping Ω ×R→
R∶ (ω, x) ↦ proxfω

x is F ⊗BR-measurable. Therefore, for every x ∈L 2(Ω,F, μ;R),
the mapping Ω → R∶ω ↦ proxfω

(x(ω)) lies in G. Next, we get from (4.55) and (4.54)
that (∀ω ∈ Ω)fω(r(ω)) = 0. Moreover, by (4.53),
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(∀μ ω ∈ Ω)(∀x ∈ R) fω(x) = gω(x) − gω(r(ω)) ⩾ (x − r(ω))s∗(ω)
= xs∗(ω) − r(ω)s∗(ω).(4.56)

Hence, since ω ↦ r(ω)s∗(ω) lies in L 1(Ω,F, μ;R), the family (fω)ω∈Ω satisfies the
assumption of Theorem 4.7. Altogether, we conclude via Theorem 4.7(ii) that

G

∫
⊕

Ω
fω μ(dω) ∈ Γ0(H)(4.57)

and via Theorem 4.7(iii) and (4.52) that

∂(
G

∫
⊕

Ω
fω μ(dω)) =

G

∫
⊕

Ω
∂fω μ(dω) =

G

∫
⊕

Ω
Aω μ(dω) = A,(4.58)

as desired. ∎
Corollary 4.11 Let (Ak)k∈N be a family of maximally monotone operators from R to
2R, and define

A∶ �2(N) → 2�
2(N)∶ (xk)k∈N ↦ {(x∗k)k∈N ∈ �2(N) ∣ (∀k ∈ N) x∗k ∈ Akxk}.(4.59)

Suppose that dom A ≠ ∅. Then A is maximally monotone and there exists f ∈ Γ0(�2(N))
such that A = ∂ f .

Proof Apply Corollary 4.10 to the case where Ω = N, F = 2N, and μ is the counting
measure. ∎
Corollary 4.12 Suppose that Assumption 1.2 is in force and, for every ω ∈ Ω, let Cω be
a nonempty closed convex subset of Hω . Set

C =
G

∫
⊕

Ω
Cω μ(dω).(4.60)

Suppose that C ≠ ∅ and that, for every x ∈ H, the mapping ω ↦ projCω
(x(ω)) lies in

G. Then the following hold:
(i) C is a closed convex subset of H.

(ii) NC =
G

∫
⊕

Ω
NCω μ(dω).

(iii) projC =
G

∫
⊕

Ω
projCω

μ(dω).

(iv) d2
C =

G

∫
⊕

Ω
d2
Cω

μ(dω).

(v) σC =
G

∫
⊕

Ω
σCω μ(dω).

(vi) Suppose that, for every ω ∈ Ω, Cω is a cone in Hω . Then C⊖ =
G

∫
⊕

Ω
C⊖ω μ(dω).

(vii) Suppose that, for every ω ∈ Ω, Cω is a vector subspace of Hω . Then C⊥ =
G

∫
⊕

Ω
C⊥ω μ(dω).

Proof Set (∀ω ∈ Ω)fω = ιCω . Then, for every ω ∈ Ω, fω ∈ Γ0(Hω), fω ⩾ 0, and
proxfω

= projCω
. Moreover, since C ≠ ∅ and (Ω,F, μ) is complete, there exists r ∈ H

such that, for every ω ∈ Ω, r(ω) ∈ Cω or, equivalently, fω(r(ω)) = 0. Altogether, the
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family (fω)ω∈Ω satisfies the assumption of Theorem 4.7. Therefore, in view of items (i)
and (ii) in Theorem 4.7,

f =
G

∫
⊕

Ω
fω μ(dω) is well defined and lies in Γ0(H).(4.61)

(i): Using Definitions 1.4 and 3.1, together with (4.60), we obtain

(∀x ∈H) f (x) = ∫
Ω

ιCω(x(ω))μ(dω)

=
⎧⎪⎪⎨⎪⎪⎩

0, if (∀μ ω ∈ Ω) x(ω) ∈ Cω ,
+∞, otherwise,

=
⎧⎪⎪⎨⎪⎪⎩

0, if x ∈ C ,
+∞, otherwise,

= ιC(x),(4.62)

and the claim thus follows from (4.61).
(ii)–(v): In the light of (4.61) and (4.62), these follow from items (iii), (iv), (viii),

and (ix) in Theorem 4.7, respectively.
(vi): We deduce from [3, Example 6.40] and (ii) that

C⊖ = NC 0 =
G

∫
⊕

Ω
(NCω0)μ(dω) =

G

∫
⊕

Ω
C⊖ω μ(dω).(4.63)

(vii): Use (vi) and [3, Proposition 6.23]. ∎

Proposition 4.13 Suppose that Assumption 4.6 is in force. Let G be a separable real
Hilbert space, and, for every ω ∈ Ω, let Lω ∶G→ Hω be linear and bounded. Suppose
that, for every z ∈ G, the mapping eLz∶ω ↦ Lωz lies in G. Additionally, suppose that
∫Ω∥Lω∥2 μ(dω) < +∞ and that there exists w ∈ G such that ∫Ω fω(Lωw)μ(dω) < +∞.
Define

g∶G→]−∞,+∞]∶ z↦ ∫
Ω
fω(Lωz)μ(dω).(4.64)

Then the following hold:
(i) g is well defined and lies in Γ0(G).

(ii) Let (z, z∗) ∈ G ×G. Then z∗ ∈ ∂g(z) if and only if there exist sequences (γn)n∈N in
]0,+∞[ and (zn)n∈N in G such that

γn ↓ 0, zn → z, and ∫
Ω
L∗ω(proxγ−1

n f∗ω
(γ−1

n Lωzn))μ(dω) → z∗ .(4.65)

Proof Theorem 4.7(i)–(ii) states that

f =
G

∫
⊕

Ω
fω μ(dω) is well defined and lies in Γ0(H).(4.66)

On the other hand, according to Proposition 3.12(ii),

L∶G→H∶ z↦ eLz is well defined, linear, and bounded.(4.67)
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(i): Because Lw ∈ dom f , it follows from (4.64), (4.66), and (4.67) that

g = f ○ L ∈ Γ0(G).(4.68)

(ii): It results from Theorem 4.7(iii), Proposition 3.5, and Moreau’s decomposition
[3, Theorem 14.3(ii)] that

(∀γ ∈]0,+∞[) γ(∂ f ) =
G

∫
⊕

Ω
γ(∂fω)μ(dω) =

G

∫
⊕

Ω
proxγ−1fω

○ γ−1IdHω μ(dω).

(4.69)

Hence, for every γ ∈]0,+∞[ and every w ∈ G, since eLw∶ω ↦ Lωw is a representative
in H of Lw, Proposition 3.12(v) implies that

L∗(γ(∂ f )(Lw)) = ∫
Ω
L∗ω(proxγ−1f∗ω

(γ−1Lωw))μ(dω).(4.70)

In addition, appealing to (4.66)–(4.68), we derive from [32, Theorem 4.1] and a
remark on [32, p. 88] that gra ∂g is the set of points (w,w∗) ∈ G ×G for which there
exist sequences (γn)n∈N in ]0,+∞[ and (wn)n∈N in G such that γn ↓ 0, wn → w, and
L∗(γn(∂ f )(Lwn)) → w∗n . Altogether, the proof is complete. ∎

5 Application to integral composite inclusion problems

Let G and (Hk)1⩽k⩽p be real Hilbert spaces. For every k ∈ {1, . . . , p}, let Ak ∶Hk → 2Hk

be monotone and let Lk ∶G→ Hk be linear and bounded. Finite compositions of the
form ∑p

k=1 L
∗
k ○Ak ○ Lk arise in many theoretical and modeling aspects of monotone

operator theory [3, 8, 16, 21, 22]. The main object of this section is to extend this
construction to arbitrary families of monotone and linear operators. More precisely,
our focus is on the following monotonicity-preserving operation, which involves the
Aumann integral of (2.4).
Proposition 5.1 Suppose that Assumption 1.2 is in force. Let G be a separable real
Hilbert space, and, for every ω ∈ Ω, let Aω ∶Hω → 2Hω be monotone and let Lω ∶G→ Hω
be linear and bounded. Then

M∶G→ 2G∶ z↦ ∫
Ω
L∗ω(Aω(Lωz))μ(dω)(5.1)

is monotone.
Proof Suppose that (z, z∗) and (w,w∗) are in graM. Then, by (2.4), there exist x∗
and y∗ in∏ω∈Ω Hω such that

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(∀μ ω ∈ Ω) x∗(ω) ∈ Aω(Lωz) and y∗(ω) ∈ Aω(Lωw),
the mappings ω ↦ L∗ω(x∗(ω)) and ω ↦ L∗ω(y∗(ω)) lie in L 1(Ω,F, μ;G),
∫Ω L∗ω(x∗(ω))μ(dω) = z∗ and ∫Ω L∗ω(y∗(ω))μ(dω) = w∗ .

(5.2)

The monotonicity of the operators (Aω)ω∈Ω ensures that

(∀μ ω ∈ Ω) ⟨z −w ∣L∗ω(x∗(ω)) − L∗ω(y∗(ω))⟩
G

= ⟨Lωz − Lωw ∣ x∗(ω) − y∗(ω)⟩Hω
⩾ 0.(5.3)
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Therefore, using [36, Théorème 5.8.16], we obtain

⟨z −w ∣ z∗ −w∗⟩G = ⟨z −w ∣ ∫Ω
L∗ω(x∗(ω))μ(dω) − ∫

Ω
L∗ω(y∗(ω))μ(dω)⟩

G

= ∫
Ω
⟨z −w ∣L∗ω(x∗(ω)) − L∗ω(y∗(ω))⟩

G
μ(dω)

⩾ 0,(5.4)

which yields the assertion. ∎

The inclusion problem under investigation involves the integral composite opera-
tor (5.1) and is placed in the following environment.

Assumption 5.2 Assumption 1.2 and the following are in force:

[A] G is a separable real Hilbert space.
[B] For every ω ∈ Ω, Lω ∶G→ Hω is linear and bounded.
[C] For every z ∈ G, the mapping eLz∶ω ↦ Lωz lies in G.
[D] ∫Ω∥Lω∥2 μ(dω) < +∞.

Problem 5.3 Suppose that Assumptions 3.6 and 5.2 are in force, and let W∶G→ 2G be
maximally monotone. The objective is to

find z ∈ G such that 0 ∈Wz + ∫
Ω
L∗ω(Aω(Lωz))μ(dω).(5.5)

In traditional variational methods, duality provides a powerful framework to
analyze and solve minimization problems [3, 21, 35]. More generally, for inclusion
problems, notions of duality have been proposed at various levels of generality [10, 17,
31, 33] in the context of Example 2.1(i), which corresponds to the inclusion problem

find z ∈ G such that 0 ∈Wz +
p

∑
k=1

L∗k(Ak(Lkz)).(5.6)

The next theorem extends duality concepts to the general setting of Problem 5.3.

Theorem 5.4 Consider the setting of Problem 5.3, as well as the dual problem

find x∗ ∈H such that

(∃ z ∈W−1 (−∫
Ω
L∗ω(x∗(ω))μ(dω))) (∀μ ω ∈ Ω) Lωz ∈ A−1

ω (x∗(ω)),(5.7)

and denote by Z and Z∗ the sets of solutions to (5.5) and (5.7), respectively. Let K be the
Kuhn–Tucker operator associated with Problem 5.3, that is,

K∶ G⊕H → 2G⊕H

(z, x∗) ↦ (Wz + ∫
Ω
L∗ω(x∗(ω))μ(dω)) × (−eLz +

G

∫
⊕

Ω
A−1

ω (x∗(ω))μ(dω)) ,

(5.8)
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and let S be the saddle operator associated with Problem 5.3, that is,

S∶ G⊕H ⊕H → 2G⊕H⊕H

(z, x , u∗) ↦ (Wz + ∫
Ω
L∗ω(u∗(ω))μ(dω))

× (
G

∫
⊕

Ω
Aω(x(ω))μ(dω) − u∗) × (−eLz + x).

(5.9)

Then the following hold:
(i) K and S are maximally monotone.
(ii) zerK and zerS are closed and convex.
(iii)Let (z, x∗) ∈ G ×H. Then (z, x∗) ∈ zerK⇒ (z, x∗) ∈ Z × Z∗.
(iv) Let (z, x , u∗) ∈ G ×H ×H. Then (z, x , u∗) ∈ zerS⇒ (z, u∗) ∈ Z × Z∗.
(v) zerS ≠ ∅⇔ zerK ≠ ∅⇔ Z∗ ≠ ∅ ⇒ Z ≠ ∅.

Proof Set

A =
G

∫
⊕

Ω
Aω μ(dω).(5.10)

Theorem 3.8(i) states that

A is maximally monotone,(5.11)

while Proposition 3.2(iv) states that

A−1 =
G

∫
⊕

Ω
A−1

ω μ(dω).(5.12)

Moreover, in view of Assumption 5.2, items (ii) and (v) of Proposition 3.12 imply that
the operator

L∶G→H∶ z↦ eLz(5.13)

is well defined, linear, and bounded, with adjoint

L∗∶H → G∶ x∗ ↦ ∫
Ω
L∗ω(x∗(ω))μ(dω).(5.14)

Hence, we deduce from (5.8) that

K∶G⊕H → 2G⊕H∶ (z, x∗) ↦ (Wz + L∗x∗) × (−Lz + A−1x∗)(5.15)

and from (5.9) that

S∶G⊕H⊕H → 2G⊕H⊕H∶ (z, x , u∗) ↦ (Wz + L∗u∗) × (Ax − u∗) × {−Lz + x}.
(5.16)

Additionally, the dual problem (5.7) can be rewritten as

find x∗ ∈H such that 0 ∈ −L(W−1(−L∗x∗)) + A−1x∗ .(5.17)

(i): In view of (5.11) and the maximal monotonicity of W, it follows from (5.15)
and [3, Proposition 26.32(iii)] that K is maximally monotone, and from (5.16) and [9,
Lemma 2.2(ii)] that S is maximally monotone.

(ii): Combine (i) and [3, Proposition 23.39].
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(iii): Suppose that (z, x∗) ∈ zerK. Then, by (5.15), Lz ∈ A−1x∗ or, equivalently,
x∗ ∈ A(Lz). Therefore, it follows from (5.13), Assumption 5.2[C], and (5.10) that, for
μ-almost every ω ∈ Ω, x∗(ω) ∈ Aω(Lωz) and, in turn, that L∗ω(x∗(ω)) ∈
L∗ω(Aω(Lωz)). Hence, because Proposition 3.12(iv) asserts that the mapping
Ω → G∶ω ↦ L∗ω(x∗(ω)) is μ-integrable, we infer from (5.8) and (2.4) that

0 ∈Wz + ∫
Ω
L∗ω(x∗(ω))μ(dω) ⊂Wz + ∫

Ω
L∗ω(Aω(Lωz))μ(dω).(5.18)

Finally, since (z, x∗) ∈ zerK, it follows from [3, Proposition 26.33(ii)] that x∗ solves
(5.17) and, therefore, (5.7).

(iv): Argue as in (iii).
(v): By virtue of (5.15)–(5.17), the equivalences zerS ≠ ∅⇔ zerK ≠ ∅⇔ Z∗ ≠ ∅

follow from [9, Lemma 2.2(iv)], while the implication zerK ≠ ∅ ⇒ Z ≠ ∅ follows
from (iii). ∎
Remark 5.5. Consider the setting of Theorem 5.4, and define A as in (5.10) and L as
in (5.13).
(i) zer(W + L∗ ○ A ○ L) is a subset of Z which, in general, is proper.

(ii) According to items (iii) and (iv) in Theorem 5.4, to solve (5.5) and its dual
(5.7), it is enough to find a zero of the operator K of (5.8) or of the operator
S of (5.9). This can be achieved by using splitting algorithms [16]. For instance,
to find a zero of S, each operator Aω is decomposed as Aω = Am

ω +Ac
ω +Al

ω ,
where Am

ω ∶Hω → 2Hω is maximally monotone, Ac
ω ∶Hω → Hω is cocoercive, and

Al
ω ∶Hω → Hω is monotone and Lipschitzian. Thus, A is decomposed as

A =
G

∫
⊕

Ω
Am

ω μ(dω) +
G

∫
⊕

Ω
Ac

ω μ(dω) +
G

∫
⊕

Ω
Al

ω μ(dω).(5.19)

One can then employ the algorithm of [16, Section 8.5]. It requires the resolvent
of G

∫
⊕

Ω Am
ω μ(dω), which can be implemented via Theorem 3.8(ii)(a), as well as

Euler steps on G

∫
⊕

Ω Ac
ω μ(dω) and G

∫
⊕

Ω Al
ω μ(dω), which can be implemented via

items (i) and (ii) in Proposition 3.4.

We conclude the paper by providing a few illustrations of Problem 5.3 and the
proposed duality framework (see [12] for further applications).

Example 5.6 In the setting of Example 2.1(i), the primal inclusion (5.5) reduces to
(5.6) and Theorem 5.4 specializes to results found in [10, Proposition 1].

Example 5.7 Suppose that Assumptions 4.6 and 5.2 are in force, let g ∈ Γ0(G), and
suppose that there exists z∗ ∈ H such that

(∃w ∈ ∂g∗ (−∫
Ω
L∗ω(z∗(ω))μ(dω))) (∀μ ω ∈ Ω) Lωw ∈ ∂f∗ω(z∗(ω)).(5.20)

Now set W = ∂g and (∀ω ∈ Ω)Aω = ∂fω . Then it follows from Theorem 4.7, Proposi-
tion 3.12, and standard convex calculus that every solution to the primal problem (5.5)
solves

minimize
z∈G

g(z) + ∫
Ω
fω(Lωz)μ(dω),(5.21)
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and every solution to the dual problem (5.7) solves

minimize
x∗∈H

g∗ (−∫
Ω
L∗ω(x∗(ω))μ(dω)) + ∫

Ω
f∗ω(x∗(ω))μ(dω).(5.22)

A noteworthy instance is when μ is a probability measure and, for every ω ∈ Ω, Hω =
G and Lω = IdG. In this setting, (5.21) describes a standard stochastic optimization
problem [29]. Our setting makes it possible to extend such stochastic problems to
composite ones involving functions acting on different spaces (Hω)ω∈Ω .

Example 5.8 Suppose that Assumption 5.2 is in force, let W∶G→ 2G be maximally
monotone, and, for every ω ∈ Ω, let Bω ∶Hω → 2Hω be maximally monotone. Addi-
tionally, suppose that dom G

∫
⊕

Ω Bω μ(dω) ≠ ∅ and that, for every x ∈ H, the mapping
ω ↦ JBω(x(ω)) lies in G. Now let γ ∈]0,+∞[ and set (∀ω ∈ Ω)Aω = γBω . Then, by
Theorem 3.8(ii)(b) and Proposition 3.4(ii), the family (Aω)ω∈Ω satisfies Assumption
3.6. Further, the primal problem (5.5) becomes

find z ∈ G such that 0 ∈Wz + ∫
Ω
L∗ω(γBω(Lωz))μ(dω),(5.23)

and the dual problem (5.7) reads

find x∗ ∈H such that

(∃ z ∈W−1 (−∫
Ω
L∗ω(x∗(ω))μ(dω))) (∀μ ω ∈ Ω) Lωz ∈ B−1

ω (x∗(ω)) + γx∗(ω).

(5.24)

As in the special case discussed in [19, Proposition 4.1], which is set in the context
of Example 2.1(i), the inclusion (5.23) can be shown to be an exact relaxation of the
inclusion problem

find z ∈ zerW such that (∀μ ω ∈ Ω) γBω(Lωz) = 0(5.25)

or, equivalently, of the so-called split common zero problem

find z ∈ zerW such that (∀μ ω ∈ Ω) 0 ∈ Bω(Lωz)(5.26)

in the sense that, if (5.26) has solutions, they are the same as those of (5.23). If we
further specialize to the case when μ is a probability measure, W = 0, and for every
ω ∈ Ω,Hω = G,Lω = IdG, andBω = NCω , whereCω is a nonempty closed convex subset
of G, then (5.26) collapses to the stochastic convex feasibility problem of [13].
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